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Advanced Cryptology - Final Exam - (3 h)

Documents allowed. No computer, cellphone off.

Exercise 1.

Let E be an elliptic curve defined over the finite field F, and let n be a prime number such that
n?|#E(F,).
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1. Assume that n { ¢ — 1. Explain why E(F,) has points of order (exactly) n? and why E(F,)[n]
Z/nZ.

We assume for the remainder of the exercise that n|g — 1 and E(F,)[n] ~ Z/nZ (so that E(F,)[n*] ~
7./n*Z). The goal is to show that E is isogenous to a curve whose whole n-torsion is rational.

2. Let ¢ be the unique (up to Fg-isomorphisms) isogeny of kernel E(F,)[n] and E' = E/E(F,)[n]
its target curve. What is the degree of ¢?

3. Let P € E(F,) be a point of order (exactly) n?. Show that @ = ¢(P) is a point of E'(F,) of
order n.

4. Let ¢ : E' — E be the dual isogeny of ¢. Prove that ¢(Q) # Og and deduce that ker(¢) n(Q) =
Opg.

5. We consider the linear transformation ®,, of E'[n] induced by the Frobenius endomorphism
®, of E'. Prove that (Q)) and ker ¢ are two distinct eigenspaces of ®,, and give the eigenvalue
corresponding to (@). Is ®,,, diagonalizable?

6. Show that the determinant of ®,, is 1. Deduce that the Frobenius endomorphism induces the
identity on E’[n]. What does this imply on E’'[n]?

7. Application. If ¢ is equal to a prime power p?¢ (with p # 2), then the elliptic curves defined over
[F, that admit an equation in Scholten form

y? = ax® + ba? + o+ b

are subject to the Weil descent attack on the discrete logarithm problem, which is slightly more
efficient than Pollard-rho. Curves in Scholten form always have zero or three non-trivial 2-torsion
points, and every elliptic curve having three non-trivial 2-torsion points can be put in Scholten

form. Explain how this attack can be generalized to every curve whose cardinality is dividable
by 4.
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Exercise 2.

Let T be the set of monomials of K[Xj,...,X,], endowed with a monomial order <. We consider an
ideal I of K[X1,...,Xy]; let G be a Grobner basis of I. We define the staircase of I to be the set

O)={meT -m¢lt(I)} ={meT: m#1m(f) Vfel}

A corner of the staircase is a monomial m € T\O(I) such that

vm' e T\O(I), m'|m = m' = m.

. Show that a monomial m belongs to O([) if and only if Im(g) 1 m for all g € G.

. Let f e K[Xy,...,X,] be a polynomial. Show that fG belongs to the vector space Span i (O(I))

generated by the monomials of the staircase of 1.

Prove that the corners of O(I) are exactly the leading monomials of the elements of a minimal
Grobner basis of 1.

Let I be an ideal of K[x,y, z] whose staircase is O(I) = {1, x,y,y?, vy, z}. Determine its corners.

Let I = (2?y — 1,2y%> — ) € R[z,y] endowed with the lexicographical order (with = > ).
Compute a Grobner basis of I and deduce its staircase.

Barkee’s cryptosystem. In a pseudonymous article, Barkee and his co-authors proposed the fol-
lowing public-key encryption outline (with the goal of showing that it cannot be secure).

4.

o.

Key generation: Alice generates an ideal I ¢ K[X;,..., X, ] (with K a finite field), a Grébner
basis G = {g1,...,9s} of I and a set F' = {f1,..., f;} such that (F') = I. The details are not
specified, but the idea is to start from G; computing a Grobner basis of I starting from F' is
supposed to be computationally hard. The public key consists of F' and O(I) (or just a subset
of O(I)), the private key is G.

Encryption: plaintexts are encoded as elements of Span (O(I)). To encrypt M = 3., co(1) cmm,
Bob selects random degree r polynomials pq,...,p; and outputs C = M + 22:1 pifi-

Decryption: Alice decrypts a ciphertext C' by computing its normal form 0 with respect to
the Grobner basis G.

Prove that this system is correct, i.e. decryption works.

A chosen-ciphertext attack:

(a) Let g be a monic element of a minimal reduced Grébner basis of I. Show that for any
polynomials p1, ..., ps, the following equality holds:

m(g) + Y pifi = 1m(g) —g.

(b) Use this result to describe a chosen-ciphertext attack on this cryptosystem, in the case
where the whole set O([) is public. Generalize it to an adaptative chosen-ciphertext attack
in the case where only a subset of O(I) is public.
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Exercise 3.

Let H be the genus 5 hyperelliptic curve defined over Fa, of equation
2+ @+t + Dy =M + 20+ 2 422

Its (unique) point at infinity is noted O. The Jacobian of H has 86 Fo-rational elements. We consider
the divisor classes (given in Mumford representation)

Dy = (2% + 23,23 + 2?), Dy = (2° + 1,2% + 2).

The order of Dy in Jacy is 86; let s be the discrete logarithm of D; in base Dy, i.e. the unique integer
(modulo 86) such that D; = sDj.

1. Give all the Fo-rational points of . For each P € H(F3), write down the Mumford representation
of the divisor (P) — (O) and of its opposite in Jacy.

In what follows, we will consider the two divisor classes uy = (z,0) and u; = (z + 1,0) € Jacy/(F2),
given in Mumford representation, and the factor base F = {uq, u;}.

2. Give the factorization of x* + 22 in Fo[x]. Deduce a decomposition of Dy over F, i.e. a relation
Do = Mug + puy with A,y e Z.

3. Compute similar decompositions of 2Dy = (2%, 23+ 1) and of Dy + Dy = (2° + 2% + 23 + 22, 2% +
3
x® +1).

4. Combine the above decompositions to find a non-trivial relation of the form aDy + bD1 = 0.
5. Is this relation enough to deduce the value of s modulo 867 modulo a factor of 867

6. A simple computation yields 43D; # (1,0). Deduce the value of s modulo 2, and finally the
value of s modulo 86.

Exercise 4.

Let E be the elliptic curve defined over Fo with Weierstrass equation

y2+xy=x3+x2—|—1.

1. Give the characteristic polynomial of the Frobenius endomorphism @3 : (z,y) — (22,9?) of E.
2. Is this curve supersingular?
3. Compute the number of Fs-rational points of E.

4. Is there any extension of Fo on which the number of rational points of F is prime? What are
the pros and cons of the use of this curve for cryptographic applications?
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5. Let ;1 € C be a complex number such that u? — 4+ 2 = 0, and let n be an arbitrary integer.
We consider the sequence (ay) with integer values, and the sequence (i) with values in {0, 1},
defined by the relations

a—1 =0, ap=mn, agy1 = [%J - [akQ_lJa
€L = ajp — 2[%] = aj, mod 2.
Prove by induction that for all k£ € N,
(] i k Ak—1, k+1
n= ;)Ei,u +appt — | ==t

6. Compute the sequence (e) for n = 7.

7. We admit that for all n € N, the sequences (ax) and (e;) only have a finite number of non-zero
values. Thus every integer has an expansion in base p1 , of the form n = >7/_, e;u’ with ¢; € {0, 1}.
How this expansion can be used to compute [n]P where P € E(Fq4)?

8. Write down the integer 7 in base 2 and in base p. What can be remarked about the length of
these expressions? Conclude about the applications to cryptography.



