|
Actualités
Emploi du temps du second semestre (version du 16 décembre)
Examens du premier semestre (aucun document autorisé)
Auto-signalement Covid
TER
Réunion d'information et d'échange
Master Class en avril 2022
Pour plus d'informations : site web,
affiche en français,
affiche en anglais
(10 octobre) Point Covid (bis)
Les quatre régimes possibles d’ouverture et de fermeture des fenêtres et de la porte ont été essayés : porte ouverte et fenêtres ouvertes, le taux reste aux environs de 500-600 ppm ; porte fermée et fenêtres ouvertes, le taux reste aux environs de 700-800 ppm ; porte ouverte et fenêtres fermées, les mesures immédiates sont moins tranchées mais après un temps variable, en général d’une demie-heure à une heure, le taux a remonté et dépasse les 1000 ppm ; enfin, porte fermée et fenêtres fermées, les taux mesurés dépassent 1600 ppm et peuvent atteindre 2000 ppm.
On voit que le paramètre majeur influant sur le taux de CO₂ en salle 15 est l’ouverture ou la fermeture des fenêtres, l’ouverture ou la fermeture de la porte ayant elle aussi un effet, bien sûr, mais du second ordre.
Un aspect réjouissant de nos mesures, non anticipé contrairement à la différence entre porte et fenêtres qui s'explique aisément) est la rapidité des redescentes du taux observées à partir du moment où on réouvre les fenêtres de la salle 15. Il faudrait sans doute moduler cette observation en fonction du nombre de fenêtres réouvertes et de leur mode de réouverture, partielle ou complète, mais tout de même.
Quel bilan, provisoire, peut-on tirer de ces observations ? D’une part, on continue la collecte de données en salle 15, disons encore ces deux prochaines semaines (et on me souffle dans l’oreillette que vont bientôt être disponibles de jolis graphes des mesures journalières du capteur, miams…).
D’autre part, on peut retenir l’idée selon laquelle, dans des situations où la température extérieure devient trop basse pour fonctionner confortablement en laissant porte et fenêtres ouvertes en permanence, le fait de les réouvrir ponctuellement mais régulièrement pendant chaque séance de CM ou de TD permet de faire
redescendre notablement le taux de CO₂ : un rythme de 5 minutes d’ouverture toutes les 30 minutes, comme déjà suggéré, semble assez bien adapté.
L’admonestation formulée dans un post précédent, selon laquelle il convient de « pratiquer une aération rigoureuse (et vigoureuse...) de la salle hors des temps d'enseignement, donc avant le premier cours, entre les cours et pendant la pause de midi, aération qu’il vous (étudiant·e·s) revien[...]t d'organiser » est donc, elle aussi, toujours d’actualité.
(Merci pour les retours d’étudiant·e·s sur le sujet, ils et elles se reconnaîtront.)
Une bibliographie sur le sujet (qui remonte un peu, mais ne vous gênez pas pour la compléter !) :
(4 octobre) Point Covid
Quelques éléments de contexte. Le désir de favoriser autant que possible les enseignements en présence n’est pas universellement partagé à l’université. En mathématiques, après en avoir discuté entre nous, nous sommes arrivé·e·s au constat que ce mode d’enseignement était bien plus adapté à la transmission des connaissances et des savoir-faire dans notre discipline qu’un enseignement à distance. Bien sûr, si l’enseignement à distance redevient la règle, nous essaierons de nous adapter au mieux à ce contexte dégradé mais pour l’instant, notre souci premier est de sauvegarder autant que possible les enseignements en présence.
Par ailleurs, les mesures du taux de CO₂ pratiquées régulièrement dans la salle où a lieu la majeure partie de vos enseignements ont démontré sans ambiguïté l’influence majeure de l’ouverture ou de la fermeture de la porte et des fenêtres de la salle sur ce taux. Or, une donnée épidémiologique à présent bien établie est que de forts taux de CO₂ favorisent la transmission aéroportée du virus (ce mode de transmission semblant d’ailleurs être en fait le vecteur principal de l’épidémie).
Il se trouve qu'au mois de septembre de cette année, les températures maximales journalières en semaine ont presque toujours été supérieures ou égales à 20°C (à part lundi 20 septembre à 16°C) donc il était possible de
travailler en laissant ouvertes la porte et tout ou partie des fenêtres. Avec le refroidissement des températures à venir, ce modus operandi va devenir moins adapté.
Un dispositif envisageable, qui préserverait pour l'essentiel le confort de tou·te·s, serait de conserver des périodes d'aération, par exemple deux périodes de 5 minutes par séance de 1h30, après 30 minutes et après 60 minutes. Mais un tel dispositif suppose aussi de pratiquer une aération rigoureuse (et vigoureuse...) de la salle hors des temps d'enseignement, donc avant le premier cours, entre les cours et pendant la pause de midi, aération qu’il vous (étudiant·e·s) reviendrait d'organiser.
(30 septembre) Orfinateurs portables
(28 septembre) Règlements d'examen
Quoi qu’il en soit, nous responsables du M1 MG devons nous plier à cette nouvelle règle. Cependant, compte tenu des circonstances de cette décision, intervenue après le début de l'année universitaire et motivée uniquement par des raisons administratives, nous souhaitons faire en sorte qu'aucun·e étudiant·e du M1 MG ne se retrouve lésé·e du fait de cette modification. Or, renseignements pris, il entre dans les prérogatives du jury de fin d'année du master (qui regroupe les différentes filières et qui statue début juillet) de déroger à la règle de non compensation des semestres et, par conséquent, de déclarer admis·es les étudiant·e·s concerné·e·s. Nous avons donc la ferme intention, pour cette année, de proposer au jury de fin d’année du master de lever l'exigence de validation de chaque semestre pour tou·te·s les étudiant·e·s qui auraient été admis·es avec les règles en vigueur en 2020-2021.
Si une admission tardive à l'année compliquerait votre situation personnelle (notamment si vous comptez candidater sur des masters non grenoblois), merci de nous le signaler.
Forum Emploi Maths
(20 septembre) Tutorat
(11 septembre) ETC
Documents pour la réunion de rentrée
Réunion de rentrée
Fiche pédagogique individuelle
Emploi du temps du premier semestre (version révisée 1er septembre)
Sites
Révisions estivales
Voici une liste indicative de quelques notions du programme de L3A 2017-2021 qu'on peut envisager de retravailler avant la rentrée.
Forum Emploi Maths
Contacts
Liens
Présentations
Nota : Les ouvrages indiqués en guise de Documentation dans la description détaillée des UE ci-dessous sont en général disponibles, souvent en plusieurs exemplaires, au rayon Capes, Agrégation, Master (cote CA) de la bibiliothèque de l'Institut Fourier.
Les étudiant.e.s inscrit.e.s en master peuvent consulter et emprunter ces ouvrages, et travailler dans la salle réservée de la bibliothèque.
UE Algèbre (premier semestre, enseignement obligatoire, 9 crédits ECTS, 33h CM et 48h TD)
(Erwan Lanneau et Rémi Molinier)
Descriptif
I. Compléments sur les anneaux
UE Analyse (premier semestre, enseignement obligatoire, 9 crédits ECTS, 33h CM et 48h TD)
(Alain Joye et Baptiste Devyver)
Descriptif
Partie A : Équations différentielles ordinaires
Documentation
UE Probabilités (premier semestre, enseignement obligatoire, 9 crédits ECTS, 33h CM et 48h TD)
(Didier Piau et Christophe Leuridan)
Descriptif
Pré-requis
Documentation
UE Fonctions holomorphes (premier semestre, enseignement obligatoire, 6 crédits ECTS, 21h CM et 33h TD) (Vincent Beffara et Jérémy Guéré)
Descriptif
UE Travail d'études et de recherche (second semestre, 6 crédits ECTS)
Cette UE propose une découverte de la recherche en mathématiques à travers l'étude d'un sujet décrivant un résultat ou une théorie mathématique, avec lesquels l'étudiant.e devra se familiariser afin de se les approprier et de pouvoir en rendre compte par un rapport écrit et un exposé oral.
En pratique, une liste de sujets est proposée au cours du premier semestre. Chaque étudiant.e sélectionne dans cette liste quatre sujets, classés de 1 à 4, puis le responsable de la formation attribue à chaque étudiant.e un sujet figurant dans la mesure du possible parmi ces quatre-là. Dès les attributions connues, chaque étudiant.e contacte l'auteur.e de son sujet, qui va l'encadrer pour ce travail tout au long du second semestre. Une fois que l'encadrant.e a présenté à l'étudiant.e le sujet et les détails du travail attendu, le binôme se rencontre régulièrement afin que l'étudiant.e puisse rendre compte de l'avancement de son travail et progresser dans celui-ci.
Le TER donne lieu à la rédaction d'un rapport écrit, rédigé en utilisant le logiciel LaTeX, comportant obligatoirement un résumé et une bibliographie, et à une soutenance orale d'une durée de 20 à 30 minutes, souvent suivie de questions, devant un jury qui comprend l'encadrant.e. Le rapport et la soutenance contribuent conjointement à l'évaluation du travail réalisé.
Documentation
UE Algèbre effective et cryptographie (second semestre, enseignement optionnel, 6 crédits ECTS, 21h CM et 33h TD) (Vanessa Vitse et Bernard Parisse)
Ce cours s’adresse à tous les étudiants intéressés par les applications modernes de l’algèbre et de l’arithmétique. Il est particulièrement adapté aux étudiants souhaitant passer l’agrégation option C (calcul formel) ou poursuivre dans une formation en cryptographie et/ou codes correcteurs d’erreurs. L'UE propose notamment des séances de TP sur machine avec le logiciel Xcas, offrant la possibilité de se familiariser avec la partie programmation de l’épreuve obligatoire de modélisation de l’agrégation.
Descriptif
Documentation
UE Compléments sur les ÉDP (second semestre, enseignement optionnel, 6 crédits ECTS, 21h CM et 33h TD) (Emmanuel Russ et Éric Dumas)
Le but du cours est de prolonger l'analyse des équations aux dérivées partielles linéaires commencée au premier semestre.
L'accent sera mis sur les ÉDP dans des domaines de ℝn et on traitera le cas d'ÉDP elliptiques, paraboliques ou hyperboliques. À cette occasion, on introduira les compléments d'analyse nécessaires (espaces de Sobolev, distributions...). On mettra également en évidence certaines propriétés qualitatives des solutions, qui distinguent ces classes d'ÉDP. Enfin, on étudiera certaines ÉDP non linéaires.
Le contenu du cours sera utile pour poursuivre en préparation à l'agrégation et/ou dans un M2 recherche consacré à l'analyse des ÉDP.
Descriptif
Documentation
UE Géométrie différentielle (second semestre, enseignement optionnel, 6 crédits ECTS, 21h CM et 33h TD) (Dietrich Häfner et Catriona Maclean)
La géométrie différentielle a joué un rôle majeur dans l’histoire des mathématiques et elle reste jusqu’à aujourd’hui un domaine très actif de la recherche mathématique. Il s’agit d’un domaine qui montre particulièrement bien comment des questions très concrètes liées par exemple à la cartographie sont résolues par des concepts mathématiques abstraits. Il n’est alors par surprenant que la géométrie différentielle soit très présente dans les applications industrielles des mathématiques jusqu’à aujourd’hui. L’objectif de ce cours consiste à familiariser les étudiants avec les notions de base de la géométrie différentielle et de leur faire découvrir certains grands classiques de la géométrie différentielle élémentaire comme le théorème de Whitney, le theorema egregium et le théorème de Gauss-Bonnet, ce dernier étant une jolie illustration du lien entre la géométrie et la topologie.
Descriptif
Pré-requis
Documentation
UE Processus de Markov (second semestre, enseignement optionnel, 6 crédits ECTS, 21h CM et 33h TD) (Agnès Coquio et Hugo Vanneuville)
Le programme de cette UE concerne les chaînes de Markov. Son objectif est de conforter les acquis du cours de probabilités du premier semestre, de donner des exemples importants de chaînes de Markov et d’étudier des processus à temps continu, les chaînes de Markov en temps continu.
Cette UE pourra être utile aux futurs candidats à l’Agrégation comptant prendre l’option Probabilités. En effet, on étudiera le processus de Poisson, au programme de l’agrégation mais pas étudié précédemment. D’ailleurs, il est écrit dans le rapport du jury :
Enfin, l'UE pourra intéresser les étudiants souhaitant se diriger vers un M2 centré sur les probabilités ou sur des thèmes de mathématiques discrètes, par exemple à Grenoble, le M2 ORCO (Operations Research, Combinatorics and Optimization).
Descriptif
Le cours est divisé en deux parties.
Dans la première partie, nous prolongerons l'étude des chaînes de Markov débutée au premier semestre. Nous établirons notamment des liens entre les propriétés de ces objets aléatoires et des propriétés de nature algébrique ou géométrique :
Documentation
UE Théorie de Galois (second semestre, enseignement optionnel, 6 crédits ECTS, 21h CM et 33h TD) (Grégory Berhuy et Odile Garotta)
Descriptif
Documentation
UE Anglais scientifique (second semestre, 3 crédits ECTS)
(Emmanuelle Esperança-Rodier)
Il s'agit de viser le niveau de qualification B2 du Conseil de l'Europe, défini par ALTE, dans trois champs de compétences :
Pré-requis : Niveau B1 du Cadre européen commun de référence pour les langues (CECRL)
Mots-clés : Anglais de spécialité, communication scientifique
Documentation
À partir du lundi 10 janvier
Lundi
Mardi
Mercredi
Jeudi
Vendredi
Mardi 4 janvier 9h-12h : Algèbre (salle 18 de l'Institut Fourier)
Mercredi 5 janvier 9h-12h : Fonctions holomorphes (salle 18 de l'Institut Fourier)
Jeudi 6 janvier 9h-12h : Analyse (salle 18 de l'Institut Fourier)
Vendredi 7 janvier 9h-12h : Probabilités (salle F316 de l'UFR IM2AG)
Lien UGA ici
Sujets et
attributions
(Nolwenn, Maël et Martin continuent à travailler sur leur sujet de l'an dernier)
Une réunion d'échanges entre la promotion et les responsables d'année aura lieu mardi 16 novembre à partir de 15h30 en salle 15 : bilan de la partie écoulée du premier semestre, UE optionnelles, TER, autres
Une Master Class Topologie, géométrie et singularités aura lieu du 25 au 29 avril 2022 à Luminy.
Elle s’adresse principalement à des étudiant·e·s inscrit·e·s en première année de Master de mathématiques fondamentales. L’objectif est de sensibiliser les participant·e·s aux thèmes du prochain Master 2 de Mathématiques fondamentales de l’université d’Aix-Marseille, c’est-à-dire la topologie, la géométrie algébrique et la théorie des singularités.
Après environ trois semaines de mesure du taux de CO₂ en salle 15, quelques éléments se dégagent.
Comme tout le monde l’a bien compris, l’objectif principal de l’aération des salles telle qu'elle est pratiquée depuis la rentrée est de diminuer les chances de propagation du virus donc les chances de nouvelles contaminations et par conséquent de diminuer autant que nous le pouvons, en utilisant les moyens limités d'action à notre disposition, la probabilité d’un nouvel arrêt des enseignements en présence.
L'UFR IM²AG a fait l'achat de plusieurs ordinateurs portables pour aider les étudiant·e·s en situation de précarité numérique à pouvoir travailler correctement. Si vous souhaitez bénéficier d'un tel prêt, n'hésitez pas à vous signaler auprès d'un·e responsable du M1 MG au plus tard le 13 octobre. Une caution de 200 € vous sera demandée. Si de trop nombreuses demandes parviennent à l'UFR, une commission ad hoc arbitrera entre les demandes reçu·e·s.
La Faculté des sciences de l’UGA a voté la semaine dernière les règlements d'examen des masters qui relèvent de son périmètre, dont celui du M1 Mathématiques générales. Un point important du règlement d’examen du M1 MG que nous avions soumis a été modifié, à savoir que la compensation entre les deux semestres est supprimée. Le motif de cette décision serait une jurisprudence récente interdisant aux parcours d'une même mention de se doter de règlements d'examen qui diffèrent sur ce point.
Le 10ème Forum Emploi Maths aura lieu comme prévu le 12 octobre 2021 en virtuel.
Les inscriptions étudiantes sont possibles dès maintenant ici.
On recherche un·e étudiant·e de M1 MG pour tutorer un étudiant qui redouble sa L3B et qui bénéficie du statut d'AHN (artiste de haut niveau). Il s'agit de travailler avec l'étudiant une heure par semaine (par zoom ou autre puisqu'il vient d'intégrer une école d'art à Paris), sur le cours et/ou pour des exercices, l'activité étant suivie par Agnès Coquio. Si vous êtes intéressé·e, signalez-vous auprès des responsables du M1 MG.
La présentation de l'offre d'ETC (enseignements transversaux à choix) sur le site de l'UGA est disponible au bout de ce lien. Ll'inscription aux ETC s'effectue en ligne du 4 au 20 janvier 2022 pour les ETC du second semestre donc, si vous êtes concerné·e car niveau B2 en Anglais attesté, vous avez encore du temps pour vous décider. Et enfin, au second semestre en M1, on compte sauf erreur 29 propositions d'ETC donc il y a du choix. Par contre, comme le dit la page web, il faudra vérifier la compatibilité du créneau horaire de l’ETC de votre cœur avec votre emploi du temps du second semestre, dès que celui-ci sera connu, et, en cas de chevauchement, choisir un autre ETC.
À partir du lundi 6 septembre après-midi,
tout en salle 15 de l'Institut Fourier, sauf le jeudi après-midi
Lundi
Mardi
Mercredi
Jeudi
Vendredi
Toutes adresses mail : prenom.nom[at]univ-grenoble-alpes.fr
Sujets d'examen, sujets et mémoires de TER, posters d'Anglais, exposés de l'après-midi de clôture
Liste des UE
II. Corps (les corps considérés sont commutatifs)
III. Représentations des groupes finis sur ℂ
Partie B : Équations aux dérivées partielles (ÉDP)
Cauchy-Lipschitz, solutions maximales, dépendance en les conditions initiales et en les paramètres
Flots, intégrales premières, équations différentielles linéaires
Portraits de phase, équilibres, stabilité à la Lyapunov
Partie C : Outils et méthodes mis en œuvre dans la partie B
Nomenclature, exemples emblématiques : équations de transport, de Laplace, de la chaleur, et des ondes
Équations de transport
Problème de Cauchy, méthode des caractéristiques
Solution au sens faible
Équation des ondes en dimension 1
Équation de Laplace, fonctions harmoniques, principe du maximum
Équation de Poisson : solution fondamentale, solutions faibles
Équation de la chaleur : solution fondamentale, solutions faibles
Formulation variationnelle d'ÉDP elliptiques
Densité des fonctions C∞ à support compact dans Lp
Convolution Lp‐Lq, inégalités de Young, dual de Lp
Théorème de Riesz-Fréchet-Kolmogorov
Transformation de Fourier sur L1(ℝd)
Espace de Schwartz 𝒮(ℝd), transformation de Fourier et convolution
Transformation de Fourier sur L2(ℝd)
Séries de Fourier sur L1(𝕋) et L2(𝕋)
Dérivées au sens faible, Espace de Sobolev H1, lemme de Lax- Milgram
Lois de variables aléatoires, notion d’indépendance, lois du zéro-un de Borel et de Kolmogorov, loi des grands nombres, théorème de la limite centrale, cas gaussien
Fondements, estimation, intervalles et régions de confiance, tests
Construction, lois conditionnelles, cas gaussien
Construction, exemples, temps d’arrêt
Théorèmes d’arrêt, inégalités maximales, convergence
Construction, classification, théorèmes ergodiques, convergence en loi, estimation
La partie Probabilités du cours de Théorie de la mesure, introduction aux probabilités en L3A.
Fonctions holomorphes et analytiques, en particulier l’équivalence entre les deux notions, fonction exponentielle et logarithme, principe du prolongement
analytique, principe des zéros isolés, formule de Cauchy pour le disque
Propriétés élémentaires des fonctions holomorphes (inégalités de Cauchy, suites et séries de fonctions holomorphes, propriété de la moyenne et principe du maximum)
Théorie de Cauchy (existence de primitives, théorèmes de Cauchy)
Fonctions méromorphes (classification des singularités isolées, fonctions méromorphes, théorème des résidus, séries de Laurent)
Théorème de la représentation conforme de Riemann
Documentation
Patrice Tauvel, Analyse complexe pour la Licence 3, Dunod 2006
Éric Amar, Étienne Matheron, Analyse complexe, Cassini 2003
Revenir à la liste des UE
Revenir à la liste des UE
Les étudiants travailleront pendant le dernier quart de l’UE sur un thème à choisir et présenter oralement, dont voici quelques exemples :
Vecteurs tangents, dérivées directionnelles, courbes dans ℝn, 1-formes, formes différentielles, fonctions de ℝn dans ℝm
Courbes, repères de Frénet, dérivées covariantes, champs de repères, formes de connexion, les équations structurelles
Surfaces de ℝ3, fonctions différentiables et vecteurs tangents, formes différentielles sur une surface, applications différentiables entre surfaces, intégration de formes différentielles, propriétés topologiques des surfaces
Variétés abstraites, dénombrabilité à l’infini, théorème de Whitney
Application de Weingarten, courbure normale, courbure de Gauss, techniques de calcul, surfaces de révolution, géodésiques
Équations structurelles, calculs de formes, quelques théorèmes globaux, isométries et isométries locales, theorema egregium, intégration et orientation
Programme d’analyse de la licence, en particulier le cours de calcul différentiel
Processus de Poisson. Ce point du programme n’est pas le plus volumineux, et pourtant c’est un des plus méconnus. Les propriétés de ce processus, l’allure de ses trajectoires, une idée de sa construction à partir de variables exponentielles sont autant de questions qui pourraient être moins difficiles avec un peu de préparation spécifique.
Le reste du programme de l'UE ne figure pas explicitement au programme de l’option Probabilités de l'Agrégation mais il pourra servir à l’oral de ce concours et il représente de toute manière de belles mathématiques ne nécessitant pas l'introduction de beaucoup de nouvelles notions.
La deuxième partie sera consacrée à des processus à temps continu, à savoir les chaînes de Markov à temps continu, en nous concentrant particulièrement sur les processus de Poisson, qui peuvent être vus comme des ensembles aléatoires de points. Le cours comprendra de nombreux exemples tels que les files d'attentes. Nous terminerons par une introduction au mouvement brownien. Ce processus de Markov à temps et espace d'états continus est la limite d'échelle des marches aléatoires et joue un rôle central dans la théorie des probabilités.
Extensions algébriques, polynôme minimal, degré d'une extension, corps des racines, corps de décomposition, existence et unicité d'une clôture algébrique, théorème de prolongement des isomorphismes, extensions linéairement disjointes
Plongements, extension et éléments séparables, lemme d'indépendance de Dedekind, caractérisation en termes de nombre de plongements, propriétés élémentaires (extension engendrée par des éléments séparables, tour d'extensions séparables, composée d'extensions séparables), théorème de l'élément primitif, polynômes séparables et pgcd
Extensions normales, propriétés élémentaires, extensions galoisiennes, caractérisation en terme de points fixes, exemples des corps finis et des corps cyclotomiques, théorie de Kummer, groupe de Galois d'un polynôme
Correspondance de Galois, exemples, résolubilité des équations par radicaux, construction à la règle et au compas
Grégory Berhuy, Algèbre : le grand combat, seconde édition, 2020, Calvage & Mounet
Les objectifs de l'UE seront les suivants :