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Decomposition index calculus

Background

The Elliptic Curve Discrete Log Problem

E elliptic curve defined over finite field Fq, and P ,Q P E pFqq.

Goal (ECDLP) : compute x s.t. Q “ rxsP

If Fq prime field: no known non-generic algorithms in general.

If Fq “ Fpn extension field: decomposition index calculus
(Gaudry/Diem).
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Decomposition index calculus

Decomposition index calculus

Outline of the attack:

1 Choose a factor base F Ä E pFqnq.

2 Relation search step: look for decompositions of the form

rasP ` rbsQ “ P1 ` ¨ ¨ ¨ ` Pn, Pi P F

3 Linear algebra step: once « |F | relations are computed, use sparse
matrix algorithms to extract discrete log of Q.

Step 2 hopeless if F arbitrary subset of E pFqnq.
Only method so far: define F algebraically, over subfield Fq

Ñ Weil restriction structure
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Decomposition index calculus

Gaudry/Diem’s decomposition

Standard choice is F “ tP P E pFqnq : xpPq P Fqu

Ñ algebraic curve in the Weil restriction of E seen as a dim. n
abelian variety over Fq

Ñ #F » q
Ñ look for decomp. of R “ rasP ` rbsQ in sums of n points of F .

Still not obvious to find decompositions. Main tool: description of the
addition law on E with Semaev polynomials.

Decomposition try for R “ rasP ` rbsQ: solve

Sn`1px1, . . . , xn, xpRqq “ 0 with xi P Fq

Restriction of scalar  resolution of multivariate polynomial system
with n var./eqn., total degree n 2n´2. This is the hardest part.
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Decomposition index calculus

Semaev polynomials

Semaev summation polynomials

For all k • 2, there exists Sk P FqnrX1, . . . ,Xk s irreducible s.t.

Skpa1, . . . , akq “ 0 ñ DPi P E pFqq, xpPi q “ ai and
ÿ

i

Pi “ O

pP1, . . . ,Pkq P E k

pxpP1q, . . . , xpPkqq P Ak

x

“Projection of the group law on x”

Degree 2k´2 in each variable Ñ hard to compute for k • 5
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Decomposition index calculus

Back to Gaudry/Diem’s decomposition

Standard choice is F “ tP P E pFqnq : xpPq P Fqu

Ñ algebraic curve in the Weil restriction of E seen as a dim. n
abelian variety over Fq

Ñ #F » q
Ñ look for decomp. of R “ rasP ` rbsQ in sums of n points of F .

Still not obvious to find decompositions. Main tool: description of the
addition law on E with Semaev polynomials.

Decomposition try for R “ rasP ` rbsQ: solve

Sn`1px1, . . . , xn, xpRqq “ 0 with xi P Fq

Restriction of scalar  resolution of multivariate polynomial system
defined over Fq with n variables/equations, total degree n 2n´2.

This is the hardest part.
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Decomposition index calculus

Natural improvements

§ Factor base F “ tP P E pFqnq : xpPq P Fqu is invariant by ´:

P P F ô ´P P F
Ñ possible to divide size of factor base by 2 by considering
decompositions of the form R “ ˘P1 ¨ ¨ ¨ ˘ Pn

Ñ less relations needed and faster linear algebra

§ Semaev polynomials are symmetric (in the usual sense)

Ñ expression in terms of elementary symmetric polynomials
e1 “ X1 ` ¨ ¨ ¨ ` Xn, . . . , en “ X1 . . .Xn speeds up computation of
polynomials and resolution of systems

Computation of decompositions still slow if n § 4, intractable if n • 5
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Summation polynomials

Our contribution

Main idea
Replace x by arbitrary rational map ' : E Ñ Fqn in definition of factor
base:

F “ tP P E pFqnq : 'pPq P Fqu

Implies ability to define and compute associated summation polynomials.

Useful generalization?

Yes!

If ' well-chosen:

F can have more invariance properties Ñ further reduction of its size

associated summation polynomial have more symmetries Ñ easier to
compute and faster decompositions
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Summation polynomials

Summation polynomials

Theorem

For any rational map ' : E Ñ Fqn and k • 3, there exists a unique (up to
constant) P',k P FqnrX1, . . . ,Xk s, irreducible, symmetric, s.t.

P',kpa1, . . . , akq “ 0 ñ DPi P E pFqq, 'pPi q “ ai and
ÿ

i

Pi “ O

“Projection of the group law on '”

degXi
P',k proportional to pdeg'q

k in general, and also for all interesting
cases so far
Ñ computation tractable only if deg' and k small.
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Summation polynomials

Computation of summation polynomials
First method: Riemann-Roch

Observation

P1 ` ¨ ¨ ¨ ` Pk “ O ô Df P F̄qpE q s.t. divpf q “ pP1q ` ¨ ¨ ¨ ` pPkq ´ kpOq

Function f in Riemann-Roch space LpkpOqq.

1 Write equation of E in terms of ' and a 2nd var. w (usually x or y)
2 Compute basis of LpkpOqq “ x1, f2p',wq, . . . , fkp',wqy and consider

f “ fkp',wq ` �k´1fk´1p',wq ` ¨ ¨ ¨ ` �1
3 Resultant of f with equation of E wrt. w gives degree k polynomial F

in Fqnr�1, . . . ,�k´1sr's

Steps 2-3 similar to Nagao’s method for higher genus decomposition
attacks
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Summation polynomials

Computation of summation polynomials
First method: Riemann-Roch

Observation
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f “ fkp',wq ` �k´1fk´1p',wq ` ¨ ¨ ¨ ` �1
3 Resultant of f with equation of E wrt. w gives degree k polynomial F

in Fqnr�1, . . . ,�k´1sr's

4 Equate coe↵. of F with elementary sym. polynomials e1, . . . , ek and
compute Gröbner basis of these k equations wrt. elimination order.

5 The Gröbner basis contains P',k symmetrized, i.e. expressed in terms
of e1, . . . , ek
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Summation polynomials

Computation of summation polynomials
Second method: induction and resultants

Observation

P1 ` ¨ ¨ ¨ ` Pk “ O ô DQ P E s.t.

#
P1 ` ¨ ¨ ¨ ` Pj ` Q “ O
Pj`1 ` ¨ ¨ ¨ ` Pk ´ Q “ O

Assume for simplicity 'pPq “ 'p´Pq @P P E . Then

P1 ` ¨ ¨ ¨ ` Pk “ O
õ

P',j`1p'pP1q, . . . ,'pPjq,X q and P',k´j`1p'pPj`1q, . . . ,'pPkq,X q

have a common root

P',kpX1, . . . ,Xkq “ RespP',j`1pX1, . . . ,Xj ,X q,P',k´j`1pXj`1, . . . ,Xk ,X qq

Computation by induction still requires to know P',3.
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Morphisms and torsion

Action of small torsion points

Fact: many elliptic curves only have near-prime cardinality
Ñ admit small order points. Use them to speed DLP!

Free relations

Let T P E pFqnq point of small order `, ⌧T : E Ñ E translation-by-T map.
Suppose F invariant by ⌧T , i.e. P P F i↵ P ` T P F .

Then each decomposition yields many more:

R “ P1 ` ¨ ¨ ¨ ` Pn

“ pP1 ` T q ` pP2 ` r`´ 1sT q ` ¨ ¨ ¨ ` Pn

“ pP1 ` T q ` pP2 ` T q ` pP3 ` r`´ 2sT q ` ¨ ¨ ¨ ` Pn

“ . . .
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Morphisms and torsion

Relation amplification

P1 ` ¨ ¨ ¨ ` Pn “ pP1 ` T q ` pP2 ` r`´ 1sT q ` ¨ ¨ ¨ ` Pn

“ pP1 ` T q ` pP2 ` T q ` pP3 ` r`´ 2sT q ` ¨ ¨ ¨ ` Pn

“ . . .

Consequences

Pro: size of factor base F can be e↵ectively divided by `

Con: decreases the probability that a random R can be decomposed

Main advantage: big speed-up in computation of summation
polynomials and point decomposition
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Pro: size of factor base F can be e↵ectively divided by `
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Main advantage: big speed-up in computation of summation
polynomials and point decomposition
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Morphisms and torsion

Equivariant morphisms

Goal: factor base F “ tP : 'pPq P Fqu invariant by ⌧T , T P E r`s

First idea
Look for invariant ' : E Ñ Fqn , i.e.

'pP ` T q “ 'pPq @P P E .

But then ' factorizes through quotient isogeny E Ñ E{

xT y

:

E E{

xT y

Fqn
⇡

'

'1

Same summation polynomials: P',n “ P'1,n
ñ equivalent decompositions on E with ' and on E

{xT y

with '1, but
no use of torsion on the latter!
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Morphisms and torsion

Equivariant morphisms

Goal: factor base F “ tP : 'pPq P Fqu invariant by ⌧T , T P E r`s

Better idea
Look for equivariant ' : E Ñ Fqn , i.e. D rational map f : Fqn Ñ Fqn s.t.

'pP ` T q “ f p'pPqq @P P E .

So f p`q
“ f ˝ ¨ ¨ ¨ ˝ f “ Id

Invariance of F requires stability by f of Fq, or rather P1
pFqq

ñ f element of PGL2pFqq of exact order `

Better if ' also invariant or equivariant wrt. r´1s

Fact

' strictly equivariant wrt. translation by T P E r`s ñ `| deg'
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Two-torsion

Two-torsion in char 2: morphism

E : y2 ` xy “ x3 ` ax2 ` b ordinary elliptic curve over binary field Fqn .
Non-trivial 2-torsion point is T2 “ p0, b1{2

q.

Proposition

Let ' : E Ñ Fqn , px , yq fiÑ

b1{4

x ` b1{4
. Then @P P E,

'pP ` T2q “ 'pPq ` 1

'p´Pq “ 'pPq

Factor base can be e↵ectively divided by 4 Ñ #F « q{4
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Two-torsion

Two-torsion in char 2: summation polynomials
Since P1 ` ¨ ¨ ¨ ` Pk “ pP1 ` T2q ` pP2 ` T2q ` P3 ` ¨ ¨ ¨ ` Pk “ . . . ,
we have P',kpX1, . . . ,Xkq “ P',kpX1 ` 1,X2 ` 1,X3, . . . ,Xkq “ . . .

Ñ invariant if even number of +1 added.

Proposition

P',k invariant under a�ne action of the group G2 “ pZ{2Zq

k´1
¸Sk .

Invariant ring FqnrX1, . . . ,Xk s

G2 free algebra, generated by

e1 “ X1 ` ¨ ¨ ¨ ` Xk

s2 “ Y1Y2 ` ¨ ¨ ¨ ` Yk´1Yk

...

sk “ Y1 . . .Yk

where Yi “ X 2
i ` Xi .
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Two-torsion

Two-torsion in char 2: results [FHJRV, Eurocrypt 2014]

Writing down P',k in terms of invariant generators e1, s2, . . . , sk makes a
huge di↵erence:

k 3 4 5 6 7 8
Semaev nb of monomials 3 6 39 638 – –

polynomials timings 0 s 0 s 26 s 725 s – –
P',k nb of monomials 2 3 9 50 2 247 470 369

timings 0 s 0 s 0 s 1 s 383 s 40.5 h

Computations for k “ 4 to 7 in two steps:

1 take resultant of partially symmetrized summation polynomials

2 express resultant in terms of invariant generators using elimination
(Gröbner basis)

Resultant too large for k “ 8 case Ñ dedicated interpolation technique
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Two-torsion

Two-torsion in char 2: results [FHJRV, Eurocrypt 2014]

Target: IPSEC Oakley curve, defined over F231ˆ5 .
Cardinality is 12 times a 151-bit prime Ñ can use 2-torsion point.

Di�culty of point decomposition R “ P1 ` ¨ ¨ ¨ ` P5, Pi P F ?

Gaudry-Diem’s approach: intractable. Resolution of corresponding
polynomial system does not succeed on a personal computer

“n ´ 1” approach: only known approach before this work. Estimated
timing for one relation is « 37 years (but easy to distribute).

With additional symmetries: « 5.5 hr for one relation.

Still too slow for ECDLP resolution, but threatens non-standard problems
e.g. oracle-assisted static Di�e-Hellman.
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Two-torsion

Two-torsion in odd char: morphism

E : y2 “ c xpx ´ 1qpx ´�q elliptic curve over Fqn in twisted Legendre form.
Three non-trivial 2-torsion points T0 “ p0, 0q, T1 “ p1, 0q, T2 “ p�, 0q.

Proposition

If � and 1 ´ � squares, then D' : E Ñ Fqn degree 2 map s.t. @P P E,

'pP ` T0q “ ´'pPq, 'pP ` T1q “

1

'pPq

, 'pP ` T2q “ ´

1

'pPq

'p´Pq “ 'pPq

Note: z fiÑ ´z , z fiÑ 1{z and z fiÑ ´1{z “simplest” choice of
homographies. Only one can be a�ne.

Factor base can be e↵ectively divided by 8 Ñ #F « q{8
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Two-torsion

Two-torsion in odd char: summation polynomials (1)

P',kpX1, . . . ,Xkq “ P',kp´X1,´X2,X3, . . . ,Xkq “ . . .
Invariance by any even number of sign changes.

However P',kpX1, . . . ,Xkq ‰ P',kp1{X1, 1{X2,X3, . . . ,Xkq. So ?

§ Either only use first invariance (from 'pP ` T0q “ ´'pPq).
Then P',k belongs to explicit invariant ring Ñ results as in char. 2
case.

§ Or consider invariant rational fraction

Q',kpX1, . . . ,Xkq “

P',kpX1, . . . ,Xkq

pX1 . . .Xkq

2k´3

and work with invariant fields instead.
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Two-torsion

Two-torsion in odd char: summation polynomials (2)

Proposition

Q',k is invariant under action of the group
G4 “ pZ{2Z ˆ Z{2Zq

k´1
¸ Sk .

Invariant field FqnpX1, . . . ,Xkq

G4 has explicit generators
w0,w1,�1, . . . ,�k´2.

FYI:

�i “ i-th elementary symmetric polynomial in X 2
1 ` X´2

1 , . . . ,X 2
k ` X´2

k

w0 “

∞tk{2u
i“0 s2i{pX1 ¨ ¨ ¨Xkq, w1 “

∞tpk´1q{2u
i“1 s2i`1{pX1 ¨ ¨ ¨Xkq, where

si “ i-th elementary symmetric polynomial in X 2
1 , . . . ,X

2
k (and s0 “ 1).
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Two-torsion

Symmetrization

How to express an invariant rational fraction in terms of generators of the
invariant field?

§ For polynomials in invariant ring: elimination theory.

If new generators are Yi “ fi pX1, . . . ,Xkq, compute Gröbner basis of
tY1 ´ f1, . . . ,Ym ´ fmu Ä K rX1, . . . ,Xk ,Y1, . . . ,Yms wrt. an
elimination order, then compute normal form of invariant polynomial.

§ For rational fractions in invariant field: ??

However in our case Q',k is polynomial in our choice of invariant
generators
Ñ inductive computation with partially symmetrized resultants OK.
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§ For rational fractions in invariant field: ??

However in our case Q',k is polynomial in our choice of invariant
generators
Ñ inductive computation with partially symmetrized resultants OK.
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Two-torsion

Two-torsion in odd char: results (1)

k 3 4 5 6
Semaev polynomials 5 36 940 –
P',kps1, . . . , sk´1, ekq 5 13 182 4125

Q',kp�1, . . . ,�k´2,w0,w1q 3 6 32 396

Comparison of number of monomials for:

Semaev polynomials, symmetrized wrt. the action of Sk

P',k symmetrized wrt. the action of only one 2-torsion point

Q',k symmetrized wrt. the action of the full 2-torsion

Note: less sparse than in char. 2
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Two-torsion

Two-torsion in odd char: results (2)

Target: random curve over OEF F
p231`413q

5 , with full 2-torsion and
near-prime cardinality.

Di�culty of point decomposition R “ P1 ` ¨ ¨ ¨ ` P5, Pi P F ?

Gaudry-Diem’s approach: intractable.

With one 2-torsion point [FGHR, JoC 2013]: « 60 days for one relation.

With full 2-torsion: « 2.5 days for one relation.
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Higher torsion

Equivariance for higher order torsion

Let G be a subgroup of E pFqnq.
Can we find maps E Ñ P1 strictly equivariant wrt. to translation by any
point of G?

Yes, but not for any G

Strict equivariance ñ injective homomorphism G Ñ PGL2pFqq

with also r´1s ñ homom. G ¸ Z{2Z Ñ PGL2pFqq, injective on G .

Theorem
The only possible subgroups are:

G “ E r2s, plus invariance wrt. r´1s

G “ xT y Ä E r`s, plus equivariance wrt. r´1s, with either

§ `|q ´ 1 § `|q ` 1 § ` “ charpFqq
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Higher torsion

Case `|q ´ 1

If ' equivariant for xT`y Ä E r`s, we can always assume that

'pP ` T`q “ ⇣'pPq, ⇣ P µ˚

` pFqq.

So 'pP ` T q{'pPq independent of P if T P xT`y

ñ Homomorphism (“linear map”) from xT`y to µ`pFqq,

T fiÑ

'pP ` T q

'pPq

.

Sounds familiar? Pairings are not far away...
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Higher torsion

Cartier pairing

Let  be the `-isogeny E Ñ E{

xT`y

. Then there exists a pairing on

ker ˆ ker  ̂ » xT`y ˆ E r`s{
xT`y

.

Cartier pairing

Let T P xT`y and T 1

P E r`s{
xT`y

. Let gT 1 the function with divisor

 ˚

pp pT 1

qq ´ pOqq “

ÿ̀

i“1

pT 1

` risT`q ´

ÿ̀

i“1

prisT`q.

Then e pT ,T 1

q “ gT 1
pP ` T q{gT 1

pPq is independent of P P E .

e : xT`y ˆ E r`s{
xT`y

Ñ µ` well-defined, non-degenerate bilinear map.

Because T` P E pFqnq and `|q ´ 1, function gT 1 is defined over Fqn .
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Higher torsion

Equivariant morphism for `|q ´ 1

If T`,T 1 generate E r`s then gT 1 : E Ñ P1 is a strictly equivariant
morphism.

To get equivariance wrt. r´1s, set 'pPq “

gT 1
pPq

gT 1
p´Pq

(at least if ` odd),

so 'p´Pq “ 1{'pPq.

Proposition

This construction essentially yields all morphisms E Ñ P1 equivariant
wrt. to translation by a `-torsion point.

Case `|q ` 1 is very similar, except that the action on P1 is less nice than
z fiÑ ⇣z .
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Higher torsion

Summation polynomial and invariant ring

Assume 'pP ` T`q “ ⇣'pPq and 'p´Pq “ 1{'pPq.
As in the 2-torsion case, we have:

Proposition

P',k invariant under linear action of the group G` “ pZ{`Zq

k´1
¸ Sk .

Invariant ring FqnrX1, . . . ,Xk s

G` free algebra, generated by

s1 “ Y1 ` ... ` Yk , ... , sk´1 “ Y1...Yk´1 ` ... ` Y2...Yk , ek “ X1...Xk

where Yi “ X `
i .

Equivariance wrt. r´1s more di�cult to take into account: replacing
polynomials by rational fractions gives no simplification.

Still allows to reduce size of factor base by 2.
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Higher torsion

Example

For ` “ 3 (`|q ´ 1), and E : y2 “ x3 ` px ` aq

2, the point T “ p0, aq has
order 3.

The equivariant morphism is given by

'px , yq “

?

3y ` ipx ` 3aq

´

?

3y ` ipx ` 3aq

.

Then the corresponding third summation polynomial is

P',3ps1,s2,e3q“´27e63`27s1e43`27s2e43´81e53´9s22e
2
3`54s1e33`54s2e33

´81e43`s31`3s21 s2`3s1s22`s32´9s21e3`27s1e23`27s2e23´27e33

`�p12s21e
3
3´p27a´16qps21e

2
3`s22e3q´p54a`16qps1s2e23`s1s2e3q`12s22 q,

�“9{p27a´4q.
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Higher torsion

Case ` “ p

If ' equivariant for xTpy “ E rps, we can always assume that

'pP ` Tpq “ 'pPq ` 1

So 'pP ` T q ´ 'pPq independent of P if T P E rps

ñ Homomorphism (“linear map”) from E rps to pFq,`q,

T fiÑ 'pP ` T q ´ 'pPq.

Sounds familiar? Easy DLP in order p subgroup

Ñ anomalous attack.
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Higher torsion

Equivariant morphism for ` “ p

Let Tp P E rps and gpxq “

pp´1q{2π

i“1

px ´ xprisTpqq

(g ú p-th root of p-th division polynomial).

Proposition

There exists � P Fqn such that the map 'px , yq “

yg 1

pxq

gpxq

satisfies the

equivariance properties

'pP ` Tpq “ 'pPq ` 1, 'p´Pq “ ´'pPq.

Only such function, up to translation by a rational 2-torsion point.

If ' can be computed e�ciently for p large, gives a q-adic independent
version of the anomalous attack.
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Higher torsion

Summation polynomial and invariant ring

Assume 'pP ` Tpq “ 'pPq ` 1 and 'p´Pq “ ´'pPq.
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Higher torsion

Example

For p “ 3, and E : y2 “ x3 ` px ` aq

2, the point T “ p0, aq has order 3.

The equivariant morphism is simply given by

'px , yq “

y

x
.

Then the corresponding third summation polynomial is

P',3pe1, s2, s3q “ 2ae61 ` e21s
2
2 ` e31s3 ` 2s32 .

Much sparser than in the case `|pq ´ 1q.

Fourth summation polynomial is

P',4pe1, s2, s3, s4q “ s93 ` e31s
8
3 ` 120 other terms.
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Conclusion

Conclusion

§ Use of 2-torsion points: huge speed-up for computations of
decompositions

§ Higher order torsion points:
Computations possible only for small values of ` ° 2 and n.

Pro: smaller factor base Ñ less relations and faster linear algebra

Con: larger degree for summation polynomials Ñ harder
decompositions

ë currently no gain over classical decomposition method except
possibly for 3-torsion in char. 3.
ë new point of view on the anomalous attack

§ Further developments: more automorphisms (j “ 0 or 1728),
hyperelliptic curves.
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