next up previous contents index
suivant: Access to PARI/GP commands: monter: Rationals précédent: Transform a continued fraction   Table des matières   Index


The n-th Bernoulli number : bernoulli

bernoulli takes as argument an integer n.
bernoulli returns the n-th Bernoulli number B(n).
The Bernoulli numbers are defined by :

$\displaystyle {\frac{{t}}{{e^t-1}}}$ = $\displaystyle \sum_{{n=0}}^{{+\infty}}$$\displaystyle {\frac{{B(n)}}{{n!}}}$tn

Bernoulli polynomials Bk are defined by :

B0 = 1,    Bk'(x) = kBk-1(x),    $\displaystyle \int_{0}^{1}$Bk(x)dx = 0

and the relation B(n) = Bn(0) holds.
Input :
bernoulli(6)
Output :
1/42



giac documentation written by Renée De Graeve and Bernard Parisse