next up previous contents index
suivant: Integral and limit monter: Limits précédent: Limits   Table des matières   Index


Limites : limit

limit compute the limit of an expression in a finite or infinite point. It is also possible with an optional argument to compute unidirectional limit (1 for right limit and -1 for left limit .
limit takes three or four arguments :
an expression, the name of a variable (for example x), the limit point (for example a) and an optional argument, by default 0, to indicate if the limit is unidirectional. This argument is equal to -1 for a left limit (x<a) or is equal to 1 for a right limit (x>a) or is equal to 0 for a limite.
limit returns the limit of the expression when the variable (for example x) approachs the limit point (for example a).
Remark
It is also possible to put x=a as argument instead of x,a, hence : limit takes also as arguments an expression depending of a variable, an equality (variable =value of the limit point) and perhaps 1 or -1 to indicate the direction.
Input :

limit(1/x,x,0,-1)
or
limit(1/x,x=0,-1)
Output :
-(infinity)
Input :
limit(1/x,x,0,1)
or
limit(1/x,x=0,1)
Output :
+(infinity)
Input :
limit(1/x,x,0,0)
or
limit(1/x,x,0)
or
limit(1/x,x=0)
Output :
infinity
Hence, abs(1/x) approachs + $ \infty$ when x approachs 0.

Exercises :

Remark
To compute limit, it is better sometimes to quote the first argument.
Input :

limit('(2*x-1)*exp(1/(x-1))',x=+infinity)
Note that the first argument is quoted, because it is better that this argument is not simplified (i.e. not evaluated).
Output :
+(infinity)


next up previous contents index
suivant: Integral and limit monter: Limits précédent: Limits   Table des matières   Index
giac documentation written by Renée De Graeve and Bernard Parisse