suivant:
Symbolic constants : e
monter:
Symbolic algebra and Mathematics
précédent:
Table des matières
Table des matières
Index
The CAS functions
Sous-sections
Symbolic constants :
e pi infinity i
Booleans
The values of a boolean :
true false
Tests :
==, !=, >, >=, <, =<
Boolean operators :
or xor and not
Transform a boolean expression as a list :
exp2list
Evaluate booleans :
evalb
Operators bit to bit
Operators
bitor, bitxor, bitand
Hamming distance bit to bit :
hamdist
Strings
Character and string :
"
First character, middle and end of a string :
head mid tail
Concatenation of a sequence of words :
cumSum
ASCII code of a character :
ord
ASCII code of a string :
asc
String defined by the ASCII codes of its characters :
char
Find a character in a string :
inString
Concat objects into a string :
cat
Add an object to a string :
+
Transform an integer into a string :
cat +
Transform a string into a number :
expr
Write an integer in a
b
basis:
convert
Integers (and Gaussian Integers)
The factorial :
factorial
GCD :
gcd igcd
GCD :
Gcd
GCD of a list of integers :
lgcd
The least common multiple :
lcm
Decomposition into prime factors :
ifactor
List of prime factors :
ifactors
Matrix of factors :
maple_ifactors
The divisors of a number :
idivis divisors
The integer Euclidean quotient :
iquo intDiv
The integer Euclidean remainder :
irem remain smod mods mod %
Euclidean quotient and euclidean remainder of two integers :
iquorem
Test of evenness :
even
Test of oddness :
odd
Test of pseudo-primality :
is_pseudoprime
Test of primality :
is_prime isprime isPrime
The smallest pseudo-prime greater than
n
:
nextprime
The greatest pseudo-prime less than
n
:
prevprime
The
n
-th prime number :
ithprime
Bézout's Identity :
iegcd igcdex
Solving au+bv=c in
:
iabcuv
Chinese remainders :
ichinrem, ichrem
Chinese remainders for lists of integers :
chrem
Solving
a
2
+
b
2
=
p
in
:
pa2b2
The Euler indicatrix :
euler phi
Legendre symbol :
legendre_symbol
Jacobi symbol :
jacobi_symbol
Combinatory analysis
Factorial :
factorial !
Binomial coefficients :
binomial comb nCr
Arrangements :
perm nPr
Random integers :
rand
Rationals
Transform a floating point number into a rational :
exact
float2rational
Integer and fractional part :
propfrac propFrac
Numerator of a fraction after simplification :
numer
getNum
Denominator of a fraction after simplification :
denom getDenom
Numerator and denominator of a fraction :
f2nd fxnd
Simplification of a pair of integers :
simp2
Continued fraction representation of a real :
dfc
Transform a continued fraction representation into a real :
dfc2f
The
n
-th Bernoulli number :
bernoulli
Access to PARI/GP commands:
pari
Real numbers
Eval a real at a given precision :
evalf
and
Digits
,
DIGITS
)
Usual infixed functions on reals :
+,-,*,/,^
Usual prefixed functions on reals :
rdiv
n
-th root :
root
Error function :
erf
Complementary error function:
erfc
The
function :
Gamma
The
function :
Beta
Derivatives of the DiGamma fonction :
Psi
The
function :
Zeta
Airy functions :
Airy_Ai
and
Airy_Bi
Permutations
Random permutation :
randperm
Decomposition as a product of disjoint cycles :
permu2cycles
Product of disjoint cycles to permutation:
cycles2permu
Transform a cycle into permutation :
cycle2perm
Transform a permutation into a matrix :
permu2mat
Checking for a permutation :
is_permu
Checking for a cycle :
is_cycle
Product of two permutations :
p1op2
Composition of a cycle and a permutation :
c1op2
Composition of a permutation and a cycle :
p1oc2
Product of two cycles :
c1oc2
Signature of a permutation :
signature
Inverse of a permutation :
perminv
Inverse of a cycle :
cycleinv
Order of a permutation :
permuorder
Group generated by two permutations :
groupermu
Complex numbers
Usual complex functions :
+,-,*,/,^
Real part of a complex number :
re real
Imaginary part of a complex number :
im imag
Write a complex as
re(z)+i*im(z)
:
evalc
Modulus of a complex number :
abs
Argument of a complex number :
arg
The normalized complex number :
normalize unitV
Conjuguate of a complex number :
conj
Multiplication by the complex conjugate :
mult_c_conjugate
Barycenter of complex numbers :
barycentre
Algebraic expressions
Evaluate an expression :
eval
Evaluate algebraic expressions :
evala
Prevent evaluation :
quote hold '
Force evaluation :
unquote
Distributivity :
expand fdistrib
Canonical form :
canonical_form
Multiplication by the conjugate quantity :
mult_conjugate
Separation of variables :
split
Factorisation :
factor
Complex factorisation :
cFactor
Zeros of an expression :
zeros
Complex zeros of an expression :
cZeros
Normal form :
normal
Simplify :
simplify
Normal form for rational fractions :
ratnormal
Substitue a variable by a value :
subst
Substitue a variable by a value (Maple and Mupad compatibility) :
subs
Evaluate a primitive at boundaries:
preval
Sub-expression of an expression :
part
Values of
u
n
Array of values of a sequence :
tablefunc
Table of values and graph of a recurrent sequence :
tableseq
and
plotseq
Operators or infixed functions
Usual operators :
+, -, *, /, ^
Xcas
operators
Define an operator:
user_operator
Functions and expressions with symbolic variables
Difference between function and expression
Transform an expression into a fonction :
unapply
Top and leaves of an expression :
sommet feuille op
Functions
Context-dependant functions.
Operators
+
and
-
Operator
*
Operator
/
Usual functions
Defining algebraic functions
Defining a function from
p
to
Defining a function from
p
to
q
Defining families of function from
p-1
to
q
using a function from
p
to
q
Composition of two functions:
@
Repeted function composition:
@@
Define a fonction with the history :
as_function_of
Derivation and applications.
Functional derivative :
function_diff
Length of an arc :
arcLen
Maximum and minimum of an expression:
fMax fMin
Table of values and graph :
tablefunc
and
plotfunc
Derivative and partial derivative
Derivative and first order partial derivative :
diff derive deriver
Derivative and
n
-th order partial derivative :
diff derive deriver
Integration
Antiderivative and definite integral :
integrate int Int
Discrete summation:
sum
Riemann sum :
sum_riemann
Integration by parts :
ibpdv
et
ibpu
ibpdv
ibpu
Change of variables :
subst
Limits
Limites :
limit
Integral and limit
Rewriting transcendental and trigonometric expressions
Expand a transcendental and trigonometric expression :
texpand tExpand
Combine terms of same type :
combine
Trigonometry
Trigonometric functions
Expand a trigonometric expression :
trigexpand
Linearize a trigonometric expression :
tlin
Put together sine and cosine of the same angle :
tcollect tCollect
Simplify :
simplify
Transform arccos into arcsin :
acos2asin
Transform arccos into arctan :
acos2atan
Transform arcsin into arccos :
asin2acos
Transform arcsin into arctan :
asin2atan
Transform arctan into arcsin :
atan2asin
Transform arctan into arccos :
atan2acos
Transform complex exponentials into sin and cos :
sincos exp2trig
Transform tan(x) into sin(x)/cos(x) :
tan2sincos
Rewrite tan(x) with sin(2x) and cos(2x) :
tan2sincos2
Rewrite tan(x) with cos(2x) and sin(2x) :
tan2cossin2
Rewrite sin, cos, tan in terms of tan(x/2) :
halftan
Rewrite trigonometric functions as function of tan(x/2) and hyperbolic functions as function of exp(x):
halftan_hyp2exp
Transform inverse trigonometric functions into logarithms :
atrig2ln
Transform trigonometric functions into complex exponentials :
trig2exp
Simplify and express preferentially with sine :
trigsin
Simplify and express preferentially with cosine :
trigcos
Simplify and express preferentially with tangents :
trigtan
Rewrite an expression with different options :
convert convertir
Fourier transformation
Fourier coefficients :
fourier_an
and
fourier_bn
or
fourier_cn
fourier_an
fourier_bn
fourier_cn
Discrete Fourier Transform
The properties of the Discrete Fourier Transform
Applications
Fast Fourier Transform :
fft
Inverse Fast Fourier Transform :
ifft
An
exercice
with
fft
Exponentials and Logarithms
Rewrite hyperbolic functions as exponentials :
hyp2exp
Expand exponentials :
expexpand
Expand logarithms :
lnexpand
Linearize exponentials :
lin
Collect logarithms :
lncollect
Expand powers :
powexpand
Rewrite a power as an exponential :
pow2exp
Rewrite exp(n*ln(x)) as a power :
exp2pow
Simplify complex exponentials :
tsimplify
Polynomials
Convert to a symbolic polynomial :
r2e poly2symb
Convert from a symbolic polynomial :
e2r symb2poly
Coefficients of a polynomial:
coeff coeffs
Polynomial degree :
degree
Polynomial valuation :
valuation ldegree
Leading coefficient of a polynomial :
lcoeff
Trailing coefficient degree of a polynomial :
tcoeff
Evaluation of a polynomial :
peval polyEval
Factorize
x
n
in a polynomial :
factor_xn
GCD of the coefficients of a polynomial :
content
Primitive part of a polynomial :
primpart
Factorization :
collect
Factorization :
factor factoriser
Square-free factorization :
sqrfree
List of factors :
factors
Evaluate a polynomial :
horner
Rewrite in terms of the powers of (x-a) :
ptayl
Compute with the exact root of a polynomial :
rootof
Exact roots of a polynomial :
roots
Coefficients of a polynomial defined by its roots :
pcoeff pcoef
Truncate of order
n
:
truncate
Convert a series expansion into a polynomial :
convert convertir
Random polynomial :
randpoly randPoly
Change the order of variables :
reorder
Random list :
ranm
Lagrange's polynomial :
lagrange interp
Natural splines:
spline
Definition
Theorem
Interpolation with spline functions
Arithmetic and polynomials
The divisors of a polynomial :
divis
Euclidean quotient :
quo
Euclidean quotient :
Quo
Euclidean remainder :
rem
Euclidien remainder:
Rem
Quotient and remainder :
quorem divide
GCD of two polynomials with Euclide algorithm:
gcd
GCD of two polynomials with Euclide algorithm :
Gcd
Choosing the GCD algorithm of two polynomials :
ezgcd heugcd modgcd psrgcd
LCM of two polynomials :
lcm
Bézout's Identity :
egcd gcdex
Solving au+bv=c over polynomials:
abcuv
Chinese remainders :
chinrem
Cyclotomic polynomial :
cyclotomic
Sturm sequences and number of sign changes of
P
on ]
a
;
b
] :
sturm
Number of zeros in [
a
,
b
[ :
sturmab
Sturm sequences :
sturmseq
Sylvester matrix of two polynomials :
sylvester
Resultant of two polynomials :
resultant
Orthogonal polynomials
Legendre polynomials:
legendre
Hermite polynomial :
hermite
Laguerre polynomials:
laguerre
Tchebychev polynomials of first kind:
tchebyshev1
Tchebychev polynomial of second kind:
tchebyshev2
Gröbner basis and Gröbner reduction
Gröbner basis :
gbasis
Gröbner reduction :
greduce
Build a polynomial from it's evaluation :
genpoly
Rational fractions
Numerator :
getNum
Numerator after simplification :
numer
Denominator :
getDenom
Denominator after simplification :
denom
Numerator and denominator :
f2nd fxnd
Simplify :
simp2
Common denominator :
comDenom
Integer and fractional part :
propfrac
Partial fraction expansion :
partfrac
Exact roots of a polynomial
Exact bounds for complex roots of a polynomial :
complexroot
Exact bounds for real roots of a polynomial :
realroot
Exact values of rational roots of a polynomial :
rationalroot
Exact values of the complex rational roots of a polynomial :
crationalroot
Exact roots and poles
Roots and poles of a rational function :
froot
Rational function given by roots and poles :
fcoeff
Computing in
/
p
or in
/
p
[
x
]
Expand and reduce :
normal
Addition in
/
p
or in
/
p
[
x
] :
+
Substraction in
/
p
or in
/
p
[
x
] :
-
Multiplication in
/
p
or in
/
p
[
x
] :
*
Euclidian quotient :
quo
Euclidian remainder :
rem
Euclidian quotient and euclidian remainder :
quorem
Division in
/
p
or in
/
p
[
x
] :
/
Power in
/
p
and in
/
p
[
x
] :
^
Compute
a
n
mod
p
:
powmod powermod
Inverse in
/
p
:
inv inverse
or
/
Rebuild a fraction from it's value modulo
p
:
fracmod
GCD in
/
p
[
x
] :
gcd
Factorization over
/
p
[
x
] :
factor factoriser
Determinant of a matrix in
/
p
:
det
Inverse of a matrix with coefficients in
/
p
:
inv inverse
Row reduction to echelon form in
/
p
:
rref
Construction of a Galois field :
GF
Factorize a polynomial with coefficients in a Galois field :
factor
Compute in
/
p
[
x
] using Maple syntax
Euclidean quotient :
Quo
Euclidien remainder:
Rem
GCD in
/
p
[
x
] :
Gcd
Factorization in
/
p
[
x
] :
Factor
Determinant of a matrix with coefficients in
/
p
:
Det
Inverse of a matrix in
/
p
:
Inverse
Row reduction to echelon form in
/
p
:
Rref
Taylor and asymptotic expansions
Division by increasing power order :
divpc
Taylor expansion :
taylor
Series expansion :
series
Résidu d'une expression en un point :
residue
Padé expansion:
pade
Intervals
Definition of an interval :
a1..a2
Boundaries of an interval :
left right
Center of an interval :
interval2center
Intervals defined by their center :
center2interval
Sequences
Definition :
seq[] ()
Concat two sequences :
,
Get an element of a sequence :
[]
Sub-sequence of a sequence :
[]
Make a sequence or a list :
seq $
Transform a sequence into a list :
[] nop
The
+
operator applied on sequences
Sets
Definition :
set[]
Union of two sets or of two lists :
union
Intersection of two sets or of two lists :
intersect
Difference of two sets or of two lists :
minus
Lists and vectors
Definition
Get an element or a sub-list of a list :
at []
Get an element
Extract a sub-list
Extract a sub-list :
mid
Get the first element of a list :
head
Remove an element in a list :
suppress
Remove the first element :
tail
Reverse order in a list :
revlist
Reverse a list starting from its n-th element :
rotate
Permuted list from its n-th element :
shift
Modify an element in a list :
subsop
Transform a list into a sequence :
op makesuite
Transform a sequence into a list :
makevector []
Length of a list :
size nops length
Sizes of a list of lists :
sizes
Concatenate two lists or a list and an element :
concat augment
Append an element at the end of a list :
append
Prepend an element at the begining of a list :
prepend
Sort :
sort
Sort a list by increasing order :
SortA
Sort a list by decreasing order :
SortD
Select the elements of a list :
select
Remove elements of a list :
remove
Test if a value is in a list :
member
Test if a value is in a list :
contains
Sum of list (or matrix) elements transformed by a function :
count
Number of elements equal to a given value :
count_eq
Number of elements smaller than a given value :
count_inf
Number of elements greater than a given value :
count_sup
Sum of elements of a list :
sum add
Cumulated sum of the elements of a list :
cumSum
Product :
product mul
Product of values of an expression :
product
Product of elements of a list :
product
Apply a function of one variable to the elements of a list :
map apply of
Apply a bivariate function to the elements of two lists :
zip
Make a list with zeros :
newList
Make a list with a function :
makelist
Make a random vector or list :
randvector
List of differences of consecutive terms :
deltalist
Make a matrix with a list :
list2mat
Make a list with a matrix :
mat2list
Functions for vectors
Norms of a vector :
maxnorm l1norm l2norm norm
Normalize a vector :
normalize unitV
Term by term sum of two lists :
+ .+
Term by term difference of two lists :
- .-
Term by term product of two lists :
.*
Term by term quotient of two lists :
./
Scalar product :
scalar_product * dotprod dot dotP scalar_Product
Cross product :
cross crossP crossproduct
Statistic functions :
mean,variance,stddev, stddevp,median,quantile,quartiles,boxwhisker
Table with string as index :
table
Usual matrix
Identity matrix :
idn identity
Zero matrix :
newMat matrix
Random matrix :
ranm randMat randmatrix
Diagonal of a matrix or matrix of a diagonal :
BlockDiagonal diag
Jordan bloc :
JordanBlock
Hilbert matrix :
hilbert
Vandermonde matrix :
vandermonde
Arithmetic and matrix
Evaluate a matrix :
evalm
Addition and substraction of two matrices :
+ - .+ .-
Multiplication of two matrices :
* &*
Addition of elements of a column of a matrix :
sum
Cumulated sum of elements of each column of a matrix :
cumSum
Multiplication of elements of each column of a matrix :
product
Power of a matrix : ^ &^
Hadamard product :
hadamard product
Hadamard product (infixed version):
.*
Hadamard division (infixed version):
./
Hadamard power (infixed version):
.^
Extracting element(s) of a matrix :
[] at
Modify an element or a row of a matrix :
subsop
Extract rows or columns of a matrix (Maple compatibility) :
row col
Remove rows or columns of a matrix :
delrows delcols
Extract a sub-matrix of a matrix (TI compatibility) :
subMat
Add a row to another row :
rowAdd
Multiply a row by an expression :
mRow
Add
k
times a row to an another row :
mRowAdd
Exchange two rows :
rowSwap
Make a matrix with a list of matrix :
blockmatrix
Make a matrix from two matrices :
semi_augment
Make a matrix from two matrices :
augment concat
Build a matrix with a function :
makemat
Define a matrix :
matrix
Append a column to a matrix :
border
Count the elements of a matrix verifying a property :
count
Count the elements equal to a given value :
count_eq
Count the elements smaller than a given value :
count_inf
Count the elements greater than a given value :
count_sup
Statistics functions acting on column matrices :
mean
,
stddev
,
variance
,
median
,
quantile
,
quartiles
,
boxwhisker
Dimension of a matrix :
dim
Number of rows :
rowdim rowDim nrows
Number of columns :
coldim colDim ncols
Linear algebra
Transpose of a matrix :
tran transpose
Inverse of a matrix :
inv /
Trace of a matrix :
trace
Determinant of a matrix :
det
Determinant of a sparse matrix :
det_minor
Rank of a matrix :
rank
Transconjugate of a matrix :
trn
Equivalent matrix :
changebase
Basis of a linear subspace :
basis
Basis of the intersection of two subspaces :
ibasis
Image of a linear application :
image
Kernel of a linear application :
kernel nullspace ker
Kernel of a linear application :
Nullspace
Subspace generated by the columns of a matrix :
colspace
Subspace generated by the rows of a matrix :
rowspace
Linear Programmation
Simplex algorithm:
simplex_reduce
Different matrix norm
l
2
matrix norm :
nomm l2norm
l
matrix norm :
maxnorm
Matrix row norm :
rownorm rowNorm
Matrix column norm :
colnorm colNorm
Matrix reduction
Eigenvalues :
eigenvals
Eigenvalues :
egvl eigenvalues eigVl
Eigenvectors :
egv eigenvectors eigenvects
eigVc
Rational Jordan matrix :
rat_jordan
Jordan normal form :
jordan
Characteristic polynomial :
charpoly
Characteristic polynomial using Hessenberg algorithm :
pcar_hessenberg
Minimal polynomial :
pmin
Adjoint matrix :
adjoint_matrix
Companion matrix of a polynomial :
companion
Hessenberg matrix reduction :
hessenberg
Hermite normal form :
ihermite
Smith normal form :
ismith
Isometries
Recognize an isometry :
isom
Find the matrix of an isometry :
mkisom
Matrix factorizations
Cholesky decomposition :
cholesky
QR decomposition :
qr
QR decomposition (for TI compatibility) :
QR
LU decomposition :
lu
LU decomposition (for TI compatibility) :
LU
Singular value decomposition :
svd
Short basis of a lattice :
lll
Quadratic forms
Matrix of a quadratic form :
q2a
Transform a matrix into a quadratic form :
a2q
Reduction of a quadratic form :
gauss
Gramschmidt orthonormalization :
gramschmidt
Graph of a conic :
conique
Conic reduction :
conique_reduite
Graph of a quadric :
quadrique
Quadric reduction :
quadrique_reduite
Multivariate calculus
Gradient :
derive deriver diff grad
Laplacian :
laplacian
Hessian matrix :
hessian
Divergence :
divergence
Rotationnal :
curl
Potential :
potential
Conservative flux field :
vpotential
Equations
Define an equation :
equal
Transform an equation into a difference :
equal2diff
Transform an equation into a list :
equal2list
The left member of an equation :
left gauche lhs
The right member of an equation :
right droit rhs
Solving equation(s):
solve
Equation solving in
:
cSolve
Linear systems
Matrix of a system :
syst2mat
Gauss reduction of a matrix :
ref
Gauss-Jordan reduction:
rref gaussjord
Solving A*X=B :
simult
Step by step Gauss-Jordan reduction of a matrix :
pivot
Linear system solving:
linsolve
Finding linear recurrences :
reverse_rsolve
Differential equations
Solving differential equations :
desolve deSolve
dsolve
Laplace transform and inverse Laplace transform :
laplace ilaplace
Other functions
Replace small values by 0:
epsilon2zero
List of variables :
lname indets
List of variables and of expressions :
lvar
List of variables of an algebraic expressions:
algvar
Test if a variable is in an expression :
has
Numeric evaluation :
evalf
Rational approximation :
float2rational exact
giac
documentation written by Renée De Graeve and Bernard Parisse