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Background

The Elliptic Curve Discrete Log Problem
E elliptic curve defined over finite field Fy, and P, Q € E(Fy).

Goal (ECDLP) : compute x s.t. Q@ = [x]P

o If Fy prime field: no known non-generic algorithms in general.

o If Fq = F,n extension field: decomposition index calculus
(Gaudry/Diem).
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Decomposition index calculus

Decomposition index calculus

Outline of the attack:

@ Choose a factor base 7  E(Fgn).

@ Relation search step: look for decompositions of the form

[a]P+ [b]Q=P1+---+P,, PieF

© Linear algebra step: once ~ | F| relations are computed, use sparse
matrix algorithms to extract discrete log of Q.
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@ Relation search step: look for decompositions of the form

[a]P+ [b]Q=P1+---+P,, PieF

© Linear algebra step: once ~ | F| relations are computed, use sparse
matrix algorithms to extract discrete log of Q.

Step 2 hopeless if F arbitrary subset of E(Fgn).
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Decomposition index calculus

Decomposition index calculus

Outline of the attack:

@ Choose a factor base 7 c E(Fgn).

@ Relation search step: look for decompositions of the form

[a]P+ [b]Q=P1+---+P,, PieF

© Linear algebra step: once ~ | F| relations are computed, use sparse
matrix algorithms to extract discrete log of Q.

Step 2 hopeless if F arbitrary subset of E(Fgn).
Only method so far: define F algebraically, over subfield Fg
— Weil restriction structure
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Decomposition index calculus

Gaudry/Diem’s decomposition

@ Standard choice is F = {P € E(Fgn) : x(P) € Fq}
— algebraic curve in the Weil restriction of E seen as a dim. n
abelian variety over [,
— #F ~q
— look for decomp. of R = [a]P + [b]Q in sums of n points of F.
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Decomposition index calculus

Gaudry/Diem’s decomposition

e Standard choice is F = {P € E(Fgn) : x(P) € Fq}
— algebraic curve in the Weil restriction of E seen as a dim. n
abelian variety over [,
— #F ~q
— look for decomp. of R = [a]P + [b]Q in sums of n points of F.

@ Still not obvious to find decompositions. Main tool: description of the
addition law on E with Semaev polynomials.
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Decomposition index calculus

Semaev polynomials

Semaev summation polynomials
For all k > 2, there exists Sy € Fgn[ X1, ..., Xi] irreducible s.t.

Sk(a,...,ak) = 0« 3P; € E(Fy), x(P;) = a;and Y P; = O
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Decomposition index calculus

Semaev polynomials

Semaev summation polynomials
For all k > 2, there exists Sy € Fgn[ X1, ..., Xi] irreducible s.t.

Sk(a,...,ak) = 0« 3P; € E(Fy), x(P;) = a;and Y P; = O

(Pl,...,Pk) € Ek

b

(x(P1),...,x(Py)) e Ak
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Semaev polynomials

Semaev summation polynomials
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Decomposition index calculus

Semaev polynomials

Semaev summation polynomials
For all k > 2, there exists Sy € Fgn[ X1, ..., Xi] irreducible s.t.

Sk(ar,...,a) =0 <= 3P € E(Fy), x(P;) =a;and ) Pi= O

(Pl,...,Pk) EEk‘——){(Pl,...,Pk):ZiP,'ZO}:Ek_l

ok A

(x(P1),...,x(Py)) € Ak = > V/(Sk)

“Projection of the group law on x"
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Decomposition index calculus

Semaev polynomials

Semaev summation polynomials
For all k > 2, there exists Sy € Fgn[ X1, ..., Xi] irreducible s.t.

Sk(ar,...,a) =0 <= 3P € E(Fy), x(P;) =a;and ) Pi= O

(Pl,...,Pk) EEk‘——){(Pl,...,Pk):ZiP,'ZO}:Ek_l

ok A

(x(P1),...,x(Py)) € Ak = > V/(Sk)

“Projection of the group law on x"

Degree 2=2 in each variable — hard to compute for k > 5 J
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Back to Gaudry/Diem’s decomposition

e Standard choice is F = {P € E(Fgr) : x(P) € Fq}
— algebraic curve in the Weil restriction of E seen as a dim. n
abelian variety over [y
— #F ~q
— look for decomp. of R = [a]P + [b]Q in sums of n points of F.

@ Still not obvious to find decompositions. Main tool: description of the
addition law on E with Semaev polynomials.
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Back to Gaudry/Diem’s decomposition

e Standard choice is F = {P € E(Fgn) : x(P) € Fq}
— algebraic curve in the Weil restriction of E seen as a dim. n
abelian variety over Fg
- #F ~q
— look for decomp. of R = [a]P + [b]Q in sums of n points of F.

@ Still not obvious to find decompositions. Main tool: description of the
addition law on E with Semaev polynomials.

e Decomposition try for R = [a]P + [b]Q: solve

Spt1(x1, ..., %, X(R)) = 0 with x; € Fy

Restriction of scalar ~» resolution of multivariate polynomial system
defined over F, with n variables/equations, total degree n272.
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Back to Gaudry/Diem’s decomposition

e Standard choice is F = {P € E(Fgn) : x(P) € Fq}
— algebraic curve in the Weil restriction of E seen as a dim. n
abelian variety over Fg
- #F ~q
— look for decomp. of R = [a]P + [b]Q in sums of n points of F.

@ Still not obvious to find decompositions. Main tool: description of the
addition law on E with Semaev polynomials.

e Decomposition try for R = [a]P + [b]Q: solve
Spt1(x1, ..., %, X(R)) = 0 with x; € Fy

Restriction of scalar ~ resolution of multivariate polynomial system
defined over F, with n variables/equations, total degree n272.

This is the hardest part.
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Natural improvements
» Factor base F = {P € E(Fgn) : x(P) € Fq} is invariant by —:

PeF<e—-PeF

— possible to divide size of factor base by 2 by considering
decompositions of the form R = +P;--- + P,
— less relations needed and faster linear algebra
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Decomposition index calculus

Natural improvements

» Factor base F = {P € E(Fgn) : x(P) € Fq} is invariant by —:

PeF<e—-PeF

— possible to divide size of factor base by 2 by considering
decompositions of the form R = +P;--- + P,
— less relations needed and faster linear algebra

» Semaev polynomials are symmetric (in the usual sense)

— expression in terms of elementary symmetric polynomials
e1r=X1+--+ Xy, ..., en=X1...X, speeds up computation of
polynomials and resolution of systems
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Decomposition index calculus

Natural improvements

» Factor base F = {P € E(Fgn) : x(P) € Fq} is invariant by —:

PeF<e—-PeF

— possible to divide size of factor base by 2 by considering
decompositions of the form R = +P;--- + P,
— less relations needed and faster linear algebra

» Semaev polynomials are symmetric (in the usual sense)

— expression in terms of elementary symmetric polynomials
e1r=X1+--+ Xy, ..., en=X1...X, speeds up computation of
polynomials and resolution of systems

Computation of decompositions still slow if n < 4, intractable if n > 5 J
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Summation polynomials

Our contribution

Main idea

Replace x by arbitrary rational map ¢ : E — Fgn in definition of factor
base:
F={PecE[Fq): p(P)eFq}

Implies ability to define and compute associated summation polynomials.

Useful generalization?
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Summation polynomials

Our contribution

Main idea

Replace x by arbitrary rational map ¢ : E — Fgn in definition of factor
base:
F={PecE[Fq): p(P)eFq}

Implies ability to define and compute associated summation polynomials.

Useful generalization? Yes!

If ¢ well-chosen:
@ F can have more invariance properties — further reduction of its size

@ associated summation polynomial have more symmetries — easier to
compute and faster decompositions
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Summation polynomials

Summation polynomials

Theorem

For any rational map ¢ : E — Fgn and k > 3, there exists a unique (up to

constant) P i € Fgn[ X1, ..., Xk], irreducible, symmetric, s.t.

Pok(at,...,a) =0« 3P E(Fy), ¢(P) =a;and ».P; =0
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Summation polynomials

Summation polynomials

Theorem

For any rational map ¢ : E — Fgn and k > 3, there exists a unique (up to

constant) P i € Fgn[ X1, ..., Xk], irreducible, symmetric, s.t.

Pok(at,...,a) =0« 3P E(Fy), ¢(P) =a;and ».P; =0

“Projection of the group law on ¢"

degx. P,k proportional to (deg ©)¥ in general, and also for all interesting
cases so far

— computation tractable only if deg ¢ and k small.
Vanessa VITSE (UJF)
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Summation polynomials

Computation of summation polynomials
First method: Riemann-Roch

Observation

Pi+ -+ Py =0 < If e Fy(E) st. div(f) = (P1) + -+ + (Px) — k(O)
Function f in Riemann-Roch space L(k(O)).

o F
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Summation polynomials

Computation of summation polynomials
First method: Riemann-Roch

Observation

Pi+ -+ Py =0 < If e Fy(E) st. div(f) = (P1) + -+ + (Px) — k(O)
Function f in Riemann-Roch space L(k(O)).

© Write equation of E in terms of ¢ and a 2nd var. w (usually x or y)
@ Compute basis of L(k(O)) =<1, (e, w),..

., f(p, w)) and consider
f=filo,w) + M1fimi(ow) +-+ M
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Computation of summation polynomials
First method: Riemann-Roch

Observation

Pi+ -+ Py =0 < If e Fy(E) st. div(f) = (P1) + -+ + (Px) — k(O)
Function f in Riemann-Roch space L(k(O)).

© Write equation of E in terms of ¢ and a 2nd var. w (usually x or y)
@ Compute basis of L(k(O)) =<1, (e, w),..
f="filp,w)+ M_1fi—1(p,w) +---+ N1

© Resultant of f with equation of E wrt. w gives degree k polynomial F
in Fqn[/\]_, ey >\k—1] [(p]

., fk(p, w)) and consider
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Computation of summation polynomials
First method: Riemann-Roch

Observation

Pi+ -+ Py =0 < If e Fy(E) st. div(f) = (P1) + -+ + (Px) — k(O)
Function f in Riemann-Roch space L(k(O)).

© Write equation of E in terms of ¢ and a 2nd var. w (usually x or y)
@ Compute basis of L(k(0)) =<1, (¢, w),...,fk(p, w)) and consider
f="filp,w)+ M_1fi—1(p,w) +---+ N1

© Resultant of f with equation of E wrt. w gives degree k polynomial F
in Fqn[/\]_, ey >\k—1] [(p]

Steps 2-3 similar to Nagao's method for higher genus decomposition
attacks
DLP 2014 10 /37



Summation polynomials

Computation of summation polynomials

First method: Riemann-Roch

Observation

Pit +P=0 < I e Fy(E) st. div(f) = (P) + - + (Px) — k(O)
Function f in Riemann-Roch space L(k(O)).

o
2]

Write equation of E in terms of ¢ and a 2nd var. w (usually x or y)
Compute basis of L(k(O)) =<1, (e, w),..., fk(p,w)) and consider
f= fk((p, W) + )\kflfkfl(go, W) + o+

Resultant of f with equation of E wrt. w gives degree k polynomial F
in ]Fqn[)\l, ey )\k—l] [Lp]

Equate coeff. of F with elementary sym. polynomials ey, ..., e, and
compute Grobner basis of these k equations wrt. elimination order.

The Grobner basis contains P, x symmetrized, i.e. expressed in terms
of er,...,ex
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Computation of summation polynomials

Second method: induction and resultants

Observation

P oo a oL (2 =0
Pl+"'+Pk=O¢>E|Q€ES.t.{1+ +h+Q

P+ +P—Q=0

Vanessa VITSE (UJF)
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Summation polynomials

Computation of summation polynomials

Second method: induction and resultants

Observation

Pt +P+Q=0

Pi+ - +P=0<3IQeEst.
Piit+ +P—Q=0

Assume for simplicity ¢(P) = ¢(—P) VP € E. Then

Pi4 4P =0

Ptp,j-i-l(SD(Pl)a .. 7¢(PJ)7X) and Pgo,k—j+1(90(Pj+1), ey QD(Pk)’X)
haVe a common root
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Summation polynomials

Computation of summation polynomials

Second method: induction and resultants

Observation

Pt +P+Q=0

Pi+ - +P=0<3IQeEst.
Piit+ +P—Q=0

Assume for simplicity ¢(P) = ¢(—P) VP € E. Then

Pi4 4P =0

P,jr1(e(P1),.-.,0(Pj),X) and P, k_jr1(¢(Pjt1),---,¢(Pk), X)
haVe a common root

Pp,k(Xla 000 ,Xk) = ReS(P¢J+1(X1, 500 ,)(j,X), P%k,jJrl()(j_i_l, 000 ,Xk,X))J

Computation by induction still requires to know Py 3.
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Action of small torsion points

Fact: many elliptic curves only have near-prime cardinality
— admit small order points. Use them to speed DLP!

Vanessa VITSE (UJF)
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Morphisms and torsion

Action of small torsion points

Fact: many elliptic curves only have near-prime cardinality
— admit small order points. Use them to speed DLP!

Free relations

Let T € E(Fgn) point of small order ¢, 77 : E — E translation-by-T map.
Suppose F invariant by 71, i.e. Pe Fift P+ T e F.

V.
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Morphisms and torsion

Action of small torsion points

Fact: many elliptic curves only have near-prime cardinality
— admit small order points. Use them to speed DLP!

Free relations

Let T € E(Fgn) point of small order ¢, 77 : E — E translation-by-T map.
Suppose F invariant by 71, i.e. Pe Fift P+ T e F.

Then each decomposition yields many more:

R

Pi+-- + Py
= P+ T)+(Po+[£-1]T)+---+ P,
= P+ T)+(Po+T)+(P3+[£-2]T)+---+ Py
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Morphisms and torsion

Relation amplification

Pi+--+P, = (PA+T)+ P2+ [(—1]T)+ -+ Py
= PL+T)+Po+T)+(P3s+[{—=2]T)+---+ Py

Consequences
@ Pro: size of factor base F can be effectively divided by ¢

Vanessa VITSE (UJF) Summation polynomials and symmetries DLP 2014 13 / 37



Morphisms and torsion

Relation amplification

Pi+--+P, = (PA+T)+ P2+ [(—1]T)+ -+ Py
= P+ T)+(P+T)+(P3s+[(=2]T)+---+ P,

Consequences
@ Pro: size of factor base F can be effectively divided by ¢

@ Con: decreases the probability that a random R can be decomposed
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Morphisms and torsion

Relation amplification

Pi+--+P, = (PA+T)+ P2+ [(—1]T)+ -+ Py

= P+ T)+(P+T)+(P3s+[(=2]T)+---+ P,

Consequences
@ Pro: size of factor base F can be effectively divided by ¢

@ Con: decreases the probability that a random R can be decomposed

@ Main advantage: big speed-up in computation of summation

polynomials and point decomposition
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Morphisms and torsion

Equivariant morphisms

Goal: factor base F = {P : p(P) € Fq} invariant by 77, T € E[{]
First idea

Look for invariant ¢ : E — Fgn, i.e.

e(P+ T)=¢(P)VPeE.
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Morphisms and torsion

Equivariant morphisms

Goal: factor base F = {P : p(P) € Fq} invariant by 77, T € E[{]
First idea

Look for invariant ¢ : E — Fgn, i.e.

e(P+ T)=¢(P)VPeE.

But then ¢ factorizes through quotient isogeny E — E/ 7:

s SO/
E E/cry Fqn

¥
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Morphisms and torsion

Equivariant morphisms

Goal: factor base F = {P : p(P) € Fq} invariant by 77, T € E[{]
First idea

Look for invariant ¢ : E — Fgn, i.e.

e(P+ T)=¢(P)VPeE.

But then ¢ factorizes through quotient isogeny E — E/ 7:

s SO/
E E/cry Fqn

2
Same summation polynomials: P, , = P,

/
@,n
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Morphisms and torsion

Equivariant morphisms

Goal: factor base F = {P : p(P) € Fq} invariant by 77, T € E[{]
First idea

Look for invariant ¢ : E — Fgn, i.e.

e(P+ T)=¢(P)VPeE.

But then ¢ factorizes through quotient isogeny E — E/ 7:

/
s

E E/<-,->

Fgn
v

Same summation polynomials: P, , = P n
=> equivalent decompositions on E with ¢ and on E/r, with ¢, but
no use of torsion on the latter!

Vanessa VITSE (UJF) Summation polynomials and symmetries DLP 2014

14 / 37



Equivariant morphisms

Goal: factor base F = {P : p(P) € Fq} invariant by 77, T € E[{]
First-idea BAD IDEA

Look for invariant ¢ : E — Fgn, i.e.

o(P+T)=¢(P)VPeE.

But then ¢ factorizes through quotient isogeny E — E/ 7:

/
E/cry

™

E

Fgn
v

Same summation polynomials: P, , = P ,
=> equivalent decompositions on E with ¢ and on E/r, with ¢, but
no use of torsion on the latter!
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Morphisms and torsion

Equivariant morphisms

Goal: factor base F = {P : p(P) € Fq} invariant by 77, T € E[{]
Better idea

Look for equivariant ¢ : E — Fgn, i.e. 3 rational map f : Fgn — Fgn s.t.

o(P+ T)=f(p(P)) VPeE.
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Morphisms and torsion

Equivariant morphisms

Goal: factor base F = {P : p(P) € Fq} invariant by 77, T € E[{]
Better idea

Look for equivariant ¢ : E — Fgn, i.e. 3 rational map f : Fgn — Fgn s.t.

o(P+ T)=f(p(P)) VPeE.

0Sof) =fo.--of =Id
e Invariance of F requires stability by f of Fg, or rather P1(F,)

= f element of PGLy(Fg) of exact order ¢
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Morphisms and torsion

Equivariant morphisms

Goal: factor base F = {P : p(P) € Fq} invariant by 77, T € E[{]
Better idea

Look for equivariant ¢ : E — Fgn, i.e. 3 rational map f : Fgn — Fgn s.t.

o(P+ T)=f(p(P)) VPeE.

0Sof) =fo...of =1Id
e Invariance of F requires stability by f of Fg, or rather P1(F,)

= f element of PGLy(Fg) of exact order ¢
@ Better if ¢ also invariant or equivariant wrt. [—1]
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Morphisms and torsion

Equivariant morphisms

Goal: factor base F = {P : p(P) € Fq} invariant by 77, T € E[{]
Better idea

Look for equivariant ¢ : E — Fgn, i.e. 3 rational map f : Fgn — Fgn s.t.

o(P+ T)=f(p(P)) VPeE.

0Sof) =fo...of =1Id
e Invariance of F requires stability by f of Fg, or rather P1(F,)

= f element of PGLy(Fg) of exact order ¢
@ Better if ¢ also invariant or equivariant wrt. [—1]

Fact

 strictly equivariant wrt. translation by T € E[{] = {|degy J
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Two-torsion in char 2: morphism

E : y? + xy = x3 + ax? + b ordinary elliptic curve over binary field Fgn
Non-trivial 2-torsion point is To = (0, b'/2).

Vanessa VITSE (UJF)
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Two-torsion

Two-torsion in char 2: morphism

E : y? + xy = x3 + ax? + b ordinary elliptic curve over binary field Fgn.
Non-trivial 2-torsion point is T = (0, b/?).

Proposition
b1/4

W' Then VP e E,
X

Let ¢ : E — Fgn, (x,y) —

@ (P+ Ty)=¢(P)+1
* p(—P) = ¢(P)
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Two-torsion

Two-torsion in char 2: morphism

E : y? + xy = x3 + ax? + b ordinary elliptic curve over binary field Fgn.
Non-trivial 2-torsion point is T = (0, b/?).

Proposition
b1/4

W' Then VP e E,
X

Let ¢ : E — Fgn, (x,y) —

@ p(P+Th)=¢(P)+1
® p(=P) = p(P)

Factor base can be effectively divided by 4 — #F ~ q/4
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Two-torsion

Two-torsion in char 2: summation polynomials

Since Py+ -+ Pi=(Pi+To)+(P2+T2) +Ps+---+ P = ...,
we have Py i (X1,..., Xk) = Pox (X1 + 1, Xo + 1, X3,..., Xi) = ...

— invariant if even number of 4+1 added.
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Two-torsion

Two-torsion in char 2: summation polynomials

Since Py + -+ P, = (P1+ T2)+(P2+ T2)+P3+"'+Pk=...,
we have P(p,k(Xla ce ,Xk) = Pap,k(Xl +1,X+1,X5,... ,Xk) =...
— invariant if even number of +1 added.

Proposition

o P,y invariant under affine action of the group Gy = (Z/2Z)k~1 x &.
e Invariant ring Fgn[ X1, ..., Xk] G2 free algebra, generated by

er = X1+ -+ X
So=Y1Yo+ -+ Y1 Yk

Sk = Yl... Yk
where Y; = X,-2 + X;.
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Two-torsion

Two-torsion in char 2: results [FHJRV, Eurocrypt 2014]

Writing down P, i in terms of invariant generators ey, s,

...,S, makes a
huge difference:
k 3| 4 5 6 7 8
Semaev nb of monomials | 3 | 6 | 39 | 638 - -
polynomials timings Os | Os | 26s | 725s - -
Py« nb of monomials | 2 3 9 50 2247 | 470369
timings Os | O0s | Os 1s | 383s | 40.5h

Computations for k = 4 to 7 in two steps:

@ take resultant of partially symmetrized summation polynomials

@ express resultant in terms of invariant generators using elimination
(Grobner basis)
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Two-torsion in char 2: results [FHJRV, Eurocrypt 2014]

Writing down P, i in terms of invariant generators er, s, ..., S, makes a
huge difference:

k 3| 4 5 6 7 8
Semaev nb of monomials | 3 | 6 | 39 | 638 - -
polynomials timings Os | Os | 26s | 725s - -
Py« nb of monomials | 2 3 9 50 2247 | 470369
timings Os | O0s | Os 1s | 383s | 40.5h

Computations for k = 4 to 7 in two steps:

@ take resultant of partially symmetrized summation polynomials

@ express resultant in terms of invariant generators using elimination
(Grobner basis)

Resultant too large for k = 8 case — dedicated interpolation technique
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Two-torsion in char 2: results [FHJRV, Eurocrypt 2014]

Target: IPSEC Oakley curve, defined over Fosixs.
Cardinality is 12 times a 151-bit prime — can use 2-torsion point.

Difficulty of point decomposition R = Py +---+ Ps, Pie F 7?7
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Two-torsion in char 2: results [FHJRV, Eurocrypt 2014]

Target: IPSEC Oakley curve, defined over Fosixs.
Cardinality is 12 times a 151-bit prime — can use 2-torsion point.

Difficulty of point decomposition R = Py +---+ Ps, Pie F 7?7

Gaudry-Diem's approach: intractable. Resolution of corresponding
polynomial system does not succeed on a personal computer
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Two-torsion in char 2: results [FHJRV, Eurocrypt 2014]

Target: IPSEC Oakley curve, defined over Fosixs.
Cardinality is 12 times a 151-bit prime — can use 2-torsion point.

Difficulty of point decomposition R = Py +---+ Ps, Pie F 7?7

Gaudry-Diem's approach: intractable. Resolution of corresponding
polynomial system does not succeed on a personal computer

“n — 1" approach: only known approach before this work. Estimated
timing for one relation is ~ 37 years (but easy to distribute).
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Two-torsion in char 2: results [FHJRV, Eurocrypt 2014]

Target: IPSEC Oakley curve, defined over Fosixs.
Cardinality is 12 times a 151-bit prime — can use 2-torsion point.

Difficulty of point decomposition R = Py +---+ Ps, Pie F 7?7

Gaudry-Diem’s approach: intractable. Resolution of corresponding
polynomial system does not succeed on a personal computer

“n — 1" approach: only known approach before this work. Estimated
timing for one relation is ~ 37 years (but easy to distribute).

With additional symmetries: ~ 5.5 hr for one relation.

Still too slow for ECDLP resolution, but threatens non-standard problems
e.g. oracle-assisted static Diffie-Hellman.
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Two-torsion

Two-torsion in odd char: morphism

E :y? = cx(x —1)(x — A) elliptic curve over Fgn in twisted Legendre form.
Three non-trivial 2-torsion points To = (0,0), T1 = (1,0), T2 = (A, 0).
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Two-torsion

Two-torsion in odd char: morphism

E :y? = cx(x —1)(x — A) elliptic curve over Fgn in twisted Legendre form.
Three non-trivial 2-torsion points To = (0,0), T1 = (1,0), T2 = (A, 0).

Proposition

If X and 1 — X\ squares, then 3¢ : E — Fgn degree 2 map s.t. VP € E,

o p(P+To) = —p(P), ¢(P+Th)=—, @(P+To)=——=

p(P)’ o(P)
® p(=P) = ¢(P)

Note: z+— —z, z+— 1/z and z— —1/z “simplest” choice of
homographies. Only one can be affine.
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Two-torsion

Two-torsion in odd char: morphism

E :y? = cx(x —1)(x — A) elliptic curve over Fgn in twisted Legendre form.
Three non-trivial 2-torsion points To = (0,0), T1 = (1,0), T2 = (A, 0).

Proposition
If X and 1 — X\ squares, then 3¢ : E — Fgn degree 2 map s.t. VP € E,
1 1
o p(P+To)=—p(P), w(P+T)=—07(, oP+T2)=-——©F
( (P), ) (P ( ) 20P)

° p(—P) = p(P)

Note: z+— —z, z+> 1/z and z — —1/z "“simplest” choice of
homographies. Only one can be affine.

Factor base can be effectively divided by 8 — #F ~ q/8
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Two-torsion

Two-torsion in odd char: summation polynomials (1)

o Pgo,k(Xla .. ,Xk) = P%k(—Xl, —XQ,X3, cee ,Xk) =...
Invariance by any even number of sign changes.
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Two-torsion

Two-torsion in odd char: summation polynomials (1)

o P%k(Xl, . ,Xk) = P%k(—Xl, —)(2,)(37 e ,Xk) =...
Invariance by any even number of sign changes.
@ However P%k(Xl, ... ,Xk) #* P%k(l/Xl, 1/X2,X3, c. ,Xk). So ?
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Two-torsion

Two-torsion in odd char: summation polynomials (1)

o P%k(Xl, .. ,Xk) = P%k(—Xl, —Xg, X37 ey Xk) =...
Invariance by any even number of sign changes.

@ However P%k(Xl, e ,Xk) #* P%k(l/Xl, 1/X2,X3, . ,Xk). So ?
» Either only use first invariance (from (P + Tp) = —¢(P)).

Then P, , belongs to explicit invariant ring — results as in char. 2
case.
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Two-torsion

Two-torsion in odd char: summation polynomials (1)

o P%k(Xl, .. ,Xk) = P%k(—Xl, —Xz, X3, ey Xk) =...
Invariance by any even number of sign changes.

@ However P%k(Xl, . ,Xk) #* P%k(l/Xl, 1/X2,X3, . ,Xk). So ?

» Either only use first invariance (from (P + To) = —p(P)).
Then P, , belongs to explicit invariant ring — results as in char. 2
case.

» Or consider invariant rational fraction

Py (X1, ..oy Xi)

Xio. X)) =
Q(p,k( 1 k) (Xl B -Xk)2k_3

and work with invariant fields instead.
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Two-torsion

Two-torsion in odd char: summation polynomials (2)

Proposition
@ Q, k is invariant under action of the group
Gy = (Z)27 x 7)27)K x &y.
o Invariant field Fgqn(Xq, . .. , Xi)® has explicit generators
WO, W1, 01, ..., 0k_2.
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Two-torsion

Two-torsion in odd char: summation polynomials (2)

Proposition

@ Q, k is invariant under action of the group
Gy = (Z)27 x 7)27)K x &y.

o Invariant field Fgqn(Xq, . .. , Xi)® has explicit generators
wWo, W1,01,...,0k-2.
FYI:
o; = i-th elementary symmetric polynomial in X? + X1_2, e ,XE + Xk_2
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Two-torsion

Two-torsion in odd char: summation polynomials (2)

Proposition
@ Q, k is invariant under action of the group
Gy = (Z)27 x 7)27)K x &y.
o Invariant field Fgqn(Xq, . .. , Xi)® has explicit generators
WO, W1, 01, ..., 0k_2.

FYI:

o = i-th elementary symmetric polynomial in X12 + X1_2, e ,XE + Xk_2
wo = ZW Po/(Xi--Xe), wi = Z[( V2l g1 /(Xa - - Xe), where

i=1

s; = i-th elementary symmetric polynomial in XZ,...,X? (and sp = 1).
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Symmetrization
How to express an invariant rational fraction in terms of generators of the
invariant field?

J
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Two-torsion

Symmetrization

How to express an invariant rational fraction in terms of generators of the
invariant field?

» For polynomials in invariant ring: elimination theory.

If new generators are Y; = f;(X1, ..., Xx), compute Grobner basis of
{(Yi—f,...,Ym—fm} < K[X1,..., Xk, Y1, ..., Ym] wrt. an
elimination order, then compute normal form of invariant polynomial.
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Two-torsion

Symmetrization

How to express an invariant rational fraction in terms of generators of the
invariant field?

» For polynomials in invariant ring: elimination theory.

If new generators are Y; = f;(X1, ..., Xx), compute Grobner basis of
{(Yi—f,...,Ym—fm} < K[X1,..., Xk, Y1, ..., Ym] wrt. an
elimination order, then compute normal form of invariant polynomial.

» For rational fractions in invariant field: 77?
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Two-torsion

Symmetrization

How to express an invariant rational fraction in terms of generators of the
invariant field?

» For polynomials in invariant ring: elimination theory.

If new generators are Y; = f;(X1, ..., Xx), compute Grobner basis of
{Yl— fiyeoiy Ym— fm} C K[Xl,...,Xk,Yl,...,Ym] wrt. an
elimination order, then compute normal form of invariant polynomial.

» For rational fractions in invariant field: 77?

However in our case Q, « is polynomial in our choice of invariant
generators
— inductive computation with partially symmetrized resultants OK.
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Two-torsion

Two-torsion in odd char: results (1)

k 3| 4 5 6

Semaev polynomials 5136 | 940 -
P%k(sl, ey Sk—1, ek) 5113 | 182 | 4125
Q%k(O'l,...,Uk,Q,Wo,Wl) 3 6 32 396

Comparison of number of monomials for:
@ Semaev polynomials, symmetrized wrt. the action of G
@ P, symmetrized wrt. the action of only one 2-torsion point

® @,k symmetrized wrt. the action of the full 2-torsion

Note: less sparse than in char. 2
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Two-torsion

Two-torsion in odd char: results (2)

Target: random curve over OEF F (531,435, with full 2-torsion and
near-prime cardinality.

Difficulty of point decomposition R = Py +---+ Ps, Pie F ?
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Two-torsion

Two-torsion in odd char: results (2)

Target: random curve over OEF F (531,435, with full 2-torsion and
near-prime cardinality.

Difficulty of point decomposition R = Py +---+ Ps, Pie F ?

Gaudry-Diem’s approach: intractable.
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Two-torsion

Two-torsion in odd char: results (2)

Target: random curve over OEF F (531,435, with full 2-torsion and
near-prime cardinality.
Difficulty of point decomposition R = Py +---+ Ps, Pie F 7

Gaudry-Diem’s approach: intractable.

With one 2-torsion point [FGHR, JoC 2013]: ~ 60 days for one relation.
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Two-torsion

Two-torsion in odd char: results (2)

Target: random curve over OEF F (531,435, with full 2-torsion and
near-prime cardinality.

Difficulty of point decomposition R = Py +---+ Ps, Pie F ?
Gaudry-Diem’s approach: intractable.

With one 2-torsion point [FGHR, JoC 2013]: ~ 60 days for one relation.
With full 2-torsion: ~ 2.5 days for one relation.
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Higher torsion

Equivariance for higher order torsion

Let G be a subgroup of E(Fgn).

Can we find maps E — P! strictly equivariant wrt. to translation by any
point of G?
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Higher torsion

Equivariance for higher order torsion

Let G be a subgroup of E(Fgn).

Can we find maps E — P! strictly equivariant wrt. to translation by any
point of G? Yes, but not for any G
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Higher torsion

Equivariance for higher order torsion

Let G be a subgroup of E(Fgn).
Can we find maps E — P! strictly equivariant wrt. to translation by any

point of G? Yes, but not for any G

Strict equivariance = injective homomorphism G — PGL(Fy)
with also [—1] = homom. G x Z/27Z — PGLy(FF,), injective on G.
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Higher torsion

Equivariance for higher order torsion

Let G be a subgroup of E(Fgn).

Can we find maps E — P! strictly equivariant wrt. to translation by any
point of G? Yes, but not for any G

Strict equivariance = injective homomorphism G — PGL(Fy)
with also [-1] = homom. G x Z/27Z — PGLy(F4), injective on G.

Theorem
The only possible subgroups are:
e G = E[2], plus invariance wrt. [—1]
o G =(T) c E[{], plus equivariance wrt. [—1], with either
lg—1 lg+1 ¢ = char(Fy)
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Case l|g — 1

If ¢ equivariant for (Ty) < E[/], we can always assume that

@(P+ Te) = Cp(P), (e pu(Fq).
So ¢(P + T)/¢(P) independent of P if T € (Ty)
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Case l|g — 1

If ¢ equivariant for (Ty) < E[{], we can always assume that

o(P+Ty) =Cp(P), (e uy(Fq).

So ¢(P + T)/¢(P) independent of P if T € (Ty)

= Homomorphism (“linear map") from (T;) to pe(Fy),

o(P+T)

T ©(P)
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Case l|g — 1

If ¢ equivariant for (Ty) < E[{], we can always assume that

o(P+Ty) =Cp(P), (e uy(Fq).

So ¢(P + T)/¢(P) independent of P if T € (Ty)

= Homomorphism (“linear map") from (T;) to pe(Fy),

o(P+T)

T ©(P)

Sounds familiar?
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Case l|g — 1

If ¢ equivariant for (Ty) < E[{], we can always assume that

o(P+Ty) =Cp(P), (e uy(Fq).

So ¢(P + T)/¢(P) independent of P if T € (Ty)

= Homomorphism (“linear map") from (T;) to pe(Fy),

o(P+T)

T ©(P)

Sounds familiar? Pairings are not far away...
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Cartier pairing

Let v be the l-isogeny E — E/<-,—l>. Then there exists a pairing on
kert x kertp =~ (Ty) x E[€]/(T,-

Vanessa VITSE (UJF)
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Cartier pairing

Let ¢ be the (-isogeny E — E//7,,. Then there exists a pairing on
kert x kertp =~ (Ty) x E[€]/(T,-

Cartier pairing

Let T € (Ty) and T’ € E[{]/(7,. Let g7 the function with divisor
¢ ¢
(T’ = Z (T'+[11Te) — 2

Then ey (T, T') = gr/(P + T)/gr(P) is independent of P € E.

ey : (Te) x E[€]/¢1,y — e well-defined, non-degenerate bilinear map.
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Cartier pairing

Let ¢ be the (-isogeny E — E//7,,. Then there exists a pairing on
kert x kertp =~ (Ty) x E[€]/(T,-

Cartier pairing

Let T € (Ty) and T’ € E[{]/(7,. Let g7 the function with divisor
¢ ¢
(T’ = Z (T'+[11Te) — 2

Then ey (T, T') = gr/(P + T)/gr(P) is independent of P € E.

ey : (Te) x E[€]/¢1,y — e well-defined, non-degenerate bilinear map.

Because Ty € E(Fgn) and ¢|q — 1, function g7 is defined over Fgn
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Higher torsion

Equivariant morphism for ¢|g — 1

If Ty, T’ generate E[/] then g7/ : E — P! is a strictly equivariant
morphism.

To get equivariance wrt. [—1], set p(P) = ggT;( F)’) (at least if £ odd),
T/
so o(—P) = 1/¢(P).
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Higher torsion

Equivariant morphism for /|q — 1

If Ty, T’ generate E[/] then g7/ : E — P! is a strictly equivariant
morphism.

To get equivariance wrt. [—1], set p(P) = ggT;( F)’) (at least if £ odd),
T/
50 @(—P) = 1/0(P).

Proposition

This construction essentially yields all morphisms E — P! equivariant
wrt. to translation by a {-torsion point.

Case £|q + 1 is very similar, except that the action on P! is less nice than
z—(z.
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Summation polynomial and invariant ring

Assume (P + T;) = Cp(P) and ¢(—P) = 1/p(P).
As in the 2-torsion case, we have:

Proposition

o P,y invariant under linear action of the group Gy = (Z/IZ)*~! x &

o Invariant ring Fgn[ X1, ..., Xk] Ct free algebra, generated by

si=Y1+ ...+ Y ooy Skc1= Y1 Y1+ o+ Yo Yy, e = X1 X,

where Y; = X}.
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Summation polynomial and invariant ring

Assume (P + Ty) = Co(P) and p(—P) = 1/¢(P).
As in the 2-torsion case, we have:

Proposition

o P,y invariant under linear action of the group Gy = (Z/IZ)*~! x &

o Invariant ring Fgn[ X1, ..., Xk] Ct free algebra, generated by

si=Y1+ ...+ Y ooy Skc1= Y1 Y1+ o+ Yo Yy, e = X1 X,

where Y; = X}.

Equivariance wrt. [—1] more difficult to take into account: replacing
polynomials by rational fractions gives no simplification.

Still allows to reduce size of factor base by 2.
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Higher torsion

Example

For £ =3 (¢|g—1), and E : y? = x3 + (x + a)?, the point T = (0, a) has
order 3.

The equivariant morphism is given by

V3y + i(x + 3a)
—/3y +i(x +3a)

@(Xay) =

Then the corresponding third summation polynomial is

P, 3(s1,52,e3)=—27€+27s1e3+27spe5—81el —9s2e2+54s; 3+ 5453
—81e§+513+3sf52 +3s1 s§+s§—9512e3+2751 e32 +27sp e§—27e33
+6(12s2e3—(27a—16)(s2e2+s2e3)—(54a+16) (515202 +s152€3)+1252),
0=9/(27a—4).
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Case /= p

If ¢ equivariant for (T,) = E[p], we can always assume that

PP+ Tp) =p(P)+1
So (P + T) — ¢(P) independent of P if T € E[p]
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Case /= p

If ¢ equivariant for (T,) = E|[p], we can always assume that
p(P+Tp) = p(P) +1

So (P + T) — ¢(P) independent of P if T € E[p]

= Homomorphism (“linear map") from E|[p] to (Fq, +),

T—pP+T)—pP).
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Case /= p

If ¢ equivariant for (T,) = E|[p], we can always assume that
p(P+Tp) = p(P) +1

So (P + T) — ¢(P) independent of P if T € E[p]

= Homomorphism (“linear map") from E|[p] to (Fq, +),

T—pP+T)—pP).

Sounds familiar?
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Case /= p

If ¢ equivariant for (T,) = E|[p], we can always assume that
p(P+Tp) = p(P) +1

So (P + T) — ¢(P) independent of P if T € E[p]

= Homomorphism (“linear map") from E|[p] to (Fq, +),

T—pP+T)—pP).

Sounds familiar? Easy DLP in order p subgroup
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Case /= p

If ¢ equivariant for (T,) = E|[p], we can always assume that
p(P+Tp) = p(P) +1

So (P + T) — ¢(P) independent of P if T € E[p]

= Homomorphism (“linear map") from E|[p] to (Fq, +),

T—pP+T)—pP).

Sounds familiar? Easy DLP in order p subgroup — anomalous attack.
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Higher torsion

Equivariant morphism for ¢ = p
(p—1)/2
Let T,e E[pland  g(x) = [] (x—x([i]T,))
i=1
(g <~ p-th root of p-th division polynomial).

Proposition

There exists X € Fgn such that the map ¢(x,y) = vg (x) satisfies the
g

equivariance properties

e(P+Tp)=0(P)+1,  ¢(=P)=—¢(P).

Only such function, up to translation by a rational 2-torsion point.
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Higher torsion

Equivariant morphism for ¢ = p
(p—1)/2
Let T,e E[pland  g(x) = [] (x—x([i]Tp))
i=1
(g <~ p-th root of p-th division polynomial).
Proposition

There exists X € Fgn such that the map ¢(x,y) = vg (x) satisfies the

equivariance properties

e(P+Tp)=0(P)+1,  ¢(=P)=—¢(P).

Only such function, up to translation by a rational 2-torsion point.

If ¢ can be computed efficiently for p large, gives a g-adic independent
version of the anomalous attack.

v
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Summation polynomial and invariant ring

Assume o(P + Tp) = ¢(P) + 1 and p(—P) = —p(P).
As in the 2-torsion case, we have:

Proposition

o P,y invariant under affine action of the group G, = (Z/pZ)*~! x &.
@ Invariant ring Fgn[ X1, ..., Xk] Cr free algebra, generated by
e1=X1+ ...+ Xk, o =Y1Yo+ ... + Y1 Ya,
where Y; = XP — X;.

ey Sk = Yl...Yk

Vanessa VITSE (UJF) Summation polynomials and symmetries DLP 2014 34 /37




Summation polynomial and invariant ring

Assume o(P + Tp) = ¢(P) + 1 and p(—P) = —p(P).
As in the 2-torsion case, we have:

Proposition

o P,y invariant under affine action of the group G, = (Z/pZ)*~! x &.
@ Invariant ring Fgn[ X1, ..., Xk] Cr free algebra, generated by
e1=X1+ ...+ Xk, o =Y1Yo+ ... + Y1 Ya,
where Y; = XP — X;.

ey Sk = Yl...Yk

Equivariance wrt. [—1] more difficult to take into account: invariant ring is
no longer a free algebra.

Still allows to reduce size of factor base by 2.
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Example
For p=3,and E: y? = x3 + (x + a)?, the point T = (0, a) has order 3.

The equivariant morphism is simply given by

_Y
w(x,y)—x-

Then the corresponding third summation polynomial is

P,3(e1,5,83) = 2aef + e12522 + ef53 + 255’.

Much sparser than in the case ¢|(g — 1).
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Example
For p=3,and E: y? = x3 + (x + a)?, the point T = (0, a) has order 3.

The equivariant morphism is simply given by

_Y
w(x,y)—x-

Then the corresponding third summation polynomial is
P,3(e1,5,83) = 2aef + e12522 + ef53 + 253’.

Much sparser than in the case ¢|(g — 1).

Fourth summation polynomial is

P, a(e1,50,53,54) = S:? + ef’s? + 120 other terms.
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Conclusion
» Use of 2-torsion points: huge speed-up for computations of
decompositions
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» Use of 2-torsion points: huge speed-up for computations of
decompositions

» Higher order torsion points:
Computations possible only for small values of ¢ > 2 and n.

Pro: smaller factor base — less relations and faster linear algebra

Con: larger degree for summation polynomials — harder
decompositions

L currently no gain over classical decomposition method except
possibly for 3-torsion in char. 3.
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Conclusion

Conclusion

» Use of 2-torsion points: huge speed-up for computations of
decompositions

» Higher order torsion points:
Computations possible only for small values of ¢ > 2 and n.

Pro: smaller factor base — less relations and faster linear algebra
Con: larger degree for summation polynomials — harder
decompositions

L currently no gain over classical decomposition method except
possibly for 3-torsion in char. 3.
L, new point of view on the anomalous attack

» Further developments: more automorphisms (j = 0 or 1728),
hyperelliptic curves.
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