suivant: Hermite polynomial : hermite
monter: Orthogonal polynomials
précédent: Orthogonal polynomials
Table des matières
Index
Legendre polynomials: legendre
legendre takes as argument an integer n and
optionnally a variable name (by default x).
legendre returns the Legendre polynomial of degree n : it is
a polynomial L(n, x), solution of the differential equation:
(x2 - 1).y'' - 2.x.y' - n(n + 1).y = 0
The Legendre polynomials verify the following recurrence relation:
L(0,
x) = 1,
L(1,
x) =
x,
L(
n,
x) =
xL(
n - 1,
x) -
L(
n - 2,
x)
These polynomials are orthogonal for the scalar product :
<
f,
g > =
f (
x)
g(
x)
dx
Input :
legendre(4)
Output :
(35*x^
4+-30*x^
2+3)/8
Input :
legendre(4,y)
Output :
(35*y^
4+-30*y^
2+3)/8
giac documentation written by Renée De Graeve and Bernard Parisse