next up previous contents index
suivant: Rational function given by monter: Exact roots and poles précédent: Exact roots and poles   Table des matières   Index


Roots and poles of a rational function : froot

froot takes a rational function F(x) as argument.
froot returns a vector whose components are the roots and the poles of F[x], each one followed by it's multiplicity.
If Xcas can not find the exact values of the roots or poles, it tries to find approximate values if F(x) has numeric coefficients.
Input :
froot((x^5-2*x^4+x^3)/(x-2))
Output :
[1,2,0,3,2,-1]
Hence, for F(x) = $\displaystyle {\frac{{x^5-2.x^4+x^3}}{{x-2}}}$ : Input :
froot((x^3-2*x^2+1)/(x-2))
Output :
[1,1,(1+sqrt(5))/2,1,(1-sqrt(5))/2,1,2,-1]
Remark : to have the complex roots and the poles, check Complex in the cas configuration (red button giving the state line).
Input :
froot((x^2+1)/(x-2))
Output :
[-i,1,i,1,2,-1]



giac documentation written by Renée De Graeve and Bernard Parisse