next up previous contents index
suivant: fourier_bn monter: Fourier coefficients : fourier_an précédent: Fourier coefficients : fourier_an   Table des matières   Index


fourier_an

fourier_an takes four or five arguments : an expression expr depending of a variable, the name of this variable (for example x), the period T, an integer n and a real a (by default a = 0).
fourier_an(expr,x,T,n,a) returns the Fourier coefficient an of a function f of variable x defined on [a, a + T[ by f (x) = expr and such that f is periodic of period T:

an = $\displaystyle {\frac{{2}}{{T}}}$$\displaystyle \int_{a}^{{a+T}}$f (x)cos($\displaystyle {\frac{{2\pi
nx}}{{T}}}$)dx

To simplify the computations, ons should input assume(n,integer) before calling fourier_an to specify that n is an integer.
Example Let the function f, of period T = 2, defined on [- 1;1[ by f (x) = x2.
Input, to have the coefficient a0 :
fourier_an(x^2,x,2,0,-1)
Output :
1/3
Input, to have the coefficient an (n $ \neq$ 0) :
assume(n,integer);fourier_an(x^2,x,2,n,-1)
Output :
4*(-1)^n/(pi^2*n^2)



giac documentation written by Renée De Graeve and Bernard Parisse