Advanced Cryptology - Homework

Part I: on Wiedemann's algorithm

Given a linear sequence $(s_i)_{i \in \mathbb{N}}$ of elements of a finite field K, whose minimal polynomial has degree less than d, it is possible with Berlekamp-Massey's algorithm to recover from 2d successive terms (s_0, \ldots, s_{2d-1}) of the sequence its minimal polynomial. The first goal of Part I is to analyse this algorithm.

1. Suppose there exist $a_0, \ldots, a_d \in K$ such that

 $a_0 s_k + a_1 s_{k+1} + \dots a_d s_{k+d} = 0$ for any k < d.

Let $\tilde{S}, P \in K[X]$ be the polynomials defined by

$$\tilde{S}(X) = u_{2d-1} + u_{2d-2}X + \dots + u_0X^{2d-1} \in K[X],$$

and $P(X) = a_0 + a_1X + \dots + a_dX^d.$

Show that the terms of the product $P\tilde{S}$ of degree between d and 2d-1 are all equal to zero.

2. Deduce that there exist two polynomials $A, B \in K[X], \deg(A) < d, \deg(B) < d$, such that

$$A(X) = B(X)X^{2d} + P(X)\tilde{S}(X).$$

Show that you can recover P using the extended Euclidean algorithm applied to the polynomials X^{2d} and \tilde{S} (hint: stop the algorithm as soon as you get polynomials R, U and V such as $R(X) = U(X)X^{2d} + V(X)\tilde{S}(X)$ and $\deg R < d$). What is the complexity of this computation?

3. Give an illustration of this algorithm for a linear sequence of your choice on Pari/GP.

Back to Wiedemann's algorithm with the same notations as those used in the lectures (M is a square matrix and v a vector of size n), we want to analyze the probability that given an arbitrary vector u, the minimal polynomial returned by Berlekamp-Massey for the sequence $s_i = {}^t\!u.M^i.v$ is not equal to the minimal polynomial of M with respect to v.

4. Let P_v be the minimal polynomial of M with respect to v and P_1, \ldots, P_k its irreducible factors; for $j \in \{1, \ldots, k\}$, let $Q_j = P_v/P_j$.

Show that if ${}^{t}u.Q_{j}(M).v \neq 0$ for all $j \in \{1, \ldots, k\}$, then the minimal polynomial of the sequence $({}^{t}u.M^{i}.v)_{i \in \mathbb{N}}$ is equal to P_{v} .

- 5. Let $j \in \{1, \ldots, k\}$. Prove that the set $\{u \in K^n \mid {}^t\!u.Q_j(M).v = 0\}$ contains $card(K)^{n-1}$ elements.
- 6. Deduce that the probability that the minimal polynomial of the sequence $({}^{t}u.M^{i}.v)_{i\in\mathbb{N}}$, for u a uniformly random element in K^{n} , is different from P_{v} is smaller than $\frac{n}{card(K)}$.

Part II: space of differentials of a curve and applications to cryptography

Let \mathcal{C} be an algebraic curve over a perfect field \mathbb{K} . We define the space of differential forms on \mathcal{C} as the $\overline{\mathbb{K}}(\mathcal{C})$ -vector space generated by symbols of the form dx where $x \in \overline{\mathbb{K}}(\mathcal{C})$, with the usual relations:

- (i) d(x+y) = dx + dy,
- (ii) $d(xy) = x \, dy + y \, dx$,
- (iii) da = 0

for any $x, y \in \overline{\mathbb{K}}(\mathcal{C})$ and $a \in \overline{\mathbb{K}}$. This set is denoted $\Omega(\mathcal{C})$.

As \mathcal{C} is curve, an important (admitted) fact is that $\Omega(\mathcal{C})$ has dimension 1 over $\overline{\mathbb{K}}(\mathcal{C})$. Thanks to this result, it is possible to define the divisor of a differential ω . Given $P \in \mathcal{C}$ and $t \in \overline{\mathbb{K}}(\mathcal{C})$ a uniformizer at P, then there exists a unique function $f := d\omega/dt$ such that $d\omega = f dt$, and we set

$$\operatorname{ord}_P(\omega) := \operatorname{ord}_P(d\omega/dt)$$

It is not very difficult to check that this definition is independent of the choice of the uniformizer t at P. As for functions, we can then define the divisor associated to $\omega \neq 0$ as

$$\operatorname{div}(\omega) = \sum_{P \in \mathcal{C}} \operatorname{ord}_P(\omega)(P),$$

and this sum is finite, i.e. for all but finitely many $P \in \mathcal{C}$, $\operatorname{ord}_P(\omega) = 0$ (this is also admitted). We say that a differential $\omega \in \Omega(\mathcal{C})$ is *regular* if the associated divisor is effective, i.e. $\operatorname{div}(\omega) \geq 0$. The set of regular differentials together with 0 is denoted $\Omega^1(\mathcal{C})$.

- 1. What is the divisor of dx on the elliptic curve $\mathcal{E} : y^2 = (x x_1)(x x_2)(x x_3)$? Deduce that $\operatorname{div}\left(\frac{dx}{y}\right) = 0$, otherwise said dx/y is a differential with no poles nor zeroes.
- 2. More generally, let $\mathcal{H}: y^2 = f(x) = \prod_{i=1}^d (x x_i)$ be an hyperelliptic curve. Prove that

$$dx = \begin{cases} \sum_{i=1}^{d} (P_i) - 3(\mathcal{O}) \text{ if } d \text{ is odd,} \\ \sum_{i=1}^{d} (P_i) - 2(\mathcal{O}_1) - 2(\mathcal{O}_2) \text{ if } d \text{ is even,} \end{cases}$$

where P_i stands for the point of coordinates $(x_i, 0)$ and \mathcal{O} the point(s) at the infinity.

3. Show that the image in $\operatorname{Pic}(\mathcal{C})$ of the divisors of differentials on \mathcal{C} are all in the same divisor class.

We call this class the *canonical* class [K] and any divisor of a differential on C is called a *canonical* divisor of C.

4. Show that $\Omega^1(\mathcal{C})$ is a $\overline{\mathbb{K}}$ -vector space isomorphic to $\mathcal{L}(K)$ for any canonical divisor K of \mathcal{C} .

We use these new notions to state a more precise version of Riemann-Roch's theorem than the one given during the lectures:

Theorem 1 (R-R (admitted)). Let C be a smooth curve and K a canonical divisor on C. There exists an integer $g \ge 0$ called the genus of C, such that for any divisor $D \in Div(C)$,

$$\ell(D) - \ell(K - D) = \deg D - g + 1.$$

- 3. Taking D = 0 in R-R, prove that $\Omega^1(\mathcal{C})$ has dimension g over $\overline{\mathbb{K}}$.
- 4. Taking this time D = K in R-R, show that deg K = 2g 2 and recover the version of R-R given during the lectures.
- 5. Let \mathcal{H} is a hyperelliptic curve with equation $y^2 = f(x)$, deg f = d. Show that

$$\Omega^{1}(\mathcal{H}) = \left\langle \frac{dx}{y}, \frac{x \, dx}{y}, \dots, \frac{x^{\lfloor (d-1)/2 - 1 \rfloor} dx}{y} \right\rangle,$$

and the genus of \mathcal{H} is $\lfloor (d-1)/2 \rfloor$.

Application 1: solving the DLP on anomalous curves

It is well-known that the DLP in a finite additive group is really easy: its resolution consists in computing modular division, which is easily done with the extended Euclidean algorithm. Our goal is to investigate elliptic curves defined over \mathbb{F}_p , p prime, for which there exists an explicit non trivial homomorphism to $(\overline{\mathbb{F}}_p, +)$.

6. Prove that if such a homomorphism exists, then $\#E(\mathbb{F}_p) = p$ (hint: use Hasse bound). These curves are called *anomalous* (or trace-1) curves.

Let $E: y^2 = f(x)$ be an anomalous elliptic curve and P be a generator of $E(\mathbb{F}_p)[p]$.

- 7. Prove that there exists a function f_P such that $\operatorname{div}(f_P) = p(P) p(\mathcal{O})$. Show that the differential df_P/f_P is regular at \mathcal{O} (we will admit that if a function has no pole at a given point, then its differential is regular at this point).
- 8. Deduce that

$$\frac{df_P}{f_P} = (a_{P,0} + a_{P,1}t + a_{P,2}t^2 + \dots)dt \tag{1}$$

where t = x/y and $a_{P,i} \in \mathbb{F}_p$.

- 9. Show that $Q \in E(\mathbb{F}_p)[p] \mapsto df_Q/f_Q \in \Omega_{\mathbb{F}_p}(E)$, where f_Q is defined as above, is an injective group homomorphism. Deduce that the map $Q \in E(\mathbb{F}_p)[p] \mapsto a_{Q,0} \in \mathbb{F}_p$ is also a group morphism (we will assume that it is injective).
- 10. Let $f_Q = b_{Q,0}t^{-p} + b_{Q,1}t^{-p+1} + \dots$ be the series expansion of f_Q at \mathcal{O} with respect to t. Show that $a_{Q,0} = -b_{Q,1}/b_{Q,0}$.
- 11. Using Miller's algorithm to compute the series expansion of f_P , write down a program in Pari/GP that allows to solve the DLP on the elliptic curve¹ $E: y^2 = x^3 + ax + b$ defined over \mathbb{F}_p where

a = 425706413842211054102700238164133538302169176474,

¹If you want to know how this curve has been obtained, read the paper *Generating Anomalous Elliptic Curves* by Leprévost et al.

b = 203362936548826936673264444982866339953265530166

and

p = 730750818665451459112596905638433048232067471723.

Test it with the points P = (3, 692458035612295018092856586084476671412123617208) and Q = (4, 336409863984782411673450242463291178069570060324).

Application 2: canonical models for genus 2 curves Let χ be a curve of genus 2.

- 13. Show that there exist functions $x, y \in \mathbb{K}(\chi)$ such that $\mathcal{L}(K) = \langle 1, x \rangle$ and $\mathcal{L}(3K) = \langle 1, x, x^2, x^3, y \rangle$. Determine all the polynonials in x and y belonging to $\mathcal{L}(6K)$.
- 14. Using the Riemann-Roch theorem, compute the dimension of $\mathcal{L}(6K)$.
- 15. Deduce a map from χ to an hyperelliptic curve of genus 2 in the plane. This shows in particular that every genus 2 curve is hyperelliptic.