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Introduction Motivation

The Discrete Logarithm Problem

Definition

Let G be a group, g ∈ G an element of finite order n.
The discrete logarithm of h ∈ 〈g〉 is the integer x ∈ Z/nZ such that

h = g x .

This is a one-way function:

given g and x , easy to compute h = g x , assuming an efficiently
computable group law (always the case here)

computing discrete log much harder in general

DLP: given g , h ∈ G , find x – if it exists – such that h = g x
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Introduction Motivation

The Diffie-Hellman problem

Computational Diffie-Hellman problem

CDHP: given g , ga, gb ∈ G , compute gab

Closely related to the DLP:

CDHP ≺ DLP

converse not known but strong hints of equivalence [Maurer-Wolf]

Many cryptographic protocols actually rely on the assumption that CDHP
is hard, especially elliptic curve cryptography.
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Introduction Motivation

Relevance in cryptography

The canonical example: Diffie-Hellman key exchange

Alice [secret = a] Bob [secret = b]

ga
//

gb
oo

Kab = (gb)a shared key Kab = (ga)b

Other classical protocols based on CDHP:

ElGamal encryption

(EC)DSA signature scheme

pairing-based cryptosystems (bilinear CDHP)

. . .
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Introduction Motivation

Goals of these lectures

Survey of existing attacks on the curve-based DLP:

1 generic attacks

2 index calculus for
I hyperelliptic curves of genus > 2
I curves defined over extension fields
I small degree plane curves

3 transfer methods using
I pairings
I lift to characteristic zero fields
I isogenies
I Weil descent (GHS)
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Introduction Generic attacks

Generic attacks on the DLP

Let G a finite abelian group of known order n.

Definition

An algorithm is generic when the only authorized operations are:

addition of two elements

opposite of an element

equality test of two elements

 representation of the group as a black box.

Generic attacks can be applied indifferently to any group.

First example: brute force search!

For all x ∈ {0; . . . ; n − 1}, test if g x = h.
Exponential complexity in the size of the group...

Vanessa VITSE (UVSQ) Attacks on the DLP Summer School – ECC 2011 7 / 86



Introduction Generic attacks

Generic attacks on the DLP

Let G a finite abelian group of known order n.

Definition

An algorithm is generic when the only authorized operations are:

addition of two elements

opposite of an element

equality test of two elements

 representation of the group as a black box.

Generic attacks can be applied indifferently to any group.

First example: brute force search!

For all x ∈ {0; . . . ; n − 1}, test if g x = h.
Exponential complexity in the size of the group...

Vanessa VITSE (UVSQ) Attacks on the DLP Summer School – ECC 2011 7 / 86



Introduction Generic attacks

Pohlig-Hellman reduction

Let n =
N∏
i=1

pαi
i be the prime factorization of #G .

G cyclic  G '
∏

i Gi where Gi ' Z/pαi
i Z

1 work with the subgroup Gi to find the DL mod pαi
i and use Chinese

remaindering to deduce the DL in G

2 further simplification: to obtain the DL mod pαi
i , compute iteratively

its expression in base pi by solving αi DLPs in the subgroup of order
pi of Gi .

Consequence

Solving the DLP in a group of size n is approximately as hard as solving it
in a group of size the largest prime factor of n.
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Introduction Generic attacks

Pohlig-Hellman reduction: example

Let E : y2 = x3 + 77x + 28 elliptic curve defined over F157,
solve [x ]P = Q where P = (9, 115) and Q = (2, 70)
The order of P is 162 = 2 · 34

1 Mod 2: solve [x ]([34]P) = [34]Q where [34]P = (24, 0) has order 2

[34]Q = (24, 0) ⇒ x = 1 mod 2

2 Mod 34: solve [x ]([2]P) = [2]Q where [2]P = (135, 51) has order 34

2[Q] = (12, 47), x = x0 + 3x1 + 32x2 + 33x3

= (12, 47)
⇒ =
⇒ =
⇒ =
⇒ x = 73 mod 81

3 Chinese remainders: x = 73 mod 162
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2 Mod 34: solve [x ]([2]P) = [2]Q where [2]P = (135, 51) has order 34

2[Q] = (12, 47), x = x0 + 3x1 + 32x2 + 33x3

[1 + 3 · 0 + 32 · 2 + 33x3](135, 51) = (12, 47)
⇒ [x3](57, 41) = (57, 116)
⇒ x3 = 2

⇒ =

⇒ x = 73 mod 81

3 Chinese remainders: x = 73 mod 162
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Introduction Generic attacks

Pohlig-Hellman reduction

Let n =
N∏
i=1

pαi
i be the prime factorization of #G .

G cyclic  G '
∏

i Gi where Gi ' Z/pαi
i Z

1 work with the subgroup Gi to find the DL mod pαi
i and use Chinese

remaindering to deduce the DL in G

2 further simplification: to obtain the DL mod pαi
i , compute iteratively

its expression in base pi by solving αi DLPs in the subgroup of order
pi of Gi .

Consequence

Solving the DLP in a group of size n is approximately as hard as solving it
in a group of size the largest prime factor of n.
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Introduction Generic attacks

Baby-step giant-step [Shanks]

Idea

Use birthday paradox and space-time trade-off to speed up the exhaustive
search

Let d = d
√

#Gc
1 Compute and store (g j , j) for 0 ≤ j ≤ d

2 For 0 ≤ k ≤ #G/d , compute h.(g−d)k and check if it appears in the
stored list

3 Collision h.(g−d)k = g j ⇒ DL of h is (j + kd)

Using a hash table, cost of membership test in step 2 is in O(1)
 overall complexity is O(

√
#G ) in both time and memory
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Introduction Generic attacks

Complexity bounds

Other generic algorithm: Pollard-Rho

based on the iteration of a pseudo-random function

same time complexity in O(
√

#G )

but O(1) memory requirement

Best possible complexity of generic attacks!

Theorem [Shoup]

The complexity of a generic attack of the DLP on a group G is in Ω(
√
p)

where p is the largest prime factor of #G .

To improve over this complexity, one has to use additional information on
the given group G .
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Introduction Target groups

Hardness of the DLP
Depends on the choice of the group G . Some classical examples:

1 G ⊂ (Z/nZ,+): solving DLP has polynomial complexity with
extended Euclid algorithm

2 G ⊂ (Z/pZ∗,×): subexponential complexity in Lp(1/3) (NFS)

3 G ⊂ (F∗q,×): subexponential complexity in Lq(1/3) (FFS/NFS)

Key points on the complexity function L

Ln(α, c) = exp
(
c(log n)α(log log n)1−α)

I Ln(α) shorthand for Ln(α, c + o(1)) for a constant c .

I L(α2, c2) = o(L(α1, c1)) if α2 < α1 or α2 = α1 and c2 < c1

I L(α1, c1)L(α2, c2) = L(α1, c1 + o(1)) if α1 > α2

I L(α, c1)L(α, c2) = L(α, c1 + c2)
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Depends on the choice of the group G . Some classical examples:

1 G ⊂ (Z/nZ,+): solving DLP has polynomial complexity with
extended Euclid algorithm

2 G ⊂ (Z/pZ∗,×): subexponential complexity in Lp(1/3) (NFS)

3 G ⊂ (F∗q,×): subexponential complexity in Lq(1/3) (FFS/NFS)

Key points on the complexity function L

Ln(α, c) = exp
(
c(log n)α(log log n)1−α)

4 G ⊂ (JacC(Fq),+): if the genus of C is s.t. g > 2, existence of
algorithms asymptotically faster than generic attacks
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Introduction Target groups

Target groups

In these lectures, we focus on curve-based DLP, i.e. on the following
groups:

G ⊂ E (Fq), the group of Fq-rational points of an elliptic curve

G ⊂ JacC(Fq) the divisor class group of an algebraic curve C, with an
emphasis on the hyperelliptic case

when q is a prime power, Weil restrictions of the above varieties

Note that all these targets are examples of abelian varieties.
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The index calculus method

Section 2

The index calculus method
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The index calculus method Outline

Introduction to index calculus

Originally developed for the factorization of large integers, improving on
the square congruence method of Fermat.

Index calculus based Number/Function Field Sieve hold records for both
integer factorization and finite field DLP.

Idea

Find group relations between a “small” number of generators (or
factor base elements)

With sufficiently many relations and linear algebra, deduce the group
structure and the DL of elements
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The index calculus method Outline

Basic outline

(G ,+) = 〈g〉 finite abelian group of prime order r , h ∈ G

1 Choice of a factor base: F = {g1, . . . , gN} ⊂ G

2 Relation search: decompose [ai ]g + [bi ]h (ai , bi random) into F

[ai ]g + [bi ]h =
N∑
j=1

[cij ]gj , where cij ∈ Z

3 Linear algebra: once k relations found (k ≥ N)

I construct the matrices A =
(
ai bi

)
1≤i≤k

and M = (cij) 1≤i≤k
1≤j≤N

I find v = (v1, . . . , vk) ∈ ker(tM) such that vA 6=
(
0 0

)
mod r

I compute the solution of DLP: x = − (
∑

i aivi ) / (
∑

i bivi ) mod r
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The index calculus method Outline

Basic outline (variant)
1 Choice of a factor base: F = {g1, . . . , gN} ⊂ G
2 Relation search: decompose [ai ]g (ai random) into F

[ai ]g =
N∑
j=1

[cij ]gj , where cij ∈ Z

3 Linear algebra: once k relations found (k ≥ N)

I construct the vector A =
(
ai
)

1≤i≤k
and the matrix M = (cij) 1≤i≤k

1≤j≤N

I find X = (xj) unique solution to MX = A mod r

4 Descent phase: find a relation involving h

[a]g + [b]h =
N∑
j=1

[cj ]gj , where b ∧ r = 1

and deduce the solution of DLP
(∑N

j=1 cjxj − a
)
b−1 mod r .
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The index calculus method Outline

Second outline

1 Choice of a factor base: F = {g1, . . . , gN} ⊂ G
2 Relation search: find relations between elements of F

N∑
j=1

[cij ]gj = 0, where cij ∈ Z

3 Linear algebra: once k relations found (k ≥ N)

I construct the matrix M = (cij) 1≤i≤k
1≤j≤N

I find X = (xj) s.t. kerM = span(X ) mod r

4 Descent phase: find relations involving g and h

[a]g =
N∑
j=1

[cj ]gj , [b]h =
N∑
j=1

[c ′j ]gj , where a, b ∧ r = 1

and deduce DLP solution (
∑

j cjxj)(
∑

j c
′
jxj)(ab)−1 mod r .
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The index calculus method Outline

General remarks

1 Relation search very specific to the group (several examples in this
lecture) and can be the main obstacle (elliptic curves)

2 On the other hand, linear algebra almost the same for all groups

3 Balance to find between the two phases:

I if #F small, few relations needed and fast linear algebra
but small probability of decomposition  many trials before
finding a relation

I if #F large, easy to find relations
but many of them needed and slow linear algebra
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The index calculus method Outline

An example: the prime field case

Choice of factor base: equivalence classes of prime integers smaller
than a smoothness bound B (usually together with −1)

Relation search: a combination [ai ]g yields a relation if its

representative in
[
−p−1

2 ; p−1
2

]
is B-smooth

p = 107, G = Z/pZ∗, g = 31, F = {−1; 2; 3; 5; 7}, find the DL of h = 19.



2

3

4

13

14

15

16

21


=



−1 2 3 5 7

1 1 0 0 0

0 0 2 1 0

0 2 0 0 0

1 0 0 0 2

1 0 1 0 1

1 0 2 0 0

0 1 1 0 1

1 0 0 1 1


X mod 106 ⇒ X =


53
55
34
41
33
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2

]
is B-smooth

p = 107, G = Z/pZ∗, g = 31, F = {−1; 2; 3; 5; 7}, find the DL of h = 19.

g1 = 31, not smooth
g2 = −2 = −1× 2
g3 = 45 = 32 × 5
g4 = 4 = 22

g5 = 17, not smooth

· · ·

· · ·
g13 = −49 = −1× 72

g14 = −21 = −1× 3× 7
g15 = −9 = −1× 32

g16 = 42 = 2× 3× 7
g21 = −35 = −1× 5× 7
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The index calculus method Outline

An example: the prime field case

Choice of factor base: equivalence classes of prime integers smaller
than a smoothness bound B (usually together with −1)

Relation search: a combination [ai ]g yields a relation if its

representative in
[
−p−1

2 ; p−1
2

]
is B-smooth

p = 107, G = Z/pZ∗, g = 31, F = {−1; 2; 3; 5; 7}, find the DL of h = 19.

log(−1) = 53 log(2) = 55 log(3) = 34 log(5) = 41 log(7) = 33

gh = 54 = 2× 33 = (g55)(g34)3 = g51 ⇒ h = g50
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The index calculus method Outline

Complexity in the prime field case

Optimal choice of B?

Theorem [Bruijn,Canfield-Erdös-Pomerance]

A random integer smaller than x is Lx(α, c)-smooth with probability

1/Lx(1− α, (1− α)/c) as x →∞.

Let B = Lp(α, c)

Relation step complexity in Lp(α, c)Lp(1− α, (1− α)/c)
 best choice is B ' Lp(1/2, 1/

√
2)

Overall complexity of this index calculus in Lp(1/2,
√

2) (assuming
quadratic complexity of linear algebra step)
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The index calculus method Sparse linear algebra

The linear algebra step

The matrix of relations

very large for real-world applications: typical size is several millions
rows/columns.

extremely sparse: only a few non-zero coefficients per row

⇒ use sparse linear algebra techniques instead of standard resolution tools

Main ideas:

Keep the matrix sparse (���XXXGauss)

Use matrix-vector products: cost only proportional to the number of
non-zero entries

Two principal algorithms: Lanczos and Wiedemann
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The index calculus method Sparse linear algebra

Wiedemann’s algorithm (Coppersmith)

Goal: given M square n × n matrix, A vector, find X s.t. MX = A
Idea: compute the minimal polynomial P s.t. P(M)v = 0 for a given
vector v

1 Berlekamp-Massey: compute minimal polynomial P =
∑d

k=1 pkx
k of

the sequence ai = u ·M iv where u random vector

2 If P(M)v 6= 0, start again with a new u and take lcm

3 To deduce X

I if A = 0: take v = Mw , w random, then X = P(M)w
I otherwise: take v = A, then X = −(p0)−1

∑d
k=1 pkM

k−1A

Complexity

O(n) dot products and O(n) matrix-vector multiplications
⇒ if M has c non-zero entries per row, total cost in O(n2c)
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vector v

1 Berlekamp-Massey: compute minimal polynomial P =
∑d

k=1 pkx
k of

the sequence ai = u ·M iv where u random vector

2 If P(M)v 6= 0, start again with a new u and take lcm

3 To deduce X

I if A = 0: take v = Mw , w random, then X = P(M)w
I otherwise: take v = A, then X = −(p0)−1

∑d
k=1 pkM

k−1A

Complexity

O(n) dot products and O(n) matrix-vector multiplications
⇒ if M has c non-zero entries per row, total cost in O(n2c)
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The index calculus method Sparse linear algebra

Improving the linear algebra step

Remark

Relation search always straightforward to distribute

Not so true for the linear algebra

Often advantageous to compute many more relations than needed and use
extra information to simplify the relation matrix

Two methods:

1 Structured Gaussian elimination:
Particularly well-suited when elements of the factor base have
different frequencies (e.g on finite fields)

2 Large prime variations
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The index calculus method Sparse linear algebra

Structured Gaussian elimination [LaMacchia-Odlyzko]

Goal: reduce the size of the matrix while keeping it sparse.
Distinction between the matrix columns (i.e. the factor base elements):

dense columns correspond to “small primes”

other columns correspond to “large primes”

1 If a column contains only one non-zero entry, remove it and the
corresponding row.
Also, remove columns/rows containing only zeroes.

2 Mark some new columns as dense
3 Find rows with only one ±1 coefficient in the non-dense part

I Use this coefficient as a pivot to clear its column
I Remove corresponding row and column

4 Remove rows that have become too dense and go back to step 1
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Applications of index calculus

Section 3

Applications of index calculus
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Applications of index calculus The hyperelliptic case

Subsection 1

The hyperelliptic case
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Applications of index calculus The hyperelliptic case

Hyperelliptic curves

Reminders

An (imaginary) hyperelliptic curve H of genus g defined over Fq is given
by an equation

y2 + h0(x)y = h1(x), h0, h1 ∈ Fq[x ], deg h0 ≤ g , deg h1 = 2g + 1

possesses a unique point at infinity OH
hyperelliptic involution ι:
maps P = (xP , yP) to ι(P) = (xP ,−yP − h0(xP))

Jacobian variety JacH(Fq) (or divisor class group): set of linear
equivalence class of degree zero divisors (defined over Fq)

#H(Fq) ' q

#JacH(Fq) ' qg
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Applications of index calculus The hyperelliptic case

Representations of elements of JacH

Reduced representation

An element [D] ∈ JacH(Fq) has a unique reduced representation

D ∼ (P1) + · · ·+ (Pr )− r(OH), r ≤ g , Pi 6= ι(Pj) for i 6= j

Note: the points Pi ’s are usually not Fq-rational

Mumford representation

One-to-one correspondence between elements of JacH(Fq) and couples of
polynomials (u, v) ∈ Fq[x ]2 s.t.

u monic, deg u ≤ g

deg v < deg u

u divides v2 + vh0 − h1
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Applications of index calculus The hyperelliptic case

Adleman-DeMarrais-Huang’s index calculus

Analog of the integer factorization for elements of the Jacobian variety:

Proposition

Let D = (u, v) ∈ JacH(Fq). If u factorizes as
∏

j uj over Fq, then

Dj = (uj , vj) is in JacH(Fq), where vj = v mod uj

D =
∑

j Dj

Allows to apply index calculus [Enge-Gaudry]

Factor base: F = {(u, v) ∈ JacH(Fq) : u irreducible, deg u ≤ B}
(“small prime divisors”)

Element [ai ]D0 + [bi ]D1 yields a relation if corresponding u
polynomial is B-smooth

Possible to divide size of F by 2 using the hyperelliptic involution
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Applications of index calculus The hyperelliptic case

Analysis in the large genus case

Very similar to the prime field case:

Theorem [Enge-Gaudry-Stein]

Let B =
⌈
logq(Lqg (1/2, c))

⌉
. The probability that a random element of

JacH(Fq) is B-smooth is bounded from below by

1/Lqg (1/2, 1/2c + o(1)).

As q →∞ and g/ log q →∞,

optimal choice of B is in logq(Lqg (1/2, 1/
√

2))

total complexity is in Lqg (1/2,
√

2 + o(1))
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Applications of index calculus The hyperelliptic case

The small genus case

Problem

When g small i.e. g = o(log q), former analysis suggests B < 1...

Gaudry’s algorithm for small genus curves

Choose B = 1

Factor base: F = {(u, v) ∈ JacH(Fq) : deg u = 1} of size ' q

D = (u, v) decomposable ⇔ u splits over Fq

Probability of decomposition ' 1/g !

⇒ O(g !q) tests (relation search) + O(gq2) field operations (linear alg.)

Total cost: O((g2 log3 q)g !q + (g2 log q)q2)

For fixed g , resolution of the DLP in Õ(q2)

⇒ better than generic attacks as soon as g > 4
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Applications of index calculus The hyperelliptic case

Reducing the factor base

For fixed genus g , relation search in Õ(q) vs linear algebra in Õ(q2)
 need to rebalance the two phases

First idea: reduce the factor base [Harley]

Define new factor base F ′ ⊂ F (“small primes”) with #F ′ = qα

 linear algebra in Õ(q2α)

Keep relations involving only small primes, discard others

 proba. of decomposition drops by factor
(

#F ′
#F

)g
=
(
qα

q

)g
 relation search in Õ(q(1−α)g qα)

Asymptotically optimal choice α = 1− 1/(g + 1)
Total complexity in Õ(q2−2/(g+1))
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Applications of index calculus The hyperelliptic case

One large prime variation [Thériault]

Main ideas

Same new “small prime” factor base F ′ ⊂ F with #F ′ = qα

“large primes”: F \ F ′

Keep “partial” relations involving at most one large prime

Combine partial relations with same large prime to get “full” relations
(involving only small primes)

Improvement of Harley’s method:

Probability of decomposition drops by factor
(
qα

q

)g−1

Birthday paradox: '
√
q qα partial relations needed to obtain ' qα

full relations
 relation search in Õ(q(1−α)(g−1)q(1+α)/2)

Asymptotically optimal choice α = 1− 1/(g + 1/2)

Total complexity in Õ(q2−2/(g+1/2))
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Applications of index calculus The hyperelliptic case

Double large prime variation

Further improvement [Gaudry-Thomé-Thériault-Diem]:

Keep relations involving at most two large primes
 proba. of decomposition drops by factor q(α−1)(g−2)

After ' q relations are found, possible to eliminate the large primes
and obtain ' qα relations involving only small primes
 relation search in Õ(q(1−α)(g−2) q)

Asymptotically optimal choice α = 1− 1/g

Total complexity in Õ(q2−2/g )
 better than generic attacks as soon as g ≥ 3
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Applications of index calculus The hyperelliptic case

Double large prime variation

How to deduce “full” relations from 2LP relations?

Construct a graph of relations

vertices: large primes + special vertex “1”

relation involving 2 LP  edge between corresponding vertices

relation involving 1 LP  edge between corresponding vertex and 1

Idea: cycles of relations allow to eliminate LP

Random graph heuristics:

#{edges} � #{vertices}  no cycle expected

#{edges} ' #{vertices}  giant connected component of diameter
in O(log #{vertices})
#{edges} > #{vertices}  most new edges give new cycles
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Applications of index calculus The hyperelliptic case

Elimination of large primes

1

P1

P2 P3

P4

P5
P6

P7

P8

P9

P10

P11

P12

P13
P14
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Applications of index calculus The hyperelliptic case

Double large prime variation

How to deduce “full” relations from 2LP relations?

Construct a graph of relations

vertices: large primes + special vertex “1”

relation involving 2 LP  edge between corresponding vertices
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Idea: cycles of relations allow to eliminate LP
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Applications of index calculus The hyperelliptic case

Summary

Asymptotic comparison on JacH(Fq)

Genus 2 3 4 5

Generic methods q q3/2 q2 q5/2

Classical index calculus q2 q2 q2 q2

Harley q4/3 q3/2 q8/5 q5/3

1LP q6/5 q10/7 q14/9 q18/11

2LP q q4/3 q3/2 q8/5
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Applications of index calculus The hyperelliptic case

Summary

Asymptotic comparison on JacH(Fq)

Genus 2 3 4 5

Generic methods q q1.5 q2 q2.5

Classical index calculus q2 q2 q2 q2

Harley q1.33 q1.5 q1.6 q1.67

1LP q1.2 q1.43 q1.56 q1.64

2LP q q1.33 q1.5 q1.6
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Applications of index calculus Elliptic curves defined over extension fields

Subsection 2

Elliptic curves defined over extension fields
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Applications of index calculus Elliptic curves defined over extension fields

Index calculus over elliptic curves

How to define smooth elements on an elliptic curve ?

no known equivalent on E (Fp), p prime

breakthrough on E (Fpn) by Gaudry in 2004, using ideas of Semaev

What kind of “decomposition” over E (K )?

Main idea [Semaev ’04]:

consider decompositions in a fixed number of points of F
R = [a]P + [b]Q = P1 + . . .+ Pn

convert this into a polynomial system by using the (n + 1)-th
summation polynomial:

fn+1(xR , xP1 , . . . , xPn) = 0

⇔ ∃ε1, . . . , εn ∈ {1,−1},R = ε1P1 + · · ·+ εnPn
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Applications of index calculus Elliptic curves defined over extension fields

Computation of Semaev’s summation polynomials
Let E : y2 = x3 + ax + b

f2(X1,X2) = X1 − X2

f3(X1,X2,X3) = (X1 − X2)2X 2
3 − 2 ((X1 + X2)(X1X2 + a) + 2b)X3

+(X1X2 − a)2 − 4b(X1 + X2)

for m ≥ 4, determine fm by induction

P1 ± P2 ± . . .± Pm = O

⇔ ∀j ∈ J1;m − 3K,∃R ∈ E (K ),

{
P1 ± . . .± Pj + R = O
R ∓ Pj+1 ∓ . . .∓ Pm = O
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Applications of index calculus Elliptic curves defined over extension fields

Digression: Weil restriction of scalars
L/K field extension, [L : K ] = d <∞
V n-dimensional algebraic variety defined over L
Assume for simplicity V affine, given by equations

f1(x1, . . . , xr ) = · · · = fs(x1, . . . , xr ) = 0

Weil restriction

WL/K (V ) = V(f11, . . . , fsd) nd-dim. variety over K

{u1, . . . , ud} K -linear basis of L and xi =
∑

j xijuj

fk(x1, . . . , xr ) =
∑

j fkj(x11, . . . , xrd)uj , fkj ∈ K [x11, . . . , xrd ]

Examples:

WC/R(C) = R2

WC/R(P1(C)) = S2
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Applications of index calculus Elliptic curves defined over extension fields

Properties of Weil restriction

Let W = WL/K (V )

As sets, V (L) =W(K ). But topology is finer on the latter

V abelian variety ⇒W abelian variety

If L/K Galois, W(L) '
∏
τ∈Gal(L/K) V

τ (L)

 ∃ L-morphism pr :W(L)→ V (L)

Universal property:
V ′ variety over K , ϕ : V ′(L)→ V (L) L-morphism

V ′|K
ϕ //

ψ !!

V|L

W|K

pr

OO
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Applications of index calculus Elliptic curves defined over extension fields

Index calculus over elliptic curves

Convenient factor base on E (Fqn) [Gaudry 04]

Natural factor base: F = {(x , y) ∈ E (Fqn) : x ∈ Fq}, #F ' q

Scalar restriction: decompose along a Fq-linear basis of Fqn

fn+1(xR , xP1 , . . . , xPn) = 0⇔


ϕ1(xP1 , . . . , xPn) = 0

...

ϕn(xP1 , . . . , xPn) = 0

(SR)

One decomposition trial ↔ resolution of SR over Fq

 requires efficient techniques to solve multivariate polynomial system
over finite fields (e.g. Gröbner basis)
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Applications of index calculus Elliptic curves defined over extension fields

Example over E (F1013)

F1013 ' F101[t]/(t3 + t + 1)
E : y2 = x3 + (44 + 52t + 60t2)x + (58 + 87t + 74t2), #E = 1029583,

base point: P
25+58t+23t2

96+69t+37t2
challenge point: Q

89+78t+52t2

14+79t+71t2

random combination of P and Q:

R = [658403]P + [919894]Q =
44+57t+55t2

8+11t+73t2

compute 4-th summation polynomial with resultant:
f4(X1,X2,X3,X4) = ResX

(
f3(X1,X2,X ), f3(X3,X4,X )

)
after partial symmetrization, solve in s1, s2, s3 ∈ F101

f4(s1, s2, s3, xR) = x4
Rs

4
2 + 93x4

Rs1s
2
2 s3

+16x4
Rs

2
1 s

2
3 + · · ·+ 94b3s3 = 0

⇔


28s4

1 + 94s3
1 s2 + · · ·+ 4s3 + 69 = 0

49s4
1 + 72s3

1 s2 + · · ·+ 14s3 + 100 = 0

32s4
1 + 97s3

1 s2 + · · ·+ 50s3 + 8 = 0
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Applications of index calculus Elliptic curves defined over extension fields

Example over E (F1013)
I(SR) = 〈28s4

1 + 94s3
1 s2 + · · ·+ 4s3 + 69, 49s4

1 + 72s3
1 s2 + · · ·+ 14s3 + 100,

32s4
1 + 97s3

1 s2 + · · ·+ 50s3 + 8〉

Gröbner basis of I(SR) for lex s1>s2>s3 :

G = {s1 + 33s63
3 + 23s62

3 + · · ·+ 95, s2 + 80s63
3 + 79s62

3 + · · ·+ 45,

s64
3 + 36s63

3 + 80s62
3 + · · ·+ 56}

V
(
I(SR)

)
/F101

= {(30, 3, 53), (75, 25, 75)}
Roots of X 3 − s1X

2 + s2X − s3 = 0 over F101 ?

∗ X 3 − 30X 2 + 3X − 53 irreducible over F101[X ]

∗ X 3 − 75X 2 + 25X − 75 = (X − 4)(X − 7)(X − 64)

⇒ P1
4
27+34t+91t2

P2
7
58+95t+91t2

P3
64
76+54t+18t2

and P1 − P2 + P3 = R

Number of relations needed: #F/∼ = 54⇒ 55

Linear algebra → x = 771080
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Gröbner basis of I(SR) for lex s1>s2>s3 :

G = {s1 + 33s63
3 + 23s62

3 + · · ·+ 95, s2 + 80s63
3 + 79s62

3 + · · ·+ 45,

s64
3 + 36s63

3 + 80s62
3 + · · ·+ 56}

V
(
I(SR)

)
/F101

= {(30, 3, 53), (75, 25, 75)}
Roots of X 3 − s1X

2 + s2X − s3 = 0 over F101 ?

∗ X 3 − 30X 2 + 3X − 53 irreducible over F101[X ]

∗ X 3 − 75X 2 + 25X − 75 = (X − 4)(X − 7)(X − 64)

⇒ P1
4
27+34t+91t2

P2
7
58+95t+91t2

P3
64
76+54t+18t2

and P1 − P2 + P3 = R

Number of relations needed: #F/∼ = 54⇒ 55

Linear algebra → x = 771080

Vanessa VITSE (UVSQ) Attacks on the DLP Summer School – ECC 2011 48 / 86



Applications of index calculus Elliptic curves defined over extension fields

Complexity analysis

size of factor base #F ' q
 linear algebra in Õ(nq2)

proba. of decomposition ' #(Fn/Sn)

#E (Fqn)
' 1

n!
 need O(n!q) decomposition tests

for fixed n and q →∞, decomposition cost is in Õ(1)

⇒ Total cost in Õ(q2) (from linear algebra)

Rebalance the two steps with 2LP

Asymptotic complexity becomes Õ(q2−2/n)

 better than generic attacks as soon as n ≥ 3
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Applications of index calculus Elliptic curves defined over extension fields

In practice...

Decomposition cost

Solving multivariate polynomial systems is very expensive
Rough cost estimate is 2O(n2)  only feasible for n small

1 Experimentally:

I decomposition too hard for n > 4
I generic attacks always faster for “reasonable” group sizes

2 Theoretically:
gives a subexponential algorithm when n = Θ(

√
log q) [Diem]
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Applications of index calculus Other applications

Subsection 3

Other applications
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Applications of index calculus Other applications

Index calculus on small dimension abelian varieties [Gaudry]

Last algorithm uses that E (Fqn) = WFqn/Fq
(E )(Fq), n-dimensional

abelian variety over Fq

Specific case of a more general index calculus algorithm for abelian
varieties of small dimension

Let A dimension d abelian variety defined over Fq

For fixed d , asymptotic cost of index calculus on A(Fq) in Õ(q2−2/d)

Main practical obstacle: using algebraic expression of group law,
decomposition tests ↔ resolution of polynomial systems

The hyperelliptic case

Weil restriction of JacH(Fqn): abelian variety of dimension ng .
Nice formulation of the polynomial systems [Nagao]
⇒ feasible for n = 2, g ≤ 4, and n = 3, g = 2.
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Applications of index calculus Other applications

Index calculus on small degree plane curves [Diem]

Diem’s algorithm

applies to Jacobians of curves admitting a small degree plane model

uses divisors of simple functions to find relations between factor base
elements

relies strongly on the double large prime variation

For C|Fq
of fixed degree d , complexity in Õ(q2−2/(d−2))

most genus g curves admit a plane model of degree g + 1
 complexity in Õ(q2−2/(g−1))

not true for hyperelliptic curves

Consequence

Jacobians of non-hyperelliptic curves usually weaker than those of
hyperelliptic curves (especially true for g = 3).
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Applications of index calculus Other applications

Idea of index calculus on small degree plane curves

Take P1,P2 small primes

L line through P1 and P2

if L ∩ C(Fq) = {P1, . . . ,Pd},
then relation:
(P1) + · · ·+ (Pd)− D∞ ∼ 0

Vanessa VITSE (UVSQ) Attacks on the DLP Summer School – ECC 2011 54 / 86



Applications of index calculus Other applications

Idea of index calculus on small degree plane curves

Take P1,P2 small primes

L line through P1 and P2

if L ∩ C(Fq) = {P1, . . . ,Pd},
then relation:
(P1) + · · ·+ (Pd)− D∞ ∼ 0

Vanessa VITSE (UVSQ) Attacks on the DLP Summer School – ECC 2011 54 / 86



Applications of index calculus Other applications

Idea of index calculus on small degree plane curves

Take P1,P2 small primes

L line through P1 and P2

if L ∩ C(Fq) = {P1, . . . ,Pd},
then relation:
(P1) + · · ·+ (Pd)− D∞ ∼ 0

Vanessa VITSE (UVSQ) Attacks on the DLP Summer School – ECC 2011 54 / 86



Applications of index calculus Other applications

Idea of index calculus on small degree plane curves

Take P1,P2 small primes

L line through P1 and P2

if L ∩ C(Fq) = {P1, . . . ,Pd},
then relation:
(P1) + · · ·+ (Pd)− D∞ ∼ 0

Vanessa VITSE (UVSQ) Attacks on the DLP Summer School – ECC 2011 54 / 86



Applications of index calculus Other applications

Idea of index calculus on small degree plane curves

Take P1,P2 small primes

L line through P1 and P2

if L ∩ C(Fq) = {P1, . . . ,Pd},
then relation:
(P1) + · · ·+ (Pd)− D∞ ∼ 0

Vanessa VITSE (UVSQ) Attacks on the DLP Summer School – ECC 2011 54 / 86



Transfer attacks

Section 4

Transfer attacks
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Transfer attacks Principle

Principle of transfer

Transfer maps

G2: group where DLP is weak
If there exists ϕ ∈ Hom(G1,G2) one-to-one and computable, then DLP is
also weak on G1.

Let ϕ ∈ Hom(G1,G2), g , h ∈ G1. If ord(ϕ(g)) = ord(g), then

h = [x ]g ⇔ ϕ(h) = [x ]ϕ(g).

Main target groups for G1 = E (Fq)

Groups with faster algorithms than square-root algorithms:

F∗
qk

JacC(Fq′), q power of q′
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Transfer attacks Pairings

Transfer via pairings

Let G1,G2 two additive groups of exponent n and G3 a multiplicative
cyclic group of order n.

Definition

A pairing is a map e : G1 × G2 → G3 which is:

bilinear: e([a]g1, [b]g2) = e(g1, g2)ab

non degenerate: ∀g1 ∈ G1 \ {0},∃g2 ∈ G2, e(g1, g2) 6= 1

Allows to transfer DLP given by (g , h = [x ]g) from G1 to G3:

non-degeneracy ⇒ ∃g2 ∈ G2, ord(g) = ord(e(g , g2))

transfer map ϕ = e(., g2) from G1 to G3
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Transfer attacks Pairings

Pairings on elliptic curves

The Weil pairing

E elliptic curve defined over Fq

n integer co-prime to char(Fq)

k = k(n, q) embedding degree, i.e. smallest integer s.t. n|(qk − 1)

Weil pairing: wn : E [n]× E [n]→ µn ⊂ F∗
qk

computable in O(log n) operations in Fqk [Miller]

Menezes-Okamoto-Vanstone’s attack

Transfer + index calculus on F∗
qk

efficient when k small:

k ≤ 6 for supersingular curves  always vulnerable

but k ' q for random curves  most elliptic curves remain safe

Other pairings available [Frey-Rück], but same condition on the
embedding degree...
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Transfer attacks Anomalous curves

Anomalous curves

Elliptic curves over q-adic fields

E elliptic curve defined over Qq, q = pn. Reduction mod p map

ψ : E(Qq)→ E (Fq)

where E (possibly singular) elliptic curve defined over Fq.

Fact: DLP on E1(Qq) = kerψ is easy

Several attempts to transfer the DLP from E (Fq) to E1(Qq)
Only success so far: when DLP defined on an order p subgroup of E
 resolution in polynomial complexity

Vulnerable curves satisfy p|#E (Fq) (anomalous curves)
 very few of them, can be easily avoided
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Transfer attacks Weil descent

Weil descent: geometric approach [Frey]

A|Fq
: abelian variety, e.g. Weil restriction of JacC(Fqn).

Possible DLP pull-back from A to JacC′(Fq) for any curve C′ ⊂ A

C′ �
� // A

(P1, . . . ,Pg ) P1 + · · ·+ Pg

Difficulties

find convenient C′ with small genus

computation of preimages ↔ decompositions into sum of points of C′
↔ resolutions of multivariate polynomial systems
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Transfer attacks Weil descent

Weil descent: Cover attacks
C algebraic curve defined over Fqn

Existence of a cover map π : C′ → C, where C′ defined over Fq

⇒ “conorm-norm” homomorphism between JacC(Fqn) and JacC′(Fq)

C′

π

��

JacC′(Fqn)
tr // JacC′(Fq)

C JacC(Fqn)

π∗

OO 55

conorm-norm map efficiently computable if deg π not too large

transfer the DLP from G ⊂ JacC(Fqn) to JacC′(Fq)
 need C′ with small genus

want ker(tr ◦ π∗) ∩ G = {OC} (⇒ gC′ ≥ ngC)

Difficulty: how to find such a curve C′ ?
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Transfer attacks Isogenies

Transfer via isogenies

Reminders

Non constant rational map φ : E1 → E2 isogeny if φ(OE1) = OE2

an isogeny is a group morphism

existence of a dual isogeny φ̂ : E2 → E1

 “being isogenous” is an equivalence relation

E1 and E2 are isogenous iff #E1 = #E2

Hasse bound: Θ(
√
q) isogeny classes

 on average, O(
√
q) curves in each isogeny class

Motivation

E1, E2 isogenous and DLP weak on E2 ⇒ DLP weak on E1

 not useful for anomalous or small embedding degree curves, but may be
interesting to reach curves vulnerable to Weil descent attacks
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Transfer attacks Isogenies

Isogeny walk [Galbraith-Hess-Smart]

Strategy 1: random walk of small degree isogenies starting from E1, until
a weak curve E2 is found

best approach when cardinality of weak curves is large
polynomial complexity for each step in most cases

Strategy 2: search all weak curves until one with #E1 = #E2 is found,
then compute isogeny from E1 to E2

need to compute cardinality of weak curves (polynomial
complexity)
cost of finding the isogeny in Õ(q1/4) in most cases
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Transfer attacks Isogenies

More isogenies

Isogeny of abelian varieties

More generally, rational map φ : A1 → A2 isogeny if φ surjective with
finite fibers and φ(O1) = O2

→ still a group morphism

Index calculus usually more efficient for Jacobians in the non-hyperelliptic
case than in the hyperelliptic case (for fixed genus)

Idea [Smith]

Use isogenies to transfer DLP from JacH(Fq) to JacC(Fq)
Main application: genus 3 case  complexity from Õ(q4/3) down to Õ(q)
if successful.
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GHS

Section 5

Gaudry-Hess-Smart technique
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GHS Geometric background

Geometric background

C algebraic curve defined over Fqn

Goal of cover attack

Find C′ defined over Fq and π : C′ → C morphism defined over Fqn

m
Find C′ defined over Fq and ψ : C′ →W morphism defined over Fq, where

W = WFqn/Fq
(C) is the Weil restriction of C

Idea: to have C′ of small genus, try an equation of small degree
 intersect W by hyperplanes

Conceptually nicer formulation in terms of function fields [GHS]
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GHS The function field construction

Function fields

Reminders

Function field over F/Fq: extension of transcendence degree 1

Field of constants of F is F ∩ Fq

Category equivalence between curves and function fields


Objects:

smooth curves defined over Fq

Maps:
non constant morphisms

defined over Fq

 −→


Objects:

function fields F/Fq

with constant field Fq

Maps:
field injections fixing Fq


C|Fq

7−→ Fq(C)

φ : C1 → C2 7−→ φ∗ : Fq(C2)→ Fq(C1)
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GHS The function field construction

The GHS technique

H hyperelliptic curve. Goal: find fields F and F ′ s.t.

F ′ = Fqn · F = Fqn(C′)
��

Fqn(H) F = Fq(C′)

Fqn(x)

Fqn

Fq(x)

Fq

Lift of Frobenius σ must exist on F ′, with fixed subfield F
Construction depends of the choice of x , i.e. of the equation for H
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GHS The function field construction

The GHS technique

H hyperelliptic curve. Goal: find fields F and F ′ s.t.

F ′

=
∏n−1

i=0 Fqn(Hσi
)

σ

��

Fqn(H) F = F ′σ

Fqn(x)

σ
��

2

Fqn

σ
��

Fq(x)

Fq

No lift of Frobenius on Fqn(H), but on index 2 subfield Fqn(x)

Construction depends of the choice of x , i.e. of the equation for H
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GHS The function field construction

From the geometric to the function field approach

Hyperelliptic curve H : Y 2 + Y h0(X ) = h1(X ), h0, h1 ∈ Fqn [X ]

Weil restriction

Choose (θσ
i
)i normal basis of Fqn with

∑
θσ

i
= 1.

Let X =
∑

i xi θ
σi
,Y =

∑
i zi θ

σi
. Equation of W given (component-wise)

by (∑
i

zi θ
σi )2

+
(∑

i

zi θ
σi )

h0

(∑
i

xi θ
σi )

= h1

(∑
i

xi θ
σi )

Hyperplane sections: put x0 = x1 = . . . = xn−1 = x .
Then equation of the intersection is given (component-wise) by(∑

i

zi θ
σi )2

+
(∑

i

zi θ
σi )

h0(x) = h1(x)
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GHS The function field construction

From the geometric to the function field approach

Equation of the hyperplane section is
(
∑

i zi θ
σi

)2 + (
∑

i zi θ
σi

)h0(x) = h1(x)

Change of coordinates over Fqn :
(
y0 · · · yn−1

)
=
(
z0 . . . zn−1

)
M

where M = (θσ
i+j−2

)i ,j .
New equation defined over Fqn of the hyperplane section is

(∗)


y2

0 + y0 h0(x) = h1(x)
...

y2
n−1 + yn−1 h

σn−1

0 (x) = hσ
n−1

1 (x)

Let C′ = an irreducible component of the intersection.
Then Fqn(C′) = Fqn(x , y0, . . . , yn−1) where the yi ’s satisfy (∗).

This is exactly the compositum F ′ =
∏

i Fqn(Hσi
).
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GHS The function field construction

Magic number

F ′

2mFqn(H) Fqn(Hσ) · · · Fqn(Hσn−1
)

Fqn(x)

2 2 2

m “magic number”: the genus g of F ′ depends essentially of
[F ′ : Fqn(x)] = 2m

For most curves H, m ' n → g(C′) is of order 2ng(H)
 few curves are directly vulnerable
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GHS The function field construction

Possible issues

Recall:

F ′ =
∏
i

Fqn(Hσi
)

= Fqn(x , y0, . . . , yn−1)

= Fqn(x , y0, . . . , ym−1)

where y2
i + yi h

σi

0 (x) = hσ
i

1 (x)

Field of constants of F ′ must be Fqn

Frobenius σ defined on Fqn(x) (with σ(x) = x) must have an order n
extension to F ′

 always the case if n odd or m = n
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GHS The function field construction

Possible issues

Kernel of conorm-norm map must preserve a large prime order
subgroup

I fails if equation of H defined over proper subfield:

JacC′(Fqn)
trFqn/Fqd// JacC′(Fqd )

trF
qd
/Fq
// JacC′(Fq)

JacH(Fqn)

π∗

OO

trFqn/Fqd// JacH(Fqd )

π∗

OO

Transfer map vanishes on (large) kernel of bottom-row map.

I ok otherwise: kernel of conorm-norm map ⊂ JacH(Fqn)[2m−1]
[Diem,Hess]
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GHS The characteristic 2 case

GHS in characteristic 2

H : y2 + y h0(x) = h1(x). Change of variable y ↔ y/h0(x):
 new equation in Artin-Schreier form y2 + y = h1(x)/h0(x)2 = f (x).

Artin-Schreier operator

On any char. 2 field K , define P : K → K , z 7→ z2 + z

F2[t]-action

For any P =
∑

i ai t
i in F2[t], any g ∈ Fqn(x), let

P · g =
∑
i

aig
σi

 turns Fqn(x) and Fqn(x)/P(Fqn(x)) into F2[t]-modules
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GHS The characteristic 2 case

GHS in characteristic 2

H : y2 + y = f (x)

Main result

Let If = {P ∈ F2[t] : P · f ∈ P(Fqn(x))} = 〈Mf 〉. Then m = degMf .
Furthermore Mf |tn + 1.

Consequence

Magic number m cannot take all values between 1 and n

In particular if n prime, then tn + 1 = (t + 1)Φn(t) = (t + 1)
∏

i Φn,i (t)
where deg Φn,i = φ2(n) = order of 2 in (Z/nZ)∗

 m = kφ2(n) or kφ2(n) + 1 for some integer k

Problem: φ2(n) small only for few primes n (Mersenne or Fermat primes),
so GHS cannot work for all field extensions.
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GHS The characteristic 2 case

The elliptic curve case

Let E : y2 + xy = x3 + ax2 + b. After simple change of variables, new
equation in Artin-Schreier form:

E : y2 + y = βx + α + γ/x

Let Mβ ∈ F2[t] minimal polynomial s.t. Mβ · β = 0; same for γ

Theorem

Assume trFqn/F2
(α) = 0 or (t + 1)|lcm(Mβ,Mγ). Then

Mf = lcm(Mβ,Mγ) and constant field of F ′ is Fqn

genus of F ′ is

g(F ′) = 2m − 2m−deg Mβ − 2m−deg Mγ + 1

if β or γ is in Fq, then F ′ is hyperelliptic
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GHS The characteristic 2 case

A toy example
On F27 ' F2(θ) where θ7 + θ6 + 1 = 0

n = 7: factorization of t7 + 1 is (t + 1)(t3 + t2 + 1)(t3 + t + 1)
→ possible values of m are 3, 4, 6 or 7 (or 1).
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GHS The characteristic 2 case

A toy example
On F27 ' F2(θ) where θ7 + θ6 + 1 = 0

Elliptic curve E : y2 + xy = x3 + (θ2 + 1)

Change of variable y ↔ yx +
√
θ2 + 1  new equation

y2 + y = x + (θ + 1)/x

β = 1 Mβ = t + 1, γ = θ + 1 Mγ =
∑6

i=0 t
i

Mh = lcm(Mβ,Mγ) = t7 + 1
⇒ m = 7 and genus of cover is g = 27 − 26 − 21 + 1 = 63.

β ∈ Fq, so cover is hyperelliptic, equation (obtained with a computer
algebra system):

y2 + (
6∑

i=0

x2i )y =
6∑

i=0

x2i
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GHS The characteristic 2 case

A toy example
On F27 ' F2(θ) where θ7 + θ6 + 1 = 0

Elliptic curve E : y2 + xy = x3 + (θ2 + 1)

Change of variables y ↔ yx +
√
θ2 + 1, x ↔ (θ5 + θ4)x  new equation

y2 + y = (θ5 + θ4)x + (θ3 + θ2)/x

β = θ5 + θ4, γ = θ3 + θ2  Mβ = Mγ = t3 + t + 1

Mh = lcm(Mβ,Mγ) = t3 + t + 1
⇒ m = 3 and genus of cover is g = 23 − 20 − 20 + 1 = 7.

equation of cover (obtained with a computer algebra system):

x2(y8 + y4 + y) = x6 + 1 (not hyperelliptic)
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GHS The odd characteristic case

GHS in odd characteristic

H : y2 + y h0(x) = h1(x). Change of variable y ↔ y + h0(x)/2:
 new equation in Kummer form y2 = f (x).

F2[t]-action

For any P =
∑

i ai t
i in F2[t], any g ∈ Fqn(x)∗/(Fqn(x)∗)2, let

P · g =
∏
i

(gσ
i
)ai

 turns Fqn(x)∗/(Fqn(x)∗)2 into a F2[t]-module
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GHS The odd characteristic case

GHS in odd characteristic

H : y2 = f (x)

Main result (as in binary case)

Let If = {P ∈ F2[t] : P · f = 0 in Fqn(x)∗/(Fqn(x)∗)2} = 〈Mf 〉.
Then m = degMf .
Furthermore Mf |tn + 1.

Same consequence as in char. 2: possible values of magic number m
depend of factorization of tn + 1
 GHS cannot work for all field extensions.
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GHS The odd characteristic case

Genus of cover

H : y2 = f (x).

Let f (x , z) homogenization of f with deg f = 2g(H) + 2, and

R0 =
{

[x : z ] ∈ P1(Fqn) : f (x , z) = 0
}
, R =

⋃
i

σi (R0)

(↔ ramification points of FqnF
′/Fqn(x))

Theorem [Diem]

Assume constant field of F ′ is Fqn . Then

g(F ′) = 2m−2(#R − 4) + 1 (⇐ Hurwitz formula)

Note: contrarily to the char. 2 case, F ′ (almost) never hyperelliptic
when m ≥ 4
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GHS The odd characteristic case

Genus of cover
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GHS The odd characteristic case

Examples for n = 5

E : y2 = f (x)

f “random” degree 3 polynomial: m = 5, #R = 3× 5 + 1
 g = 25−2(16− 4) + 1 = 97, too large for DLP



a σ(a) σ2(a) σ3(a) σ4(a)

f 1 1 1 1 0
f σ 0 1 1 1 1
f σ

2
1 0 1 1 1

f σ
3

1 1 0 1 1
f σ

4
1 1 1 0 1

  
m = rank = 4
#R = 5

⇒ g(F ′) = 24−2(5− 4) + 1 = 5
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GHS The odd characteristic case

Examples for n = 5

E : y2 = f (x)

optimal genus obtained for
f = (x − a)(x − σ(a))(x − σ2(a))(x − σ3(a)), a ∈ Fq5 \ Fq
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GHS Final remarks

Scope of the GHS attack

On some finite fields of composite extension degree, DLP “weak” on
most elliptic curves

Some finite fields are immune to the GHS attack:

I prime fields
I Fp2 for elliptic curves
I Fpn , p prime, for most large primes n

Complete overview of the speed-up provided by GHS attack too
ambitious for this lecture
Keep in mind that:

I GHS usually gives only minor security reductions over generic
attacks

I but can be very efficient for some very specific curves
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GHS Final remarks

Comparison between GHS and direct index calculus on
E (Fqn)

Both use a one-dimensional subvariety (C′ or F) of Weil restriction
W = WFqn/Fq

(E )

Take place in different abelian varieties: JacC′ for GHS, W for direct
index calculus

Crucial parameter is g(C′) for GHS, n for direct index calculus

I GHS much more efficient on some curves than others
I direct index calculus equally efficient on all curves

GHS better for the minority of curves s.t. g(C′) close to n, otherwise
direct index calculus better
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Conclusion

Conclusion
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Conclusion

Consequence on DLP security

For maximal security, one should avoid:

small embedding degrees

subgroups of order divisible by the characteristic

curves of genus g ≥ 3

curves defined over small degree extension fields

No known algorithm better than generic attacks on random curves with
genus ≤ 2 defined over prime fields (or large prime degree extension fields)
 best candidates for DLP-based cryptography
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