Logo CNRS Logo Université Grenoble Alpes

Loren Coquille

Welcome to my web page !

Institut Fourier
UMR 5582 du CNRS
Université de Grenoble Alpes
100 rue des Mathématiques
38610 Gières, France

BUREAU 320
Tél. : 0476514320, Fax : 0476514478
E-mail :

Vitae

I am 'maître de conférences' (assistant professor) at the Institut Fourier, Université Grenoble Alpes, since September 2015.
My main research interests lie in the framework of rigorous statistical mechanics, in questions arising from physics or biology.
From 2013 to 2015 I was a postdoc at the Hausdorff Center fuer Mathematik, Bonn University, Germany, in the group of Anton Bovier.
I did my PhD at the University of Geneva, Switzerland, under the supervision of Yvan Velenik.

Here is my full Curriculum Vitae.

Publications and preprints

  1. Absence of shift-invariant Gibbs states (delocalisation) for one-dimensional Z-valued fields with Long-Range interactions,
    L. Coquille, A. Le Ny, A.C.D. van Enter, W. Ruszel, (2024)
    Journal of Statistical Physics (2024) 191:80
    [DOI:10.1007/s10955-024-03294-9] [ArXiv:2401.17722]

  2. Continuity of the extremal decomposition of the free state for finite-spin models on Cayley trees,
    L. Coquille, C. Kuelske, A. Le Ny, (2023)
    Accepted for publication in the Annales Henri Poincaré B
    [ArXiv:2310.11101]

  3. Extremal inhomogeneous Gibbs states for SOS-models and finite-spin models on trees,
    L. Coquille, C. Kuelske, A. Le Ny, (2023)
    Journal of Statistical Physics (2023) 190:71
    [DOI:10.1007/s10955-023-03081-y] [ArXiv:2207.10206 ]

  4. Stochastic individual-based models with power law mutation rate on a general finite trait space,
    L. Coquille, A. Kraut and C. Smadi, (2021)
    Electronic Journal of Probability, 26: 1-37
    [DOI:10.1214/21-EJP693] [ArXiv:2003.03452 ]

  5. Parameter estimation and treatment optimization in a stochastic model for immunotherapy of cancer,
    M. Diabate, L. Coquille, and A. Samson, (2020)
    Journal of Theoretical Biology, Volume 502, 110359
    [DOI:10.1016/j.jtbi.2020.110359] [ArXiv:1806.01915]

  6. Crossing a fitness valley as a metastable transition in a stochastic population model,
    A. Bovier, L. Coquille and C. Smadi, (2019)
    Annals of Applied Probability, 19 (6), pp. 3541-3589
    [DOI:10.1214/19-AAP1487] [ArXiv:1801.06473]

  7. Absence of Dobrushin states for 2d long-range Ising models,
    L. Coquille, A. Le Ny, A.C.D. van Enter and W. Ruszel, (2018)
    Journal of Statistical Physics 172(5), pp. 1210-1222
    [DOI:10.1007/s10955-018-2097-7] [ArXiv:1804.04889]

  8. The recovery of a recessive allele in a Mendelian diploid model,
    A. Bovier, L. Coquille and R. Neukirch, (2017)
    Journal of Mathematical Biology, 77(4), pp. 971-1033
    [DOI:10.1007/s00285-018-1240-z] [ArXiv:1703.02459] [Slides]

  9. Note on Bolthausen-Deuschel-Zeitouni's paper on the absence of a wetting transition
    for a pinned harmonic crystal in dimensions three and larger
    ,
    L. Coquille and P. Miłoś, (2017)
    [ArXiv:1703.01479]

  10. A stochastic model for immunotherapy of cancer,
    M. Baar, L. Coquille, H. Mayer, M. Hölzel, M. Rogava, T. Tüting, and A. Bovier,
    Scientific Reports, 6, 24169 (2016)
    [DOI:10.1038/srep24169] [ArXiv:1505.00452] [Poster] [Slides]

  11. Examples of DLR states which are not weak limits of finite volume Gibbs measures with deterministic boundary conditions
    L. Coquille,
    Journal of Statistical Physics, 159 (2015), pp. 958-971.
    [DOI 10.1007/s10955-015-1211-3] [Arxiv]

  12. On the Gibbs states of the noncritical Potts model on Z^2,
    L. Coquille, H. Duminil-Copin, D. Ioffe, and Y. Velenik,
    Probability Theory and Related Fields, 158 (2014), pp. 477–512.
    [DOI 10.1007/s00440-013-0486-z] [Arxiv] [Slides]

  13. A note on the discrete Gaussian free field with disordered pinning on Z^d, d ≥ 2,
    L. Coquille and P. Miłoś,
    Stochastic Processes and their Applications, 123 (2013), pp. 3542 – 3559.
    [DOI 10.1016/j.spa.2013.04.022
    ] [Arxiv]

  14. A second note on the Gaussian free field with disordered pinning on Z^d, d ≥ 2,
    L. Coquille and P. Miłoś, (2013)
    [ArXiv:1303.6770]

  15. A finite-volume version of Aizenman–Higuchi theorem for the 2d Ising model,
    L. Coquille and Y. Velenik,
    Probability Theory and Related Fields, 153 (2012), pp. 25–44.
    [DOI: 10.1007/s00440-011-0339-6
    ] [Arxiv] [Poster] [Slides]

Ongoing projects

  1. "Non-magical" proofs of absence of symmetry breaking in continuous spin systems 
    with T. Leblé and H. Vanneuville  

  2. Glassy features of the Ising/Potts free state on regular trees  
     
  3. Fluctuations of the 1d long-range Discrete Gaussian Chain  
     
  4. Interfaces fluctuations for 2d long-range Ising models  
    with R. Durand and W. Ruszel.  

  5. Evolutionary rescue with power-law mutation rates  
    with R. Forien and C. Smadi.  

Students

Charles Medous, PhD co-supervision with Charline Smadi (Inrae) and Aline Marguet (Inria), started in October 2021.
Modibo Diabaté, PhD co-supervision with Adeline Leclercq Samson, defense in December 2019.

PhD Thesis

    Flowers, Forests and Fields in Physics
    University of Geneva, Switzerland. June 2013.
    Under the supervision of Prof. Yvan Velenik
    [Thesis] (in english), [Slides] (in french).

Popularization

  1. Un modèle probabiliste pour l'immunothérapie du cancer,
    L. Coquille
    Tangente, Hors Série 58 (2016), pp.36-37.
    [Online version]
Institut Fourier, UMR5582 CNRS, Université Grenoble Alpes, 100 rue des Mathématiques, 38610 Gières France.