suivant: Laguerre polynomials: laguerre
monter: Orthogonal polynomials
précédent: Legendre polynomials: legendre
Table des matières
Index
Hermite polynomial : hermite
hermite takes as argument an integer n and
optionnally a variable name (by default x).
hermite returns the Hermite polynomial of degree n.
If H(n, x) denotes the Hermite polynomial of degree n,
the following recurrence relation holds:
H(0, x) = 1, H(1, x) = 2x, H(n, x) = 2xH(n - 1, x) - 2(n - 1)H(n - 2, x)
These polynomials are orthogonal for the scalar product:
<
f,
g > =
f (
x)
g(
x)
e-x2dx
Input :
hermite(6)
Output :
64*x^
6+-480*x^
4+720*x^
2-120
Input :
hermite(6,y)
Output :
64*y^
6+-480*y^
4+720*y^
2-120
giac documentation written by Renée De Graeve and Bernard Parisse