

Pairings in protocols 2nd meeting of ECLIPSES

V. Vitse

Université Versailles Saint-Quentin - Laboratoire PRiSM

March 25, 2010

Pairings in protocol

General settings

Parameters

- κ security level
- r prime number, q a prime power
- *E* elliptic curve defined over \mathbf{F}_q s.t. $r|\#E(\mathbf{F}_q)$
- k embedding degree (smallest integer s.t. $r|q^k 1$)

•
$$G_1 = E(\mathbf{F}_q)[r], \ G_3 = \mu_r(\mathbf{F}_{q^k}^*)$$

•
$$\rho = \log q / \log r$$

pairing = bilinear and non degenerate map

$$E(\mathbf{F}_q)[r] imes E(\mathbf{F}_{q^k})[r] o \mu_r(\mathbf{F}_{q^k}^*)$$

In practice, replace $E(\mathbf{F}_{q^k})[r]$ by a cyclic subgroup G_2

<ロト </p>

General settings

Needs in cryptography

- DLP hard in $G_1 \rightsquigarrow r > 2^{2\kappa}$
- **2** DLP hard in $G_3 \rightsquigarrow$ lower bounds on q^k
- Soundwidth and efficiency

κ	<i>r</i> ₂	$ q^k _2$	k	
			$(ho\simeq 1)$	$(ho\simeq 2)$
80	160	960 - 1280	6 – 8	3 – 4
112	224	2200 — 3600	10 - 16	5 - 8
128	256	3000 - 5000	12 - 20	6 - 10
192	384	8000 - 10000	20 - 26	10 - 13
256	512	140000 - 18000	28 – 36	14 - 18

過 ト イヨ ト イヨト

Choice of G_2

- $G_2 = G_1$: degeneracy except for modified pairings on supersingular curves
 - ► advantage: oracle DDH on G₁ (e(aP, bP) = e(P, cP)) → useful in IBE scheme security proof
 - drawbacks: $k \leq 6 \rightsquigarrow$ no short representation of elements on G_1

Choice of $G_2 \neq G_1$

Trace map: $E(\mathbf{F}_{q^k})[r] \rightarrow E(\mathbf{F}_q)[r]$

$$G_2 = \ker Tr_{\mathbf{F}_{q^k}/\mathbf{F}_q}$$

- can hash onto G₂
- ▶ k even \rightsquigarrow point compression by a factor 2: $G_2 \simeq \tilde{E}(\mathbf{F}_{q^{k/2}})[r]$
- ▶ drawbacks: no known computable isomorphism from G₂ to G₁ → stronger security assumptions needed to compensate

2
$$G_2 = \langle Q \rangle \neq \text{ker } Tr_{\mathbf{F}_{q^k} / \mathbf{F}_q}$$

- ▶ advantage: trace map gives an isomorphism $G_2 \rightarrow G_1$
- drawbacks: cannot hash onto G₂ and no point compression

Construction of pairing-friendly curves

• supersingular case: well classified, but k = 4 resp. k = 6 only available in char 2 resp. 3 (index calculus methods more efficient in those cases)

- ordinary curves: several families currently available, all relying on the complex multiplication method
 - construction requires floating point arithmetic (or table look-up)
 - curves defined over prime fields

一日、

Key distribution scheme

Tripartite Diffie-Hellman in one round (Joux)

 $P \in E(\mathbf{F}_q)[r]$ and $G_1 = \langle P
angle$

• $K = e([b]P, [c]P)^a = e([a]P, [c]P)^b = e([a]P, [b]P)^c = e(P, P)^{abc}$

• also in the asymmetric case, but twice more broadcasts needed

A (10) F (10) F (10)

Identity based encryption

Basic scheme of Boneh-Franklin

- setup
 - ▶ Public parameters: $\langle G_1, G_2, G_3, e, P, P_{pub} = [s]P, H_1, H_2 \rangle$ $G_1, G_2 = \langle P \rangle, G_3$ cyclic of prime order r $e : G_1 \times G_2 \rightarrow G_3$ $H_1 : \{0; 1\}^* \rightarrow G_1$ and $H_2 : G_3 \rightarrow \{0; 1\}^n$ (n =block size) ▶ Master Key: $s \in \mathbb{Z}_r^*$
- encrypt : to send the message M to Id
 - compute $Q_{Id} = H_1(Id) \in G_1$ and choose $t \in_R \mathbf{Z}_r^*$

send

$$C = \langle C_1, C_2 \rangle = \langle [t]P, M \oplus H_2(e(Q_{Id}, P_{pub})^t) \rangle$$

• extract : compute $S_{Id} = [s]Q_{Id} \in G_1$

• decrypt :

$$M' = C_2 \oplus H_2(e(S_{Id}, C_1))$$

Short signature

Boneh-Lynn-Shacham's scheme

- setup
 - Public parameters: ⟨G₁, G₂, G₃, e, Q, Q_{pub} = [s]Q, H₁⟩ G₁ = ⟨P⟩, G₂ = ⟨Q⟩, G₃ cyclic of prime order r e: G₁ × G₂ → G₃ H₁: {0; 1}* → G₁
 Private signature key: s ∈ Z^{*}.
- sign : to sign the message M, compute $S = [s]H_1(M) \in G_1$
- verify : check that

$$e(S,Q) = e(H_1(M),Q_{pub})$$

イロト イポト イヨト イヨト 二日

Security consideration

• secret values appear as multiplier of points in G_1 and G_2 and as exponent over G_3

• pairing arguments are public values, except in the IBE scheme

一日、

Pairings in protocols 2nd meeting of ECLIPSES

V. Vitse

Université Versailles Saint-Quentin - Laboratoire PRiSM

March 25, 2010

V. Vitse (UVSQ-PRISM)

Pairings in protocols