suivant: Euclidian quotient and euclidian
monter: Computing in /p or
précédent: Euclidian quotient : quo
Table des matières
Index
Euclidian remainder : rem
rem takes as arguments
two polynomials A and B with coefficients in
/p, where
A and B are list polynomials or symbolic polynomials with
respect to x or to an optionnal third argument.
rem returns the remainder of the euclidian division
of A by B in
/p[x].
Input :
rem((x^
3+x^
2+1)%13,(2*x^
2+4)%13)
Or :
rem((x^
3+x^
2+1,2*x^
2+4)%13)
Output:
(-2%13)*x+-1%13
Indeed
x3 + x2 +1 = (2x2 +4)() +
and
-3*4 = - 6*2 = 1 mod 13.
giac documentation written by Renée De Graeve and Bernard Parisse