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Advanced Cryptology - Final Exam - (3 h)
Documents allowed. No computer, cellphone off.

Exercise 1.

Let E be an elliptic curve defined over the finite field Fq and let n be a prime number such that
n2|#EpFqq.

1. Assume that n - q´ 1. Explain why EpFqq has points of order (exactly) n2 and why EpFqqrns »
Z{nZ.

We assume for the remainder of the exercise that n|q ´ 1 and EpFqqrns » Z{nZ (so that EpFqqrn
2s »

Z{n2Z). The goal is to show that E is isogenous to a curve whose whole n-torsion is rational.

2. Let φ be the unique (up to Fq-isomorphisms) isogeny of kernel EpFqqrns and E1 “ E{EpFqqrns
its target curve. What is the degree of φ?

3. Let P P EpFqq be a point of order (exactly) n2. Show that Q “ φpP q is a point of E1pFqq of
order n.

4. Let φ̂ : E1 Ñ E be the dual isogeny of φ. Prove that φ̂pQq ‰ OE and deduce that kerpφ̂qXxQy “
OE1 .

5. We consider the linear transformation Φq,n of E1rns induced by the Frobenius endomorphism

Φq of E1. Prove that xQy and ker φ̂ are two distinct eigenspaces of Φq,n and give the eigenvalue
corresponding to xQy. Is Φq,n diagonalizable?

6. Show that the determinant of Φq,n is 1. Deduce that the Frobenius endomorphism induces the
identity on E1rns. What does this imply on E1rns?

7. Application. If q is equal to a prime power p2d (with p ‰ 2), then the elliptic curves defined over
Fq that admit an equation in Scholten form

y2 “ ax3 ` bx2 ` bp
d
x` ap

d

are subject to the Weil descent attack on the discrete logarithm problem, which is slightly more
efficient than Pollard-rho. Curves in Scholten form always have zero or three non-trivial 2-torsion
points, and every elliptic curve having three non-trivial 2-torsion points can be put in Scholten
form. Explain how this attack can be generalized to every curve whose cardinality is dividable
by 4.
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Exercise 2.

Let T be the set of monomials of KrX1, . . . , Xns, endowed with a monomial order ď. We consider an
ideal I of KrX1, . . . , Xns; let G be a Gröbner basis of I. We define the staircase of I to be the set

OpIq “ tm P T : m R ltpIqu “ tm P T : m ‰ lmpfq @f P Iu.

A corner of the staircase is a monomial m P T zOpIq such that

@m1 P T zOpIq, m1|mñ m1 “ m.

1. Show that a monomial m belongs to OpIq if and only if lmpgq - m for all g P G.

2. Let f P KrX1, . . . , Xns be a polynomial. Show that f
G

belongs to the vector space SpanKpOpIqq
generated by the monomials of the staircase of I.

3. Prove that the corners of OpIq are exactly the leading monomials of the elements of a minimal
Gröbner basis of I.

4. Let I be an ideal of Krx, y, zs whose staircase is OpIq “ t1, x, y, y2, xy, zu. Determine its corners.

5. Let I “ xx2y ´ 1, xy2 ´ xy P Rrx, ys endowed with the lexicographical order (with x ą y).
Compute a Gröbner basis of I and deduce its staircase.

Barkee’s cryptosystem. In a pseudonymous article, Barkee and his co-authors proposed the fol-
lowing public-key encryption outline (with the goal of showing that it cannot be secure).

• Key generation: Alice generates an ideal I Ă KrX1, . . . , Xns (with K a finite field), a Gröbner
basis G “ tg1, . . . , gsu of I and a set F “ tf1, . . . , ftu such that xF y “ I. The details are not
specified, but the idea is to start from G; computing a Gröbner basis of I starting from F is
supposed to be computationally hard. The public key consists of F and OpIq (or just a subset
of OpIq), the private key is G.

• Encryption: plaintexts are encoded as elements of SpanKpOpIqq. To encrypt M “
ř

mPOpIq cmm,

Bob selects random degree r polynomials p1, . . . , pt and outputs C “M `
řt

i“1 pifi.

• Decryption: Alice decrypts a ciphertext C by computing its normal form C
G

with respect to
the Gröbner basis G.

4. Prove that this system is correct, i.e. decryption works.

5. A chosen-ciphertext attack:

(a) Let g be a monic element of a minimal reduced Gröbner basis of I. Show that for any
polynomials p1, . . . , pt, the following equality holds:

lmpgq `
ÿ

i

pifi
G
“ lmpgq ´ g.

(b) Use this result to describe a chosen-ciphertext attack on this cryptosystem, in the case
where the whole set OpIq is public. Generalize it to an adaptative chosen-ciphertext attack
in the case where only a subset of OpIq is public.

2
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Exercise 3.

Let H be the genus 5 hyperelliptic curve defined over F2, of equation

y2 ` px5 ` x2 ` 1qy “ x11 ` x10 ` x3 ` x2.

Its (unique) point at infinity is noted O. The Jacobian of H has 86 F2-rational elements. We consider
the divisor classes (given in Mumford representation)

D0 “ px
4 ` x3, x3 ` x2q, D1 “ px

5 ` 1, x3 ` xq.

The order of D0 in JacH is 86; let s be the discrete logarithm of D1 in base D0, i.e. the unique integer
(modulo 86) such that D1 “ sD0.

1. Give all the F2-rational points ofH. For each P P HpF2q, write down the Mumford representation
of the divisor pP q ´ pOq and of its opposite in JacH.

In what follows, we will consider the two divisor classes u0 “ px, 0q and u1 “ px ` 1, 0q P JacHpF2q,
given in Mumford representation, and the factor base F “ tu0, u1u.

2. Give the factorization of x4 ` x3 in F2rxs. Deduce a decomposition of D0 over F , i.e. a relation
D0 “ λu0 ` µu1 with λ, µ P Z.

3. Compute similar decompositions of 2D0 “ px
4, x3`1q and of D0`D1 “ px

5`x4`x3`x2, x4`
x3 ` 1q.

4. Combine the above decompositions to find a non-trivial relation of the form aD0 ` bD1 “ 0.

5. Is this relation enough to deduce the value of s modulo 86? modulo a factor of 86?

6. A simple computation yields 43D1 ‰ p1, 0q. Deduce the value of s modulo 2, and finally the
value of s modulo 86.

Exercise 4.

Let E be the elliptic curve defined over F2 with Weierstrass equation

y2 ` xy “ x3 ` x2 ` 1.

1. Give the characteristic polynomial of the Frobenius endomorphism Φ2 : px, yq ÞÑ px2, y2q of E.

2. Is this curve supersingular?

3. Compute the number of F4-rational points of E.

4. Is there any extension of F2 on which the number of rational points of E is prime? What are
the pros and cons of the use of this curve for cryptographic applications?
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5. Let µ P C be a complex number such that µ2 ´ µ ` 2 “ 0, and let n be an arbitrary integer.
We consider the sequence pakq with integer values, and the sequence pεkq with values in t0, 1u,
defined by the relations

a´1 “ 0, a0 “ n, ak`1 “ t
ak
2

u´ t
ak´1

2
u,

εk “ ak ´ 2t
ak
2

u “ ak mod 2.

Prove by induction that for all k P N,

n “
k´1
ÿ

i“0

εiµ
i ` akµ

k ´ t
ak´1

2
uµk`1.

6. Compute the sequence pεkq for n “ 7.

7. We admit that for all n P N, the sequences pakq and pεkq only have a finite number of non-zero
values. Thus every integer has an expansion in base µ , of the form n “

řr
i“0 εiµ

i with εi P t0, 1u.
How this expansion can be used to compute rnsP where P P EpF2dq?

8. Write down the integer 7 in base 2 and in base µ. What can be remarked about the length of
these expressions? Conclude about the applications to cryptography.
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