100, rue des maths 38610 Gières / GPS : 45.193055, 5.772076 / Directeur : Louis Funar

Introduction aux champs quotients

Monday, 15 May, 2023 - 10:45 to 11:45
Prénom de l'orateur: 
Nicolas
Nom de l'orateur: 
Bongiorno
Résumé : 

En topologie, la construction d'un quotient, est relativement simple; si \(G\) est un groupe topologique agissant sur un espace topologique \(X\), on peut considérer l'application naturelle de \(X\) dans \(X/G\), l'espace d'orbites muni de la topologie quotient. En géométrie algébrique, il n'est généralement pas possible de munir \(X/G\) d'une structure de schéma, c'est pourquoi afin de définir l'objet représentant le "bon" quotient \([X/G]\), il est nécessaire d'élargir la catégorie des schémas.

Dans cette exposé, après avoir mis en valeur les principes guidant la définition de \([X/G]\) comme champ algébrique, on présentera comment les hypothèses faites sur l'action de \(G\) sur \(X\) donne des propriétés supplémentaires à \([X/G]\) (espace algébrique, champ de Deligne-Mumford, propriété de séparation...).  On évoquera plusieurs exemples comme les espaces projectifs à poids et les champs BG classifiant les torseurs d'un groupe G. Enfin, si le temps le permet, on évoquera comment la structure locale des champs de Deligne-Mumford les relie à une certaine classe de champs quotients.
 

Thème du groupe de travail: 
GT Théorie de nombres
Institution: 
Institut Fourier
Salle: 
6
logo uga logo cnrs