next up previous contents index
suivant: Euclidian quotient and euclidian monter: Computing in /p or précédent: Euclidian quotient : quo   Table des matières   Index


Euclidian remainder : rem

rem takes as arguments two polynomials A and B with coefficients in $ \mathbb {Z}$/p$ \mathbb {Z}$, where A and B are list polynomials or symbolic polynomials with respect to x or to an optionnal third argument.
rem returns the remainder of the euclidian division of A by B in $ \mathbb {Z}$/p$ \mathbb {Z}$[x].
Input :
rem((x^3+x^2+1)%13,(2*x^2+4)%13)
Or :
rem((x^3+x^2+1,2*x^2+4)%13)
Output:
(-2%13)*x+-1%13
Indeed x3 + x2 +1 = (2x2 +4)($\displaystyle {\frac{{x+1}}{{2}}}$) + $\displaystyle {\frac{{5x-4}}{{4}}}$ and -3*4 = - 6*2 = 1  mod 13.



giac documentation written by Renée De Graeve and Bernard Parisse