suivant: QR decomposition : qr
monter: Matrix factorizations
précédent: Matrix factorizations
Table des matières
Index
Cholesky decomposition : cholesky
cholesky takes as argument a square symetric
positive definite matrix M of size n.
cholesky returns a symbolic or numeric matrix P. P is a
lower triangular matrix such that :
tran(P)*P=M
Input :
cholesky([[1,1],[1,5]])
Output :
[[1,0],[1,2]]
Input :
cholesky([[3,1],[1,4]])
Output :
[[sqrt(3),0],[(sqrt(3))/3,(sqrt(33))/3]]
Input :
cholesky([[1,1],[1,4]])
Output :
[[1,0],[1,sqrt(3)]]
Warning If the matrix argument A is not a symetric matrix,
cholesky does not return an error, instead cholesky will
use the symetric matrix B of the the quadratic form q
corresponding to the (non symetric) bilinear form of matrix A.
Input :
cholesky([[1,-1],[-1,4]])
or :
cholesky([[1,-3],[1,4]])
Output :
[[1,0],[-1,sqrt(3)]]
giac documentation written by Renée De Graeve and Bernard Parisse