next up previous contents index
suivant: Factorization in /p[x] : monter: Compute in /p[x] using précédent: Euclidien remainder: Rem   Table des matières   Index


GCD in $ \mathbb {Z}$/p$ \mathbb {Z}$[x] : Gcd

Gcd is the inert form of gcd.
Gcd returns the gcd (greatest common divisor) of two polynomials (or of a list of polynomials or of a sequence of polynomials) without evaluation.
It is used in conjonction with mod in Maple syntax mode to compute the gcd of two polynomials with coefficients in $ \mathbb {Z}$/p$ \mathbb {Z}$ with p prime (see also 1.25.7).
Input in Xcas mode :
Gcd((2*x^2+5,5*x^2+2*x-3)%13)
Output :
gcd((2*x^2+5)%13,(5*x^2+2*x-3)%13)
you need to eval(ans()) to get :
(1%13)*x+2%13
Input in Maple mode :
Gcd(2*x^2+5,5*x^2+2*x-3) mod 13
Output :
1*x+2
Input:
Gcd(x^2+2*x,x^2+6*x+5) mod 5
Output :
1*x



giac documentation written by Renée De Graeve and Bernard Parisse