next up previous contents index
suivant: Tchebychev polynomials of first monter: Orthogonal polynomials précédent: Hermite polynomial : hermite   Table des matières   Index


Laguerre polynomials: laguerre

laguerre takes as argument an integer n and optionnally a variable name (by default x) and a parameter name (by default a).
laguerre returns the Laguerre polynomial of degree n and of parameter a.
If L(n, a, x) denotes the Laguerre polynomial of degree n and parameter a, the following recurrence relation holds:

L(0, a, x) = 1,    L(1, a, x) = 1 + a - x,    L(n, a, x) = $\displaystyle {\frac{{2n+a-1-x}}{{n}}}$L(n - 1, a, x) - $\displaystyle {\frac{{n+a-1}}{{n}}}$L(n - 2, a, x)

These polynomials are orthogonal for the scalar product

< f, g > = $\displaystyle \int_{{0}}^{{+\infty}}$f (x)g(x)xae-xdx

Input :
laguerre(2)
Output :
(a^2+-2*a*x+3*a+x^2+-4*x+2)/2
Input :
laguerre(2,y)
Output :
(a^2+-2*a*y+3*a+y^2+-4*y+2)/2
Input :
laguerre(2,y,b)
Output :
(b^2+-2*b*y+3*b+y^2+-4*y+2)/2



giac documentation written by Renée De Graeve and Bernard Parisse