next up previous contents index
suivant: Power in /p and monter: Computing in /p or précédent: Euclidian quotient and euclidian   Table des matières   Index


Division in $ \mathbb {Z}$/p$ \mathbb {Z}$ or in $ \mathbb {Z}$/p$ \mathbb {Z}$[x] : /

/ divides two integers in $ \mathbb {Z}$/p$ \mathbb {Z}$ or two polynomials A and B in $ \mathbb {Z}$/p$ \mathbb {Z}$[x].
For polynomials, the result is the irreducible representant of the fraction $ {\frac{{A}}{{B}}}$ in $ \mathbb {Z}$/p$ \mathbb {Z}$[x].
For integers in $ \mathbb {Z}$/p$ \mathbb {Z}$, input :
5%13/2% 13
Since 2 is invertible in Z/13$ \mathbb {Z}$, we get the output :
-4%13
For polynomials with coefficients in $ \mathbb {Z}$/p$ \mathbb {Z}$, input :
(2*x^2+5)%13/(5*x^2+2*x-3)%13
Output :
((6%13)*x+1%13)/((2%13)*x+2%13)



giac documentation written by Renée De Graeve and Bernard Parisse