suivant: Characteristic polynomial : charpoly
monter: Matrix reduction
précédent: Rational Jordan matrix :
Table des matières
Index
Jordan normal form : jordan
jordan takes as argument a square
matrix A of size n.
jordan returns :
- in Xcas, Mupad or TI mode
a sequence of two matrix : a matrix P which columns are
the eigenvectors and characteristic vectors
of the matrix A and the Jordan matrix J of A verifying
J = P-1AP,
- in Maple mode
the Jordan matrix J of A. We can also have the matrix P verifying
J = P-1AP in a variable
by passing this variable as second argument, for example
jordan([[1,0,0],[0,1,1],[1,1,-1]],'P')
Remarks
- the syntax Maple is also valid in the other modes, for example, in
Xcas mode input :
jordan([[4,1,1],[1,4,1],[1,1,4]],'P')
Output :
[[1,-1,1/2],[1,0,-1],[1,1,1/2]]
then P returns
[[6,0,0],[0,3,0],[0,0,3]]
- When A is symetric and has eigenvalues with an multiple order,
Xcas returns orthogonal eigenvectors (not always of norm equal to 1)
i.e. tran(P)*P is a diagonal matrix where the diagonal is the square norm
of the eigenvectors, for example :
jordan([[4,1,1],[1,4,1],[1,1,4]])
returns :
[[1,-1,1/2],[1,0,-1],[1,1,1/2]],[[6,0,0],[0,3,0],[0,0,3]]
Input in Xcas, Mupad or TI mode :
jordan([[1,0,0],[0,1,1],[1,1,-1]])
Output :
[[1,0,0],[0,1,1],[1,1,-1]],[[-1,0,0],[1,1,1],[0,-sqrt(2)-1,sqrt(2)-1]],[[1,0,0],[0,-(sqrt(2)),0],[0,0,sqrt(2)]]
Input in Maple mode :
jordan([[1,0,0],[0,1,1],[1,1,-1]])
Output :
[[1,0,0],[0,-(sqrt(2)),0],[0,0,sqrt(2)]]
then input :
P)
Output :
[[-1,0,0],[1,1,1],[0,-sqrt(2)-1,sqrt(2)-1]]
Input in Xcas, Mupad or TI mode :
jordan([[4,1,-2],[1,2,-1],[2,1,0]])
Output :
[[[1,2,1],[0,1,0],[1,2,0]],[[2,1,0],[0,2,1],[0,0,2]]]
In complex mode and in Xcas, Mupad or TI mode , input :
jordan([[2,0,0],[0,2,-1],[2,1,2]])
Output :
[[1,0,0],[-2,-1,-1],[0,-i,i]],[[2,0,0],[0,2-i,0],[0,0,2+i]]
suivant: Characteristic polynomial : charpoly
monter: Matrix reduction
précédent: Rational Jordan matrix :
Table des matières
Index
giac documentation written by Renée De Graeve and Bernard Parisse