Pairings in protocols 2nd meeting of ECLIPSES

V. Vitse

Université Versailles Saint-Quentin - Laboratoire PRiSM

March 25, 2010

General settings

Parameters

- κ security level
- r prime number, q a prime power
- E elliptic curve defined over \mathbf{F}_{q} s.t. $r \mid \# E\left(\mathbf{F}_{q}\right)$
- k embedding degree (smallest integer s.t. $r \mid q^{k}-1$)
- $G_{1}=E\left(\mathbf{F}_{q}\right)[r], G_{3}=\mu_{r}\left(\mathbf{F}_{q^{k}}^{*}\right)$
- $\rho=\log q / \log r$
pairing $=$ bilinear and non degenerate map

$$
E\left(\mathbf{F}_{q}\right)[r] \times E\left(\mathbf{F}_{q^{k}}\right)[r] \rightarrow \mu_{r}\left(\mathbf{F}_{q^{k}}^{*}\right)
$$

In practice, replace $E\left(\mathbf{F}_{q^{k}}\right)[r]$ by a cyclic subgroup G_{2}

General settings

Needs in cryptography

(1) DLP hard in $G_{1} \rightsquigarrow r>2^{2 \kappa}$
(2) DLP hard in $G_{3} \rightsquigarrow$ lower bounds on q^{k}
(3) boundwidth and efficiency

κ	$\|r\|_{2}$	$\left\|q^{k}\right\|_{2}$	k	
		$(\rho \simeq 1)$	$(\rho \simeq 2)$	
80	160	$960-1280$	$6-8$	$3-4$
112	224	$2200-3600$	$10-16$	$5-8$
128	256	$3000-5000$	$12-20$	$6-10$
192	384	$8000-10000$	$20-26$	$10-13$
256	512	$140000-18000$	$28-36$	$14-18$

Choice of G_{2}

(1) $G_{2}=G_{1}$: degeneracy except for modified pairings on supersingular curves

- advantage: oracle DDH on $G_{1}(e(a P, b P)=e(P, c P))$ \rightsquigarrow useful in IBE scheme security proof
- drawbacks: $k \leq 6 \rightsquigarrow$ no short representation of elements on G_{1}
(2) $G_{2} \neq G_{1}$

Choice of $G_{2} \neq G_{1}$

Trace map: $E\left(\mathbf{F}_{q^{k}}\right)[r] \rightarrow E\left(\mathbf{F}_{q}\right)[r]$
(1) $G_{2}=\operatorname{ker} \operatorname{Tr}_{\mathbf{F}_{q^{k}} / \mathbf{F}_{q}}$

- can hash onto G_{2}
- k even \rightsquigarrow point compression by a factor 2: $G_{2} \simeq \tilde{E}\left(\mathbf{F}_{q^{k / 2}}\right)[r]$
- drawbacks: no known computable isomorphism from G_{2} to G_{1} \rightsquigarrow stronger security assumptions needed to compensate
(2) $G_{2}=\langle Q\rangle \neq \operatorname{ker} \operatorname{Tr}_{\mathbf{F}_{q^{k}} / F_{q}}$
- advantage: trace map gives an isomorphism $G_{2} \rightarrow G_{1}$
- drawbacks: cannot hash onto G_{2} and no point compression

Construction of pairing-friendly curves

(1) supersingular case: well classified, but $k=4$ resp. $k=6$ only available in char 2 resp. 3 (index calculus methods more efficient in those cases)
(2) ordinary curves: several families currently available, all relying on the complex multiplication method

- construction requires floating point arithmetic (or table look-up)
- curves defined over prime fields

Key distribution scheme

Tripartite Diffie-Hellman in one round (Joux)
$P \in E\left(\mathbf{F}_{q}\right)[r]$ and $G_{1}=\langle P\rangle$

- $K=e([b] P,[c] P)^{a}=e([a] P,[c] P)^{b}=e([a] P,[b] P)^{c}=e(P, P)^{a b c}$
- also in the asymmetric case, but twice more broadcasts needed

Identity based encryption

Basic scheme of Boneh-Franklin

- setup
- Public parameters: $\left\langle G_{1}, G_{2}, G_{3}, e, P, P_{\text {pub }}=[s] P, H_{1}, H_{2}\right\rangle$ $G_{1}, G_{2}=\langle P\rangle, G_{3}$ cyclic of prime order r $e: G_{1} \times G_{2} \rightarrow G_{3}$ $H_{1}:\{0 ; 1\}^{*} \rightarrow G_{1}$ and $H_{2}: G_{3} \rightarrow\{0 ; 1\}^{n}(n=$ block size $)$
- Master Key: $s \in \mathbf{Z}_{r}^{*}$
- encrypt: to send the message M to $l d$
- compute $Q_{I d}=H_{1}(I d) \in G_{1}$ and choose $t \in_{R} \mathbf{Z}_{r}^{*}$
- send

$$
C=\left\langle C_{1}, C_{2}\right\rangle=\left\langle[t] P, M \oplus H_{2}\left(e\left(Q_{I d}, P_{p u b}\right)^{t}\right)\right\rangle
$$

- extract : compute $S_{I d}=[s] Q_{I d} \in G_{1}$
- decrypt:

$$
M^{\prime}=C_{2} \oplus H_{2}\left(e\left(S_{l d}, C_{1}\right)\right)
$$

Short signature

Boneh-Lynn-Shacham's scheme

- setup
- Public parameters: $\left\langle G_{1}, G_{2}, G_{3}, e, Q, Q_{\text {pub }}=[s] Q, H_{1}\right\rangle$ $G_{1}=\langle P\rangle, G_{2}=\langle Q\rangle, G_{3}$ cyclic of prime order r $e: G_{1} \times G_{2} \rightarrow G_{3}$ $H_{1}:\{0 ; 1\}^{*} \rightarrow G_{1}$
- Private signature key: $s \in \mathbf{Z}_{r}^{*}$
- sign : to sign the message M, compute $S=[s] H_{1}(M) \in G_{1}$
- verify: check that

$$
e(S, Q)=e\left(H_{1}(M), Q_{p u b}\right)
$$

Security consideration

- secret values appear as multiplier of points in G_{1} and G_{2} and as exponent over G_{3}
- pairing arguments are public values, except in the IBE scheme

Pairings in protocols 2nd meeting of ECLIPSES

V. Vitse

Université Versailles Saint-Quentin - Laboratoire PRiSM

March 25, 2010

