suivant: Integer and fractional part
monter: Rational fractions
précédent: Simplify : simp2
Table des matières
Index
Common denominator : comDenom
comDenom takes as argument a sum of rational fractions.
comDenom rewrite the sum as a unique rational fraction.
The denominator of this rational fraction is the common denominator of the
rational fractions given as argument.
Input :
comDenom(x-1/(x-1)-1/(x^
2-1))
Output :
(x^
3+-2*x-2)/(x^
2-1)
giac documentation written by Renée De Graeve and Bernard Parisse