Advanced Cryptology - Homework

Part I: on Wiedemann's algorithm

Given a linear sequence $\left(s_{i}\right)_{i \in \mathbb{N}}$ of elements of a finite field K, whose minimal polynomial has degree less than d, it is possible with Berlekamp-Massey's algorithm to recover from $2 d$ successive terms $\left(s_{0}, \ldots, s_{2 d-1}\right)$ of the sequence its minimal polynomial. The first goal of Part I is to analyse this algorithm.

1. Suppose there exist $a_{0}, \ldots, a_{d} \in K$ such that

$$
a_{0} s_{k}+a_{1} s_{k+1}+\ldots a_{d} s_{k+d}=0 \quad \text { for any } k<d
$$

Let $\tilde{S}, P \in K[X]$ be the polynomials defined by

$$
\begin{gathered}
\tilde{S}(X)=u_{2 d-1}+u_{2 d-2} X+\cdots+u_{0} X^{2 d-1} \in K[X], \\
\text { and } P(X)=a_{0}+a_{1} X+\cdots+a_{d} X^{d} .
\end{gathered}
$$

Show that the terms of the product $P \tilde{S}$ of degree between d and $2 d-1$ are all equal to zero.
2. Deduce that there exist two polynomials $A, B \in K[X], \operatorname{deg}(A)<d, \operatorname{deg}(B)<d$, such that

$$
A(X)=B(X) X^{2 d}+P(X) \tilde{S}(X)
$$

Show that you can recover P using the extended Euclidean algorithm applied to the polynomials $X^{2 d}$ and \tilde{S} (hint: stop the algorithm as soon as you get polynomials R, U and V such as $R(X)=U(X) X^{2 d}+V(X) \tilde{S}(X)$ and $\left.\operatorname{deg} R<d\right)$. What is the complexity of this computation?
3. Give an illustration of this algorithm for a linear sequence of your choice on Pari/GP.

Back to Wiedemann's algorithm with the same notations as those used in the lectures (M is a square matrix and v a vector of size n), we want to analyze the probability that given an arbitrary vector u, the minimal polynomial returned by Berlekamp-Massey for the sequence $s_{i}={ }^{t} u . M^{i} . v$ is not equal to the minimal polynomial of M with respect to v.
4. Let P_{v} be the minimal polynomial of M with respect to v and P_{1}, \ldots, P_{k} its irreducible factors; for $j \in\{1, \ldots, k\}$, let $Q_{j}=P_{v} / P_{j}$.
Show that if ${ }^{t} u \cdot Q_{j}(M) \cdot v \neq 0$ for all $j \in\{1, \ldots, k\}$, then the minimal polynomial of the sequence $\left.{ }^{t} u . M^{i} \cdot v\right)_{i \in \mathbb{N}}$ is equal to P_{v}.
5. Let $j \in\{1, \ldots, k\}$. Prove that the set $\left\{\left.u \in K^{n}\right|^{t} u . Q_{j}(M) . v=0\right\}$ contains $\operatorname{card}(K)^{n-1}$ elements.
6. Deduce that the probability that the minimal polynomial of the sequence $\left({ }^{t} u . M^{i} . v\right)_{i \in \mathbb{N}}$, for u a uniformly random element in K^{n}, is different from P_{v} is smaller than $\frac{n}{\operatorname{card(K)}}$.

Part II: space of differentials of a curve and applications to cryptography

Let \mathcal{C} be an algebraic curve over a perfect field \mathbb{K}. We define the space of differential forms on \mathcal{C} as the $\overline{\mathbb{K}}(\mathcal{C})$-vector space generated by symbols of the form $d x$ where $x \in \overline{\mathbb{K}}(\mathcal{C})$, with the usual relations:
(i) $d(x+y)=d x+d y$,
(ii) $d(x y)=x d y+y d x$,
(iii) $d a=0$
for any $x, y \in \overline{\mathbb{K}}(\mathcal{C})$ and $a \in \overline{\mathbb{K}}$. This set is denoted $\Omega(\mathcal{C})$.
As \mathcal{C} is curve, an important (admitted) fact is that $\Omega(\mathcal{C})$ has dimension 1 over $\overline{\mathbb{K}}(\mathcal{C})$. Thanks to this result, it is possible to define the divisor of a differential ω. Given $P \in \mathcal{C}$ and $t \in \overline{\mathbb{K}}(\mathcal{C})$ a uniformizer at P, then there exists a unique function $f:=d \omega / d t$ such that $d \omega=f d t$, and we set

$$
\operatorname{ord}_{P}(\omega):=\operatorname{ord}_{P}(d \omega / d t) .
$$

It is not very difficult to check that this definition is independant of the choice of the uniformizer t at P. As for functions, we can then define the divisor associated to $\omega \neq 0$ as

$$
\operatorname{div}(\omega)=\sum_{P \in \mathcal{C}} \operatorname{ord}_{P}(\omega)(P)
$$

and this sum is finite, i.e. for all but finitely many $P \in \mathcal{C}, \operatorname{ord}_{P}(\omega)=0$ (this is also admitted). We say that a differential $\omega \in \Omega(\mathcal{C})$ is regular if the associated divisor is effective, i.e. $\operatorname{div}(\omega) \geq 0$. The set of regular differentials together with 0 is denoted $\Omega^{1}(\mathcal{C})$.

1. What is the divisor of $d x$ on the elliptic curve $\mathcal{E}: y^{2}=\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)$? Deduce that $\operatorname{div}\left(\frac{d x}{y}\right)=0$, otherwise said $d x / y$ is a differential with no poles nor zeroes.
2. More generally, let $\mathcal{H}: y^{2}=f(x)=\prod_{i=1}^{d}\left(x-x_{i}\right)$ be an hyperelliptic curve. Prove that

$$
d x=\left\{\begin{array}{l}
\sum_{i=1}^{d}\left(P_{i}\right)-3(\mathcal{O}) \text { if } d \text { is odd } \\
\sum_{i=1}^{d}\left(P_{i}\right)-2\left(\mathcal{O}_{1}\right)-2\left(\mathcal{O}_{2}\right) \text { if } d \text { is even }
\end{array}\right.
$$

where P_{i} stands for the point of coordinates $\left(x_{i}, 0\right)$ and \mathcal{O} the point(s) at the infinity.
3. Show that the image in $\operatorname{Pic}(\mathcal{C})$ of the divisors of differentials on \mathcal{C} are all in the same divisor class.

We call this class the canonical class $[K]$ and any divisor of a differential on \mathcal{C} is called a canonical divisor of \mathcal{C}.
4. Show that $\Omega^{1}(\mathcal{C})$ is a $\overline{\mathbb{K}}$-vector space isomorphic to $\mathcal{L}(K)$ for any canonical divisor K of \mathcal{C}.

We use these new notions to state a more precise version of Riemann-Roch's theorem than the one given during the lectures:

Theorem 1 (R-R (admitted)). Let \mathcal{C} be a smooth curve and K a canonical divisor on \mathcal{C}. There exists an integer $g \geq 0$ called the genus of \mathcal{C}, such that for any divisor $D \in \operatorname{Div}(\mathcal{C})$,

$$
\ell(D)-\ell(K-D)=\operatorname{deg} D-g+1 .
$$

3. Taking $D=0$ in $\mathrm{R}-\mathrm{R}$, prove that $\Omega^{1}(\mathcal{C})$ has dimension g over $\overline{\mathbb{K}}$.
4. Taking this time $D=K$ in R-R, show that $\operatorname{deg} K=2 g-2$ and recover the version of $\mathrm{R}-\mathrm{R}$ given during the lectures.
5. Let \mathcal{H} is a hyperelliptic curve with equation $y^{2}=f(x), \operatorname{deg} f=d$. Show that

$$
\Omega^{1}(\mathcal{H})=\left\langle\frac{d x}{y}, \frac{x d x}{y}, \ldots, \frac{x^{\lfloor(d-1) / 2-1\rfloor} d x}{y}\right\rangle,
$$

and the genus of \mathcal{H} is $\lfloor(d-1) / 2\rfloor$.

Application 1: solving the DLP on anomalous curves
It is well-known that the DLP in a finite additive group is really easy: its resolution consists in computing modular division, which is easily done with the extended Euclidean algorithm. Our goal is to investigate elliptic curves defined over \mathbb{F}_{p}, p prime, for which there exists an explicit non trivial homomorphism to ($\overline{\mathbb{F}}_{p},+$).
6. Prove that if such a homomorphism exists, then $\# E\left(\mathbb{F}_{p}\right)=p$ (hint: use Hasse bound). These curves are called anomalous (or trace-1) curves.

Let $E: y^{2}=f(x)$ be an anomalous elliptic curve and P be a generator of $E\left(\mathbb{F}_{p}\right)[p]$.
7. Prove that there exists a function f_{P} such that $\operatorname{div}\left(f_{P}\right)=p(P)-p(\mathcal{O})$. Show that the differential $d f_{P} / f_{P}$ is regular at \mathcal{O} (we will admit that if a function has no pole at a given point, then its differential is regular at this point).
8. Deduce that

$$
\begin{equation*}
\frac{d f_{P}}{f_{P}}=\left(a_{P, 0}+a_{P, 1} t+a_{P, 2} t^{2}+\ldots\right) d t \tag{1}
\end{equation*}
$$

where $t=x / y$ and $a_{P, i} \in \mathbb{F}_{p}$.
9. Show that $Q \in E\left(\mathbb{F}_{p}\right)[p] \mapsto d f_{Q} / f_{Q} \in \Omega_{\mathbb{F}_{p}}(E)$, where f_{Q} is defined as above, is an injective group homomorphism. Deduce that the map $Q \in E\left(\mathbb{F}_{p}\right)[p] \mapsto a_{Q, 0} \in \mathbb{F}_{p}$ is also a group morphism (we will assume that it is injective).
10. Let $f_{Q}=b_{Q, 0} t^{-p}+b_{Q, 1} t^{-p+1}+\ldots$ be the series expansion of f_{Q} at \mathcal{O} with respect to t. Show that $a_{Q, 0}=-b_{Q, 1} / b_{Q, 0}$.
11. Using Miller's algorithm to compute the series expansion of f_{P}, write down a program in Pari/GP that allows to solve the DLP on the elliptic curve ${ }^{1} E: y^{2}=x^{3}+a x+b$ defined over \mathbb{F}_{p} where

$$
a=425706413842211054102700238164133538302169176474
$$

[^0]$$
b=203362936548826936673264444982866339953265530166
$$
and
$$
p=730750818665451459112596905638433048232067471723
$$

Test it with the points $P=(3,692458035612295018092856586084476671412123617208)$ and $Q=$ $(4,336409863984782411673450242463291178069570060324)$.

Application 2: canonical models for genus 2 curves
Let χ be a curve of genus 2 .
13. Show that there exist functions $x, y \in \mathbb{K}(\chi)$ such that $\mathcal{L}(K)=\langle 1, x\rangle$ and $\mathcal{L}(3 K)=\left\langle 1, x, x^{2}, x^{3}, y\right\rangle$. Determine all the polynonials in x and y belonging to $\mathcal{L}(6 K)$.
14. Using the Riemann-Roch theorem, compute the dimension of $\mathcal{L}(6 K)$.
15. Deduce a map from χ to an hyperelliptic curve of genus 2 in the plane. This shows in particular that every genus 2 curve is hyperelliptic.

[^0]: ${ }^{1}$ If you want to know how this curve has been obtained, read the paper Generating Anomalous Elliptic Curves by Leprévost et al.

