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Advanced Cryptology - Homework

Part I: on Wiedemann’s algorithm

Given a linear sequence (si)i∈N of elements of a finite field K, whose minimal polynomial has degree
less than d, it is possible with Berlekamp-Massey’s algorithm to recover from 2d successive terms
(s0, . . . , s2d−1) of the sequence its minimal polynomial. The first goal of Part I is to analyse this
algorithm.

1. Suppose there exist a0, . . . , ad ∈ K such that

a0sk + a1sk+1 + . . . adsk+d = 0 for any k < d.

Let S̃, P ∈ K[X] be the polynomials defined by

S̃(X) = u2d−1 + u2d−2X + · · ·+ u0X
2d−1 ∈ K[X],

and P (X) = a0 + a1X + · · ·+ adX
d.

Show that the terms of the product PS̃ of degree between d and 2d− 1 are all equal to zero.

2. Deduce that there exist two polynomials A,B ∈ K[X], deg(A) < d, deg(B) < d, such that

A(X) = B(X)X2d + P (X)S̃(X).

Show that you can recover P using the extended Euclidean algorithm applied to the polynomials
X2d and S̃ (hint: stop the algorithm as soon as you get polynomials R,U and V such as
R(X) = U(X)X2d + V (X)S̃(X) and degR < d). What is the complexity of this computation?

3. Give an illustration of this algorithm for a linear sequence of your choice on Pari/GP.

Back to Wiedemann’s algorithm with the same notations as those used in the lectures (M is a square
matrix and v a vector of size n), we want to analyze the probability that given an arbitrary vector u,
the minimal polynomial returned by Berlekamp-Massey for the sequence si = tu.M i.v is not equal to
the minimal polynomial of M with respect to v.

4. Let Pv be the minimal polynomial of M with respect to v and P1, . . . , Pk its irreducible factors;
for j ∈ {1, . . . , k}, let Qj = Pv/Pj .

Show that if tu.Qj(M).v 6= 0 for all j ∈ {1, . . . , k}, then the minimal polynomial of the sequence
(tu.M i.v)i∈N is equal to Pv.

5. Let j ∈ {1, . . . , k}. Prove that the set {u ∈ Kn | tu.Qj(M).v = 0} contains card(K)n−1 elements.

6. Deduce that the probability that the minimal polynomial of the sequence (tu.M i.v)i∈N, for u a
uniformly random element in Kn, is different from Pv is smaller than n

card(K) .
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V.Vitse

Part II: space of differentials of a curve and applications to cryptog-
raphy

Let C be an algebraic curve over a perfect field K. We define the space of differential forms on C as
the K(C)-vector space generated by symbols of the form dx where x ∈ K(C), with the usual relations:

(i) d(x+ y) = dx+ dy,

(ii) d(xy) = x dy + y dx,

(iii) da = 0

for any x, y ∈ K(C) and a ∈ K. This set is denoted Ω(C).
As C is curve, an important (admitted) fact is that Ω(C) has dimension 1 over K(C). Thanks to this
result, it is possible to define the divisor of a differential ω. Given P ∈ C and t ∈ K(C) a uniformizer
at P , then there exists a unique function f := dω/dt such that dω = f dt, and we set

ordP (ω) := ordP (dω/dt).

It is not very difficult to check that this definition is independant of the choice of the uniformizer t at
P . As for functions, we can then define the divisor associated to ω 6= 0 as

div(ω) =
∑
P∈C

ordP (ω) (P ),

and this sum is finite, i.e. for all but finitely many P ∈ C, ordP (ω) = 0 (this is also admitted).
We say that a differential ω ∈ Ω(C) is regular if the associated divisor is effective, i.e. div(ω) ≥ 0. The
set of regular differentials together with 0 is denoted Ω1(C).

1. What is the divisor of dx on the elliptic curve E : y2 = (x − x1)(x − x2)(x − x3)? Deduce that

div
(
dx
y

)
= 0, otherwise said dx/y is a differential with no poles nor zeroes.

2. More generally, let H : y2 = f(x) =
∏d

i=1(x− xi) be an hyperelliptic curve. Prove that

dx =

{∑d
i=1(Pi)− 3(O) if d is odd,∑d
i=1(Pi)− 2(O1)− 2(O2) if d is even,

where Pi stands for the point of coordinates (xi, 0) and O the point(s) at the infinity.

3. Show that the image in Pic(C) of the divisors of differentials on C are all in the same divisor
class.

We call this class the canonical class [K] and any divisor of a differential on C is called a canonical
divisor of C.

4. Show that Ω1(C) is a K-vector space isomorphic to L(K) for any canonical divisor K of C.

We use these new notions to state a more precise version of Riemann-Roch’s theorem than the one
given during the lectures:
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Theorem 1 (R-R (admitted)). Let C be a smooth curve and K a canonical divisor on C. There exists
an integer g ≥ 0 called the genus of C, such that for any divisor D ∈ Div(C),

`(D)− `(K −D) = degD − g + 1.

3. Taking D = 0 in R-R, prove that Ω1(C) has dimension g over K.

4. Taking this time D = K in R-R, show that degK = 2g− 2 and recover the version of R-R given
during the lectures.

5. Let H is a hyperelliptic curve with equation y2 = f(x), deg f = d. Show that

Ω1(H) =

〈
dx

y
,
x dx

y
, . . . ,

xb(d−1)/2−1cdx

y

〉
,

and the genus of H is b(d− 1)/2c.

Application 1: solving the DLP on anomalous curves
It is well-known that the DLP in a finite additive group is really easy: its resolution consists in
computing modular division, which is easily done with the extended Euclidean algorithm. Our goal
is to investigate elliptic curves defined over Fp, p prime, for which there exists an explicit non trivial
homomorphism to (Fp,+).

6. Prove that if such a homomorphism exists, then #E(Fp) = p (hint: use Hasse bound). These
curves are called anomalous (or trace-1) curves.

Let E : y2 = f(x) be an anomalous elliptic curve and P be a generator of E(Fp)[p].

7. Prove that there exists a function fP such that div(fP ) = p(P )−p(O). Show that the differential
dfP /fP is regular at O (we will admit that if a function has no pole at a given point, then its
differential is regular at this point).

8. Deduce that
dfP
fP

= (aP,0 + aP,1t+ aP,2t
2 + . . . )dt (1)

where t = x/y and aP,i ∈ Fp.

9. Show that Q ∈ E(Fp)[p] 7→ dfQ/fQ ∈ ΩFp(E), where fQ is defined as above, is an injective group
homomorphism. Deduce that the map Q ∈ E(Fp)[p] 7→ aQ,0 ∈ Fp is also a group morphism (we
will assume that it is injective).

10. Let fQ = bQ,0t
−p + bQ,1t

−p+1 + . . . be the series expansion of fQ at O with respect to t. Show
that aQ,0 = −bQ,1/bQ,0.

11. Using Miller’s algorithm to compute the series expansion of fP , write down a program in Pari/GP
that allows to solve the DLP on the elliptic curve1 E : y2 = x3 + ax+ b defined over Fp where

a = 425706413842211054102700238164133538302169176474,

1If you want to know how this curve has been obtained, read the paper Generating Anomalous Elliptic Curves by
Leprévost et al.
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b = 203362936548826936673264444982866339953265530166

and
p = 730750818665451459112596905638433048232067471723.

Test it with the points P = (3, 692458035612295018092856586084476671412123617208) and Q =
(4, 336409863984782411673450242463291178069570060324).

Application 2: canonical models for genus 2 curves
Let χ be a curve of genus 2.

13. Show that there exist functions x, y ∈ K(χ) such that L(K) = 〈1, x〉 and L(3K) = 〈1, x, x2, x3, y〉.
Determine all the polynonials in x and y belonging to L(6K).

14. Using the Riemann-Roch theorem, compute the dimension of L(6K).

15. Deduce a map from χ to an hyperelliptic curve of genus 2 in the plane. This shows in particular
that every genus 2 curve is hyperelliptic.
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