Attacks on the curve-based discrete logarithm problem

Vanessa VITSE

Université de Versailles Saint-Quentin, Laboratoire PRiSM

Summer School - ECC 2011

Vanessa VITSE (UVSQ)

Attacks on the DLP

▶ < @ ▶ < ≧ ▶ < ≧ ▶ ≧ ♪ ? ? ? ? Summer School – ECC 2011 1 / 86

Section 1

Introduction

Vanessa VITSE (UVSQ)

Attacks on the DLP

Summer School – ECC 2011 2 / 86

3

<ロ> (日) (日) (日) (日) (日)

The Discrete Logarithm Problem

Definition

Let G be a group, $g \in G$ an element of finite order n. The **discrete logarithm** of $h \in \langle g \rangle$ is the integer $x \in \mathbb{Z}/n\mathbb{Z}$ such that

$$h = g^{x}$$
.

This is a one-way function:

- given g and x, easy to compute $h = g^x$, assuming an efficiently computable group law (*always the case here*)
- computing discrete log much harder in general

DLP: given $g, h \in G$, find x – if it exists – such that $h = g^x$

イロト 不得下 イヨト イヨト 二日

The Diffie-Hellman problem

Computational Diffie-Hellman problem

CDHP: given $g, g^a, g^b \in G$, compute g^{ab}

Closely related to the DLP:

- CDHP \prec DLP
- converse not known but strong hints of equivalence [Maurer-Wolf]

Many cryptographic protocols actually rely on the assumption that CDHP is hard, especially elliptic curve cryptography.

Relevance in cryptography

The canonical example: Diffie-Hellman key exchange

$${\it K_{ab}}=(g^b)^a$$
 shared key ${\it K_{ab}}=(g^a)^b$

Other classical protocols based on CDHP:

- ElGamal encryption
- (EC)DSA signature scheme
- pairing-based cryptosystems (bilinear CDHP)

```
• . . .
```

Goals of these lectures

Survey of existing attacks on the **curve-based** DLP:

generic attacks

- index calculus for
 - hyperelliptic curves of genus > 2
 - curves defined over extension fields
 - small degree plane curves
- Itransfer methods using
 - pairings
 - lift to characteristic zero fields
 - isogenies
 - Weil descent (GHS)

Generic attacks on the DLP

Let G a finite abelian group of known order n.

Definition

An algorithm is generic when the only authorized operations are:

- addition of two elements
- opposite of an element
- equality test of two elements

 \rightsquigarrow representation of the group as a black box.

Generic attacks can be applied indifferently to any group.

Generic attacks on the DLP

Let G a finite abelian group of known order n.

Definition

An algorithm is generic when the only authorized operations are:

- addition of two elements
- opposite of an element
- equality test of two elements

 \rightsquigarrow representation of the group as a black box.

Generic attacks can be applied indifferently to any group.

First example: brute force search!

For all
$$x \in \{0; \ldots; n-1\}$$
, test if $g^x = h$.

Exponential complexity in the size of the group...

過 ト イヨ ト イヨト

Pohlig-Hellman reduction

Let
$$n = \prod_{i=1}^{N} p_i^{\alpha_i}$$
 be the prime factorization of $\#G$
G cyclic $\rightsquigarrow G \simeq \prod_i G_i$ where $G_i \simeq \mathbb{Z}/p_i^{\alpha_i}\mathbb{Z}$

- work with the subgroup G_i to find the DL mod $p_i^{\alpha_i}$ and use Chinese remaindering to deduce the DL in G
- In the simplification: to obtain the DL mod p_i^{α_i}, compute iteratively its expression in base p_i by solving α_i DLPs in the subgroup of order p_i of G_i.

Let E : $y^2 = x^3 + 77x + 28$ elliptic curve defined over \mathbb{F}_{157} , solve [x]P = Q where P = (9, 115) and Q = (2, 70)The order of P is $162 = 2 \cdot 3^4$

- 本語 ト 本 ヨ ト 一 ヨ

Let E : $y^2 = x^3 + 77x + 28$ elliptic curve defined over \mathbb{F}_{157} , solve [x]P = Q where P = (9, 115) and Q = (2, 70)The order of P is $162 = 2 \cdot 3^4$

() Mod 2: solve $[x]([3^4]P) = [3^4]Q$ where $[3^4]P = (24, 0)$ has order 2

Let E : $y^2 = x^3 + 77x + 28$ elliptic curve defined over \mathbb{F}_{157} , solve [x]P = Q where P = (9, 115) and Q = (2, 70)The order of P is $162 = 2 \cdot 3^4$

Mod 2: solve [x]([3⁴]P) = [3⁴]Q where [3⁴]P = (24,0) has order 2
[3⁴]Q = (24,0)

Let E : $y^2 = x^3 + 77x + 28$ elliptic curve defined over \mathbb{F}_{157} , solve [x]P = Q where P = (9, 115) and Q = (2, 70)The order of P is $162 = 2 \cdot 3^4$

• Mod 2: solve $[x]([3^4]P) = [3^4]Q$ where $[3^4]P = (24, 0)$ has order 2 $[3^4]Q = (24, 0) \implies x = 1 \mod 2$

Let E : $y^2 = x^3 + 77x + 28$ elliptic curve defined over \mathbb{F}_{157} , solve [x]P = Q where P = (9, 115) and Q = (2, 70)The order of P is $162 = 2 \cdot 3^4$

- Mod 2: solve $[x]([3^4]P) = [3^4]Q$ where $[3^4]P = (24, 0)$ has order 2 $[3^4]Q = (24, 0) \implies x = 1 \mod 2$
- Objective Mod 3⁴: solve [x]([2]P) = [2]Q where [2]P = (135, 51) has order 3⁴ 2[Q] = (12, 47), $x = x_0 + 3x_1 + 3^2x_2 + 3^3x_3$

Let E : $y^2 = x^3 + 77x + 28$ elliptic curve defined over \mathbb{F}_{157} , solve [x]P = Q where P = (9, 115) and Q = (2, 70)The order of P is $162 = 2 \cdot 3^4$

- Mod 2: solve $[x]([3^4]P) = [3^4]Q$ where $[3^4]P = (24, 0)$ has order 2 $[3^4]Q = (24, 0) \implies x = 1 \mod 2$
- Omega Mod 3⁴: solve [x]([2]P) = [2]Q where [2]P = (135, 51) has order 3⁴ $2[Q] = (12, 47), x = x_0 + 3x_1 + 3^2x_2 + 3^3x_3$ $[x_0 + 3x_1 + 3^2x_2 + 3^3x_3](135, 51) = (12, 47)$

- 4 回 ト 4 ヨ ト - ヨ - シック

Let E : $y^2 = x^3 + 77x + 28$ elliptic curve defined over \mathbb{F}_{157} , solve [x]P = Q where P = (9, 115) and Q = (2, 70)The order of P is $162 = 2 \cdot 3^4$

• Mod 2: solve $[x]([3^4]P) = [3^4]Q$ where $[3^4]P = (24, 0)$ has order 2 $[3^4]Q = (24, 0) \Rightarrow x = 1 \mod 2$

2 Mod 3^4 : solve [x]([2]P) = [2]Q where [2]P = (135, 51) has order 3^4 $2[Q] = (12, 47), x = x_0 + 3x_1 + 3^2x_2 + 3^3x_3$

$$\begin{array}{rcl} [\mathbf{x_0} + 3x_1 + 3^2x_2 + 3^3x_3](135,51) &=& (12,47) \\ \Rightarrow & [x_0]([3^3](135,51)) &=& [3^3](12,47) \end{array}$$

Let E : $y^2 = x^3 + 77x + 28$ elliptic curve defined over \mathbb{F}_{157} , solve [x]P = Q where P = (9, 115) and Q = (2, 70)The order of P is $162 = 2 \cdot 3^4$

- Mod 2: solve $[x]([3^4]P) = [3^4]Q$ where $[3^4]P = (24, 0)$ has order 2 $[3^4]Q = (24, 0) \Rightarrow x = 1 \mod 2$
- Objective Mod 3⁴: solve [x]([2]P) = [2]Q where [2]P = (135, 51) has order 3⁴ $2[Q] = (12, 47), x = x_0 + 3x_1 + 3^2x_2 + 3^3x_3$

$$\begin{array}{rcl} [x_0 + 3x_1 + 3^2x_2 + 3^3x_3](135,51) &=& (12,47) \\ \Rightarrow & [x_0](57,41) &=& (57,41) \end{array}$$

Let E : $y^2 = x^3 + 77x + 28$ elliptic curve defined over \mathbb{F}_{157} , solve [x]P = Q where P = (9, 115) and Q = (2, 70)The order of P is $162 = 2 \cdot 3^4$

• Mod 2: solve $[x]([3^4]P) = [3^4]Q$ where $[3^4]P = (24, 0)$ has order 2 $[3^4]Q = (24, 0) \implies x = 1 \mod 2$

• Mod 3⁴: solve [x]([2]P) = [2]Q where [2]P = (135, 51) has order 3⁴ 2[Q] = (12, 47), $x = x_0 + 3x_1 + 3^2x_2 + 3^3x_3$

$$\begin{array}{rcl} [x_0 + 3x_1 + 3^2x_2 + 3^3x_3](135, 51) &=& (12, 47) \\ \Rightarrow & [x_0](57, 41) &=& (57, 41) \\ \Rightarrow & x_0 &=& 1 \end{array}$$

Let E : $y^2 = x^3 + 77x + 28$ elliptic curve defined over \mathbb{F}_{157} , solve [x]P = Q where P = (9, 115) and Q = (2, 70)The order of P is $162 = 2 \cdot 3^4$

- Mod 2: solve $[x]([3^4]P) = [3^4]Q$ where $[3^4]P = (24, 0)$ has order 2 $[3^4]Q = (24, 0) \implies x = 1 \mod 2$
- Omega Mod 3⁴: solve [x]([2]P) = [2]Q where [2]P = (135, 51) has order 3⁴ $2[Q] = (12, 47), x = x_0 + 3x_1 + 3^2x_2 + 3^3x_3$ $[1 + 3x_1 + 3^2x_2 + 3^3x_3](135, 51) = (12, 47)$

- 4 回 ト 4 ヨ ト - ヨ - シック

Let E : $y^2 = x^3 + 77x + 28$ elliptic curve defined over \mathbb{F}_{157} , solve [x]P = Q where P = (9, 115) and Q = (2, 70)The order of P is $162 = 2 \cdot 3^4$

- Mod 2: solve $[x]([3^4]P) = [3^4]Q$ where $[3^4]P = (24, 0)$ has order 2 $[3^4]Q = (24, 0) \Rightarrow x = 1 \mod 2$
- Objective Mod 3⁴: solve [x]([2]P) = [2]Q where [2]P = (135, 51) has order 3⁴ 2[Q] = (12, 47), $x = x_0 + 3x_1 + 3^2x_2 + 3^3x_3$

$$\begin{array}{rcl} & [1+3x_1+3^2x_2+3^3x_3](135,51) & = & (12,47) \\ \Rightarrow & [3x_1+3^2x_2+3^3x_3](135,51) & = & (12,47)-(135,51) \end{array}$$

Let E : $y^2 = x^3 + 77x + 28$ elliptic curve defined over \mathbb{F}_{157} , solve [x]P = Q where P = (9, 115) and Q = (2, 70)The order of P is $162 = 2 \cdot 3^4$

- Mod 2: solve $[x]([3^4]P) = [3^4]Q$ where $[3^4]P = (24, 0)$ has order 2 $[3^4]Q = (24, 0) \implies x = 1 \mod 2$
- 2 Mod 3^4 : solve [x]([2]P) = [2]Q where [2]P = (135, 51) has order 3^4 $2[Q] = (12, 47), x = x_0 + 3x_1 + 3^2x_2 + 3^3x_3$

$$\begin{array}{rcl} & [1+3x_1+3^2x_2+3^3x_3](135,51) & = & (12,47) \\ \Rightarrow & [3x_1+3^2x_2+3^3x_3](135,51) & = & (12,47)-(135,51) \\ \Rightarrow & [x_1]([3^3](135,51)) & = & [3^2]((12,47)-(135,51)) \end{array}$$

Let E : $y^2 = x^3 + 77x + 28$ elliptic curve defined over \mathbb{F}_{157} , solve [x]P = Q where P = (9, 115) and Q = (2, 70)The order of P is $162 = 2 \cdot 3^4$

• Mod 2: solve $[x]([3^4]P) = [3^4]Q$ where $[3^4]P = (24, 0)$ has order 2 $[3^4]Q = (24, 0) \implies x = 1 \mod 2$

2 Mod 3^4 : solve [x]([2]P) = [2]Q where [2]P = (135, 51) has order 3^4 $2[Q] = (12, 47), x = x_0 + 3x_1 + 3^2x_2 + 3^3x_3$

$$\begin{array}{rcl} & [1+3x_1+3^2x_2+3^3x_3](135,51) & = & (12,47) \\ \Rightarrow & [3x_1+3^2x_2+3^3x_3](135,51) & = & (12,47)-(135,51) \\ \Rightarrow & [x_1](57,41) & = & \mathcal{O} \end{array}$$

Let E : $y^2 = x^3 + 77x + 28$ elliptic curve defined over \mathbb{F}_{157} , solve [x]P = Q where P = (9, 115) and Q = (2, 70)The order of P is $162 = 2 \cdot 3^4$

- Mod 2: solve $[x]([3^4]P) = [3^4]Q$ where $[3^4]P = (24, 0)$ has order 2 $[3^4]Q = (24, 0) \Rightarrow x = 1 \mod 2$
- Objective Mod 3⁴: solve [x]([2]P) = [2]Q where [2]P = (135, 51) has order 3⁴ 2[Q] = (12, 47), $x = x_0 + 3x_1 + 3^2x_2 + 3^3x_3$

$$\begin{array}{rcl} & [1+3x_1+3^2x_2+3^3x_3](135,51) & = & (12,47) \\ \Rightarrow & [3x_1+3^2x_2+3^3x_3](135,51) & = & (12,47)-(135,51) \\ \Rightarrow & & [x_1](57,41) & = & \mathcal{O} \\ \Rightarrow & & x_1 & = & 0 \end{array}$$

Let E : $y^2 = x^3 + 77x + 28$ elliptic curve defined over \mathbb{F}_{157} , solve [x]P = Q where P = (9, 115) and Q = (2, 70)The order of P is $162 = 2 \cdot 3^4$

- Mod 2: solve $[x]([3^4]P) = [3^4]Q$ where $[3^4]P = (24, 0)$ has order 2 $[3^4]Q = (24, 0) \implies x = 1 \mod 2$
- Omega Mod 3⁴: solve [x]([2]P) = [2]Q where [2]P = (135, 51) has order 3⁴ $2[Q] = (12, 47), x = x_0 + 3x_1 + 3^2x_2 + 3^3x_3$ $[1 + 3 \cdot 0 + 3^2x_2 + 3^3x_3](135, 51) = (12, 47)$

- 4 回 ト 4 ヨ ト - ヨ - シック

Let E : $y^2 = x^3 + 77x + 28$ elliptic curve defined over \mathbb{F}_{157} , solve [x]P = Q where P = (9, 115) and Q = (2, 70)The order of P is $162 = 2 \cdot 3^4$

- Mod 2: solve $[x]([3^4]P) = [3^4]Q$ where $[3^4]P = (24, 0)$ has order 2 $[3^4]Q = (24, 0) \Rightarrow x = 1 \mod 2$
- Objective Mod 3⁴: solve [x]([2]P) = [2]Q where [2]P = (135, 51) has order 3⁴ $2[Q] = (12, 47), x = x_0 + 3x_1 + 3^2x_2 + 3^3x_3$

$$\begin{array}{rcl} [1+3\cdot 0+3^2x_2+3^3x_3](135,51) &=& (12,47) \\ \Rightarrow & [3^2x_2+3^3x_3](135,51) &=& (12,47)-(135,51) \end{array}$$

Let E : $y^2 = x^3 + 77x + 28$ elliptic curve defined over \mathbb{F}_{157} , solve [x]P = Q where P = (9, 115) and Q = (2, 70)The order of P is $162 = 2 \cdot 3^4$

• Mod 2: solve $[x]([3^4]P) = [3^4]Q$ where $[3^4]P = (24, 0)$ has order 2 $[3^4]Q = (24, 0) \Rightarrow x = 1 \mod 2$

2 Mod 3⁴: solve [x]([2]P) = [2]Q where [2]P = (135, 51) has order 3⁴ $2[Q] = (12, 47), x = x_0 + 3x_1 + 3^2x_2 + 3^3x_3$

$$\begin{array}{rcl} [1+3\cdot 0+3^2x_2+3^3x_3](135,51) &=& (12,47) \\ \Rightarrow & [3^2x_2+3^3x_3](135,51) &=& (12,47)-(135,51) \\ \Rightarrow & [x_2]([3^3](135,51)) &=& [3]((12,47)-(135,51)) \end{array}$$

Let E : $y^2 = x^3 + 77x + 28$ elliptic curve defined over \mathbb{F}_{157} , solve [x]P = Q where P = (9, 115) and Q = (2, 70)The order of P is $162 = 2 \cdot 3^4$

• Mod 2: solve $[x]([3^4]P) = [3^4]Q$ where $[3^4]P = (24, 0)$ has order 2 $[3^4]Q = (24, 0) \Rightarrow x = 1 \mod 2$

Objective Mod 3⁴: solve [x]([2]P) = [2]Q where [2]P = (135, 51) has order 3⁴ 2[Q] = (12, 47), $x = x_0 + 3x_1 + 3^2x_2 + 3^3x_3$

$$\begin{array}{rcl} & [1+3\cdot 0+3^2x_2+3^3x_3](135,51) & = & (12,47) \\ \Rightarrow & [3^2x_2+3^3x_3](135,51) & = & (12,47)-(135,51) \\ \Rightarrow & [x_2](57,41) & = & (57,116) \end{array}$$

Let E : $y^2 = x^3 + 77x + 28$ elliptic curve defined over \mathbb{F}_{157} , solve [x]P = Q where P = (9, 115) and Q = (2, 70)The order of P is $162 = 2 \cdot 3^4$

• Mod 2: solve $[x]([3^4]P) = [3^4]Q$ where $[3^4]P = (24, 0)$ has order 2 $[3^4]Q = (24, 0) \Rightarrow x = 1 \mod 2$

Objective Mod 3⁴: solve [x]([2]P) = [2]Q where [2]P = (135, 51) has order 3⁴ 2[Q] = (12, 47), $x = x_0 + 3x_1 + 3^2x_2 + 3^3x_3$

$$\begin{array}{rcl} & [1+3\cdot 0+3^2x_2+3^3x_3](135,51) & = & (12,47) \\ \Rightarrow & [3^2x_2+3^3x_3](135,51) & = & (12,47)-(135,51) \\ \Rightarrow & [x_2](57,41) & = & (57,116) \\ \Rightarrow & x_2 & = & 2 \end{array}$$

Let E : $y^2 = x^3 + 77x + 28$ elliptic curve defined over \mathbb{F}_{157} , solve [x]P = Q where P = (9, 115) and Q = (2, 70)The order of P is $162 = 2 \cdot 3^4$

- Mod 2: solve $[x]([3^4]P) = [3^4]Q$ where $[3^4]P = (24, 0)$ has order 2 $[3^4]Q = (24, 0) \implies x = 1 \mod 2$
- Omega Mod 3⁴: solve [x]([2]P) = [2]Q where [2]P = (135, 51) has order 3⁴ $2[Q] = (12, 47), x = x_0 + 3x_1 + 3^2x_2 + 3^3x_3$ $[1 + 3 \cdot 0 + 3^2 \cdot 2 + 3^3x_3](135, 51) = (12, 47)$

Let E : $y^2 = x^3 + 77x + 28$ elliptic curve defined over \mathbb{F}_{157} , solve [x]P = Q where P = (9, 115) and Q = (2, 70)The order of P is $162 = 2 \cdot 3^4$

- Mod 2: solve $[x]([3^4]P) = [3^4]Q$ where $[3^4]P = (24, 0)$ has order 2 $[3^4]Q = (24, 0) \implies x = 1 \mod 2$
- Omega Mod 3⁴: solve [x]([2]P) = [2]Q where [2]P = (135, 51) has order 3⁴ 2[Q] = (12, 47), $x = x_0 + 3x_1 + 3^2x_2 + 3^3x_3$

$$\begin{array}{rcl} & [1+3\cdot 0+3^2\cdot 2+3^3 {\color{black} x_3}](135,51) & = & (12,47) \\ \Rightarrow & & [x_3]([3^3](135,51)) & = & (12,47)-[19](135,51) \end{array}$$

Let E : $y^2 = x^3 + 77x + 28$ elliptic curve defined over \mathbb{F}_{157} , solve [x]P = Q where P = (9, 115) and Q = (2, 70)The order of P is $162 = 2 \cdot 3^4$

• Mod 2: solve $[x]([3^4]P) = [3^4]Q$ where $[3^4]P = (24, 0)$ has order 2 $[3^4]Q = (24, 0) \implies x = 1 \mod 2$

Omega Mod 3⁴: solve [x]([2]P) = [2]Q where [2]P = (135, 51) has order 3⁴ $2[Q] = (12, 47), x = x_0 + 3x_1 + 3^2x_2 + 3^3x_3$ $[1 + 3 \cdot 0 + 3^2 \cdot 2 + 3^3x_3](135, 51) = (12, 47)$

$$\Rightarrow \qquad [x_3](57,41) \qquad = (57,116)$$
$$\Rightarrow \qquad x_3 \qquad = 2$$

Let E : $v^2 = x^3 + 77x + 28$ elliptic curve defined over \mathbb{F}_{157} , solve [x]P = Q where P = (9, 115) and Q = (2, 70)The order of P is $162 = 2 \cdot 3^4$

• Mod 2: solve $[x]([3^4]P) = [3^4]Q$ where $[3^4]P = (24, 0)$ has order 2 $[3^4]Q = (24, 0) \Rightarrow x = 1 \mod 2$

2 Mod 3^4 : solve [x]([2]P) = [2]Q where [2]P = (135, 51) has order 3^4 $2[Q] = (12, 47), x = x_0 + 3x_1 + 3^2x_2 + 3^3x_3$ $[1+3\cdot 0+3^2\cdot 2+3^3x_3](135,51) = (12,47)$ = (57, 116) $[x_3](57, 41)$ \Rightarrow = 2 \Rightarrow Xз

 $\Rightarrow x = 73 \mod 81$

Let E : $y^2 = x^3 + 77x + 28$ elliptic curve defined over \mathbb{F}_{157} , solve [x]P = Q where P = (9, 115) and Q = (2, 70)The order of P is $162 = 2 \cdot 3^4$

• Mod 2: solve $[x]([3^4]P) = [3^4]Q$ where $[3^4]P = (24, 0)$ has order 2 $[3^4]Q = (24, 0) \Rightarrow x = 1 \mod 2$

Mod 3⁴: solve [x]([2]P) = [2]Q where [2]P = (135, 51) has order 3⁴
2[Q] = (12, 47), x = x₀ + 3x₁ + 3²x₂ + 3³x₃
[1 + 3 ⋅ 0 + 3² ⋅ 2 + 3³x₃](135, 51) = (12, 47)
⇒ [x₃](57, 41) = (57, 116)

$$\Rightarrow \qquad x_3 \qquad = 2$$

 $\Rightarrow x = 73 \mod 81$

Solution Chinese remainders: $x = 73 \mod 162$

- 4 回 ト 4 ヨ ト - ヨ - シック

Pohlig-Hellman reduction

Let
$$n = \prod_{i=1}^{N} p_i^{\alpha_i}$$
 be the prime factorization of $\#G$
G cyclic $\rightsquigarrow G \simeq \prod_i G_i$ where $G_i \simeq \mathbb{Z}/p_i^{\alpha_i}\mathbb{Z}$

- work with the subgroup G_i to find the DL mod $p_i^{\alpha_i}$ and use Chinese remaindering to deduce the DL in G
- In the simplification: to obtain the DL mod p_i^{α_i}, compute iteratively its expression in base p_i by solving α_i DLPs in the subgroup of order p_i of G_i.

Consequence

Solving the DLP in a group of size n is approximately as hard as solving it in a group of size the largest prime factor of n.

Baby-step giant-step [Shanks]

Idea

Use birthday paradox and space-time trade-off to speed up the exhaustive search

Let $d = \lceil \sqrt{\#G} \rfloor$

- Compute and store (g^j, j) for $0 \le j \le d$
- Solution G ≤ k ≤ #G/d, compute h.(g^{-d})^k and check if it appears in the stored list

Sollision
$$h.(g^{-d})^k = g^j \Rightarrow \mathsf{DL}$$
 of h is $(j + kd)$

Using a hash table, cost of membership test in step 2 is in O(1) \rightsquigarrow overall complexity is $O(\sqrt{\#G})$ in both time and memory

Generic attacks

Complexity bounds

Other generic algorithm: Pollard-Rho

- based on the iteration of a pseudo-random function
- same time complexity in $O(\sqrt{\#G})$
- but O(1) memory requirement

3

過 ト イヨ ト イヨト
Generic attacks

Complexity bounds

Other generic algorithm: Pollard-Rho

- based on the iteration of a pseudo-random function
- same time complexity in $O(\sqrt{\#G})$
- but O(1) memory requirement

Best possible complexity of generic attacks!

Theorem [Shoup]

The complexity of a generic attack of the DLP on a group G is in $\Omega(\sqrt{p})$ where p is the largest prime factor of #G.

To improve over this complexity, one has to use additional information on the given group G.

Hardness of the DLP

Depends on the choice of the group G. Some classical examples:

- $G \subset (\mathbb{Z}/n\mathbb{Z}, +)$: solving DLP has polynomial complexity with extended Euclid algorithm
- **2** $G \subset (\mathbb{Z}/p\mathbb{Z}^*, \times)$: subexponential complexity in $L_p(1/3)$ (NFS)
- $G \subset (\mathbb{F}_q^*, \times)$: subexponential complexity in $L_q(1/3)$ (FFS/NFS)

Hardness of the DLP

Depends on the choice of the group G. Some classical examples:

- $G \subset (\mathbb{Z}/n\mathbb{Z}, +)$: solving DLP has polynomial complexity with extended Euclid algorithm
- **2** $G \subset (\mathbb{Z}/p\mathbb{Z}^*, \times)$: subexponential complexity in $L_p(1/3)$ (NFS)
- $G \subset (\mathbb{F}_q^*, \times)$: subexponential complexity in $L_q(1/3)$ (FFS/NFS)

Key points on the complexity function L

$$L_n(\alpha, c) = \exp\left(c(\log n)^{\alpha}(\log \log n)^{1-\alpha}\right)$$

- $L_n(\alpha)$ shorthand for $L_n(\alpha, c + o(1))$ for a constant c.
- $L(\alpha_2, c_2) = o(L(\alpha_1, c_1))$ if $\alpha_2 < \alpha_1$ or $\alpha_2 = \alpha_1$ and $c_2 < c_1$
- $L(\alpha_1, c_1)L(\alpha_2, c_2) = L(\alpha_1, c_1 + o(1)) \text{ if } \alpha_1 > \alpha_2$
- $L(\alpha, c_1)L(\alpha, c_2) = L(\alpha, c_1 + c_2)$

Hardness of the DLP

Depends on the choice of the group G. Some classical examples:

- $G \subset (\mathbb{Z}/n\mathbb{Z}, +)$: solving DLP has polynomial complexity with extended Euclid algorithm
- ② $G \subset (\mathbb{Z}/p\mathbb{Z}^*, \times)$: subexponential complexity in $L_p(1/3)$ (NFS)
- $G \subset (\mathbb{F}_q^*, \times)$: subexponential complexity in $L_q(1/3)$ (FFS/NFS)

Key points on the complexity function L

$$L_n(lpha, c) = \exp\left(c(\log n)^{lpha} (\log \log n)^{1-lpha}
ight)$$

G ⊂ (Jac_C(F_q), +): if the genus of C is s.t. g > 2, existence of algorithms asymptotically faster than generic attacks

Target groups

Target groups

In these lectures, we focus on curve-based DLP, i.e. on the following groups:

- $G \subset E(\mathbb{F}_q)$, the group of \mathbb{F}_q -rational points of an elliptic curve
- G ⊂ Jac_C(𝔽_q) the divisor class group of an algebraic curve C, with an emphasis on the hyperelliptic case
- when q is a prime power, Weil restrictions of the above varieties

Note that all these targets are examples of abelian varieties.

Section 2

The index calculus method

Vanessa VITSE (UVSQ)

Attacks on the DLF

Summer School – ECC 2011 15 / 86

3

(日) (同) (三) (三)

Introduction to index calculus

Originally developed for the factorization of large integers, improving on the square congruence method of Fermat.

Index calculus based Number/Function Field Sieve hold records for both integer factorization and finite field DLP.

Idea

- Find group relations between a "small" number of generators (or *factor base* elements)
- With sufficiently many relations and linear algebra, deduce the group structure and the DL of elements

Basic outline

 $(G, +) = \langle g \rangle$ finite abelian group of prime order r, $h \in G$

• Choice of a factor base: $\mathcal{F} = \{g_1, \ldots, g_N\} \subset G$

Basic outline

 $(G, +) = \langle g \rangle$ finite abelian group of prime order r, $h \in G$

- Choice of a factor base: $\mathcal{F} = \{g_1, \ldots, g_N\} \subset G$
- **2** Relation search: decompose $[a_i]g + [b_i]h(a_i, b_i \text{ random})$ into \mathcal{F}

$$[a_i]g + [b_i]h = \sum_{j=1}^N [c_{ij}]g_j, ext{ where } c_{ij} \in \mathbb{Z}$$

Outline

Basic outline

 $(G, +) = \langle g \rangle$ finite abelian group of prime order r, $h \in G$

- Choice of a factor base: $\mathcal{F} = \{g_1, \ldots, g_N\} \subset G$
- **2** Relation search: decompose $[a_i]g + [b_i]h(a_i, b_i \text{ random})$ into \mathcal{F}

$$[a_i]g + [b_i]h = \sum_{j=1}^N [c_{ij}]g_j, ext{ where } c_{ij} \in \mathbb{Z}$$

- **(3)** Linear algebra: once k relations found $(k \ge N)$
 - construct the matrices $A = \begin{pmatrix} a_i & b_i \end{pmatrix}_{1 \le i \le k}$ and $M = \begin{pmatrix} c_{ij} \end{pmatrix}_{1 \le i \le k}$
 - ▶ find $v = (v_1, ..., v_k) \in \ker({}^tM)$ such that $vA \neq (0 \quad 0) \mod r$
 - compute the solution of DLP: $x = -(\sum_i a_i v_i) / (\sum_i b_i v_i) \mod r$

Basic outline (variant)

- Choice of a factor base: $\mathcal{F} = \{g_1, \ldots, g_N\} \subset G$
- **2** Relation search: decompose $[a_i]g$ (a_i random) into \mathcal{F}

$$[a_i]g = \sum_{j=1}^N [c_{ij}]g_j, ext{ where } c_{ij} \in \mathbb{Z}$$

3

・ 同 ト ・ ヨ ト ・ ヨ ト

Basic outline (variant)

- **1** Choice of a factor base: $\mathcal{F} = \{g_1, \ldots, g_N\} \subset G$
- Relation search: decompose $[a_i]g$ (a_i random) into \mathcal{F} 2

$$[a_i]g = \sum_{j=1}^N [c_{ij}]g_j, ext{ where } c_{ij} \in \mathbb{Z}$$

- Linear algebra: once k relations found $(k \ge N)$
 - construct the vector $A = (a_i)_{1 \le i \le k}$ and the matrix $M = (c_{ij})_{1 \le i \le k}_{1 \le i \le k}$
 - find $X = (x_i)$ unique solution to $MX = A \mod r$

Outline

Basic outline (variant)

- **1** Choice of a factor base: $\mathcal{F} = \{g_1, \ldots, g_N\} \subset G$
- Relation search: decompose $[a_i]g$ $(a_i \text{ random})$ into \mathcal{F} 2

$$[a_i]g = \sum_{j=1}^N [c_{ij}]g_j, ext{ where } c_{ij} \in \mathbb{Z}$$

- Linear algebra: once k relations found $(k \ge N)$
 - construct the vector $A = (a_i)_{1 \le i \le k}$ and the matrix $M = (c_{ij})_{1 \le i \le k}_{1 \le i \le N}$
 - find $X = (x_i)$ unique solution to $MX = A \mod r$
- Descent phase: find a relation involving h

$$[a]g+[b]h=\sum_{j=1}^{N}[c_{j}]g_{j}, ext{ where } b\wedge r=1$$

and deduce the solution of DLP $\left(\sum_{j=1}^{N} c_j x_j - a\right) b^{-1} \mod r$.

18 / 86

Second outline

 $\bullet \quad \text{Choice of a factor base: } \mathcal{F} = \{g_1, \ldots, g_N\} \subset G$

2 Relation search: find relations between elements of ${\mathcal F}$

$$\sum_{j=1}^{N} [c_{ij}] g_j = 0, \quad ext{where } c_{ij} \in \mathbb{Z}$$

3

イロト イポト イヨト イヨト

Second outline

 $\textbf{0} \quad \text{Choice of a factor base: } \mathcal{F} = \{g_1, \ldots, g_N\} \subset G$

② Relation search: find relations between elements of ${\mathcal F}$

$$\sum_{j=1}^{N} [c_{ij}] g_j = 0, \hspace{1em} ext{where} \hspace{1em} c_{ij} \in \mathbb{Z}$$

Solution Linear algebra: once k relations found $(k \ge N)$

- construct the matrix $M = (c_{ij})_{1 \le i \le k \atop 1 \le j \le N}$
- find $X = (x_j)$ s.t. ker $M = \text{span}(X) \mod r$

Outline

Second outline

• Choice of a factor base: $\mathcal{F} = \{g_1, \ldots, g_N\} \subset G$

Relation search: find relations between elements of \mathcal{F}

$$\sum_{j=1}^{N} [c_{ij}] g_j = 0, \hspace{1em} ext{where} \hspace{1em} c_{ij} \in \mathbb{Z}$$

Solution $(k \ge N)$ Solution $(k \ge N)$

- construct the matrix $M = (c_{ij})_{1 \le i \le M \atop 1 \le i \le M}$
- find $X = (x_i)$ s.t. ker $M = \text{span}(X) \mod r$

Descent phase: find relations involving g and h

$$[a]g = \sum_{j=1}^{N} [c_j]g_j, \quad [b]h = \sum_{j=1}^{N} [c_j']g_j, \quad ext{where } a, b \wedge r = 1$$

and deduce DLP solution $(\sum_{i} c_{j} x_{j})(\sum_{i} c'_{j} x_{j})(ab)^{-1} \mod r$. = ▶ < = ▶ = • • • •

Outline

General remarks

- Relation search very specific to the group (several examples in this lecture) and can be the main obstacle (elliptic curves)
- On the other hand, linear algebra almost the same for all groups
- Balance to find between the two phases: 3
 - if $\#\mathcal{F}$ small, few relations needed and fast linear algebra but small probability of decomposition \rightsquigarrow many trials before finding a relation
 - if $\#\mathcal{F}$ large, easy to find relations but many of them needed and slow linear algebra

20 / 86

- Choice of factor base: equivalence classes of prime integers smaller than a smoothness bound B (usually together with -1)
- Relation search: a combination $[a_i]g$ yields a relation if its representative in $\left[-\frac{p-1}{2}; \frac{p-1}{2}\right]$ is *B*-smooth

- Choice of factor base: equivalence classes of prime integers smaller than a smoothness bound B (usually together with -1)
- Relation search: a combination $[a_i]g$ yields a relation if its representative in $\left[-\frac{p-1}{2}; \frac{p-1}{2}\right]$ is *B*-smooth

p = 107, $G = \mathbb{Z}/p\mathbb{Z}^*$, g = 31, $\mathcal{F} = \{-1; 2; 3; 5; 7\}$, find the DL of h = 19.

- Choice of factor base: equivalence classes of prime integers smaller than a smoothness bound B (usually together with -1)
- Relation search: a combination $[a_i]g$ yields a relation if its representative in $\left[-\frac{p-1}{2}; \frac{p-1}{2}\right]$ is *B*-smooth

p = 107, $G = \mathbb{Z}/p\mathbb{Z}^*$, g = 31, $\mathcal{F} = \{-1; 2; 3; 5; 7\}$, find the DL of h = 19.

$$g^{1} = 31$$
, not smooth
 $g^{2} = -2 = -1 \times 2$
 $g^{3} = 45 = 3^{2} \times 5$
 $g^{4} = 4 = 2^{2}$
 $g^{5} = 17$, not smooth

- Choice of factor base: equivalence classes of prime integers smaller than a smoothness bound B (usually together with -1)
- Relation search: a combination $[a_i]g$ yields a relation if its representative in $\left[-\frac{p-1}{2}; \frac{p-1}{2}\right]$ is *B*-smooth

p = 107, $G = \mathbb{Z}/p\mathbb{Z}^*$, g = 31, $\mathcal{F} = \{-1; 2; 3; 5; 7\}$, find the DL of h = 19.

21 / 86

- Choice of factor base: equivalence classes of prime integers smaller than a smoothness bound B (usually together with -1)
- Relation search: a combination $[a_i]g$ yields a relation if its representative in $\left[-\frac{p-1}{2}; \frac{p-1}{2}\right]$ is *B*-smooth

$$p = 107, \ G = \mathbb{Z}/p\mathbb{Z}^*, \ g = 31, \ \mathcal{F} = \{-1; 2; 3; 5; 7\}, \text{ find the DL of } h = 19.$$

$$\begin{pmatrix} 2\\3\\4\\13\\14\\15\\16\\21 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 & 0 & 0\\0 & 0 & 2 & 1 & 0\\0 & 2 & 0 & 0 & 0\\1 & 0 & 0 & 0 & 2\\1 & 0 & 1 & 0 & 1\\1 & 0 & 2 & 0 & 0\\0 & 1 & 1 & 0 & 1\\1 & 0 & 0 & 1 & 1 \end{pmatrix} X \mod 106 \implies X = \begin{pmatrix} 53\\55\\34\\41\\33 \end{pmatrix}$$

通 と く ヨ と く ヨ と

- Choice of factor base: equivalence classes of prime integers smaller than a smoothness bound B (usually together with -1)
- Relation search: a combination $[a_i]g$ yields a relation if its representative in $\left[-\frac{p-1}{2}; \frac{p-1}{2}\right]$ is *B*-smooth

p = 107, $G = \mathbb{Z}/p\mathbb{Z}^*$, g = 31, $\mathcal{F} = \{-1; 2; 3; 5; 7\}$, find the DL of h = 19.

$$\log(-1) = 53$$
 $\log(2) = 55$ $\log(3) = 34$ $\log(5) = 41$ $\log(7) = 33$

$$gh = 54 = 2 \times 3^3 = (g^{55})(g^{34})^3 = g^{51} \Rightarrow h = g^{50}$$

Complexity in the prime field case

Optimal choice of B?

Theorem [Bruijn, Canfield-Erdös-Pomerance]

A random integer smaller than x is $L_x(\alpha, c)$ -smooth with probability

 $1/L_x(1-lpha,(1-lpha)/c)$ as $x \to \infty$.

Complexity in the prime field case

Optimal choice of B?

Theorem [Bruijn, Canfield-Erdös-Pomerance]

A random integer smaller than x is $L_x(\alpha, c)$ -smooth with probability

$$1/L_x(1-lpha,(1-lpha)/c)$$
 as $x o \infty$.

• Let
$$B = L_p(\alpha, c)$$

- Relation step complexity in L_p(α, c)L_p(1 − α, (1 − α)/c)
 → best choice is B ≃ L_p(1/2, 1/√2)
- Overall complexity of this index calculus in $L_p(1/2, \sqrt{2})$ (assuming quadratic complexity of linear algebra step)

The linear algebra step

The matrix of relations

- very large for real-world applications: typical size is several millions rows/columns.
- extremely sparse: only a few non-zero coefficients per row

 \Rightarrow use sparse linear algebra techniques instead of standard resolution tools

The linear algebra step

The matrix of relations

- very large for real-world applications: typical size is several millions rows/columns.
- extremely sparse: only a few non-zero coefficients per row

 \Rightarrow use sparse linear algebra techniques instead of standard resolution tools

Main ideas:

- Keep the matrix sparse (Gauss)
- Use matrix-vector products: cost only proportional to the number of non-zero entries

Two principal algorithms: Lanczos and Wiedemann

化原水 化原水合 医

Wiedemann's algorithm (Coppersmith)

Goal: given *M* square $n \times n$ matrix, *A* vector, find *X* s.t. MX = A**Idea**: compute the minimal polynomial *P* s.t. P(M)v = 0 for a given vector v

3

Wiedemann's algorithm (Coppersmith)

Goal: given *M* square $n \times n$ matrix, *A* vector, find *X* s.t. MX = A**Idea**: compute the minimal polynomial *P* s.t. P(M)v = 0 for a given vector v

- Berlekamp-Massey: compute minimal polynomial $P = \sum_{k=1}^{d} p_k x^k$ of the sequence $a_i = u \cdot M^i v$ where u random vector
- 2 If $P(M)v \neq 0$, start again with a new u and take lcm
- To deduce X
 - if A = 0: take v = Mw, w random, then X = P(M)w
 - otherwise: take v = A, then $X = -(p_0)^{-1} \sum_{k=1}^{d} p_k M^{k-1} A$

Sparse linear algebra

Wiedemann's algorithm (Coppersmith)

Goal: given M square $n \times n$ matrix, A vector, find X s.t. MX = A**Idea**: compute the minimal polynomial P s.t. P(M)v = 0 for a given vector v

- **(**) Berlekamp-Massey: compute minimal polynomial $P = \sum_{k=1}^{d} p_k x^k$ of the sequence $a_i = u \cdot M^i v$ where u random vector
- 2 If $P(M)v \neq 0$, start again with a new u and take lcm
- In the second second
 - if A = 0: take v = Mw, w random, then X = P(M)w
 - otherwise: take v = A, then $X = -(p_0)^{-1} \sum_{k=1}^{d} p_k M^{k-1} A$

Complexity

O(n) dot products and O(n) matrix-vector multiplications \Rightarrow if M has c non-zero entries per row, total cost in $O(n^2c)$

- 3

24 / 86

Improving the linear algebra step

Remark

- Relation search always straightforward to distribute
- Not so true for the linear algebra

Often advantageous to compute many more relations than needed and use extra information to simplify the relation matrix

Two methods:

 Structured Gaussian elimination: Particularly well-suited when elements of the factor base have different frequencies (e.g on finite fields)

Large prime variations

Structured Gaussian elimination [LaMacchia-Odlyzko]

Goal: reduce the size of the matrix while keeping it sparse. Distinction between the matrix columns (i.e. the factor base elements):

- dense columns correspond to "small primes"
- other columns correspond to "large primes"

Structured Gaussian elimination [LaMacchia-Odlyzko]

Goal: reduce the size of the matrix while keeping it sparse. Distinction between the matrix columns (i.e. the factor base elements):

- dense columns correspond to "small primes"
- other columns correspond to "large primes"
- If a column contains only one non-zero entry, remove it and the corresponding row.

Also, remove columns/rows containing only zeroes.

- 2 Mark some new columns as dense
- § Find rows with only one ± 1 coefficient in the non-dense part
 - Use this coefficient as a pivot to clear its column
 - Remove corresponding row and column
- Remove rows that have become too dense and go back to step 1

26 / 86

Section 3

Applications of index calculus

Vanessa VITSE (UVSQ)

Attacks on the DLP

Summer School – ECC 2011 27 / 86

3

▲帰▶ ▲ 臣▶ ▲ 臣▶

Subsection 1

The hyperelliptic case

Vanessa VITSE (UVSQ)

Attacks on the DLP

Summer School – ECC 2011 28

→ 祠 ▶ → 国 ▶ → 国 ▶

28 / 86

э

Hyperelliptic curves

Reminders

An (imaginary) hyperelliptic curve ${\mathcal H}$ of genus g defined over ${\mathbb F}_q$ is given by an equation

$$y^2 + h_0(x)y = h_1(x), \quad h_0, h_1 \in \mathbb{F}_q[x], \ \deg h_0 \leq g, \ \deg h_1 = 2g + 1$$

- \bullet possesses a unique point at infinity $\mathcal{O}_\mathcal{H}$
- hyperelliptic involution ι: maps P = (x_P, y_P) to ι(P) = (x_P, -y_P - h₀(x_P))

Jacobian variety $Jac_{\mathcal{H}}(\mathbb{F}_q)$ (or divisor class group): set of linear equivalence class of degree zero divisors (defined over \mathbb{F}_q)

- $\#\mathcal{H}(\mathbb{F}_q) \simeq q$
- $\# \mathsf{Jac}_{\mathcal{H}}(\mathbb{F}_q) \simeq q^g$
Representations of elements of $\mathsf{Jac}_{\mathcal{H}}$

Reduced representation

An element $[D] \in \mathsf{Jac}_{\mathcal{H}}(\mathbb{F}_q)$ has a unique reduced representation

$$D \sim (P_1) + \dots + (P_r) - r(\mathcal{O}_{\mathcal{H}}), \quad r \leq g, \ P_i \neq \iota(P_j) \ \text{for} \ i \neq j$$

Note: the points P_i 's are usually not \mathbb{F}_{q} -rational

Mumford representation

One-to-one correspondence between elements of $Jac_{\mathcal{H}}(\mathbb{F}_q)$ and couples of polynomials $(u, v) \in \mathbb{F}_q[x]^2$ s.t.

- u monic, deg $u \leq g$
- deg v < deg u
- *u* divides $v^2 + vh_0 h_1$

Adleman-DeMarrais-Huang's index calculus

Analog of the integer factorization for elements of the Jacobian variety:

Proposition

Let $D = (u, v) \in \mathsf{Jac}_{\mathcal{H}}(\mathbb{F}_q)$. If u factorizes as $\prod_j u_j$ over \mathbb{F}_q , then

•
$$D_j = (u_j, v_j)$$
 is in $\operatorname{Jac}_{\mathcal{H}}(\mathbb{F}_q)$, where $v_j = v \mod u_j$

• $D = \sum_j D_j$

Adleman-DeMarrais-Huang's index calculus

Analog of the integer factorization for elements of the Jacobian variety:

Proposition

Let $D = (u, v) \in \operatorname{Jac}_{\mathcal{H}}(\mathbb{F}_q)$. If u factorizes as $\prod_j u_j$ over \mathbb{F}_q , then • $D_j = (u_j, v_j)$ is in $\operatorname{Jac}_{\mathcal{H}}(\mathbb{F}_q)$, where $v_j = v \mod u_j$ • $D = \sum_j D_j$

Allows to apply index calculus [Enge-Gaudry]

- Factor base: F = {(u, v) ∈ Jac_H(F_q) : u irreducible, deg u ≤ B} ("small prime divisors")
- Element $[a_i]D_0 + [b_i]D_1$ yields a relation if corresponding u polynomial is B-smooth

- 4 回 ト 4 三 ト - 三 - シック

Adleman-DeMarrais-Huang's index calculus

Analog of the integer factorization for elements of the Jacobian variety:

Proposition

Let $D = (u, v) \in \operatorname{Jac}_{\mathcal{H}}(\mathbb{F}_q)$. If u factorizes as $\prod_j u_j$ over \mathbb{F}_q , then • $D_j = (u_j, v_j)$ is in $\operatorname{Jac}_{\mathcal{H}}(\mathbb{F}_q)$, where $v_j = v \mod u_j$ • $D = \sum_j D_j$

Allows to apply index calculus [Enge-Gaudry]

- Factor base: F = {(u, v) ∈ Jac_H(F_q) : u irreducible, deg u ≤ B} ("small prime divisors")
- Element $[a_i]D_0 + [b_i]D_1$ yields a relation if corresponding u polynomial is B-smooth

Possible to divide size of ${\mathcal F}$ by 2 using the hyperelliptic involution

Analysis in the large genus case

Very similar to the prime field case:

Theorem [Enge-Gaudry-Stein]

Let $B = \lceil \log_q(L_{q^g}(1/2, c)) \rceil$. The probability that a random element of $\operatorname{Jac}_{\mathcal{H}}(\mathbb{F}_q)$ is *B*-smooth is bounded from below by

 $1/L_{q^g}(1/2, 1/2c + o(1)).$

Vanessa VITSE (UVSQ)

Analysis in the large genus case

Very similar to the prime field case:

Theorem [Enge-Gaudry-Stein]

Let $B = \lceil \log_q(L_{q^g}(1/2, c)) \rceil$. The probability that a random element of $\operatorname{Jac}_{\mathcal{H}}(\mathbb{F}_q)$ is *B*-smooth is bounded from below by

 $1/L_{q^g}(1/2, 1/2c + o(1)).$

As $q \to \infty$ and $g/\log q \to \infty$,

- optimal choice of B is in $\log_q(L_{q^g}(1/2, 1/\sqrt{2}))$
- total complexity is in $L_{q^g}(1/2,\sqrt{2}+o(1))$

The small genus case

Problem

When g small i.e. $g = o(\log q)$, former analysis suggests B < 1...

3

通 ト イヨ ト イヨト

The small genus case

Problem

When g small i.e. $g = o(\log q)$, former analysis suggests B < 1...

Gaudry's algorithm for small genus curves

Choose B = 1

- Factor base: $\mathcal{F} = \{(u, v) \in \mathsf{Jac}_{\mathcal{H}}(\mathbb{F}_q) : \deg u = 1\}$ of size $\simeq q$
- D = (u, v) decomposable $\Leftrightarrow u$ splits over \mathbb{F}_q
- Probability of decomposition $\simeq 1/g!$
- $\Rightarrow O(g!q)$ tests (relation search) + $O(gq^2)$ field operations (linear alg.)

Total cost: $O((g^2 \log^3 q)g!q + (g^2 \log q)q^2)$

The small genus case

Problem

When g small i.e. $g = o(\log q)$, former analysis suggests B < 1...

Gaudry's algorithm for small genus curves

Choose B = 1

- Factor base: $\mathcal{F} = \{(u, v) \in \mathsf{Jac}_{\mathcal{H}}(\mathbb{F}_q) : \deg u = 1\}$ of size $\simeq q$
- D = (u, v) decomposable $\Leftrightarrow u$ splits over \mathbb{F}_q
- Probability of decomposition $\simeq 1/g!$
- $\Rightarrow O(g!q)$ tests (relation search) + $O(gq^2)$ field operations (linear alg.)

Total cost: $O((g^2 \log^3 q)g!q + (g^2 \log q)q^2)$

For fixed g, resolution of the DLP in $\tilde{O}(q^2)$

 \Rightarrow better than generic attacks as soon as g > 4

Reducing the factor base

For fixed genus g, relation search in $\tilde{O}(q)$ vs linear algebra in $\tilde{O}(q^2)$ \rightsquigarrow need to rebalance the two phases

Reducing the factor base

For fixed genus g, relation search in $\tilde{O}(q)$ vs linear algebra in $\tilde{O}(q^2)$ \rightsquigarrow need to rebalance the two phases

First idea: reduce the factor base [Harley]

- Define new factor base $\mathcal{F}' \subset \mathcal{F}$ ("small primes") with $\#\mathcal{F}' = q^{\alpha} \rightsquigarrow$ linear algebra in $\tilde{O}(q^{2\alpha})$
- Keep relations involving only small primes, discard others \rightsquigarrow proba. of decomposition drops by factor $\left(\frac{\#\mathcal{F}'}{\#\mathcal{F}}\right)^g = \left(\frac{q^\alpha}{q}\right)^g$ \rightsquigarrow relation search in $\tilde{O}(q^{(1-\alpha)g} q^\alpha)$

• Asymptotically optimal choice $\alpha = 1 - 1/(g + 1)$ Total complexity in $\tilde{O}(q^{2-2/(g+1)})$

34 / 86

Main ideas

- Same new "small prime" factor base $\mathcal{F}' \subset \mathcal{F}$ with $\#\mathcal{F}' = q^{\alpha}$ "large primes": $\mathcal{F} \setminus \mathcal{F}'$
- Keep "partial" relations involving at most one large prime
- Combine partial relations with same large prime to get "full" relations (involving only small primes)

Main ideas

- Same new "small prime" factor base $\mathcal{F}' \subset \mathcal{F}$ with $\#\mathcal{F}' = q^{\alpha}$ "large primes": $\mathcal{F} \setminus \mathcal{F}'$
- Keep "partial" relations involving at most one large prime
- Combine partial relations with same large prime to get "full" relations (involving only small primes)

Improvement of Harley's method:

• Probability of decomposition drops by factor $\left(\frac{q^{\alpha}}{q}\right)^{g-1}$

Main ideas

- Same new "small prime" factor base $\mathcal{F}' \subset \mathcal{F}$ with $\#\mathcal{F}' = q^{\alpha}$ "large primes": $\mathcal{F} \setminus \mathcal{F}'$
- Keep "partial" relations involving at most one large prime
- Combine partial relations with same large prime to get "full" relations (involving only small primes)

Improvement of Harley's method:

- Probability of decomposition drops by factor $\left(\frac{q^{\alpha}}{q}\right)^{g-1}$
- Birthday paradox: $\simeq \sqrt{q q^{\alpha}}$ partial relations needed to obtain $\simeq q^{\alpha}$ full relations \rightsquigarrow relation search in $\tilde{O}(q^{(1-\alpha)(g-1)}q^{(1+\alpha)/2})$

Main ideas

- Same new "small prime" factor base $\mathcal{F}' \subset \mathcal{F}$ with $\#\mathcal{F}' = q^{\alpha}$ "large primes": $\mathcal{F} \setminus \mathcal{F}'$
- Keep "partial" relations involving at most one large prime
- Combine partial relations with same large prime to get "full" relations (involving only small primes)

Improvement of Harley's method:

- Probability of decomposition drops by factor $\left(\frac{q^{\alpha}}{q}\right)^{g-1}$
- Birthday paradox: $\simeq \sqrt{q q^{\alpha}}$ partial relations needed to obtain $\simeq q^{\alpha}$ full relations \rightsquigarrow relation search in $\tilde{O}(q^{(1-\alpha)(g-1)}q^{(1+\alpha)/2})$
- Asymptotically optimal choice $\alpha = 1 1/(g + 1/2)$

Total complexity in $\tilde{O}(q^{2-2/(g+1/2)})$

Further improvement [Gaudry-Thomé-Thériault-Diem]:

Keep relations involving at most two large primes

 → proba. of decomposition drops by factor q^{(α-1)(g-2)}

通 ト イヨ ト イヨト

Further improvement [Gaudry-Thomé-Thériault-Diem]:

- Keep relations involving at most two large primes

 → proba. of decomposition drops by factor q^{(α-1)(g-2)}
- After ≃ q relations are found, possible to eliminate the large primes and obtain ≃ q^α relations involving only small primes → relation search in Õ(q^{(1-α)(g-2)} q)

Further improvement [Gaudry-Thomé-Thériault-Diem]:

- Keep relations involving at most two large primes

 → proba. of decomposition drops by factor q^{(α-1)(g-2)}
- After ≃ q relations are found, possible to eliminate the large primes and obtain ≃ q^α relations involving only small primes → relation search in Õ(q^{(1-α)(g-2)} q)
- Asymptotically optimal choice $\alpha = 1 1/g$

Further improvement [Gaudry-Thomé-Thériault-Diem]:

- Keep relations involving at most two large primes

 → proba. of decomposition drops by factor q^{(α-1)(g-2)}
- After ≃ q relations are found, possible to eliminate the large primes and obtain ≃ q^α relations involving only small primes → relation search in Õ(q^{(1-α)(g-2)} q)
- Asymptotically optimal choice $\alpha = 1 1/g$

Total complexity in $\tilde{O}(q^{2-2/g})$ \rightsquigarrow better than generic attacks as soon as $g \ge 3$

How to deduce "full" relations from 2LP relations?

Construct a graph of relations

- vertices: large primes + special vertex "1"
- relation involving 2 LP \rightsquigarrow edge between corresponding vertices
- $\bullet\,$ relation involving 1 LP $\rightsquigarrow\,$ edge between corresponding vertex and 1

How to deduce "full" relations from 2LP relations?

Construct a graph of relations

- vertices: large primes + special vertex "1"
- relation involving 2 LP \rightsquigarrow edge between corresponding vertices
- $\bullet\,$ relation involving 1 LP $\rightsquigarrow\,$ edge between corresponding vertex and 1

Idea: cycles of relations allow to eliminate LP

3

- 4 同 6 4 日 6 4 日 6

s The hyperelliptic case

Elimination of large primes

3

(人間) トイヨト イヨト

< 67 ▶

- ∢ ≣ →

- ∢ ≣ →

3

- 4 ⊒ →

< 67 ▶

< 67 ▶

The hyperelliptic case

Elimination of large primes

3

(日) (周) (三) (三)

The hyperelliptic case

Elimination of large primes

- ∢ ≣ →

3

*

< ∃⇒

How to deduce "full" relations from 2LP relations?

Construct a graph of relations

- vertices: large primes + special vertex "1"
- relation involving 2 LP \rightsquigarrow edge between corresponding vertices
- $\bullet\,$ relation involving 1 LP $\rightsquigarrow\,$ edge between corresponding vertex and 1

Idea: cycles of relations allow to eliminate LP

Random graph heuristics:

- $#{edges} \ll #{vertices} \rightsquigarrow no cycle expected$
- #{edges} ≃ #{vertices} → giant connected component of diameter in O(log #{vertices})
- $\#\{\mathsf{edges}\} > \#\{\mathsf{vertices}\} \rightsquigarrow \mathsf{most}\ \mathsf{new}\ \mathsf{edges}\ \mathsf{give}\ \mathsf{new}\ \mathsf{cycles}$

Summary

Asymptotic comparison on $\operatorname{Jac}_{\mathcal{H}}(\mathbb{F}_q)$

Genus	2	3	4	5
Generic methods	q	$q^{3/2}$	q^2	$q^{5/2}$
Classical index calculus	q^2	q^2	q^2	q^2
Harley	q ^{4/3}	$q^{3/2}$	$q^{8/5}$	$q^{5/3}$
1LP	$q^{6/5}$	$q^{10/7}$	$q^{14/9}$	$q^{18/11}$
2LP	q	$q^{4/3}$	$q^{3/2}$	$q^{8/5}$

40 / 86

Summary

Asymptotic comparison on $\operatorname{Jac}_{\mathcal{H}}(\mathbb{F}_q)$

Genus	2	3	4	5
Generic methods	q	$q^{1.5}$	q^2	q ^{2.5}
Classical index calculus	q^2	q^2	q^2	q^2
Harley	$q^{1.33}$	$q^{1.5}$	$q^{1.6}$	$q^{1.67}$
1LP	q ^{1.2}	$q^{1.43}$	$q^{1.56}$	$q^{1.64}$
2LP	q	$q^{1.33}$	$q^{1.5}$	$q^{1.6}$

40 / 86

Subsection 2

Elliptic curves defined over extension fields

3

- 4 同 6 4 日 6 4 日 6

Index calculus over elliptic curves

How to define smooth elements on an elliptic curve ?

- no known equivalent on $E(\mathbb{F}_p)$, p prime
- breakthrough on $E(\mathbb{F}_{p^n})$ by Gaudry in 2004, using ideas of Semaev

Index calculus over elliptic curves

How to define smooth elements on an elliptic curve ?

- no known equivalent on $E(\mathbb{F}_p)$, p prime
- breakthrough on $E(\mathbb{F}_{p^n})$ by Gaudry in 2004, using ideas of Semaev

What kind of "decomposition" over E(K)?

Main idea [Semaev '04]:

 $\bullet\,$ consider decompositions in a fixed number of points of ${\cal F}\,$

$$R = [a]P + [b]Q = P_1 + \ldots + P_n$$

• convert this into a polynomial system by using the (*n*+1)-th summation polynomial:

$$f_{n+1}(x_R, x_{P_1}, \dots, x_{P_n}) = 0$$

$$\Leftrightarrow \exists \epsilon_1, \dots, \epsilon_n \in \{1, -1\}, R = \epsilon_1 P_1 + \dots + \epsilon_n P_n$$

3

(人間) システン イラン

Computation of Semaev's summation polynomials

- Let $E: y^2 = x^3 + ax + b$
 - $f_2(X_1, X_2) = X_1 X_2$
- Let $E: y^2 = x^3 + ax + b$
 - $f_2(X_1, X_2) = X_1 X_2$

•
$$f_3(X_1, X_2, X_3) = (X_1 - X_2)^2 X_3^2 - 2((X_1 + X_2)(X_1X_2 + a) + 2b) X_3 + (X_1X_2 - a)^2 - 4b(X_1 + X_2)$$

3

- Let $E: y^2 = x^3 + ax + b$
 - $f_2(X_1, X_2) = X_1 X_2$

•
$$f_3(X_1, X_2, X_3) = (X_1 - X_2)^2 X_3^2 - 2((X_1 + X_2)(X_1X_2 + a) + 2b) X_3 + (X_1X_2 - a)^2 - 4b(X_1 + X_2)$$

• for m > 4, determine f_m by induction

3

- Let $E: y^2 = x^3 + ax + b$
 - $f_2(X_1, X_2) = X_1 X_2$

•
$$f_3(X_1, X_2, X_3) = (X_1 - X_2)^2 X_3^2 - 2((X_1 + X_2)(X_1X_2 + a) + 2b) X_3 + (X_1X_2 - a)^2 - 4b(X_1 + X_2)$$

• for $m \ge 4$, determine f_m by induction

$$P_{1} \pm P_{2} \pm \ldots \pm P_{m} = \mathcal{O}$$

$$\Leftrightarrow \quad \forall j \in \llbracket 1; m - 3 \rrbracket, \exists R \in E(\overline{K}), \quad \begin{cases} P_{1} \pm \ldots \pm P_{j} + R = \mathcal{O} \\ R \mp P_{j+1} \mp \ldots \mp P_{m} = \mathcal{O} \end{cases}$$

Vanessa VITSE (UVSQ)

- Let $E: y^2 = x^3 + ax + b$
 - $f_2(X_1, X_2) = X_1 X_2$

•
$$f_3(X_1, X_2, X_3) = (X_1 - X_2)^2 X_3^2 - 2((X_1 + X_2)(X_1X_2 + a) + 2b) X_3 + (X_1X_2 - a)^2 - 4b(X_1 + X_2)$$

• for $m \ge 4$, determine f_m by induction

$$P_{1} \pm P_{2} \pm \ldots \pm P_{m} = \mathcal{O}$$

$$\Leftrightarrow \quad \forall j \in [\![1; m-3]\!], \exists R \in E(\overline{K}), \begin{cases} P_{1} \pm \ldots \pm P_{j} + R = \mathcal{O} \\ R \mp P_{j+1} \mp \ldots \mp P_{m} = \mathcal{O} \end{cases}$$

$$\Leftrightarrow \quad \forall j \in [\![1; m-3]\!], \quad f_{j+1}(x_{P_{1}}, \ldots, x_{P_{j}}, X)$$
and $f_{m-j+1}(X, x_{P_{j+1}}, \ldots, x_{P_{m}})$ have a common root

Vanessa VITSE (UVSQ)

Summer School – ECC 2011

• • = • • = •

3

43 / 86

- Let $E: y^2 = x^3 + ax + b$
 - $f_2(X_1, X_2) = X_1 X_2$

•
$$f_3(X_1, X_2, X_3) = (X_1 - X_2)^2 X_3^2 - 2((X_1 + X_2)(X_1X_2 + a) + 2b) X_3 + (X_1X_2 - a)^2 - 4b(X_1 + X_2)$$

• for m > 4, determine f_m by induction

$$P_{1} \pm P_{2} \pm \ldots \pm P_{m} = \mathcal{O}$$

$$\Rightarrow \quad \forall j \in [\![1; m-3]\!], \exists R \in E(\overline{K}), \begin{cases} P_{1} \pm \ldots \pm P_{j} + R = \mathcal{O} \\ R \mp P_{j+1} \mp \ldots \mp P_{m} = \mathcal{O} \end{cases}$$

$$\Rightarrow \quad \forall j \in [\![1; m-3]\!], \quad f_{j+1}(x_{P_{1}}, \ldots, x_{P_{j}}, X)$$

$$\text{and } f_{m-j+1}(X, x_{P_{j+1}}, \ldots, x_{P_{m}}) \text{ have a common root}$$

$$\Rightarrow \quad \forall j \in [\![1; m-3]\!], \quad \operatorname{Res}_{X} \left(f_{j+1}(x_{P_{1}}, \ldots, x_{P_{j}}, X), \\ f_{m-j+1}(X, x_{P_{j+1}}, \ldots, x_{P_{m}})\right) = 0$$

3

Computation of Semaev's summation polynomials Let $E: y^2 = x^3 + ax + b$

•
$$f_2(X_1, X_2) = X_1 - X_2$$

•
$$f_3(X_1, X_2, X_3) = (X_1 - X_2)^2 X_3^2 - 2((X_1 + X_2)(X_1X_2 + a) + 2b) X_3 + (X_1X_2 - a)^2 - 4b(X_1 + X_2)$$

• for $m \ge 4$, determine f_m by induction

$$f_m(X_1, X_2, \dots, X_m) = \operatorname{Res}_X (f_{m-j}(X_1, X_2, \dots, X_{m-j-1}, X), f_{j+2}(X_{m-j}, \dots, X_m, X))$$

 $\deg_{X_i} f_m = 2^{m-2} \Rightarrow$ only computable for small values of m

Digression: Weil restriction of scalars

L/K field extension, $[L:K]=d<\infty$

V *n*-dimensional algebraic variety defined over LAssume for simplicity V affine, given by equations

$$f_1(x_1,\ldots,x_r)=\cdots=f_s(x_1,\ldots,x_r)=0$$

くぼう くほう くほう

Digression: Weil restriction of scalars

L/K field extension, $[L:K]=d<\infty$

V *n*-dimensional algebraic variety defined over LAssume for simplicity V affine, given by equations

$$f_1(x_1,\ldots,x_r)=\cdots=f_s(x_1,\ldots,x_r)=0$$

Weil restriction

$$W_{L/K}(V) = \mathbb{V}(f_{11}, \dots, f_{sd})$$
 nd-dim. variety over K

•
$$\{u_1, ..., u_d\}$$
 K-linear basis of *L* and $x_i = \sum_j x_{ij} u_j$
• $f_k(x_1, ..., x_r) = \sum_j f_{kj}(x_{11}, ..., x_{rd}) u_j, f_{kj} \in K[x_{11}, ..., x_{rd}]$

Digression: Weil restriction of scalars

L/K field extension, $[L:K]=d<\infty$

V *n*-dimensional algebraic variety defined over LAssume for simplicity V affine, given by equations

$$f_1(x_1,\ldots,x_r)=\cdots=f_s(x_1,\ldots,x_r)=0$$

Weil restriction

$$W_{L/K}(V) = \mathbb{V}(f_{11}, \ldots, f_{sd})$$
 nd-dim. variety over K

•
$$\{u_1, ..., u_d\}$$
 K-linear basis of *L* and $x_i = \sum_j x_{ij} u_j$
• $f_k(x_1, ..., x_r) = \sum_j f_{kj}(x_{11}, ..., x_{rd}) u_j, f_{kj} \in K[x_{11}, ..., x_{rd}]$

Examples:

•
$$W_{\mathbb{C}/\mathbb{R}}(\mathbb{C}) = \mathbb{R}^2$$

•
$$W_{\mathbb{C}/\mathbb{R}}(\mathbb{P}^1(\mathbb{C})) = \mathbb{S}^2$$

44 / 86

Properties of Weil restriction

Let $\mathcal{W} = W_{L/K}(V)$

- As sets, $V(L) = \mathcal{W}(K)$. But topology is finer on the latter
- V abelian variety $\Rightarrow \mathcal{W}$ abelian variety
- If L/K Galois, $\mathcal{W}(L) \simeq \prod_{\tau \in \mathsf{Gal}(L/K)} V^{\tau}(L)$ $\rightsquigarrow \exists L$ -morphism $pr : \mathcal{W}(L) \to V(L)$
- Universal property:

V' variety over K, $\varphi: V'(L) \rightarrow V(L)$ L-morphism

Vanessa VITSE (UVSQ)

Index calculus over elliptic curves

Convenient factor base on $E(\mathbb{F}_{q^n})$ [Gaudry 04]

- Natural factor base: $\mathcal{F} = \{(x, y) \in E(\mathbb{F}_{q^n}) : x \in \mathbb{F}_q\}, \ \#\mathcal{F} \simeq q$
- Scalar restriction: decompose along a $\mathbb{F}_{q^{-}}$ linear basis of $\mathbb{F}_{q^{n}}$

 $f_{n+1}(x_R, x_{P_1}, \dots, x_{P_n}) = 0 \Leftrightarrow \begin{cases} \varphi_1(x_{P_1}, \dots, x_{P_n}) = 0 \\ \vdots \\ \varphi_n(x_{P_1}, \dots, x_{P_n}) = 0 \end{cases}$

One decomposition trial \leftrightarrow resolution of \mathcal{S}_R over \mathbb{F}_q

Vanessa VITSE (UVSQ)

Index calculus over elliptic curves

Convenient factor base on $E(\mathbb{F}_{q^n})$ [Gaudry 04]

- Natural factor base: $\mathcal{F} = \{(x, y) \in E(\mathbb{F}_{q^n}) : x \in \mathbb{F}_q\}, \ \#\mathcal{F} \simeq q$
- Scalar restriction: decompose along a $\mathbb{F}_{q^{-}}$ linear basis of $\mathbb{F}_{q^{n}}$

 $f_{n+1}(x_R, x_{P_1}, \dots, x_{P_n}) = 0 \Leftrightarrow \begin{cases} \varphi_1(x_{P_1}, \dots, x_{P_n}) = 0 \\ \vdots \\ \varphi_n(x_{P_1}, \dots, x_{P_n}) = 0 \end{cases}$

One decomposition trial \leftrightarrow resolution of \mathcal{S}_R over \mathbb{F}_q

→ requires efficient techniques to solve multivariate polynomial system over finite fields (e.g. Gröbner basis)

•
$$\mathbb{F}_{101^3} \simeq \mathbb{F}_{101}[t]/(t^3 + t + 1)$$

 $E: y^2 = x^3 + (44 + 52t + 60t^2)x + (58 + 87t + 74t^2), \ \#E = 1029583,$
base point: $P \begin{vmatrix} 25+58t+23t^2 \\ 96+69t+37t^2 \end{vmatrix}$ challenge point: $Q \begin{vmatrix} 89+78t+52t^2 \\ 14+79t+71t^2 \end{vmatrix}$

3

・ロト ・聞ト ・ヨト ・ヨト

•
$$\mathbb{F}_{101^3} \simeq \mathbb{F}_{101}[t]/(t^3 + t + 1)$$

 $E: y^2 = x^3 + (44 + 52t + 60t^2)x + (58 + 87t + 74t^2), \ \#E = 1029583,$
base point: $P \begin{vmatrix} 25+58t+23t^2 \\ 96+69t+37t^2 \end{vmatrix}$ challenge point: $Q \begin{vmatrix} 89+78t+52t^2 \\ 14+79t+71t^2 \end{vmatrix}$

• random combination of *P* and *Q*:

$$R = [658403]P + [919894]Q = \begin{vmatrix} 44+57t+55t^2\\8+11t+73t^2 \end{vmatrix}$$

i.

イロト 不得下 イヨト イヨト 二日

•
$$\mathbb{F}_{101^3} \simeq \mathbb{F}_{101}[t]/(t^3 + t + 1)$$

 $E: y^2 = x^3 + (44 + 52t + 60t^2)x + (58 + 87t + 74t^2), \ \#E = 1029583,$

base point: $P \begin{vmatrix} 25+58t+23t^2 \\ 96+69t+37t^2 \end{vmatrix}$ challenge point: $Q \begin{vmatrix} 89+78t+52t^2 \\ 14+79t+71t^2 \end{vmatrix}$

• random combination of *P* and *Q*:

$$R = [658403]P + [919894]Q = \begin{vmatrix} 44+57t+55t^2\\8+11t+73t^2 \end{vmatrix}$$

• compute 4-th summation polynomial with resultant: $f_4(X_1, X_2, X_3, X_4) = Res_X(f_3(X_1, X_2, X), f_3(X_3, X_4, X))$

•
$$\mathbb{F}_{101^3} \simeq \mathbb{F}_{101}[t]/(t^3 + t + 1)$$

 $E: y^2 = x^3 + (44 + 52t + 60t^2)x + (58 + 87t + 74t^2), \ \#E = 1029583,$

base point: $P \begin{vmatrix} 25+58t+23t^2 \\ 96+69t+37t^2 \end{vmatrix}$ challenge point: $Q \begin{vmatrix} 89+78t+52t^2 \\ 14+79t+71t^2 \end{vmatrix}$

• random combination of *P* and *Q*:

$$R = [658403]P + [919894]Q = \begin{vmatrix} 44+57t+55t^2\\8+11t+73t^2 \end{vmatrix}$$

• compute 4-th summation polynomial with resultant: $f_4(X_1, X_2, X_3, X_4) = Res_X(f_3(X_1, X_2, X), f_3(X_3, X_4, X))$

• after partial symmetrization, solve in $s_1, s_2, s_3 \in \mathbb{F}_{101}$

$$f_4(s_1, s_2, s_3, x_R) = x_R^4 s_2^4 + 93 x_R^4 s_1 s_2^2 s_3 \\ +16 x_R^4 s_1^2 s_3^2 + \dots + 94 b^3 s_3 = 0 \qquad \Leftrightarrow \qquad \begin{cases} 28 s_1^4 + 94 s_1^3 s_2 + \dots + 4s_3 + 69 = 0 \\ 49 s_1^4 + 72 s_1^3 s_2 + \dots + 14s_3 + 100 = 0 \\ 32 s_1^4 + 97 s_1^3 s_2 + \dots + 50 s_3 + 8 = 0 \end{cases}$$

 $I(\mathcal{S}_{\mathcal{R}}) = \langle 28s_1^4 + 94s_1^3s_2 + \dots + 4s_3 + 69, 49s_1^4 + 72s_1^3s_2 + \dots + 14s_3 + 100, \\ 32s_1^4 + 97s_1^3s_2 + \dots + 50s_3 + 8 \rangle$

• Gröbner basis of $I(\mathcal{S}_R)$ for $lex_{s_1>s_2>s_3}$:

 $G = \{s_1 + 33s_3^{63} + 23s_3^{62} + \dots + 95, s_2 + 80s_3^{63} + 79s_3^{62} + \dots + 45, s_3^{64} + 36s_3^{63} + 80s_3^{62} + \dots + 56\}$

 $I(\mathcal{S}_{\mathcal{R}}) = \langle 28s_1^4 + 94s_1^3s_2 + \dots + 4s_3 + 69, 49s_1^4 + 72s_1^3s_2 + \dots + 14s_3 + 100, \\ 32s_1^4 + 97s_1^3s_2 + \dots + 50s_3 + 8 \rangle$

- Gröbner basis of I(S_R) for $lex_{s_1 > s_2 > s_3}$: $G = \{s_1 + 33s_3^{63} + 23s_3^{62} + \dots + 95, s_2 + 80s_3^{63} + 79s_3^{62} + \dots + 45, s_3^{64} + 36s_3^{63} + 80s_3^{62} + \dots + 56\}$
- $V(I(S_R))_{/\mathbb{F}_{101}} = \{(30, 3, 53), (75, 25, 75)\}$ Roots of $X^3 - s_1 X^2 + s_2 X - s_3 = 0$ over \mathbb{F}_{101} ?

 $I(\mathcal{S}_{\mathcal{R}}) = \langle 28s_1^4 + 94s_1^3s_2 + \dots + 4s_3 + 69, 49s_1^4 + 72s_1^3s_2 + \dots + 14s_3 + 100,$ $32s_1^4 + 97s_1^3s_2 + \dots + 50s_3 + 8 \rangle$

- Gröbner basis of $I(S_R)$ for $lex_{s_1 > s_2 > s_3}$: $G = \{s_1 + 33s_3^{63} + 23s_3^{62} + \dots + 95, s_2 + 80s_3^{63} + 79s_3^{62} + \dots + 45, s_3^{64} + 36s_3^{63} + 80s_3^{62} + \dots + 56\}$
- $V(I(S_R))_{/\mathbb{F}_{101}} = \{(30, 3, 53), (75, 25, 75)\}$ Roots of $X^3 - s_1 X^2 + s_2 X - s_3 = 0$ over \mathbb{F}_{101} ? * $X^3 - 30X^2 + 3X - 53$ irreducible over $\mathbb{F}_{101}[X]$

• Gröbner basis of I(
$$S_R$$
) for $lex_{s_1 > s_2 > s_3}$:

$$G = \{s_1 + 33s_3^{63} + 23s_3^{62} + \dots + 95, s_2 + 80s_3^{63} + 79s_3^{62} + \dots + 45, s_3^{64} + 36s_3^{63} + 80s_3^{62} + \dots + 56\}$$
• $V(I(S_R))_{/\mathbb{F}_{101}} = \{(30, 3, 53), (75, 25, 75)\}$
Roots of $X^3 - s_1X^2 + s_2X - s_3 = 0$ over \mathbb{F}_{101} ?
* $X^3 - 30X^2 + 3X - 53$ irreducible over $\mathbb{F}_{101}[X]$
* $X^3 - 75X^2 + 25X - 75 = (X - 4)(X - 7)(X - 64)$
 $\Rightarrow P_1 \begin{vmatrix} 4 \\ 27 + 34t + 91t^2 \end{vmatrix} P_2 \begin{vmatrix} 7 \\ 58 + 95t + 91t^2 \end{vmatrix} P_3 \begin{vmatrix} 64 \\ 76 + 54t + 18t^2 \end{vmatrix}$ and $P_1 - P_2 + P_3 = R$

Vanessa VITSE (UVSQ)

48 / 86

• Gröbner basis of
$$I(S_R)$$
 for $lex_{s_1>s_2>s_3}$:

$$G = \{s_1 + 33s_3^{63} + 23s_3^{62} + \dots + 95, s_2 + 80s_3^{63} + 79s_3^{62} + \dots + 45, s_3^{64} + 36s_3^{63} + 80s_3^{62} + \dots + 56\}$$
• $V(I(S_R))_{/\mathbb{F}_{101}} = \{(30, 3, 53), (75, 25, 75)\}$
Roots of $X^3 - s_1X^2 + s_2X - s_3 = 0$ over \mathbb{F}_{101} ?
* $X^3 - 30X^2 + 3X - 53$ irreducible over $\mathbb{F}_{101}[X]$
* $X^3 - 75X^2 + 25X - 75 = (X - 4)(X - 7)(X - 64)$
 $\Rightarrow P_1 \begin{vmatrix} 4 \\ 27+34t+91t^2 \end{vmatrix} P_2 \begin{vmatrix} 7 \\ 58+95t+91t^2 \end{vmatrix} P_3 \begin{vmatrix} 64 \\ 76+54t+18t^2 \end{vmatrix}$ and $P_1 - P_2 + P_3 = R$

- Number of relations needed: $\# \mathcal{F}_{/\sim} = 54 \Rightarrow 55$
- Linear algebra $\rightarrow x = 771080$

48 / 86

Complexity analysis

- size of factor base #*F* ≃ *q* → linear algebra in Õ(nq²)
- proba. of decomposition $\simeq \frac{\#(\mathcal{F}^n/\mathfrak{S}_n)}{\#\mathcal{E}(\mathbb{F}_{q^n})} \simeq \frac{1}{n!}$ \rightsquigarrow need O(n!q) decomposition tests
- for fixed *n* and $q \to \infty$, decomposition cost is in $\tilde{O}(1)$

Complexity analysis

- size of factor base $\#\mathcal{F} \simeq q$ \rightsquigarrow linear algebra in $\tilde{O}(nq^2)$
- proba. of decomposition $\simeq \frac{\#(\mathcal{F}^n/\mathfrak{S}_n)}{\#\mathcal{E}(\mathbb{F}_{q^n})} \simeq \frac{1}{n!}$ \rightsquigarrow need O(n!q) decomposition tests
- for fixed *n* and $q \to \infty$, decomposition cost is in $ilde{O}(1)$

 \Rightarrow Total cost in $\tilde{O}(q^2)$ (from linear algebra)

Complexity analysis

- size of factor base #*F* ≃ *q* → linear algebra in Õ(nq²)
- proba. of decomposition $\simeq \frac{\#(\mathcal{F}^n/\mathfrak{S}_n)}{\#\mathcal{E}(\mathbb{F}_{q^n})} \simeq \frac{1}{n!}$ \rightsquigarrow need O(n!q) decomposition tests
- for fixed n and $q \to \infty$, decomposition cost is in $ilde{O}(1)$

 \Rightarrow Total cost in $ilde{O}(q^2)$ (from linear algebra)

Rebalance the two steps with 2LP Asymptotic complexity becomes $\tilde{O}(q^{2-2/n})$

 \rightsquigarrow better than generic attacks as soon as $n \geq 3$

Vanessa VITSE (UVSQ)

- 3

49 / 86

In practice...

Decomposition cost

Solving multivariate polynomial systems is **very** expensive Rough cost estimate is $2^{O(n^2)} \rightsquigarrow$ only feasible for *n* small In practice...

Decomposition cost

Solving multivariate polynomial systems is **very** expensive Rough cost estimate is $2^{O(n^2)} \rightsquigarrow$ only feasible for *n* small

Experimentally:

- decomposition too hard for n > 4
- generic attacks always faster for "reasonable" group sizes

In practice...

Decomposition cost

Solving multivariate polynomial systems is **very** expensive Rough cost estimate is $2^{O(n^2)} \rightsquigarrow$ only feasible for *n* small

Experimentally:

- decomposition too hard for n > 4
- generic attacks always faster for "reasonable" group sizes
- **②** Theoretically: gives a subexponential algorithm when $n = \Theta(\sqrt{\log q})$ [Diem]

Subsection 3

Other applications

Vanessa VITSE (UVSQ)

Summer School - ECC 2011 51 / 86

<ロ> (日) (日) (日) (日) (日)

3

Index calculus on small dimension abelian varieties [Gaudry]

- Last algorithm uses that $E(\mathbb{F}_{q^n}) = W_{\mathbb{F}_{q^n}/\mathbb{F}_q}(E)(\mathbb{F}_q)$, *n*-dimensional abelian variety over \mathbb{F}_q
- Specific case of a more general index calculus algorithm for abelian varieties of small dimension

Index calculus on small dimension abelian varieties [Gaudry]

- Last algorithm uses that $E(\mathbb{F}_{q^n}) = W_{\mathbb{F}_{q^n}/\mathbb{F}_q}(E)(\mathbb{F}_q)$, *n*-dimensional abelian variety over \mathbb{F}_q
- Specific case of a more general index calculus algorithm for abelian varieties of small dimension

Let $\mathcal A$ dimension d abelian variety defined over $\mathbb F_q$

- For fixed d, asymptotic cost of index calculus on $\mathcal{A}(\mathbb{F}_q)$ in $\tilde{O}(q^{2-2/d})$
- Main practical obstacle: using algebraic expression of group law, decomposition tests ↔ resolution of polynomial systems

Index calculus on small dimension abelian varieties [Gaudry]

- Last algorithm uses that $E(\mathbb{F}_{q^n}) = W_{\mathbb{F}_{q^n}/\mathbb{F}_q}(E)(\mathbb{F}_q)$, *n*-dimensional abelian variety over \mathbb{F}_q
- Specific case of a more general index calculus algorithm for abelian varieties of small dimension

Let $\mathcal A$ dimension d abelian variety defined over $\mathbb F_q$

- For fixed d, asymptotic cost of index calculus on $\mathcal{A}(\mathbb{F}_q)$ in $\tilde{O}(q^{2-2/d})$
- Main practical obstacle: using algebraic expression of group law, decomposition tests ↔ resolution of polynomial systems

The hyperelliptic case

Weil restriction of $Jac_{\mathcal{H}}(\mathbb{F}_{q^n})$: abelian variety of dimension *ng*. Nice formulation of the polynomial systems [Nagao]

 \Rightarrow feasible for n = 2, $g \le 4$, and n = 3, g = 2.

52 / 86

Index calculus on small degree plane curves [Diem]

Diem's algorithm

- applies to Jacobians of curves admitting a small degree plane model
- uses divisors of simple functions to find relations between factor base elements
- relies strongly on the double large prime variation

Index calculus on small degree plane curves [Diem]

Diem's algorithm

- applies to Jacobians of curves admitting a small degree plane model
- uses divisors of simple functions to find relations between factor base elements
- relies strongly on the double large prime variation

For $\mathcal{C}_{|\mathbb{F}_q}$ of fixed degree d, complexity in $ilde{O}(q^{2-2/(d-2)})$

- most genus g curves admit a plane model of degree g + 1 \rightsquigarrow complexity in $\tilde{O}(q^{2-2/(g-1)})$
- not true for hyperelliptic curves

Index calculus on small degree plane curves [Diem]

Diem's algorithm

- applies to Jacobians of curves admitting a small degree plane model
- uses divisors of simple functions to find relations between factor base elements
- relies strongly on the double large prime variation

For $\mathcal{C}_{|\mathbb{F}_q}$ of fixed degree d, complexity in $ilde{O}(q^{2-2/(d-2)})$

- most genus g curves admit a plane model of degree g + 1 \rightsquigarrow complexity in $\tilde{O}(q^{2-2/(g-1)})$
- not true for hyperelliptic curves

Consequence

Jacobians of non-hyperelliptic curves usually weaker than those of hyperelliptic curves (especially true for g = 3).

Vanessa VITSE (UVSQ)

53 / 86

イロト イポト イヨト イヨト

Idea of index calculus on small degree plane curves

Idea of index calculus on small degree plane curves

• Take P_1, P_2 small primes
Idea of index calculus on small degree plane curves

- Take P_1, P_2 small primes
- L line through P_1 and P_2 if $L \cap C(\mathbb{F}_q) = \{P_1, \dots, P_d\}$, then relation:

 $(P_1)+\cdots+(P_d)-D_\infty\sim 0$

54 / 86

Idea of index calculus on small degree plane curves

- Take P_1, P_2 small primes
- L line through P_1 and P_2 if $L \cap C(\mathbb{F}_q) = \{P_1, \dots, P_d\}$, then relation:

 $(P_1)+\cdots+(P_d)-D_\infty\sim 0$

Idea of index calculus on small degree plane curves

- Take P_1, P_2 small primes
- L line through P_1 and P_2 if $L \cap C(\mathbb{F}_q) = \{P_1, \dots, P_d\}$, then relation:

 $(P_1) + \cdots + (P_d) - D_{\infty} \sim 0$

Section 4

Transfer attacks

Vanessa VITSE (UVSQ)

Summer School - ECC 2011 55 / 86

<ロ> (日) (日) (日) (日) (日)

3

Principle

Principle of transfer

Transfer maps

G_2 : group where DLP is weak If there exists $\varphi \in \text{Hom}(G_1, G_2)$ one-to-one and **computable**, then DLP is also weak on G_1 .

Let $\varphi \in \text{Hom}(G_1, G_2)$, $g, h \in G_1$. If $\text{ord}(\varphi(g)) = \text{ord}(g)$, then

$$h = [x]g \Leftrightarrow \varphi(h) = [x]\varphi(g).$$

Principle of transfer

Transfer maps

 G_2 : group where DLP is weak If there exists $\varphi \in \text{Hom}(G_1, G_2)$ one-to-one and **computable**, then DLP is also weak on G_1 .

Let $\varphi \in \mathsf{Hom}(G_1, G_2)$, $g, h \in G_1$. If $\mathsf{ord}(\varphi(g)) = \mathsf{ord}(g)$, then

$$h = [x]g \Leftrightarrow \varphi(h) = [x]\varphi(g).$$

Main target groups for $G_1 = E(\mathbb{F}_q)$

Groups with faster algorithms than square-root algorithms:

•
$$\mathbb{F}_{q^k}^*$$

• $\mathsf{Jac}_{\mathcal{C}}(\mathbb{F}_{q'})$, *q* power of *q'*

- 4 週 ト - 4 三 ト - 4 三 ト

Transfer via pairings

Let G_1, G_2 two additive groups of exponent n and G_3 a multiplicative cyclic group of order *n*.

Definition

A pairing is a map $e: G_1 \times G_2 \rightarrow G_3$ which is:

• bilinear:
$$e([a]g_1,[b]g_2)=e(g_1,g_2)^{ab}$$

• non degenerate: $\forall g_1 \in G_1 \setminus \{0\}, \exists g_2 \in G_2, e(g_1, g_2) \neq 1$

Allows to transfer DLP given by (g, h = [x]g) from G_1 to G_3 :

• non-degeneracy
$$\Rightarrow \exists g_2 \in G_2, \operatorname{ord}(g) = \operatorname{ord}(e(g, g_2))$$

• transfer map $\varphi = e(., g_2)$ from G_1 to G_3

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ■ ● ● ● ●

Pairings on elliptic curves

The Weil pairing

- E elliptic curve defined over \mathbb{F}_{q}
- *n* integer co-prime to char(\mathbb{F}_{q})
- k = k(n,q) embedding degree, i.e. smallest integer s.t. $n|(q^k 1)|$

Weil pairing: $w_n : E[n] \times E[n] \rightarrow \mu_n \subset \mathbb{F}^*_{a^k}$ computable in $O(\log n)$ operations in \mathbb{F}_{a^k} [Miller]

Pairings on elliptic curves

The Weil pairing

- E elliptic curve defined over \mathbb{F}_{q}
- *n* integer co-prime to char(\mathbb{F}_{q})
- k = k(n, q) embedding degree, i.e. smallest integer s.t. $n|(q^k 1)|$

Weil pairing: $w_n : E[n] \times E[n] \rightarrow \mu_n \subset \mathbb{F}^*_{a^k}$ computable in $O(\log n)$ operations in \mathbb{F}_{a^k} [Miller]

Menezes-Okamoto-Vanstone's attack

Transfer + index calculus on $\mathbb{F}_{a^k}^*$ efficient when k small:

- k < 6 for supersingular curves \rightsquigarrow always vulnerable
- but $k \simeq q$ for random curves \rightsquigarrow most elliptic curves remain safe

Pairings on elliptic curves

The Weil pairing

- E elliptic curve defined over \mathbb{F}_{q}
- *n* integer co-prime to char(\mathbb{F}_{q})
- k = k(n,q) embedding degree, i.e. smallest integer s.t. $n|(q^k 1)|$

Weil pairing: $w_n : E[n] \times E[n] \rightarrow \mu_n \subset \mathbb{F}^*_{a^k}$ computable in $O(\log n)$ operations in \mathbb{F}_{a^k} [Miller]

Menezes-Okamoto-Vanstone's attack

Transfer + index calculus on $\mathbb{F}_{a^k}^*$ efficient when k small:

- k < 6 for supersingular curves \rightsquigarrow always vulnerable
- but $k \simeq q$ for random curves \rightsquigarrow most elliptic curves remain safe

Other pairings available [Frey-Rück], but same condition on the embedding degree... ▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Vanessa VITSE (UVSQ)

Anomalous curves

Elliptic curves over q-adic fields

 \mathcal{E} elliptic curve defined over \mathbb{Q}_q , $q = p^n$. Reduction mod p map

 $\psi: \mathcal{E}(\mathbb{Q}_q) \to E(\mathbb{F}_q)$

where *E* (possibly singular) elliptic curve defined over \mathbb{F}_q .

Fact: DLP on $\mathcal{E}_1(\mathbb{Q}_q) = \ker \psi$ is easy

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣 □ の Q @

Anomalous curves

Elliptic curves over q-adic fields \mathcal{E} elliptic curve defined over \mathbb{Q}_q , $q = p^n$. Reduction mod p map

```
\psi: \mathcal{E}(\mathbb{Q}_q) \to E(\mathbb{F}_q)
```

where *E* (possibly singular) elliptic curve defined over \mathbb{F}_q .

Fact: DLP on $\mathcal{E}_1(\mathbb{Q}_q) = \ker \psi$ is easy

Several attempts to transfer the DLP from $E(\mathbb{F}_q)$ to $\mathcal{E}_1(\mathbb{Q}_q)$ Only success so far: when DLP defined on an order p subgroup of $E \rightsquigarrow$ resolution in polynomial complexity

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣 □ の Q @

Anomalous curves

Elliptic curves over q-adic fields \mathcal{E} elliptic curve defined over \mathbb{Q}_q , $q = p^n$. Reduction mod p map

 $\psi: \mathcal{E}(\mathbb{Q}_q) \to E(\mathbb{F}_q)$

where *E* (possibly singular) elliptic curve defined over \mathbb{F}_q .

Fact: DLP on $\mathcal{E}_1(\mathbb{Q}_q) = \ker \psi$ is easy

Several attempts to transfer the DLP from $E(\mathbb{F}_q)$ to $\mathcal{E}_1(\mathbb{Q}_q)$ Only success so far: when DLP defined on an order *p* subgroup of *E* \rightsquigarrow resolution in polynomial complexity

Vulnerable curves satisfy $p|\#E(\mathbb{F}_q)$ (anomalous curves) \rightsquigarrow very few of them, can be easily avoided

Weil descent: geometric approach [Frey]

 $\mathcal{A}_{|\mathbb{F}_q}$: abelian variety, e.g. Weil restriction of $\operatorname{Jac}_{\mathcal{C}}(\mathbb{F}_{q^n})$. Possible DLP pull-back from $\mathcal A$ to $\mathsf{Jac}_{\mathcal C'}(\mathbb F_q)$ for any curve $\mathcal C'\subset \mathcal A$

Weil descent

Weil descent: geometric approach [Frey]

 $\mathcal{A}_{|\mathbb{F}_q}$: abelian variety, e.g. Weil restriction of $\operatorname{Jac}_{\mathcal{C}}(\mathbb{F}_{q^n})$. Possible DLP pull-back from \mathcal{A} to $\operatorname{Jac}_{\mathcal{C}'}(\mathbb{F}_a)$ for any curve $\mathcal{C}' \subset \mathcal{A}$

Vanessa VITSE (UVSQ)

Weil descent

Weil descent: geometric approach [Frey]

 $\mathcal{A}_{|\mathbb{F}_q}$: abelian variety, e.g. Weil restriction of $\operatorname{Jac}_{\mathcal{C}}(\mathbb{F}_{q^n})$. Possible DLP pull-back from \mathcal{A} to $\operatorname{Jac}_{\mathcal{C}'}(\mathbb{F}_q)$ for any curve $\mathcal{C}' \subset \mathcal{A}$

Difficulties

- find convenient C' with small genus
- computation of preimages \leftrightarrow decompositions into sum of points of \mathcal{C}' \leftrightarrow resolutions of multivariate polynomial systems

Vanessa VITSE (UVSQ)

60 / 86

Weil descent: Cover attacks

 ${\mathcal C}$ algebraic curve defined over ${\mathbb F}_{q^n}$

Existence of a **cover map** $\pi: \mathcal{C}' \to \mathcal{C}$, where \mathcal{C}' defined over \mathbb{F}_q

 \Rightarrow "conorm-norm" homomorphism between $\operatorname{Jac}_{\mathcal{C}}(\mathbb{F}_{q^n})$ and $\operatorname{Jac}_{\mathcal{C}'}(\mathbb{F}_q)$

Weil descent: Cover attacks

 ${\mathcal C}$ algebraic curve defined over ${\mathbb F}_{q^n}$

Existence of a **cover map** $\pi : \mathcal{C}' \to \mathcal{C}$, where \mathcal{C}' defined over \mathbb{F}_q

 \Rightarrow "conorm-norm" homomorphism between $\operatorname{Jac}_{\mathcal{C}}(\mathbb{F}_{q^n})$ and $\operatorname{Jac}_{\mathcal{C}'}(\mathbb{F}_q)$

- conorm-norm map efficiently computable if deg π not too large
- transfer the DLP from $G \subset \operatorname{Jac}_{\mathcal{C}}(\mathbb{F}_{q^n})$ to $\operatorname{Jac}_{\mathcal{C}'}(\mathbb{F}_q)$ \rightsquigarrow need \mathcal{C}' with small genus

• want ker
$$(ext{tr} \circ \pi^*) \cap \mathcal{G} = \{\mathcal{O}_\mathcal{C}\} \ (\Rightarrow g_{\mathcal{C}'} \geq ng_\mathcal{C})$$

61 / 86

Weil descent: Cover attacks

 ${\mathcal C}$ algebraic curve defined over ${\mathbb F}_{q^n}$

Existence of a **cover map** $\pi: \mathcal{C}' \to \mathcal{C}$, where \mathcal{C}' defined over \mathbb{F}_q

 \Rightarrow "conorm-norm" homomorphism between Jac $_{\mathcal{C}}(\mathbb{F}_{q^n})$ and Jac $_{\mathcal{C}'}(\mathbb{F}_q)$

- conorm-norm map efficiently computable if deg π not too large
- transfer the DLP from $G \subset \operatorname{Jac}_{\mathcal{C}}(\mathbb{F}_{q^n})$ to $\operatorname{Jac}_{\mathcal{C}'}(\mathbb{F}_q)$ \rightsquigarrow need \mathcal{C}' with small genus

• want ker
$$(tr \circ \pi^*) \cap G = \{\mathcal{O}_{\mathcal{C}}\} \ (\Rightarrow g_{\mathcal{C}'} \ge ng_{\mathcal{C}})$$

Difficulty: how to find such a curve \mathcal{C}' ?

Vanessa VITSE (UVSQ)

Transfer via isogenies

Reminders

Non constant rational map $\phi: E_1 \to E_2$ isogeny if $\phi(\mathcal{O}_{E_1}) = \mathcal{O}_{E_2}$

- an isogeny is a group morphism
- existence of a dual isogeny $\hat{\phi} : E_2 \to E_1$ \rightsquigarrow "being isogenous" is an equivalence relation
- E_1 and E_2 are isogenous iff $\#E_1 = \#E_2$

Hasse bound: $\Theta(\sqrt{q})$ isogeny classes \rightsquigarrow on average, $O(\sqrt{q})$ curves in each isogeny class

▲冊▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで

Transfer via isogenies

Reminders

Non constant rational map $\phi: E_1 \to E_2$ isogeny if $\phi(\mathcal{O}_{E_1}) = \mathcal{O}_{E_2}$

- an isogeny is a group morphism
- existence of a dual isogeny $\hat{\phi} : E_2 \to E_1$ \rightsquigarrow "being isogenous" is an equivalence relation
- E_1 and E_2 are isogenous iff $\#E_1 = \#E_2$

Hasse bound: $\Theta(\sqrt{q})$ isogeny classes \rightsquigarrow on average, $O(\sqrt{q})$ curves in each isogeny class

Motivation

 E_1 , E_2 isogenous and DLP weak on $E_2 \Rightarrow$ DLP weak on $E_1 \rightarrow$ or useful for anomalous or small embedding degree curves, but may be interesting to reach curves vulnerable to Weil descent attacks

Vanessa VITSE (UVSQ)

Attacks on the DLF

 ▶
 <</td>
 ≥
 >
 ≥
 ≥

 Summer School – ECC 2011

62 / 86

Isogeny walk [Galbraith-Hess-Smart]

Strategy 1: random walk of small degree isogenies starting from E_1 , until a weak curve E_2 is found

- best approach when cardinality of weak curves is large
- polynomial complexity for each step in most cases

Strategy 2: search all weak curves until one with $\#E_1 = \#E_2$ is found, then compute isogeny from E_1 to E_2

- need to compute cardinality of weak curves (polynomial complexity)
- cost of finding the isogeny in $ilde{O}(q^{1/4})$ in most cases

Isogenies

More isogenies

Isogeny of abelian varieties

More generally, rational map $\phi : A_1 \to A_2$ isogeny if ϕ surjective with finite fibers and $\phi(\mathcal{O}_1) = \mathcal{O}_2$

 \rightarrow still a group morphism

Isogenies

More isogenies

Isogeny of abelian varieties

More generally, rational map $\phi: \mathcal{A}_1 \to \mathcal{A}_2$ isogeny if ϕ surjective with finite fibers and $\phi(\mathcal{O}_1) = \mathcal{O}_2$ \rightarrow still a group morphism

Index calculus usually more efficient for Jacobians in the non-hyperelliptic case than in the hyperelliptic case (for fixed genus)

Idea [Smith]

Use isogenies to transfer DLP from $Jac_{\mathcal{H}}(\mathbb{F}_q)$ to $Jac_{\mathcal{C}}(\mathbb{F}_q)$ Main application: genus 3 case \rightsquigarrow complexity from $\tilde{O}(q^{4/3})$ down to $\tilde{O}(q)$ if successful.

イロト 不得 トイヨト イヨト 二日

Section 5

Gaudry-Hess-Smart technique

Vanessa VITSE (UVSQ)

A B F A B F Summer School - ECC 2011 65 / 86

A.

3

Geometric background

 ${\mathcal C}$ algebraic curve defined over ${\mathbb F}_{q^n}$

Goal of cover attack

GHS

Geometric background

 ${\mathcal C}$ algebraic curve defined over ${\mathbb F}_{q^n}$

Goal of cover attack

GHS

Idea: to have \mathcal{C}' of small genus, try an equation of small degree \rightsquigarrow intersect \mathcal{W} by hyperplanes

Geometric background

 ${\mathcal C}$ algebraic curve defined over ${\mathbb F}_{q^n}$

Goal of cover attack

Find \mathcal{C}' defined over \mathbb{F}_q and $\pi : \mathcal{C}' \to \mathcal{C}$ morphism defined over \mathbb{F}_{q^n} \updownarrow Find \mathcal{C}' defined over \mathbb{F}_q and $\psi : \mathcal{C}' \to \mathcal{W}$ morphism defined over \mathbb{F}_q , where $\mathcal{W} = \mathcal{W}_{\mathbb{F}_{q^n}/\mathbb{F}_q}(\mathcal{C})$ is the Weil restriction of \mathcal{C}

GHS

Idea: to have \mathcal{C}' of small genus, try an equation of small degree \rightsquigarrow intersect $\mathcal W$ by hyperplanes

Conceptually nicer formulation in terms of function fields [GHS]

Function fields

Reminders

- Function field over F/\mathbb{F}_q : extension of transcendence degree 1
- Field of constants of F is $F \cap \overline{\mathbb{F}_q}$
- Category equivalence between curves and function fields

67 / 86

 \mathcal{H} hyperelliptic curve. Goal: find fields F and F' s.t.

 \mathcal{H} hyperelliptic curve. Goal: find fields F and F' s.t.

Lift of Frobenius σ must exist on F', with fixed subfield F

 \mathcal{H} hyperelliptic curve. Goal: find fields F and F' s.t.

No lift of Frobenius on $\mathbb{F}_{q^n}(\mathcal{H})$, but on index 2 subfield $\mathbb{F}_{q^n}(x)$

 \mathcal{H} hyperelliptic curve. Goal: find fields F and F' s.t.

Choose for F' compositum of function fields $\mathbb{F}_{q^n}(\mathcal{H}^{\sigma^i})$.

 \mathcal{H} hyperelliptic curve. Goal: find fields F and F' s.t.

Choose for F' compositum of function fields $\mathbb{F}_{q^n}(\mathcal{H}^{\sigma^i})$. Construction depends of the choice of x, i.e. of the equation for \mathcal{H}

From the geometric to the function field approach

Hyperelliptic curve \mathcal{H} : $Y^2 + Y h_0(X) = h_1(X), \quad h_0, h_1 \in \mathbb{F}_{q^n}[X]$

Weil restriction

Choose $(\theta^{\sigma^i})_i$ normal basis of \mathbb{F}_{q^n} with $\sum \theta^{\sigma^i} = 1$. Let $X = \sum_i x_i \theta^{\sigma^i}$, $Y = \sum_i z_i \theta^{\sigma^i}$. Equation of \mathcal{W} given (component-wise) by

$$\left(\sum_{i} z_{i} \theta^{\sigma^{i}}\right)^{2} + \left(\sum_{i} z_{i} \theta^{\sigma^{i}}\right) h_{0}\left(\sum_{i} x_{i} \theta^{\sigma^{i}}\right) = h_{1}\left(\sum_{i} x_{i} \theta^{\sigma^{i}}\right)$$

◎ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ の Q @

From the geometric to the function field approach

Hyperelliptic curve \mathcal{H} : $Y^2 + Y h_0(X) = h_1(X), \quad h_0, h_1 \in \mathbb{F}_{q^n}[X]$

Weil restriction

Choose $(\theta^{\sigma^i})_i$ normal basis of \mathbb{F}_{q^n} with $\sum \theta^{\sigma^i} = 1$. Let $X = \sum_i x_i \theta^{\sigma^i}, Y = \sum_i z_i \theta^{\sigma^i}$. Equation of \mathcal{W} given (component-wise) by $(\sum_{i=1}^{n} \theta^{\sigma^i})_{i=1}^2 + (\sum_{i=1}^{n} \theta^{\sigma^i})_{i=1}^n + (\sum_{i=1}^{n} \theta^{\sigma^i})_{$

$$\left(\sum_{i} z_{i} \theta^{\sigma'}\right)^{2} + \left(\sum_{i} z_{i} \theta^{\sigma'}\right) h_{0}\left(\sum_{i} x_{i} \theta^{\sigma'}\right) = h_{1}\left(\sum_{i} x_{i} \theta^{\sigma'}\right)$$

Hyperplane sections: put $x_0 = x_1 = \ldots = x_{n-1} = x$. Then equation of the intersection is given (component-wise) by

$$\left(\sum_{i} z_{i} \theta^{\sigma^{i}}\right)^{2} + \left(\sum_{i} z_{i} \theta^{\sigma^{i}}\right) h_{0}(x) = h_{1}(x)$$

- ▲□ ▶ ▲ 目 ▶ ▲ 目 ▶ ○ ○ ○

69 / 86
GHS

Equation of the hyperplane section is $(\sum_{i} z_i \theta^{\sigma^i})^2 + (\sum_{i} z_i \theta^{\sigma^i}) h_0(x) = h_1(x)$

GHS

Equation of the hyperplane section is $(\sum_{i} z_i \theta^{\sigma^i})^2 + (\sum_{i} z_i \theta^{\sigma^i}) h_0(x) = h_1(x)$

Change of coordinates over \mathbb{F}_{q^n} : $(y_0 \cdots y_{n-1}) = (z_0 \cdots z_{n-1}) M$ where $M = (\theta^{\sigma^{i+j-2}})_{i,j}$.

New equation defined over \mathbb{F}_{q^n} of the hyperplane section is

(*)
$$\begin{cases} y_0^2 + y_0 h_0(x) = h_1(x) \\ \vdots \\ y_{n-1}^2 + y_{n-1} h_0^{\sigma^{n-1}}(x) = h_1^{\sigma^{n-1}}(x) \end{cases}$$

Vanessa VITSE (UVSQ)

GHS

Equation of the hyperplane section is $(\sum_{i} z_i \theta^{\sigma^i})^2 + (\sum_{i} z_i \theta^{\sigma^i}) h_0(x) = h_1(x)$

Change of coordinates over \mathbb{F}_{q^n} : $(y_0 \cdots y_{n-1}) = (z_0 \cdots z_{n-1}) M$ where $M = (\theta^{\sigma^{i+j-2}})_{i,j}$.

New equation defined over \mathbb{F}_{q^n} of the hyperplane section is

(*)
$$\begin{cases} y_0^2 + y_0 h_0(x) = h_1(x) \\ \vdots \\ y_{n-1}^2 + y_{n-1} h_0^{\sigma^{n-1}}(x) = h_1^{\sigma^{n-1}}(x) \end{cases}$$

Let C' = an irreducible component of the intersection. Then $\mathbb{F}_{q^n}(C') = \mathbb{F}_{q^n}(x, y_0, \dots, y_{n-1})$ where the y_i 's satisfy (*).

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ● ●

70 / 86

GHS

Equation of the hyperplane section is $(\sum_{i} z_i \theta^{\sigma^i})^2 + (\sum_{i} z_i \theta^{\sigma^i}) h_0(x) = h_1(x)$

Change of coordinates over \mathbb{F}_{q^n} : $(y_0 \cdots y_{n-1}) = (z_0 \cdots z_{n-1}) M$ where $M = (\theta^{\sigma^{i+j-2}})_{i,j}$.

New equation defined over \mathbb{F}_{q^n} of the hyperplane section is

(*)
$$\begin{cases} y_0^2 + y_0 h_0(x) = h_1(x) \\ \vdots \\ y_{n-1}^2 + y_{n-1} h_0^{\sigma^{n-1}}(x) = h_1^{\sigma^{n-1}}(x) \end{cases}$$

Let C' = an irreducible component of the intersection. Then $\mathbb{F}_{q^n}(C') = \mathbb{F}_{q^n}(x, y_0, \dots, y_{n-1})$ where the y_i 's satisfy (*).

This is exactly the compositum $F' = \prod_i \mathbb{F}_{q^n}(\mathcal{H}^{\sigma^i})$.

70 / 86

Magic number

GHS

- *m* "magic number": the genus *g* of *F*' depends essentially of $[F' : \mathbb{F}_{q^n}(x)] = 2^m$
- For most curves \mathcal{H} , $m \simeq n \rightarrow g(\mathcal{C}')$ is of order $2^n g(\mathcal{H})$ \rightsquigarrow few curves are directly vulnerable

∃ ► < ∃ ►</p>

Recall:

$$F' = \prod_{i} \mathbb{F}_{q^{n}}(\mathcal{H}^{\sigma^{i}})$$

= $\mathbb{F}_{q^{n}}(x, y_{0}, \dots, y_{n-1})$
= $\mathbb{F}_{q^{n}}(x, y_{0}, \dots, y_{m-1})$

where $y_i^2 + y_i h_0^{\sigma^i}(x) = h_1^{\sigma^i}(x)$

- Field of constants of F' must be \mathbb{F}_{q^n}
- Frobenius σ defined on F_{qⁿ}(x) (with σ(x) = x) must have an order n extension to F'
 → always the case if n odd or m = n

• Kernel of conorm-norm map must preserve a large prime order subgroup

3

- Kernel of conorm-norm map must preserve a large prime order subgroup
 - ► fails if equation of *H* defined over proper subfield:

Transfer map vanishes on (large) kernel of bottom-row map.

- Kernel of conorm-norm map must preserve a large prime order subgroup
 - ► fails if equation of *H* defined over proper subfield:

$$\begin{array}{c} \operatorname{Jac}_{\mathcal{C}'}(\mathbb{F}_{q^n}) \xrightarrow{\operatorname{tr}_{\mathbb{F}_{q^n}/\mathbb{F}_{q^d}}} \operatorname{Jac}_{\mathcal{C}'}(\mathbb{F}_{q^d}) \xrightarrow{\operatorname{tr}_{\mathbb{F}_{q^d}/\mathbb{F}_{q}}} \operatorname{Jac}_{\mathcal{C}'}(\mathbb{F}_{q}) \\ \xrightarrow{\pi^*} & \\ \pi^* & \\ \operatorname{Jac}_{\mathcal{H}}(\mathbb{F}_{q^n}) \xrightarrow{\operatorname{tr}_{\mathbb{F}_{q^n}/\mathbb{F}_{q^d}}} \operatorname{Jac}_{\mathcal{H}}(\mathbb{F}_{q^d}) \end{array}$$

Transfer map vanishes on (large) kernel of bottom-row map.

 ▶ ok otherwise: kernel of conorm-norm map ⊂ Jac_H(𝔽_{qⁿ})[2^{m-1}] [Diem,Hess]

 $\mathcal{H}: y^2 + y h_0(x) = h_1(x)$. Change of variable $y \leftrightarrow y/h_0(x)$: \rightsquigarrow new equation in Artin-Schreier form $y^2 + y = h_1(x)/h_0(x)^2 = f(x)$.

GHS

Artin-Schreier operator

On any char. 2 field K, define $\mathcal{P}: K \to K$, $z \mapsto z^2 + z$

$\mathbb{F}_2[t]$ -action

For any $P = \sum_i a_i t^i$ in $\mathbb{F}_2[t]$, any $g \in \mathbb{F}_{q^n}(x)$, let

$$P \cdot g = \sum_{i} a_{i} g^{\sigma^{i}}$$

 \rightsquigarrow turns $\mathbb{F}_{q^n}(x)$ and $\mathbb{F}_{q^n}(x)/\mathcal{P}(\mathbb{F}_{q^n}(x))$ into $\mathbb{F}_2[t]$ -modules

$$\mathcal{H}: y^2 + y = f(x)$$

Main result

Let $\mathcal{I}_f = \{P \in \mathbb{F}_2[t] : P \cdot f \in \mathcal{P}(\mathbb{F}_{q^n}(x))\} = \langle M_f \rangle$. Then $m = \deg M_f$. Furthermore $M_f | t^n + 1$.

$$\mathcal{H}: y^2 + y = f(x)$$

Main result

Let $\mathcal{I}_f = \{P \in \mathbb{F}_2[t] : P \cdot f \in \mathcal{P}(\mathbb{F}_{q^n}(x))\} = \langle M_f \rangle$. Then $m = \deg M_f$. Furthermore $M_f | t^n + 1$.

Consequence

Magic number m cannot take all values between 1 and n

In particular if *n* prime, then $t^n + 1 = (t+1)\Phi_n(t) = (t+1)\prod_i \Phi_{n,i}(t)$ where deg $\Phi_{n,i} = \phi_2(n)$ = order of 2 in $(\mathbb{Z}/n\mathbb{Z})^*$ $\rightsquigarrow m = k\phi_2(n)$ or $k\phi_2(n) + 1$ for some integer k

$$\mathcal{H}: y^2 + y = f(x)$$

Main result

Let $\mathcal{I}_f = \{P \in \mathbb{F}_2[t] : P \cdot f \in \mathcal{P}(\mathbb{F}_{q^n}(x))\} = \langle M_f \rangle$. Then $m = \deg M_f$. Furthermore $M_f | t^n + 1$.

Consequence

Magic number m cannot take all values between 1 and n

In particular if *n* prime, then $t^n + 1 = (t+1)\Phi_n(t) = (t+1)\prod_i \Phi_{n,i}(t)$ where deg $\Phi_{n,i} = \phi_2(n)$ = order of 2 in $(\mathbb{Z}/n\mathbb{Z})^*$ $\rightsquigarrow m = k\phi_2(n)$ or $k\phi_2(n) + 1$ for some integer k

Problem: $\phi_2(n)$ small only for few primes *n* (Mersenne or Fermat primes), so GHS cannot work for all field extensions.

Vanessa VITSE (UVSQ)

The elliptic curve case

Let E : $y^2 + xy = x^3 + ax^2 + b$. After simple change of variables, new equation in Artin-Schreier form:

$$E : y^2 + y = \beta x + \alpha + \gamma/x$$

Let $M_{\beta} \in \mathbb{F}_2[t]$ minimal polynomial s.t. $M_{\beta} \cdot \beta = 0$; same for γ

Theorem

Assume $\operatorname{tr}_{\mathbb{F}_{q^n}/\mathbb{F}_2}(\alpha) = 0$ or $(t+1)|\operatorname{lcm}(M_\beta, M_\gamma)$. Then

- $M_f = lcm(M_\beta, M_\gamma)$ and constant field of F' is \mathbb{F}_{q^n}
- genus of F' is

$$g(F')=2^m-2^{m-\deg M_\beta}-2^{m-\deg M_\gamma}+1$$

• if β or γ is in \mathbb{F}_q , then F' is hyperelliptic

イロト 不得下 イヨト イヨト 二日

A toy example $\text{On } \mathbb{F}_{2^7} \simeq \mathbb{F}_2(\theta) \text{ where } \theta^7 + \theta^6 + 1 = 0$

n = 7: factorization of $t^7 + 1$ is $(t + 1)(t^3 + t^2 + 1)(t^3 + t + 1)$ \rightarrow possible values of *m* are 3, 4, 6 or 7 (or 1).

A toy example On $\mathbb{F}_{2^7} \simeq \mathbb{F}_2(\theta)$ where $\theta^7 + \theta^6 + 1 = 0$ Elliptic curve E : $y^2 + xy = x^3 + (\theta^2 + 1)$

イロト 不得 トイヨト イヨト 二日

A toy example

On $\mathbb{F}_{2^7} \simeq \mathbb{F}_2(\theta)$ where $\theta^7 + \theta^6 + 1 = 0$

Elliptic curve E : $y^2 + xy = x^3 + (\theta^2 + 1)$

Change of variable $y \leftrightarrow yx + \sqrt{\theta^2 + 1} \rightsquigarrow$ new equation

$$y^2 + y = x + (\theta + 1)/x$$

A toy example On $\mathbb{F}_{2^7} \simeq \mathbb{F}_2(\theta)$ where $\theta^7 + \theta^6 + 1 = 0$ Elliptic curve E : $y^2 + xy = x^3 + (\theta^2 + 1)$ Change of variable $y \leftrightarrow yx + \sqrt{\theta^2 + 1} \rightarrow \infty$ new equation

$$y^2 + y = x + (\theta + 1)/x$$

•
$$\beta = 1 \rightsquigarrow M_{\beta} = t + 1$$
, $\gamma = \theta + 1 \rightsquigarrow M_{\gamma} = \sum_{i=0}^{6} t^{i}$

Vanessa VITSE (UVSQ)

A toy example On $\mathbb{F}_{2^7} \simeq \mathbb{F}_2(\theta)$ where $\theta^7 + \theta^6 + 1 = 0$ Elliptic curve E : $y^2 + xy = x^3 + (\theta^2 + 1)$ Change of variable $y \leftrightarrow yx + \sqrt{\theta^2 + 1} \rightsquigarrow$ new equation

$$y^2 + y = x + (\theta + 1)/x$$

GHS

•
$$\beta = 1 \rightsquigarrow M_{\beta} = t + 1$$
, $\gamma = \theta + 1 \rightsquigarrow M_{\gamma} = \sum_{i=0}^{6} t^{i}$

•
$$M_h = lcm(M_\beta, M_\gamma) = t^7 + 1$$

 $\Rightarrow m = 7$ and genus of cover is $g = 2^7 - 2^6 - 2^1 + 1 = 63$.

Vanessa VITSE (UVSQ)

A toy example On $\mathbb{F}_{2^7} \simeq \mathbb{F}_2(\theta)$ where $\theta^7 + \theta^6 + 1 = 0$ Elliptic curve E : $y^2 + xy = x^3 + (\theta^2 + 1)$ Change of variable $y \leftrightarrow yx + \sqrt{\theta^2 + 1} \rightsquigarrow$ new equation

$$y^2 + y = x + (\theta + 1)/x$$

GHS

•
$$\beta = 1 \rightsquigarrow M_{\beta} = t + 1$$
, $\gamma = \theta + 1 \rightsquigarrow M_{\gamma} = \sum_{i=0}^{6} t^{i}$

- $M_h = lcm(M_\beta, M_\gamma) = t^7 + 1$ $\Rightarrow m = 7$ and genus of cover is $g = 2^7 - 2^6 - 2^1 + 1 = 63$.
- $\beta \in \mathbb{F}_q$, so cover is hyperelliptic, equation (obtained with a computer algebra system):

$$y^{2} + (\sum_{i=0}^{6} x^{2^{i}})y = \sum_{i=0}^{6} x^{2^{i}}$$

78 / 86

A toy example

On $\mathbb{F}_{2^7}\simeq \mathbb{F}_2(heta)$ where $heta^7+ heta^6+1=0$

Elliptic curve E : $y^2 + xy = x^3 + (\theta^2 + 1)$

On $\mathbb{F}_{2^7}\simeq \mathbb{F}_2(heta)$ where $heta^7+ heta^6+1=0$

Elliptic curve E : $y^2 + xy = x^3 + (\theta^2 + 1)$

Change of variables $y \leftrightarrow yx + \sqrt{\theta^2 + 1}$, $x \leftrightarrow (\theta^5 + \theta^4)x \rightsquigarrow$ new equation

$$y^2 + y = (\theta^5 + \theta^4)x + (\theta^3 + \theta^2)/x$$

On $\mathbb{F}_{2^7}\simeq \mathbb{F}_2(heta)$ where $heta^7+ heta^6+1=0$

Elliptic curve E : $y^2 + xy = x^3 + (\theta^2 + 1)$

Change of variables $y \leftrightarrow yx + \sqrt{\theta^2 + 1}$, $x \leftrightarrow (\theta^5 + \theta^4)x \rightsquigarrow$ new equation

$$y^2 + y = (\theta^5 + \theta^4)x + (\theta^3 + \theta^2)/x$$

•
$$\beta = \theta^5 + \theta^4$$
, $\gamma = \theta^3 + \theta^2 \rightsquigarrow M_\beta = M_\gamma = t^3 + t + 1$

On $\mathbb{F}_{2^7}\simeq \mathbb{F}_2(heta)$ where $heta^7+ heta^6+1=0$

Elliptic curve E : $y^2 + xy = x^3 + (\theta^2 + 1)$

Change of variables $y \leftrightarrow yx + \sqrt{\theta^2 + 1}$, $x \leftrightarrow (\theta^5 + \theta^4)x \rightsquigarrow$ new equation

$$y^2 + y = (\theta^5 + \theta^4)x + (\theta^3 + \theta^2)/x$$

•
$$\beta = \theta^5 + \theta^4$$
, $\gamma = \theta^3 + \theta^2 \rightsquigarrow M_\beta = M_\gamma = t^3 + t + 1$

• $M_h = lcm(M_\beta, M_\gamma) = t^3 + t + 1$ $\Rightarrow m = 3$ and genus of cover is $g = 2^3 - 2^0 - 2^0 + 1 = 7$.

On $\mathbb{F}_{2^7}\simeq \mathbb{F}_2(heta)$ where $heta^7+ heta^6+1=0$

Elliptic curve E : $y^2 + xy = x^3 + (\theta^2 + 1)$

Change of variables $y \leftrightarrow yx + \sqrt{\theta^2 + 1}$, $x \leftrightarrow (\theta^5 + \theta^4)x \rightsquigarrow$ new equation

$$y^{2} + y = (\theta^{5} + \theta^{4})x + (\theta^{3} + \theta^{2})/x$$

•
$$\beta = \theta^5 + \theta^4$$
, $\gamma = \theta^3 + \theta^2 \rightsquigarrow M_\beta = M_\gamma = t^3 + t + 1$

- $M_h = lcm(M_\beta, M_\gamma) = t^3 + t + 1$ $\Rightarrow m = 3$ and genus of cover is $g = 2^3 - 2^0 - 2^0 + 1 = 7$.
- equation of cover (obtained with a computer algebra system):

$$x^2(y^8 + y^4 + y) = x^6 + 1$$
 (not hyperelliptic)

78 / 86

 $\mathcal{H}: y^2 + y h_0(x) = h_1(x)$. Change of variable $y \leftrightarrow y + h_0(x)/2$: \rightsquigarrow new equation in Kummer form $y^2 = f(x)$.

GHS

$$\begin{split} \mathbb{F}_2[t] \text{-action} \\ \text{For any } P &= \sum_i a_i t^i \text{ in } \mathbb{F}_2[t] \text{, any } g \in \mathbb{F}_{q^n}(x)^* / (\mathbb{F}_{q^n}(x)^*)^2 \text{, let} \\ P \cdot g &= \prod_i (g^{\sigma^i})^{a_i} \\ & \rightsquigarrow \text{ turns } \mathbb{F}_{q^n}(x)^* / (\mathbb{F}_{q^n}(x)^*)^2 \text{ into a } \mathbb{F}_2[t] \text{-module} \end{split}$$

▲冊▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで

 $\mathcal{H}: y^2 = f(x)$

Main result (as in binary case) Let $\mathcal{I}_f = \{P \in \mathbb{F}_2[t] : P \cdot f = 0 \text{ in } \mathbb{F}_{q^n}(x)^* / (\mathbb{F}_{q^n}(x)^*)^2\} = \langle M_f \rangle.$ Then $m = \deg M_f$. Furthermore $M_f | t^n + 1$.

Vanessa VITSE (UVSQ)

 $\mathcal{H}: y^2 = f(x)$

Main result (as in binary case) Let $\mathcal{I}_f = \{P \in \mathbb{F}_2[t] : P \cdot f = 0 \text{ in } \mathbb{F}_{q^n}(x)^* / (\mathbb{F}_{q^n}(x)^*)^2\} = \langle M_f \rangle.$ Then $m = \deg M_f$. Furthermore $M_f | t^n + 1$.

Same consequence as in char. 2: possible values of magic number m depend of factorization of $t^n + 1$ \rightsquigarrow GHS cannot work for all field extensions.

Genus of cover

 $\mathcal{H}: y^2 = f(x).$

Let f(x,z) homogenization of f with deg $f = 2g(\mathcal{H}) + 2$, and

$$R_0 = \left\{ [x:z] \in \mathbb{P}^1(\overline{\mathbb{F}_{q^n}}) : f(x,z) = 0 \right\}, \quad R = \bigcup_i \sigma^i(R_0)$$
(\(\lefta)\) ramification points of $\overline{\mathbb{F}_{q^n}}F'/\overline{\mathbb{F}_{q^n}}(x)$)

Theorem [Diem]

Assume constant field of F' is \mathbb{F}_{q^n} . Then

$$g(F') = 2^{m-2}(\#R-4) + 1$$
 (\Leftarrow Hurwitz formula)

|▲■▶ ▲ヨ▶ ▲ヨ▶ | ヨ | のくゆ

Genus of cover

 $\mathcal{H}: y^2 = f(x).$

Let f(x,z) homogenization of f with deg $f = 2g(\mathcal{H}) + 2$, and

$$R_0 = \left\{ [x:z] \in \mathbb{P}^1(\overline{\mathbb{F}_{q^n}}) : f(x,z) = 0 \right\}, \quad R = \bigcup_i \sigma^i(R_0)$$
(\(\lefta)\) ramification points of $\overline{\mathbb{F}_{q^n}}F'/\overline{\mathbb{F}_{q^n}}(x)$)

Theorem [Diem]

Assume constant field of F' is \mathbb{F}_{q^n} . Then

 $g(F') = 2^{m-2}(\#R-4) + 1$ (\Leftarrow Hurwitz formula)

Note: contrarily to the char. 2 case, F' (almost) never hyperelliptic when $m \ge 4$

Vanessa VITSE (UVSQ)

$$E: y^2 = f(x)$$

• f "random" degree 3 polynomial: m = 5, $\#R = 3 \times 5 + 1$ $\Rightarrow g = 2^{5-2}(16 - 4) + 1 = 97$, too large for DLP

イロト 不得 トイヨト イヨト 二日

$$E: y^2 = f(x)$$

• optimal genus obtained for

$$f = (x - a)(x - \sigma(a))(x - \sigma^2(a))(x - \sigma^3(a)), \quad a \in \mathbb{F}_{q^5} \setminus \mathbb{F}_q$$

3

<ロ> (日) (日) (日) (日) (日)

$$E: y^2 = f(x)$$

• optimal genus obtained for

$$f = (x - a)(x - \sigma(a))(x - \sigma^{2}(a))(x - \sigma^{3}(a)), \quad a \in \mathbb{F}_{q^{5}} \setminus \mathbb{F}_{q}$$

$$= \begin{pmatrix} a & \sigma(a) & \sigma^{2}(a) & \sigma^{3}(a) & \sigma^{4}(a) \\ f & f^{\sigma} \\ f^{\sigma} \\ f^{\sigma^{2}} \\ f^{\sigma^{3}} \\ f^{\sigma^{4}} \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \end{pmatrix}$$

3

82 / 86

イロン イヨン イヨン イヨン

$$E: y^2 = f(x)$$

• optimal genus obtained for

$$f = (x - a)(x - \sigma(a))(x - \sigma^{2}(a))(x - \sigma^{3}(a)), \quad a \in \mathbb{F}_{q^{5}} \setminus \mathbb{F}_{q}$$

$$\stackrel{f}{\underset{f^{\sigma}}{f^{\sigma}}} \begin{pmatrix} 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 \end{pmatrix} \quad \rightsquigarrow \begin{array}{c} m = \operatorname{rank} = 4 \\ \#R = 5 \end{array}$$

82 / 86

$$E: y^2 = f(x)$$

• optimal genus obtained for

$$f = (x - a)(x - \sigma(a))(x - \sigma^{2}(a))(x - \sigma^{3}(a)), \quad a \in \mathbb{F}_{q^{5}} \setminus \mathbb{F}_{q}$$

$$a \quad \sigma(a) \quad \sigma^{2}(a) \quad \sigma^{3}(a) \quad \sigma^{4}(a)$$

$$f \quad 1 \quad 1 \quad 1 \quad 0 \quad 1$$

$$f \quad \sigma^{7} \quad 1 \quad 1 \quad 1 \quad 1 \quad 0$$

$$f \quad 1 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1$$

$$f \quad 1 \quad 0 \quad 1 \quad 1 \quad 1$$

$$f \quad \sigma^{7} \quad 1 \quad 1 \quad 1 \quad 1 \quad 1$$

$$f \quad 1 \quad 1 \quad 0 \quad 1 \quad 1$$

$$f \quad \sigma^{7} \quad 1 \quad 1 \quad 1 \quad 1$$

$$f \quad \sigma^{7} \quad 1 \quad 1 \quad 1 \quad 1$$

$$f \quad \sigma^{7} \quad 1 \quad 1 \quad 1 \quad 1$$

$$f \quad \sigma^{7} \quad 1 \quad 1 \quad 1 \quad 1$$

$$f \quad \sigma^{7} \quad 1 \quad 1 \quad 1 \quad 1$$

$$f \quad \sigma^{7} \quad 1 \quad 1 \quad 1 \quad 1$$

$$f \quad \sigma^{7} \quad 1 \quad 1 \quad 1 \quad 1$$

$$f \quad \sigma^{7} \quad 1 \quad 1 \quad 1 \quad 1$$

$$f \quad \sigma^{7} \quad 1 \quad 1 \quad 1 \quad 1$$

$$f \quad \sigma^{7} \quad 0 \quad 1 \quad 1$$

$$f \quad \sigma^{7} \quad 0 \quad 1 \quad 1$$

$$f \quad \sigma^{7} \quad 0 \quad 1 \quad 1$$

$$f \quad \sigma^{7} \quad 0 \quad 1$$

$$\Rightarrow g(F') = 2^{4-2}(5-4) + 1 = 5$$

<ロ> (日) (日) (日) (日) (日)

Scope of the GHS attack

- On some finite fields of composite extension degree, DLP "weak" on most elliptic curves
- Some finite fields are immune to the GHS attack:
 - prime fields
 - \mathbb{F}_{p^2} for elliptic curves
 - \mathbb{F}_{p^n} , p prime, for most large primes n
- Complete overview of the speed-up provided by GHS attack too ambitious for this lecture Keep in mind that:
 - GHS usually gives only minor security reductions over generic attacks
 - but can be very efficient for some very specific curves
GHS and direct index calcu

Comparison between GHS and direct index calculus on $E(\mathbb{F}_{q^n})$

- Both use a one-dimensional subvariety (C' or \mathcal{F}) of Weil restriction $\mathcal{W} = W_{\mathbb{F}_{q^n}/\mathbb{F}_q}(E)$
- Take place in different abelian varieties: $\mathsf{Jac}_{\mathcal{C}'}$ for GHS, $\mathcal W$ for direct index calculus
- Crucial parameter is $g(\mathcal{C}')$ for GHS, *n* for direct index calculus
 - GHS much more efficient on some curves than others
 - direct index calculus equally efficient on all curves
- GHS better for the minority of curves s.t. g(C') close to *n*, otherwise direct index calculus better

Conclusion

Vanessa VITSE (UVSQ)

Attacks on the DLP

Summer School – ECC 2011 85 / 86

3

<ロ> (日) (日) (日) (日) (日)

Consequence on DLP security

For maximal security, one should avoid:

- small embedding degrees
- subgroups of order divisible by the characteristic
- curves of genus $g \ge 3$
- curves defined over small degree extension fields

Consequence on DLP security

For maximal security, one should avoid:

- small embedding degrees
- subgroups of order divisible by the characteristic
- curves of genus $g \ge 3$
- curves defined over small degree extension fields

No known algorithm better than generic attacks on random curves with genus ≤ 2 defined over prime fields (or large prime degree extension fields) \rightsquigarrow best candidates for DLP-based cryptography