suivant: Factorization in /p[x] :
monter: Compute in /p[x] using
précédent: Euclidien remainder: Rem
Table des matières
Index
GCD in
/p[x] : Gcd
Gcd is the inert form of gcd.
Gcd returns the gcd (greatest common divisor) of two polynomials
(or of a list of polynomials or of a sequence of polynomials) without
evaluation.
It is used in conjonction with mod in Maple syntax mode to compute
the gcd of two polynomials with coefficients in
/p with p prime
(see also 1.25.7).
Input in Xcas mode :
Gcd((2*x^
2+5,5*x^
2+2*x-3)%13)
Output :
gcd((2*x^
2+5)%13,(5*x^
2+2*x-3)%13)
you need to eval(ans()) to get :
(1%13)*x+2%13
Input in Maple mode :
Gcd(2*x^
2+5,5*x^
2+2*x-3) mod 13
Output :
1*x+2
Input:
Gcd(x^
2+2*x,x^
2+6*x+5) mod 5
Output :
1*x
giac documentation written by Renée De Graeve and Bernard Parisse