next up previous contents index
suivant: Inverse of a matrix monter: Computing in /p or précédent: Factorization over /p[x] :   Table des matières   Index


Determinant of a matrix in $ \mathbb {Z}$/p$ \mathbb {Z}$ : det

det takes as argument a matrix A with coefficients in Z/pZ.
det returns the determinant of this matrix A.
Computation are done in $ \mathbb {Z}$/p$ \mathbb {Z}$ by Gauss reduction. Input :
det([[1,2,9]%13,[3,10,0]%13,[3,11,1]%13])
Or :
det([[1,2,9],[3,10,0],[3,11,1]]%13)
Output :
5%13
hence, in $ \mathbb {Z}$/13$ \mathbb {Z}$, the determinant of A = [[1, 2, 9],[3, 10, 0],[3, 11, 1]] is 5%13 (in $ \mathbb {Z}$, det(A)=31).



giac documentation written by Renée De Graeve and Bernard Parisse