Summation polynomials and symmetries for the ECDLP over extension fields

Vanessa VITSE

Université Joseph Fourier - Grenoble

Vanessa VITSE (UJF)

Summation polynomials and symmetries

DLP 2014 1 / 37

3 > < 3
 </p>

Background

The Elliptic Curve Discrete Log Problem *E* elliptic curve defined over finite field \mathbb{F}_q , and $P, Q \in E(\mathbb{F}_q)$. Goal (ECDLP) : compute x s.t. Q = [x]P

- If \mathbb{F}_q prime field: no known non-generic algorithms in general.
- If F_q = F_{pⁿ} extension field: decomposition index calculus (Gaudry/Diem).

• • = • • = •

Decomposition index calculus

Outline of the attack:

① Choose a factor base $\mathcal{F} \subset E(\mathbb{F}_{q^n})$.

2 Relation search step: look for **decompositions** of the form

$$[a]P+[b]Q=P_1+\cdots+P_n, \quad P_i\in\mathcal{F}$$

③ Linear algebra step: once $\approx |\mathcal{F}|$ relations are computed, use sparse matrix algorithms to extract discrete log of Q.

• • = • • = •

Decomposition index calculus

Outline of the attack:

() Choose a factor base $\mathcal{F} \subset E(\mathbb{F}_{q^n})$.

2 Relation search step: look for **decompositions** of the form

$$[a]P + [b]Q = P_1 + \dots + P_n, \quad P_i \in \mathcal{F}$$

Output: Description of the state of the

Step 2 **hopeless** if \mathcal{F} arbitrary subset of $E(\mathbb{F}_{q^n})$.

()

Decomposition index calculus

Outline of the attack:

() Choose a factor base $\mathcal{F} \subset E(\mathbb{F}_{q^n})$.

2 Relation search step: look for **decompositions** of the form

$$[a]P + [b]Q = P_1 + \dots + P_n, \quad P_i \in \mathcal{F}$$

Once ≈ |F| relations are computed, use sparse matrix algorithms to extract discrete log of Q.

Step 2 **hopeless** if \mathcal{F} arbitrary subset of $E(\mathbb{F}_{q^n})$. Only method so far: define \mathcal{F} algebraically, over subfield $\mathbb{F}_q \rightarrow$ Weil restriction structure

A B F A B F

Gaudry/Diem's decomposition

- Standard choice is $\mathcal{F} = \{P \in E(\mathbb{F}_{q^n}) : x(P) \in \mathbb{F}_q\}$
 - \rightarrow algebraic curve in the Weil restriction of E seen as a dim. n abelian variety over \mathbb{F}_q

$$\rightarrow \#\mathcal{F} \simeq q$$

 \rightarrow look for decomp. of R = [a]P + [b]Q in sums of *n* points of \mathcal{F} .

→ 3 → 4 3

Gaudry/Diem's decomposition

- Standard choice is F = {P ∈ E(F_{qⁿ}) : x(P) ∈ F_q}
 → algebraic curve in the Weil restriction of E seen as a dim. n abelian variety over F_q
 - $\rightarrow \#\mathcal{F} \simeq q$
 - \rightarrow look for decomp. of R = [a]P + [b]Q in sums of *n* points of \mathcal{F} .
- Still not obvious to find decompositions. Main tool: description of the addition law on *E* with Semaev polynomials.

A B F A B F

Semaev summation polynomials

For all $k \ge 2$, there exists $S_k \in \mathbb{F}_{q^n}[X_1, \ldots, X_k]$ irreducible s.t.

$$S_k(a_1,\ldots,a_k) = 0 \iff \exists P_i \in E(\overline{\mathbb{F}_q}), \ x(P_i) = a_i \text{ and } \sum_i P_i = \mathcal{O}$$

< 回 ト < 三 ト < 三 ト

Semaev summation polynomials

For all $k \ge 2$, there exists $S_k \in \mathbb{F}_{q^n}[X_1, \dots, X_k]$ irreducible s.t.

$$S_k(a_1,\ldots,a_k) = 0 \iff \exists P_i \in E(\overline{\mathbb{F}_q}), \ x(P_i) = a_i \text{ and } \sum_i P_i = \mathcal{O}_i$$

• • = • • = •

Semaev summation polynomials

For all $k \ge 2$, there exists $S_k \in \mathbb{F}_{q^n}[X_1, \dots, X_k]$ irreducible s.t.

$$S_k(a_1,\ldots,a_k) = 0 \iff \exists P_i \in E(\overline{\mathbb{F}_q}), \ x(P_i) = a_i \text{ and } \sum_i P_i = O_i$$

$$(P_1, \dots, P_k) \in E^k \xleftarrow{} \{(P_1, \dots, P_k) : \sum_i P_i = \mathcal{O}\} \simeq E^{k-1}$$

$$\downarrow x$$

$$(x(P_1), \dots, x(P_k)) \in \mathbb{A}^k$$

→ 3 → 4 3

Semaev summation polynomials

For all $k \ge 2$, there exists $S_k \in \mathbb{F}_{q^n}[X_1, \dots, X_k]$ irreducible s.t.

$$S_k(a_1,\ldots,a_k) = 0 \iff \exists P_i \in E(\overline{\mathbb{F}_q}), \ x(P_i) = a_i \text{ and } \sum_i P_i = \mathcal{O}$$

回 と く ヨ と く ヨ と

Semaev summation polynomials

For all $k \ge 2$, there exists $S_k \in \mathbb{F}_{q^n}[X_1, \dots, X_k]$ irreducible s.t.

$$S_k(a_1,\ldots,a_k) = 0 \iff \exists P_i \in E(\overline{\mathbb{F}_q}), \ x(P_i) = a_i \text{ and } \sum_i P_i = \mathcal{O}_i$$

$$(P_1, \dots, P_k) \in E^k \longleftarrow \{(P_1, \dots, P_k) : \sum_i P_i = \mathcal{O}\} \simeq E^{k-1}$$

$$\downarrow x \qquad \qquad \qquad \downarrow x$$

$$(x(P_1), \dots, x(P_k)) \in \mathbb{A}^k \longleftarrow V(S_k)$$

"Projection of the group law on x"

(3)

Semaev summation polynomials

For all $k \ge 2$, there exists $S_k \in \mathbb{F}_{q^n}[X_1, \dots, X_k]$ irreducible s.t.

$$S_k(a_1,\ldots,a_k) = 0 \iff \exists P_i \in E(\overline{\mathbb{F}_q}), \ x(P_i) = a_i \text{ and } \sum_i P_i = \mathcal{O}_i$$

$$(P_1, \dots, P_k) \in E^k \longleftarrow \{(P_1, \dots, P_k) : \sum_i P_i = \mathcal{O}\} \simeq E^{k-1}$$

$$\downarrow x \qquad \qquad \qquad \downarrow x$$

$$(x(P_1), \dots, x(P_k)) \in \mathbb{A}^k \longleftarrow V(S_k)$$

"Projection of the group law on x"

Degree 2^{k-2} in each variable \rightarrow hard to compute for $k \ge 5$

イロト イヨト イヨト イヨト

Back to Gaudry/Diem's decomposition

- Standard choice is $\mathcal{F} = \{ P \in E(\mathbb{F}_{q^n}) : x(P) \in \mathbb{F}_q \}$
 - \rightarrow algebraic curve in the Weil restriction of E seen as a dim. n abelian variety over \mathbb{F}_q
 - $\rightarrow \# \mathcal{F} \simeq q$
 - \rightarrow look for decomp. of R = [a]P + [b]Q in sums of *n* points of \mathcal{F} .
- Still not obvious to find decompositions. Main tool: description of the addition law on *E* with Semaev polynomials.

A B F A B F

Back to Gaudry/Diem's decomposition

- Standard choice is $\mathcal{F} = \{ P \in E(\mathbb{F}_{q^n}) : x(P) \in \mathbb{F}_q \}$
 - \rightarrow algebraic curve in the Weil restriction of E seen as a dim. n abelian variety over \mathbb{F}_q
 - $\rightarrow \# \mathcal{F} \simeq q$
 - \rightarrow look for decomp. of R = [a]P + [b]Q in sums of *n* points of \mathcal{F} .
- Still not obvious to find decompositions. Main tool: description of the addition law on *E* with Semaev polynomials.
- Decomposition try for R = [a]P + [b]Q: solve

$$S_{n+1}(x_1,\ldots,x_n,x(R)) = 0$$
 with $x_i \in \mathbb{F}_q$

Restriction of scalar \rightsquigarrow resolution of multivariate polynomial system defined over \mathbb{F}_q with *n* variables/equations, total degree $n 2^{n-2}$.

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Back to Gaudry/Diem's decomposition

- Standard choice is $\mathcal{F} = \{ P \in E(\mathbb{F}_{q^n}) : x(P) \in \mathbb{F}_q \}$
 - \rightarrow algebraic curve in the Weil restriction of E seen as a dim. n abelian variety over \mathbb{F}_q
 - $\rightarrow \# \mathcal{F} \simeq q$
 - \rightarrow look for decomp. of R = [a]P + [b]Q in sums of *n* points of \mathcal{F} .
- Still not obvious to find decompositions. Main tool: description of the addition law on *E* with Semaev polynomials.
- Decomposition try for R = [a]P + [b]Q: solve

$$S_{n+1}(x_1,\ldots,x_n,x(R)) = 0$$
 with $x_i \in \mathbb{F}_q$

Restriction of scalar \rightsquigarrow resolution of multivariate polynomial system defined over \mathbb{F}_q with *n* variables/equations, total degree $n 2^{n-2}$.

This is the hardest part.

Vanessa VITSE (UJF)

Summation polynomials and symmetries

DLP 2014 6 / 37

Natural improvements

• Factor base $\mathcal{F} = \{ P \in E(\mathbb{F}_{q^n}) : x(P) \in \mathbb{F}_q \}$ is invariant by -:

$$P \in \mathcal{F} \Leftrightarrow -P \in \mathcal{F}$$

 \rightarrow possible to divide size of factor base by 2 by considering decompositions of the form $R = \pm P_1 \cdots \pm P_n$

 \rightarrow less relations needed and faster linear algebra

A B A A B A

Natural improvements

• Factor base $\mathcal{F} = \{ P \in E(\mathbb{F}_{q^n}) : x(P) \in \mathbb{F}_q \}$ is invariant by -:

$$P \in \mathcal{F} \Leftrightarrow -P \in \mathcal{F}$$

→ possible to divide size of factor base by 2 by considering decompositions of the form $R = \pm P_1 \cdots \pm P_n$ → less relations needed and faster linear algebra

Semaev polynomials are symmetric (in the usual sense)

 \rightarrow expression in terms of elementary symmetric polynomials $e_1 = X_1 + \cdots + X_n, \ldots, e_n = X_1 \ldots X_n$ speeds up computation of polynomials and resolution of systems

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Natural improvements

• Factor base $\mathcal{F} = \{ P \in E(\mathbb{F}_{q^n}) : x(P) \in \mathbb{F}_q \}$ is invariant by -:

 $P\in \mathcal{F}\Leftrightarrow -P\in \mathcal{F}$

→ possible to divide size of factor base by 2 by considering decompositions of the form $R = \pm P_1 \cdots \pm P_n$ → less relations needed and faster linear algebra

Semaev polynomials are symmetric (in the usual sense)

 \rightarrow expression in terms of elementary symmetric polynomials $e_1 = X_1 + \cdots + X_n, \ldots, e_n = X_1 \ldots X_n$ speeds up computation of polynomials and resolution of systems

Computation of decompositions still slow if $n \leq 4$, intractable if $n \geq 5$

Our contribution

Main idea

Replace x by arbitrary rational map $\varphi : E \to \mathbb{F}_{q^n}$ in definition of factor base:

$$\mathcal{F} = \{ P \in E(\mathbb{F}_{q^n}) : \varphi(P) \in \mathbb{F}_q \}$$

Implies ability to define and compute associated summation polynomials.

Useful generalization?

A B A A B A

Our contribution

Main idea

Replace x by arbitrary rational map $\varphi : E \to \mathbb{F}_{q^n}$ in definition of factor base:

$$\mathcal{F} = \{ P \in E(\mathbb{F}_{q^n}) : \varphi(P) \in \mathbb{F}_q \}$$

Implies ability to define and compute associated summation polynomials.

Useful generalization? Yes!

A B A A B A

Our contribution

Main idea

Replace x by arbitrary rational map $\varphi : E \to \mathbb{F}_{q^n}$ in definition of factor base:

$$\mathcal{F} = \{ P \in E(\mathbb{F}_{q^n}) : \varphi(P) \in \mathbb{F}_q \}$$

Implies ability to define and compute associated summation polynomials.

Useful generalization? Yes!

If φ well-chosen:

- ${\mathcal F}$ can have more invariance properties \rightarrow further reduction of its size
- associated summation polynomial have more symmetries → easier to compute and faster decompositions

くほと くほと くほと

Summation polynomials

Theorem

For any rational map $\varphi : E \to \mathbb{F}_{q^n}$ and $k \ge 3$, there exists a unique (up to constant) $P_{\varphi,k} \in \mathbb{F}_{q^n}[X_1, \ldots, X_k]$, irreducible, symmetric, s.t.

$$P_{\varphi,k}(a_1,\ldots,a_k) = 0 \iff \exists P_i \in E(\overline{\mathbb{F}_q}), \ \varphi(P_i) = a_i \ and \ \sum_i P_i = \mathcal{O}$$

• • = • • = •

Summation polynomials

Theorem

For any rational map $\varphi : E \to \mathbb{F}_{q^n}$ and $k \ge 3$, there exists a unique (up to constant) $P_{\varphi,k} \in \mathbb{F}_{q^n}[X_1, \ldots, X_k]$, irreducible, symmetric, s.t.

$$P_{\varphi,k}(a_1,\ldots,a_k) = 0 \iff \exists P_i \in E(\overline{\mathbb{F}_q}), \ \varphi(P_i) = a_i \ and \ \sum_i P_i = \mathcal{O}$$

"Projection of the group law on φ "

通 ト イヨ ト イヨト

Summation polynomials

Theorem

For any rational map $\varphi : E \to \mathbb{F}_{q^n}$ and $k \ge 3$, there exists a unique (up to constant) $P_{\varphi,k} \in \mathbb{F}_{q^n}[X_1, \ldots, X_k]$, irreducible, symmetric, s.t.

$$P_{\varphi,k}(a_1,\ldots,a_k) = 0 \iff \exists P_i \in E(\overline{\mathbb{F}_q}), \ \varphi(P_i) = a_i \ and \ \sum_i P_i = \mathcal{O}$$

"Projection of the group law on φ "

 $\deg_{X_i}P_{\varphi,k}$ proportional to $(\deg\varphi)^k$ in general, and also for all interesting cases so far

 \rightarrow computation tractable only if deg φ and k small.

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

First method: Riemann-Roch

Observation

 $P_1 + \cdots + P_k = \mathcal{O} \Leftrightarrow \exists f \in \overline{\mathbb{F}}_q(E) \text{ s.t. } \operatorname{div}(f) = (P_1) + \cdots + (P_k) - k(\mathcal{O})$ Function f in Riemann-Roch space $\mathcal{L}(k(\mathcal{O}))$.

• • = • • = •

First method: Riemann-Roch

Observation

 $P_1 + \cdots + P_k = \mathcal{O} \Leftrightarrow \exists f \in \overline{\mathbb{F}}_q(E) \text{ s.t. } \operatorname{div}(f) = (P_1) + \cdots + (P_k) - k(\mathcal{O})$ Function f in Riemann-Roch space $\mathcal{L}(k(\mathcal{O}))$.

- Write equation of E in terms of φ and a 2nd var. w (usually x or y)

超す イヨト イヨト ニヨ

First method: Riemann-Roch

Observation

 $P_1 + \cdots + P_k = \mathcal{O} \Leftrightarrow \exists f \in \overline{\mathbb{F}}_q(E) \text{ s.t. } \operatorname{div}(f) = (P_1) + \cdots + (P_k) - k(\mathcal{O})$ Function f in Riemann-Roch space $\mathcal{L}(k(\mathcal{O}))$.

- Write equation of E in terms of φ and a 2nd var. w (usually x or y)
- **2** Compute basis of $\mathcal{L}(k(\mathcal{O})) = \langle 1, f_2(\varphi, w), \dots, f_k(\varphi, w) \rangle$ and consider $f = f_k(\varphi, w) + \lambda_{k-1}f_{k-1}(\varphi, w) + \dots + \lambda_1$
- Resultant of f with equation of E wrt. w gives degree k polynomial F in F_{qⁿ}[λ₁,...,λ_{k-1}][φ]

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

First method: Riemann-Roch

Observation

 $P_1 + \cdots + P_k = \mathcal{O} \Leftrightarrow \exists f \in \overline{\mathbb{F}}_q(E) \text{ s.t. } \operatorname{div}(f) = (P_1) + \cdots + (P_k) - k(\mathcal{O})$ Function f in Riemann-Roch space $\mathcal{L}(k(\mathcal{O}))$.

- **(**) Write equation of *E* in terms of φ and a 2nd var. *w* (usually *x* or *y*)
- Resultant of f with equation of E wrt. w gives degree k polynomial F in F_{qⁿ}[λ₁,...,λ_{k-1}][φ]

Steps 2-3 similar to Nagao's method for higher genus decomposition attacks

イロト 不得 トイヨト イヨト 二日

First method: Riemann-Roch

Observation

 $P_1 + \cdots + P_k = \mathcal{O} \Leftrightarrow \exists f \in \overline{\mathbb{F}}_q(E) \text{ s.t. } \operatorname{div}(f) = (P_1) + \cdots + (P_k) - k(\mathcal{O})$ Function f in Riemann-Roch space $\mathcal{L}(k(\mathcal{O}))$.

- Write equation of E in terms of φ and a 2nd var. w (usually x or y)
- Resultant of f with equation of E wrt. w gives degree k polynomial F in F_{qⁿ}[λ₁,...,λ_{k-1}][φ]
- Equate coeff. of F with elementary sym. polynomials e₁,..., e_k and compute Gröbner basis of these k equations wrt. elimination order.
- The Gröbner basis contains P_{\varphi,k} symmetrized, i.e. expressed in terms of e₁,..., e_k

Second method: induction and resultants

Observation

$$P_1 + \dots + P_k = \mathcal{O} \Leftrightarrow \exists Q \in E \text{ s.t. } \begin{cases} P_1 + \dots + P_j + Q = \mathcal{O} \\ P_{j+1} + \dots + P_k - Q = \mathcal{O} \end{cases}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回

Second method: induction and resultants

Observation

$$P_1 + \dots + P_k = \mathcal{O} \Leftrightarrow \exists Q \in E \text{ s.t. } \begin{cases} P_1 + \dots + P_j + Q = \mathcal{O} \\ P_{j+1} + \dots + P_k - Q = \mathcal{O} \end{cases}$$

Assume for simplicity $\varphi(P) = \varphi(-P) \ \forall P \in E$. Then

$$\begin{array}{c} P_1 + \dots + P_k = \mathcal{O} \\ & \updownarrow \\ P_{\varphi, j+1}(\varphi(P_1), \dots, \varphi(P_j), X) \text{ and } P_{\varphi, k-j+1}(\varphi(P_{j+1}), \dots, \varphi(P_k), X) \\ & \text{have a common root} \end{array}$$

イロト 不得下 イヨト イヨト 二日

Second method: induction and resultants

Observation

$$P_1 + \dots + P_k = \mathcal{O} \Leftrightarrow \exists Q \in E \text{ s.t. } \begin{cases} P_1 + \dots + P_j + Q = \mathcal{O} \\ P_{j+1} + \dots + P_k - Q = \mathcal{O} \end{cases}$$

Assume for simplicity $\varphi(P) = \varphi(-P) \ \forall P \in E$. Then

$$\begin{array}{c} P_1 + \dots + P_k = \mathcal{O} \\ & \updownarrow \\ P_{\varphi, j+1}(\varphi(P_1), \dots, \varphi(P_j), X) \text{ and } P_{\varphi, k-j+1}(\varphi(P_{j+1}), \dots, \varphi(P_k), X) \\ & \text{have a common root} \end{array}$$

$$P_{\varphi,k}(X_1,\ldots,X_k) = \mathsf{Res}(P_{\varphi,j+1}(X_1,\ldots,X_j,X),P_{\varphi,k-j+1}(X_{j+1},\ldots,X_k,X))$$

Computation by induction still requires to know $P_{\varphi,3}$.

Vanessa VITSE (UJF)

・ロト ・ 一 ・ ・ ヨト ・ ヨト

Action of small torsion points

Fact: many elliptic curves only have *near-prime* cardinality \rightarrow admit small order points. Use them to speed DLP!

Action of small torsion points

Fact: many elliptic curves only have *near-prime* cardinality \rightarrow admit small order points. Use them to speed DLP!

Free relations

Let $T \in E(\mathbb{F}_{q^n})$ point of small order ℓ , $\tau_T : E \to E$ translation-by-T map. Suppose \mathcal{F} invariant by τ_T , i.e. $P \in \mathcal{F}$ iff $P + T \in \mathcal{F}$.

Action of small torsion points

Fact: many elliptic curves only have *near-prime* cardinality \rightarrow admit small order points. Use them to speed DLP!

Free relations

Let $T \in E(\mathbb{F}_{q^n})$ point of small order ℓ , $\tau_T : E \to E$ translation-by-T map. Suppose \mathcal{F} invariant by τ_T , i.e. $P \in \mathcal{F}$ iff $P + T \in \mathcal{F}$.

Then each decomposition yields many more:

$$R = P_1 + \dots + P_n$$

= $(P_1 + T) + (P_2 + [\ell - 1]T) + \dots + P_n$
= $(P_1 + T) + (P_2 + T) + (P_3 + [\ell - 2]T) + \dots + P_n$
= \dots
Relation amplification

$$P_1 + \dots + P_n = (P_1 + T) + (P_2 + [\ell - 1]T) + \dots + P_n$$

= (P_1 + T) + (P_2 + T) + (P_3 + [\ell - 2]T) + \dots + P_n
= \dots

Consequences

 \bullet Pro: size of factor base ${\cal F}$ can be effectively divided by ℓ

(3)

Relation amplification

$$P_1 + \dots + P_n = (P_1 + T) + (P_2 + [\ell - 1]T) + \dots + P_n$$

= (P_1 + T) + (P_2 + T) + (P_3 + [\ell - 2]T) + \dots + P_n
= \dots

Consequences

- \bullet Pro: size of factor base ${\cal F}$ can be effectively divided by ℓ
- Con: decreases the probability that a random R can be decomposed

< ∃ > <

Relation amplification

$$P_1 + \dots + P_n = (P_1 + T) + (P_2 + [\ell - 1]T) + \dots + P_n$$

= (P_1 + T) + (P_2 + T) + (P_3 + [\ell - 2]T) + \dots + P_n
= \dots

Consequences

- \bullet Pro: size of factor base ${\cal F}$ can be effectively divided by ℓ
- Con: decreases the probability that a random R can be decomposed
- Main advantage: big speed-up in computation of summation polynomials and point decomposition

< ∃ > <

Goal: factor base $\mathcal{F} = \{P : \varphi(P) \in \mathbb{F}_q\}$ invariant by τ_T , $T \in E[\ell]$

First idea

Look for *invariant* $\varphi : E \to \mathbb{F}_{q^n}$, i.e.

 $\varphi(P+T) = \varphi(P) \ \forall P \in E.$

Goal: factor base $\mathcal{F} = \{P : \varphi(P) \in \mathbb{F}_q\}$ invariant by τ_T , $T \in E[\ell]$

First idea

Look for *invariant* $\varphi : E \to \mathbb{F}_{q^n}$, i.e.

$$\varphi(P+T)=\varphi(P) \ \forall P\in E.$$

But then φ factorizes through quotient isogeny $E \to E/\langle T \rangle$:

Goal: factor base $\mathcal{F} = \{P : \varphi(P) \in \mathbb{F}_q\}$ invariant by τ_T , $T \in E[\ell]$

First idea

Look for *invariant* $\varphi : E \to \mathbb{F}_{q^n}$, i.e.

$$\varphi(P+T)=\varphi(P) \ \forall P\in E.$$

But then φ factorizes through quotient isogeny $E \to E/\langle T \rangle$:

Same summation polynomials: $P_{\varphi,n} = P_{\varphi',n}$

Goal: factor base $\mathcal{F} = \{P : \varphi(P) \in \mathbb{F}_q\}$ invariant by τ_T , $T \in E[\ell]$

First idea

Look for *invariant* $\varphi : E \to \mathbb{F}_{q^n}$, i.e.

$$\varphi(P+T)=\varphi(P) \ \forall P\in E.$$

But then φ factorizes through quotient isogeny $E \to E/\langle T \rangle$:

Same summation polynomials: $P_{\varphi,n} = P_{\varphi',n}$ \Rightarrow equivalent decompositions on E with φ and on $E_{\langle\langle T \rangle}$ with φ' , but no use of torsion on the latter!

Goal: factor base $\mathcal{F} = \{P : \varphi(P) \in \mathbb{F}_q\}$ invariant by τ_T , $T \in E[\ell]$

Eirst idea BAD IDEA

Look for *invariant* $\varphi : E \to \mathbb{F}_{q^n}$, i.e.

 $\varphi(P+T) = \varphi(P) \ \forall P \in E.$

But then φ factorizes through quotient isogeny $E \to E/\langle T \rangle$:

Same summation polynomials: $P_{\varphi,n} = P_{\varphi',n}$ \Rightarrow equivalent decompositions on E with φ and on $E_{\langle\langle T \rangle}$ with φ' , but no use of torsion on the latter!

Goal: factor base $\mathcal{F} = \{P : \varphi(P) \in \mathbb{F}_q\}$ invariant by τ_T , $T \in E[\ell]$

Better idea

Look for equivariant $\varphi : E \to \mathbb{F}_{q^n}$, i.e. \exists rational map $f : \mathbb{F}_{q^n} \to \mathbb{F}_{q^n}$ s.t.

 $\varphi(P+T) = f(\varphi(P)) \ \forall P \in E.$

- 本間 と えき と えき とうき

Goal: factor base $\mathcal{F} = \{P : \varphi(P) \in \mathbb{F}_q\}$ invariant by τ_T , $T \in E[\ell]$

Better idea

Look for equivariant $\varphi : E \to \mathbb{F}_{q^n}$, i.e. \exists rational map $f : \mathbb{F}_{q^n} \to \mathbb{F}_{q^n}$ s.t.

 $\varphi(P+T) = f(\varphi(P)) \ \forall P \in E.$

• So
$$f^{(\ell)} = f \circ \cdots \circ f = Id$$

• Invariance of \mathcal{F} requires stability by f of \mathbb{F}_q , or rather $\mathbb{P}^1(\mathbb{F}_q)$

 \Rightarrow *f* element of PGL₂(\mathbb{F}_q) of exact order ℓ

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Goal: factor base $\mathcal{F} = \{P : \varphi(P) \in \mathbb{F}_q\}$ invariant by τ_T , $T \in E[\ell]$

Better idea

Look for equivariant $\varphi : E \to \mathbb{F}_{q^n}$, i.e. \exists rational map $f : \mathbb{F}_{q^n} \to \mathbb{F}_{q^n}$ s.t.

 $\varphi(P+T) = f(\varphi(P)) \ \forall P \in E.$

• So
$$f^{(\ell)} = f \circ \cdots \circ f = Id$$

• Invariance of \mathcal{F} requires stability by f of \mathbb{F}_q , or rather $\mathbb{P}^1(\mathbb{F}_q)$

 \Rightarrow *f* element of PGL₂(\mathbb{F}_q) of exact order ℓ

• Better if φ also invariant or equivariant wrt. [-1]

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Goal: factor base $\mathcal{F} = \{P : \varphi(P) \in \mathbb{F}_q\}$ invariant by τ_T , $T \in E[\ell]$

Better idea

Look for equivariant $\varphi : E \to \mathbb{F}_{q^n}$, i.e. \exists rational map $f : \mathbb{F}_{q^n} \to \mathbb{F}_{q^n}$ s.t.

 $\varphi(P+T) = f(\varphi(P)) \ \forall P \in E.$

• So
$$f^{(\ell)} = f \circ \cdots \circ f = Id$$

• Invariance of \mathcal{F} requires stability by f of \mathbb{F}_q , or rather $\mathbb{P}^1(\mathbb{F}_q)$

 \Rightarrow *f* element of PGL₂(\mathbb{F}_q) of exact order ℓ

• Better if φ also invariant or equivariant wrt. [-1]

Two-torsion in char 2: morphism

 $E: y^2 + xy = x^3 + ax^2 + b$ ordinary elliptic curve over binary field \mathbb{F}_{q^n} . Non-trivial 2-torsion point is $T_2 = (0, b^{1/2})$.

→ 3 → 4 3

Two-torsion in char 2: morphism

 $E: y^2 + xy = x^3 + ax^2 + b$ ordinary elliptic curve over binary field \mathbb{F}_{q^n} . Non-trivial 2-torsion point is $T_2 = (0, b^{1/2})$.

Proposition
Let
$$\varphi : E \to \mathbb{F}_{q^n}, \ (x, y) \mapsto \frac{b^{1/4}}{x + b^{1/4}}.$$
 Then $\forall P \in E$,
• $\varphi(P + T_2) = \varphi(P) + 1$
• $\varphi(-P) = \varphi(P)$

Two-torsion in char 2: morphism

 $E: y^2 + xy = x^3 + ax^2 + b$ ordinary elliptic curve over binary field \mathbb{F}_{q^n} . Non-trivial 2-torsion point is $T_2 = (0, b^{1/2})$.

Proposition
Let
$$\varphi : E \to \mathbb{F}_{q^n}, \ (x, y) \mapsto \frac{b^{1/4}}{x + b^{1/4}}.$$
 Then $\forall P \in E$,
• $\varphi(P + T_2) = \varphi(P) + 1$
• $\varphi(-P) = \varphi(P)$

Factor base can be effectively divided by 4 \rightarrow $\# \mathcal{F} \approx$ q/4

A B A A B A

Two-torsion in char 2: summation polynomials

Since $P_1 + \dots + P_k = (P_1 + T_2) + (P_2 + T_2) + P_3 + \dots + P_k = \dots$, we have $P_{\varphi,k}(X_1, \dots, X_k) = P_{\varphi,k}(X_1 + 1, X_2 + 1, X_3, \dots, X_k) = \dots$

 \rightarrow invariant if even number of +1 added.

• • = • • = •

Two-torsion in char 2: summation polynomials

Since $P_1 + \dots + P_k = (P_1 + T_2) + (P_2 + T_2) + P_3 + \dots + P_k = \dots$, we have $P_{\varphi,k}(X_1, \dots, X_k) = P_{\varphi,k}(X_1 + 1, X_2 + 1, X_3, \dots, X_k) = \dots$

 \rightarrow invariant if even number of +1 added.

Proposition

- $P_{\varphi,k}$ invariant under affine action of the group $G_2 = (\mathbb{Z}/2\mathbb{Z})^{k-1} \rtimes \mathfrak{S}_k$.
- Invariant ring $\mathbb{F}_{q^n}[X_1,\ldots,X_k]^{G_2}$ free algebra, generated by

$$e_1 = X_1 + \dots + X_k$$

$$s_2 = Y_1 Y_2 + \dots + Y_{k-1} Y_k$$

$$\vdots$$

$$s_k = Y_1 \dots Y_k$$

where $Y_i = X_i^2 + X_i$.

< ∃ >

Writing down $P_{\varphi,k}$ in terms of invariant generators e_1, s_2, \ldots, s_k makes a **huge** difference:

k		3	4	5	6	7	8
Semaev	nb of monomials	3	6	39	638	-	-
polynomials	timings	0 s	0 s	26 s	725 s	_	_
$P_{arphi,k}$	nb of monomials	2	3	9	50	2 2 4 7	470 369
	timings	0 s	0 s	0 s	1s	383 s	40.5 h

Computations for k = 4 to 7 in two steps:

- take resultant of partially symmetrized summation polynomials
- express resultant in terms of invariant generators using elimination (Gröbner basis)

- A I I I A I I I I

Writing down $P_{\varphi,k}$ in terms of invariant generators e_1, s_2, \ldots, s_k makes a **huge** difference:

k		3	4	5	6	7	8
Semaev	nb of monomials	3	6	39	638	-	-
polynomials	timings	0 s	0 s	26 s	725 s	_	_
$P_{arphi,k}$	nb of monomials	2	3	9	50	2 2 4 7	470 369
	timings	0 s	0 s	0 s	1s	383 s	40.5 h

Computations for k = 4 to 7 in two steps:

- take resultant of partially symmetrized summation polynomials
- express resultant in terms of invariant generators using elimination (Gröbner basis)

Resultant too large for k = 8 case \rightarrow dedicated interpolation technique

Target: IPSEC Oakley curve, defined over $\mathbb{F}_{2^{31\times 5}}$. Cardinality is 12 times a 151-bit prime \rightarrow can use 2-torsion point.

Difficulty of point decomposition $R = P_1 + \cdots + P_5$, $P_i \in \mathcal{F}$?

→ 3 → 4 3

Target: IPSEC Oakley curve, defined over $\mathbb{F}_{2^{31\times 5}}$. Cardinality is 12 times a 151-bit prime \rightarrow can use 2-torsion point. Difficulty of point decomposition $R = P_1 + \cdots + P_5$, $P_i \in \mathcal{F}$?

Gaudry-Diem's approach: intractable. Resolution of corresponding polynomial system does not succeed on a personal computer

A B A A B A

Target: IPSEC Oakley curve, defined over $\mathbb{F}_{2^{31\times 5}}$. Cardinality is 12 times a 151-bit prime \rightarrow can use 2-torsion point. Difficulty of point decomposition $R = P_1 + \cdots + P_5$, $P_i \in \mathcal{F}$?

Gaudry-Diem's approach: intractable. Resolution of corresponding polynomial system does not succeed on a personal computer

"n - 1" approach: only known approach before this work. Estimated timing for one relation is ≈ 37 years (but easy to distribute).

くほと くほと くほと

Target: IPSEC Oakley curve, defined over $\mathbb{F}_{2^{31\times 5}}$. Cardinality is 12 times a 151-bit prime \rightarrow can use 2-torsion point. Difficulty of point decomposition $R = P_1 + \cdots + P_5$, $P_i \in \mathcal{F}$?

Gaudry-Diem's approach: intractable. Resolution of corresponding polynomial system does not succeed on a personal computer

"n - 1" approach: only known approach before this work. Estimated timing for one relation is ≈ 37 years (but easy to distribute).

With additional symmetries: ≈ 5.5 hr for one relation.

Still too slow for ECDLP resolution, but threatens non-standard problems e.g. oracle-assisted static Diffie-Hellman.

イロト 不得下 イヨト イヨト 二日

Two-torsion in odd char: morphism

 $E: y^2 = c x(x-1)(x-\lambda)$ elliptic curve over \mathbb{F}_{q^n} in twisted Legendre form. Three non-trivial 2-torsion points $T_0 = (0,0)$, $T_1 = (1,0)$, $T_2 = (\lambda,0)$.

Two-torsion in odd char: morphism

 $E: y^2 = c x(x-1)(x-\lambda)$ elliptic curve over \mathbb{F}_{q^n} in twisted Legendre form. Three non-trivial 2-torsion points $T_0 = (0,0)$, $T_1 = (1,0)$, $T_2 = (\lambda,0)$.

Proposition
If
$$\lambda$$
 and $1 - \lambda$ squares, then $\exists \varphi : E \to \mathbb{F}_{q^n}$ degree 2 map s.t. $\forall P \in E$,
• $\varphi(P + T_0) = -\varphi(P)$, $\varphi(P + T_1) = \frac{1}{\varphi(P)}$, $\varphi(P + T_2) = -\frac{1}{\varphi(P)}$
• $\varphi(-P) = \varphi(P)$

Note: $z \mapsto -z$, $z \mapsto 1/z$ and $z \mapsto -1/z$ "simplest" choice of homographies. Only one can be affine.

Two-torsion in odd char: morphism

 $E: y^2 = c x(x-1)(x-\lambda)$ elliptic curve over \mathbb{F}_{q^n} in twisted Legendre form. Three non-trivial 2-torsion points $T_0 = (0,0)$, $T_1 = (1,0)$, $T_2 = (\lambda,0)$.

Proposition If λ and $1 - \lambda$ squares, then $\exists \varphi : E \to \mathbb{F}_{q^n}$ degree 2 map s.t. $\forall P \in E$, • $\varphi(P + T_0) = -\varphi(P)$, $\varphi(P + T_1) = \frac{1}{\varphi(P)}$, $\varphi(P + T_2) = -\frac{1}{\varphi(P)}$ • $\varphi(-P) = \varphi(P)$

Note: $z \mapsto -z$, $z \mapsto 1/z$ and $z \mapsto -1/z$ "simplest" choice of homographies. Only one can be affine.

Factor base can be effectively divided by 8 \rightarrow $\#\mathcal{F} \approx$ q/8

イロト 不得下 イヨト イヨト 三日

• $P_{\varphi,k}(X_1,\ldots,X_k) = P_{\varphi,k}(-X_1,-X_2,X_3,\ldots,X_k) = \ldots$ Invariance by any even number of sign changes.

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- $P_{\varphi,k}(X_1, \ldots, X_k) = P_{\varphi,k}(-X_1, -X_2, X_3, \ldots, X_k) = \ldots$ Invariance by any even number of sign changes.
- However $P_{\varphi,k}(X_1,\ldots,X_k) \neq P_{\varphi,k}(1/X_1,1/X_2,X_3,\ldots,X_k)$. So ?

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

- $P_{\varphi,k}(X_1,\ldots,X_k) = P_{\varphi,k}(-X_1,-X_2,X_3,\ldots,X_k) = \ldots$ Invariance by any even number of sign changes.
- However $P_{\varphi,k}(X_1,\ldots,X_k) \neq P_{\varphi,k}(1/X_1,1/X_2,X_3,\ldots,X_k)$. So ?
- Either only use first invariance (from $\varphi(P + T_0) = -\varphi(P)$). Then $P_{\varphi,k}$ belongs to explicit invariant ring \rightarrow results as in char. 2 case.

• • = • • = •

- $P_{\varphi,k}(X_1,\ldots,X_k) = P_{\varphi,k}(-X_1,-X_2,X_3,\ldots,X_k) = \ldots$ Invariance by any even number of sign changes.
- However $P_{\varphi,k}(X_1,\ldots,X_k) \neq P_{\varphi,k}(1/X_1,1/X_2,X_3,\ldots,X_k)$. So ?
- Either only use first invariance (from $\varphi(P + T_0) = -\varphi(P)$). Then $P_{\varphi,k}$ belongs to explicit invariant ring \rightarrow results as in char. 2 case.
- Or consider invariant *rational fraction*

$$Q_{\varphi,k}(X_1,\ldots,X_k) = \frac{P_{\varphi,k}(X_1,\ldots,X_k)}{(X_1\ldots X_k)^{2^{k-3}}}$$

and work with invariant fields instead.

A B A A B A
 B
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Proposition

- Q_{φ,k} is invariant under action of the group G₄ = (ℤ/2ℤ × ℤ/2ℤ)^{k-1} ⋊ 𝔅_k.
- Invariant field F_{qⁿ}(X₁,..., X_k)^{G₄} has explicit generators w₀, w₁, σ₁,..., σ_{k-2}.

A B A A B A

Proposition

- $Q_{\varphi,k}$ is invariant under action of the group $G_4 = (\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z})^{k-1} \rtimes \mathfrak{S}_k.$
- Invariant field F_{qⁿ}(X₁,..., X_k)^{G₄} has explicit generators w₀, w₁, σ₁,..., σ_{k-2}.

FYI:

 $\sigma_i = i$ -th elementary symmetric polynomial in $X_1^2 + X_1^{-2}, \ldots, X_k^2 + X_k^{-2}$

Proposition

- $Q_{\varphi,k}$ is invariant under action of the group $G_4 = (\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z})^{k-1} \rtimes \mathfrak{S}_k.$
- Invariant field F_{qⁿ}(X₁,..., X_k)^{G₄} has explicit generators w₀, w₁, σ₁,..., σ_{k-2}.

FYI:

$$\begin{split} \sigma_i &= i\text{-th elementary symmetric polynomial in } X_1^2 + X_1^{-2}, \dots, X_k^2 + X_k^{-2} \\ w_0 &= \sum_{i=0}^{\lfloor k/2 \rfloor} s_{2i} / (X_1 \cdots X_k), \quad w_1 = \sum_{i=1}^{\lfloor (k-1)/2 \rfloor} s_{2i+1} / (X_1 \cdots X_k), \text{ where} \\ s_i &= i\text{-th elementary symmetric polynomial in } X_1^2, \dots, X_k^2 \text{ (and } s_0 = 1). \end{split}$$

Symmetrization

How to express an invariant rational fraction in terms of generators of the invariant field?

(3)

Symmetrization

How to express an invariant rational fraction in terms of generators of the invariant field?

• For polynomials in invariant ring: elimination theory.

If new generators are $Y_i = f_i(X_1, \ldots, X_k)$, compute Gröbner basis of $\{Y_1 - f_1, \ldots, Y_m - f_m\} \subset K[X_1, \ldots, X_k, Y_1, \ldots, Y_m]$ wrt. an elimination order, then compute normal form of invariant polynomial.

Symmetrization

How to express an invariant rational fraction in terms of generators of the invariant field?

• For polynomials in invariant ring: elimination theory.

If new generators are $Y_i = f_i(X_1, \ldots, X_k)$, compute Gröbner basis of $\{Y_1 - f_1, \ldots, Y_m - f_m\} \subset K[X_1, \ldots, X_k, Y_1, \ldots, Y_m]$ wrt. an elimination order, then compute normal form of invariant polynomial.

For rational fractions in invariant field: ??

A B A A B A
Symmetrization

How to express an invariant rational fraction in terms of generators of the invariant field?

• For polynomials in invariant ring: elimination theory.

If new generators are $Y_i = f_i(X_1, \ldots, X_k)$, compute Gröbner basis of $\{Y_1 - f_1, \ldots, Y_m - f_m\} \subset K[X_1, \ldots, X_k, Y_1, \ldots, Y_m]$ wrt. an elimination order, then compute normal form of invariant polynomial.

For rational fractions in invariant field: ??

However in our case $Q_{\varphi,k}$ is **polynomial** in our choice of invariant generators

 \rightarrow inductive computation with partially symmetrized resultants OK.

・ 回 と ・ ヨ と ・ モ ト …

k	3	4	5	6
Semaev polynomials	5	36	940	-
$P_{arphi,k}(s_1,\ldots,s_{k-1},e_k)$	5	13	182	4125
$Q_{\varphi,k}(\sigma_1,\ldots,\sigma_{k-2},w_0,w_1)$	3	6	32	396

Comparison of number of monomials for:

- Semaev polynomials, symmetrized wrt. the action of \mathfrak{S}_k
- $P_{\varphi,k}$ symmetrized wrt. the action of only one 2-torsion point
- $Q_{\varphi,k}$ symmetrized wrt. the action of the full 2-torsion

Note: less sparse than in char. 2

Target: random curve over OEF $\mathbb{F}_{(2^{31}+413)^5}$, with full 2-torsion and near-prime cardinality.

Difficulty of point decomposition $R = P_1 + \cdots + P_5$, $P_i \in \mathcal{F}$?

A B F A B F

Target: random curve over OEF $\mathbb{F}_{(2^{31}+413)^5}$, with full 2-torsion and near-prime cardinality.

Difficulty of point decomposition $R = P_1 + \cdots + P_5$, $P_i \in \mathcal{F}$?

Gaudry-Diem's approach: intractable.

()

Target: random curve over OEF $\mathbb{F}_{(2^{31}+413)^5},$ with full 2-torsion and near-prime cardinality.

Difficulty of point decomposition $R = P_1 + \cdots + P_5$, $P_i \in \mathcal{F}$?

Gaudry-Diem's approach: intractable.

With one 2-torsion point [FGHR, JoC 2013]: \approx 60 days for one relation.

A B M A B M

Target: random curve over OEF $\mathbb{F}_{(2^{31}+413)^5},$ with full 2-torsion and near-prime cardinality.

Difficulty of point decomposition $R = P_1 + \cdots + P_5$, $P_i \in \mathcal{F}$?

Gaudry-Diem's approach: intractable.

With one 2-torsion point [FGHR, JoC 2013]: \approx 60 days for one relation.

With full 2-torsion: \approx 2.5 days for one relation.

A B K A B K

Let G be a subgroup of $E(\mathbb{F}_{q^n})$. Can we find maps $E \to \mathbb{P}^1$ strictly equivariant wrt. to translation by any point of G?

• = • •

Let G be a subgroup of $E(\mathbb{F}_{q^n})$. Can we find maps $E \to \mathbb{P}^1$ strictly equivariant wrt. to translation by any point of G? Yes, but not for any G

Let G be a subgroup of $E(\mathbb{F}_{q^n})$. Can we find maps $E \to \mathbb{P}^1$ strictly equivariant wrt. to translation by any point of G? Yes, but not for any G

Strict equivariance \Rightarrow injective homomorphism $G \rightarrow \text{PGL}_2(\mathbb{F}_q)$ with also $[-1] \Rightarrow$ homom. $G \rtimes \mathbb{Z}/2\mathbb{Z} \rightarrow \text{PGL}_2(\mathbb{F}_q)$, injective on G.

Let G be a subgroup of $E(\mathbb{F}_{q^n})$. Can we find maps $E \to \mathbb{P}^1$ strictly equivariant wrt. to translation by any point of G? Yes, but not for any G

Strict equivariance \Rightarrow injective homomorphism $G \rightarrow \text{PGL}_2(\mathbb{F}_q)$ with also $[-1] \Rightarrow$ homom. $G \rtimes \mathbb{Z}/2\mathbb{Z} \rightarrow \text{PGL}_2(\mathbb{F}_q)$, injective on G.

Theorem

The only possible subgroups are: • G = E[2], plus invariance wrt. [-1] • $G = \langle T \rangle \subset E[\ell]$, plus equivariance wrt. [-1], with either $\ell | q - 1$ $\ell | q + 1$ $\ell = char(\mathbb{F}_q)$

< 由 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

If φ equivariant for $\langle T_{\ell} \rangle \subset E[\ell]$, we can always assume that

$$\varphi(P + T_{\ell}) = \zeta \varphi(P), \quad \zeta \in \mu_{\ell}^*(\mathbb{F}_q).$$

So $\varphi(P + T)/\varphi(P)$ independent of P if $T \in \langle T_{\ell} \rangle$

If φ equivariant for $\langle T_\ell \rangle \subset E[\ell]$, we can always assume that

$$\varphi(P + T_{\ell}) = \zeta \varphi(P), \quad \zeta \in \mu_{\ell}^*(\mathbb{F}_q).$$

So $\varphi(P + T)/\varphi(P)$ independent of P if $T \in \langle T_\ell \rangle$

 \Rightarrow Homomorphism ("linear map") from $\langle T_{\ell} \rangle$ to $\mu_{\ell}(\mathbb{F}_q)$,

$$T \mapsto \frac{\varphi(P+T)}{\varphi(P)}$$

If φ equivariant for $\langle T_\ell \rangle \subset E[\ell]$, we can always assume that

$$\varphi(P + T_{\ell}) = \zeta \varphi(P), \quad \zeta \in \mu_{\ell}^*(\mathbb{F}_q).$$

So $\varphi(P + T)/\varphi(P)$ independent of P if $T \in \langle T_\ell \rangle$

 \Rightarrow Homomorphism ("linear map") from $\langle T_{\ell} \rangle$ to $\mu_{\ell}(\mathbb{F}_q)$,

$$T \mapsto \frac{\varphi(P+T)}{\varphi(P)}$$

Sounds familiar?

If φ equivariant for $\langle T_\ell \rangle \subset E[\ell]$, we can always assume that

$$\varphi(P + T_{\ell}) = \zeta \varphi(P), \quad \zeta \in \mu_{\ell}^*(\mathbb{F}_q).$$

So $\varphi(P + T)/\varphi(P)$ independent of P if $T \in \langle T_\ell \rangle$

 \Rightarrow Homomorphism ("linear map") from $\langle T_{\ell} \rangle$ to $\mu_{\ell}(\mathbb{F}_q)$,

$$T \mapsto \frac{\varphi(P+T)}{\varphi(P)}$$

Sounds familiar? Pairings are not far away...

Vanessa VITSE (UJF)

Cartier pairing

Let ψ be the ℓ -isogeny $E \to E/\langle T_\ell \rangle$. Then there exists a pairing on $\ker \psi \times \ker \hat{\psi} \simeq \langle T_\ell \rangle \times E[\ell]/\langle T_\ell \rangle$.

- 本間 と えき と えき とうき

Cartier pairing

Let ψ be the ℓ -isogeny $E \to E/\langle \tau_\ell \rangle$. Then there exists a pairing on $\ker \psi \times \ker \hat{\psi} \simeq \langle T_\ell \rangle \times E[\ell]/\langle \tau_\ell \rangle$.

Cartier pairing

Let $T \in \langle T_{\ell} \rangle$ and $\overline{T'} \in E[\ell]/_{\langle T_{\ell} \rangle}$. Let $g_{T'}$ the function with divisor

$$\psi^*((\psi(T')) - (\mathcal{O})) = \sum_{i=1}^{\ell} (T' + [i]T_{\ell}) - \sum_{i=1}^{\ell} ([i]T_{\ell}).$$

Then $e_{\psi}(T, \overline{T'}) = g_{T'}(P + T)/g_{T'}(P)$ is independent of $P \in E$. $e_{\psi} : \langle T_{\ell} \rangle \times E[\ell]/_{\langle T_{\ell} \rangle} \rightarrow \mu_{\ell}$ well-defined, non-degenerate bilinear map.

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ - 画 - のへ⊙

Cartier pairing

Let ψ be the ℓ -isogeny $E \to E/\langle \tau_\ell \rangle$. Then there exists a pairing on $\ker \psi \times \ker \hat{\psi} \simeq \langle T_\ell \rangle \times E[\ell]/\langle \tau_\ell \rangle$.

Cartier pairing

Let $T \in \langle T_{\ell} \rangle$ and $\overline{T'} \in E[\ell]/_{\langle T_{\ell} \rangle}$. Let $g_{T'}$ the function with divisor

$$\psi^*((\psi(T')) - (\mathcal{O})) = \sum_{i=1}^{\ell} (T' + [i]T_{\ell}) - \sum_{i=1}^{\ell} ([i]T_{\ell}).$$

Then $e_{\psi}(T, \overline{T'}) = g_{T'}(P + T)/g_{T'}(P)$ is independent of $P \in E$. $e_{\psi} : \langle T_{\ell} \rangle \times E[\ell]/_{\langle T_{\ell} \rangle} \rightarrow \mu_{\ell}$ well-defined, non-degenerate bilinear map.

Because $T_{\ell} \in E(\mathbb{F}_{q^n})$ and $\ell | q - 1$, function $g_{T'}$ is defined over \mathbb{F}_{q^n} .

Equivariant morphism for $\ell|q-1$

If T_{ℓ}, T' generate $E[\ell]$ then $g_{T'} : E \to \mathbb{P}^1$ is a strictly equivariant morphism.

To get equivariance wrt. [-1], set $\varphi(P) = \frac{g_{T'}(P)}{g_{T'}(-P)}$ (at least if ℓ odd), so $\varphi(-P) = 1/\varphi(P)$.

Equivariant morphism for $\ell|q-1$

If T_{ℓ}, T' generate $E[\ell]$ then $g_{T'}: E \to \mathbb{P}^1$ is a strictly equivariant morphism.

To get equivariance wrt. [-1], set $\varphi(P) = \frac{g_{T'}(P)}{g_{T'}(-P)}$ (at least if ℓ odd), so $\varphi(-P) = 1/\varphi(P)$.

Proposition

This construction essentially yields all morphisms $E \to \mathbb{P}^1$ equivariant wrt. to translation by a ℓ -torsion point.

Case $\ell | q + 1$ is very similar, except that the action on \mathbb{P}^1 is less nice than $z \mapsto \zeta z$.

Summation polynomial and invariant ring

Assume $\varphi(P + T_{\ell}) = \zeta \varphi(P)$ and $\varphi(-P) = 1/\varphi(P)$. As in the 2-torsion case, we have:

Proposition

P_{φ,k} invariant under linear action of the group G_ℓ = (ℤ/ℓℤ)^{k-1} ⋊ 𝔅_k.
Invariant ring 𝔅_{qⁿ}[X₁,...,X_k]^{G_ℓ} free algebra, generated by
s₁ = Y₁ + ... + Y_k, ..., s_{k-1} = Y₁...Y_{k-1} + ... + Y₂...Y_k, e_k = X₁...X_k where Y_i = X^ℓ_i.

→ ★ 厚 → ★ 厚 →

Summation polynomial and invariant ring

Assume $\varphi(P + T_{\ell}) = \zeta \varphi(P)$ and $\varphi(-P) = 1/\varphi(P)$. As in the 2-torsion case, we have:

Proposition

P_{φ,k} invariant under linear action of the group G_ℓ = (Z/ℓZ)^{k-1} × 𝔅_k.
Invariant ring 𝔽_{qⁿ}[X₁,...,X_k]^{G_ℓ} free algebra, generated by
s₁ = Y₁ + ... + Y_k, ..., s_{k-1} = Y₁...Y_{k-1} + ... + Y₂...Y_k, e_k = X₁...X_k where Y_i = X_i^ℓ.

Equivariance wrt. [-1] more difficult to take into account: replacing polynomials by rational fractions gives no simplification.

Still allows to reduce size of factor base by 2.

<ロト < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example

For $\ell = 3$ ($\ell | q - 1$), and $E : y^2 = x^3 + (x + a)^2$, the point T = (0, a) has order 3.

The equivariant morphism is given by

$$\varphi(x,y) = \frac{\sqrt{3}y + i(x+3a)}{-\sqrt{3}y + i(x+3a)}.$$

Then the corresponding third summation polynomial is

$$\begin{split} P_{\varphi,3}(s_1,s_2,e_3) &= -27e_3^6 + 27s_1e_3^4 + 27s_2e_3^4 - 81e_3^5 - 9s_2^2e_3^2 + 54s_1e_3^3 + 54s_2e_3^3 \\ &\quad -81e_3^4 + s_1^3 + 3s_1^2s_2 + 3s_1s_2^2 + s_2^3 - 9s_1^2e_3 + 27s_1e_3^2 + 27s_2e_3^2 - 27e_3^3 \\ &\quad + \delta(12s_1^2e_3^3 - (27a - 16)(s_1^2e_3^2 + s_2^2e_3) - (54a + 16)(s_1s_2e_3^2 + s_1s_2e_3) + 12s_2^2), \\ \delta &= 9/(27a - 4). \end{split}$$

イロト 不得下 イヨト イヨト 二日

If φ equivariant for $\langle T_p \rangle = E[p]$, we can always assume that

$$\varphi(P+T_p)=\varphi(P)+1$$

So $\varphi(P + T) - \varphi(P)$ independent of P if $T \in E[p]$

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ - 画 - のへ⊙

If φ equivariant for $\langle T_p \rangle = E[p]$, we can always assume that

$$\varphi(P+T_p)=\varphi(P)+1$$

So $\varphi(P + T) - \varphi(P)$ independent of P if $T \in E[p]$

 \Rightarrow **Homomorphism** ("linear map") from E[p] to $(\mathbb{F}_q, +)$,

$$T \mapsto \varphi(P+T) - \varphi(P).$$

If φ equivariant for $\langle T_p \rangle = E[p]$, we can always assume that

$$\varphi(P+T_p)=\varphi(P)+1$$

So $\varphi(P + T) - \varphi(P)$ independent of P if $T \in E[p]$

 \Rightarrow Homomorphism ("linear map") from E[p] to $(\mathbb{F}_q, +)$,

$$T \mapsto \varphi(P+T) - \varphi(P).$$

Sounds familiar?

If φ equivariant for $\langle T_p \rangle = E[p]$, we can always assume that

$$\varphi(P+T_p)=\varphi(P)+1$$

So $\varphi(P + T) - \varphi(P)$ independent of P if $T \in E[p]$

 \Rightarrow Homomorphism ("linear map") from E[p] to $(\mathbb{F}_q, +)$,

$$T \mapsto \varphi(P+T) - \varphi(P).$$

Sounds familiar? Easy DLP in order p subgroup

If φ equivariant for $\langle T_p \rangle = E[p]$, we can always assume that

$$\varphi(P+T_p)=\varphi(P)+1$$

So $\varphi(P + T) - \varphi(P)$ independent of P if $T \in E[p]$

 \Rightarrow Homomorphism ("linear map") from E[p] to $(\mathbb{F}_q, +)$,

$$T \mapsto \varphi(P+T) - \varphi(P).$$

Sounds familiar? Easy DLP in order *p* subgroup \rightarrow **anomalous attack**.

Equivariant morphism for $\ell = p$ Let $T_p \in E[p]$ and $g(x) = \prod_{i=1}^{(p-1)/2} (x - x([i]T_p))$ $(g \leftrightarrow p$ -th root of *p*-th division polynomial).

Proposition

There exists $\lambda \in \mathbb{F}_{q^n}$ such that the map $\varphi(x, y) = \frac{yg'(x)}{g(x)}$ satisfies the equivariance properties

$$\varphi(P + T_p) = \varphi(P) + 1, \qquad \varphi(-P) = -\varphi(P).$$

Only such function, up to translation by a rational 2-torsion point.

Equivariant morphism for $\ell = p$ Let $T_p \in E[p]$ and $g(x) = \prod_{i=1}^{(p-1)/2} (x - x([i]T_p))$ $(g \leftrightarrow p$ -th root of *p*-th division polynomial).

Proposition

There exists $\lambda \in \mathbb{F}_{q^n}$ such that the map $\varphi(x, y) = \frac{yg'(x)}{g(x)}$ satisfies the equivariance properties

$$\varphi(P + T_p) = \varphi(P) + 1, \qquad \varphi(-P) = -\varphi(P).$$

Only such function, up to translation by a rational 2-torsion point.

If φ can be computed efficiently for p large, gives a q-adic independent version of the anomalous attack.

Vanessa VITSE (UJF)

Summation polynomials and symmetries

DLP 2014 33 / 37

Summation polynomial and invariant ring

Assume $\varphi(P + T_p) = \varphi(P) + 1$ and $\varphi(-P) = -\varphi(P)$. As in the 2-torsion case, we have:

Proposition

P_{φ,k} invariant under affine action of the group G_p = (ℤ/pℤ)^{k-1} × 𝔅_k.
Invariant ring 𝔽_{qⁿ}[X₁,...,X_k]^{G_p} free algebra, generated by
e₁ = X₁ + ... + X_k, s₂ = Y₁Y₂ + ... + Y_{k-1}Y_k, ..., s_k = Y₁...Y_k
where Y_i = X^p_i - X_i.

くほと くほと くほと

Summation polynomial and invariant ring

Assume $\varphi(P + T_p) = \varphi(P) + 1$ and $\varphi(-P) = -\varphi(P)$. As in the 2-torsion case, we have:

Proposition

P_{φ,k} invariant under affine action of the group G_p = (ℤ/pℤ)^{k-1} × 𝔅_k.
Invariant ring 𝔽_{qⁿ}[X₁,...,X_k]^{G_p} free algebra, generated by
e₁ = X₁ + ... + X_k, s₂ = Y₁Y₂ + ... + Y_{k-1}Y_k, ..., s_k = Y₁...Y_k where Y_i = X^p_i - X_i.

Equivariance wrt. [-1] more difficult to take into account: invariant ring is no longer a free algebra.

Still allows to reduce size of factor base by 2.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト … ヨ

Example

For p = 3, and $E : y^2 = x^3 + (x + a)^2$, the point T = (0, a) has order 3.

The equivariant morphism is simply given by

$$\varphi(x,y)=\frac{y}{x}.$$

Then the corresponding third summation polynomial is

$$P_{\varphi,3}(e_1,s_2,s_3) = 2ae_1^6 + e_1^2s_2^2 + e_1^3s_3 + 2s_2^3.$$

Much sparser than in the case $\ell | (q-1)$.

・ 「 ・ ・ ・ ・ ・ ・ ・

Example

For p = 3, and $E : y^2 = x^3 + (x + a)^2$, the point T = (0, a) has order 3. The equivariant morphism is simply given by

$$\varphi(x,y)=\frac{y}{x}.$$

Then the corresponding third summation polynomial is

$$P_{\varphi,3}(e_1,s_2,s_3) = 2ae_1^6 + e_1^2s_2^2 + e_1^3s_3 + 2s_2^3.$$

Much sparser than in the case $\ell|(q-1)$.

Fourth summation polynomial is

$$P_{arphi,4}(e_1,s_2,s_3,s_4)=s_3^9+e_1^3s_3^8+120$$
 other terms.

・ 「 ・ ・ ・ ・ ・ ・ ・

Conclusion

 Use of 2-torsion points: huge speed-up for computations of decompositions

< 回 ト < 三 ト < 三 ト

Conclusion

- Use of 2-torsion points: huge speed-up for computations of decompositions
- Higher order torsion points: Computations possible only for small values of $\ell > 2$ and n.

Pro: smaller factor base \rightarrow less relations and faster linear algebra

Con: larger degree for summation polynomials \rightarrow harder decompositions

ightarrow currently no gain over classical decomposition method except possibly for 3-torsion in char. 3.

< 3 > < 3 >

Conclusion

- Use of 2-torsion points: huge speed-up for computations of decompositions
- Higher order torsion points: Computations possible only for small values of $\ell > 2$ and n.

Pro: smaller factor base \rightarrow less relations and faster linear algebra

Con: larger degree for summation polynomials \rightarrow harder decompositions

ightarrow currently no gain over classical decomposition method except possibly for 3-torsion in char. 3.

 ${\scriptstyle {\scriptstyle \mathsf{L}}}$ new point of view on the anomalous attack

★ 3 > < 3 >
Conclusion

- Use of 2-torsion points: huge speed-up for computations of decompositions
- Higher order torsion points: Computations possible only for small values of $\ell > 2$ and n.

Pro: smaller factor base \rightarrow less relations and faster linear algebra

Con: larger degree for summation polynomials \rightarrow harder decompositions

ightarrow currently no gain over classical decomposition method except possibly for 3-torsion in char. 3.

 ${\boldsymbol{{\scriptscriptstyle \mathsf{ j}}}}$ new point of view on the anomalous attack

 Further developments: more automorphisms (j = 0 or 1728), hyperelliptic curves.

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Summation polynomials and symmetries for the ECDLP over extension fields

Vanessa VITSE

Université Joseph Fourier - Grenoble

Vanessa VITSE (UJF)

Summation polynomials and symmetries

DLP 2014 37 / 37

< ∃ > <