Summation polynomials and symmetries for the ECDLP over extension fields

Vanessa VITSE Joint work with Faugère, Huot, Joux and Renault

Université Joseph Fourier - Grenoble

Background

The Elliptic Curve Discrete Log Problem *E* elliptic curve defined over finite field \mathbb{F}_q , and $P, Q \in E(\mathbb{F}_q)$. Goal (ECDLP) : compute x s.t. Q = [x]P

- If \mathbb{F}_q prime field: no known non-generic algorithms in general.
- If F_q = F_{pⁿ} extension field: decomposition index calculus (Gaudry/Diem).

くほと くほと くほと

Decomposition index calculus

Outline of the attack:

1 Choose a factor base $\mathcal{F} \subset E(\mathbb{F}_{q^n})$.

2 Relation search step: look for **decompositions** of the form

$$[a]P+[b]Q=P_1+\cdots+P_n, \quad P_i\in\mathcal{F}$$

Solution is a step: once ≈ |F| relations are computed, use sparse matrix algorithms to extract discrete log of Q.

< 回 ト < 三 ト < 三 ト

Decomposition index calculus

Outline of the attack:

1 Choose a factor base $\mathcal{F} \subset E(\mathbb{F}_{q^n})$.

2 Relation search step: look for **decompositions** of the form

$$[a]P+[b]Q=P_1+\cdots+P_n, \quad P_i\in\mathcal{F}$$

Solution is a step: once ≈ |F| relations are computed, use sparse matrix algorithms to extract discrete log of Q.

Made possible by the **Weil restriction** structure: define \mathcal{F} as algebraic curve in E seen as a dim. n abelian variety over \mathbb{F}_q .

• Standard choice is $\mathcal{F} = \{P \in E(\mathbb{F}_{q^n}) : x(P) \in \mathbb{F}_q\}$

- Standard choice is $\mathcal{F} = \{P \in E(\mathbb{F}_{q^n}) : x(P) \in \mathbb{F}_q\}$
- Use Semaev polynomials:

Semaev summation polynomials

For all $k \geq 2$, there exists $S_k \in \mathbb{F}_{q^n}[X_1, \dots, X_k]$ s.t.

$$S_k(x_1,\ldots,x_k) = 0 \iff \exists P_i \in E(\overline{\mathbb{F}_q}), x(P_i) = x_i \text{ and } \sum_i P_i = \mathcal{O}$$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

- Standard choice is $\mathcal{F} = \{P \in E(\mathbb{F}_{q^n}) : x(P) \in \mathbb{F}_q\}$
- Use Semaev polynomials:

Semaev summation polynomials

For all $k \geq 2$, there exists $S_k \in \mathbb{F}_{q^n}[X_1, \dots, X_k]$ s.t.

$$S_k(x_1,\ldots,x_k)=0 \iff \exists P_i \in E(\overline{\mathbb{F}_q}), x(P_i)=x_i \text{ and } \sum_i P_i=\mathcal{O}$$

degree 2^{k-2} in each var. \rightarrow hard to compute for $k \ge 5$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

- Standard choice is $\mathcal{F} = \{P \in E(\mathbb{F}_{q^n}) : x(P) \in \mathbb{F}_q\}$
- Use Semaev polynomials:

Semaev summation polynomials

For all $k \geq 2$, there exists $S_k \in \mathbb{F}_{q^n}[X_1, \dots, X_k]$ s.t.

$$S_k(x_1,\ldots,x_k)=0 \Longleftrightarrow \exists P_i \in E(\overline{\mathbb{F}_q}), x(P_i)=x_i ext{ and } \sum_i P_i=\mathcal{O}$$

degree 2^{k-2} in each var. \rightarrow hard to compute for $k \ge 5$

• Decomposition try for R = [a]P + [b]Q: solve $S_{n+1}(x_1, \ldots, x_n, x(R)) = 0$ with $x_i \in \mathbb{F}_q$

Restriction of scalar \rightsquigarrow resolution of multivariate polynomial system with *n* var./eqn., total degree $n 2^{n-2}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

- Standard choice is $\mathcal{F} = \{P \in E(\mathbb{F}_{q^n}) : x(P) \in \mathbb{F}_q\}$
- Use Semaev polynomials:

Semaev summation polynomials

For all $k \geq 2$, there exists $S_k \in \mathbb{F}_{q^n}[X_1, \dots, X_k]$ s.t.

$$S_k(x_1,\ldots,x_k)=0 \Longleftrightarrow \exists P_i \in E(\overline{\mathbb{F}_q}), x(P_i)=x_i ext{ and } \sum_i P_i=\mathcal{O}$$

degree 2^{k-2} in each var. \rightarrow hard to compute for $k \ge 5$

• Decomposition try for R = [a]P + [b]Q: solve $S_{n+1}(x_1, \ldots, x_n, x(R)) = 0$ with $x_i \in \mathbb{F}_q$

Restriction of scalar \rightsquigarrow resolution of multivariate polynomial system with *n* var./eqn., total degree $n2^{n-2}$. This is the hardest part.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Natural improvements

▶ Factor base $\mathcal{F} = \{P \in E(\mathbb{F}_{q^n}) : x(P) \in \mathbb{F}_q\}$ is invariant by -:

$$P \in \mathcal{F} \Leftrightarrow -P \in \mathcal{F}$$

 \rightarrow possible to divide size of factor base by 2 by considering decompositions of the form $R = \pm P_1 \cdots \pm P_n$ \rightarrow less relations needed and faster linear algebra

- 32

< 回 ト < 三 ト < 三 ト

Natural improvements

▶ Factor base $\mathcal{F} = \{P \in E(\mathbb{F}_{q^n}) : x(P) \in \mathbb{F}_q\}$ is invariant by -:

$$P \in \mathcal{F} \Leftrightarrow -P \in \mathcal{F}$$

 \rightarrow possible to divide size of factor base by 2 by considering decompositions of the form $R = \pm P_1 \cdots \pm P_n$ \rightarrow less relations needed and faster linear algebra

Semaev polynomials are symmetric (in the usual sense)

 \rightarrow expression in terms of elementary symmetric polynomials $e_1 = X_1 + \cdots + X_n, \ldots, e_n = X_1 \ldots X_n$ speeds up computation of polynomials and resolution of systems

Natural improvements

▶ Factor base $\mathcal{F} = \{P \in E(\mathbb{F}_{q^n}) : x(P) \in \mathbb{F}_q\}$ is invariant by -:

$$P \in \mathcal{F} \Leftrightarrow -P \in \mathcal{F}$$

- \rightarrow possible to divide size of factor base by 2 by considering decompositions of the form $R = \pm P_1 \cdots \pm P_n$ \rightarrow less relations needed and faster linear algebra
- Semaev polynomials are symmetric (in the usual sense)

 \rightarrow expression in terms of elementary symmetric polynomials $e_1 = X_1 + \cdots + X_n, \ldots, e_n = X_1 \ldots X_n$ speeds up computation of polynomials and resolution of systems

Computation of decompositions still slow if $n \leq 4$, intractable if $n \geq 5$

- 3

Our contribution

Main idea

Replace x by arbitrary rational map $\varphi : E \to \mathbb{F}_{q^n}$ in definition of factor base:

$$\mathcal{F} = \{ P \in E(\mathbb{F}_{q^n}) : arphi(P) \in \mathbb{F}_q \}$$

Implies ability to define and compute associated summation polynomials.

Useful generalization?

- 4 週 ト - 4 三 ト - 4 三 ト

Our contribution

Main idea

Replace x by arbitrary rational map $\varphi: E \to \mathbb{F}_{q^n}$ in definition of factor base:

$$\mathcal{F} = \{ P \in E(\mathbb{F}_{q^n}) : arphi(P) \in \mathbb{F}_q \}$$

Implies ability to define and compute associated summation polynomials.

Useful generalization? Yes!

- 4 同 6 4 日 6 4 日 6

Our contribution

Main idea

Replace x by arbitrary rational map $\varphi: E \to \mathbb{F}_{q^n}$ in definition of factor base:

$$\mathcal{F} = \{ P \in E(\mathbb{F}_{q^n}) : \varphi(P) \in \mathbb{F}_q \}$$

Implies ability to define and compute associated summation polynomials.

Useful generalization? Yes!

If φ well-chosen:

- $\bullet~\mathcal{F}$ can have more invariance properties \rightarrow further reduction of its size
- \bullet associated summation polynomial have more symmetries \to easier to compute and faster decompositions

- 3

イロト 不得下 イヨト イヨト

Summation polynomials

Theorem

For any rational map $\varphi: E \to \mathbb{F}_{a^n}$ and $k \ge 3$, there exists a unique monic $P_{\varphi,k} \in \mathbb{F}_{q^n}[X_1, \ldots, X_k]$, irreducible, symmetric, s.t.

$$P_{\varphi,k}(a_1,\ldots,a_k) = 0 \iff \exists P_i \in E(\overline{\mathbb{F}_q}), \varphi(P_i) = a_i \text{ and } \sum_i P_i = \mathcal{O}$$

- 4 週 ト - 4 三 ト - 4 三 ト

Summation polynomials

Theorem

For any rational map $\varphi : E \to \mathbb{F}_{q^n}$ and $k \ge 3$, there exists a unique monic $P_{\varphi,k} \in \mathbb{F}_{q^n}[X_1, \ldots, X_k]$, irreducible, symmetric, s.t.

$$P_{\varphi,k}(a_1,\ldots,a_k) = 0 \iff \exists P_i \in E(\overline{\mathbb{F}_q}), \varphi(P_i) = a_i \text{ and } \sum_i P_i = \mathcal{O}$$

 $\deg_{X_i}P_{\varphi,k}$ proportional to $(\deg\varphi)^k$ in general, and also for all interesting cases so far

 \rightarrow computation tractable only if deg φ and k small.

- 御下 - 西下 - 西下 - 西

First method: Riemann-Roch

Observation

 $P_1 + \cdots + P_k = \mathcal{O} \Leftrightarrow \exists f \in \overline{\mathbb{F}}_q(\mathcal{C}) \text{ s.t. } \operatorname{div}(f) = (P_1) + \cdots + (P_k) - k(\mathcal{O})$ Function f in Riemann-Roch space $\mathcal{L}(k(\mathcal{O}))$.

First method: Riemann-Roch

Observation

 $P_1 + \cdots + P_k = \mathcal{O} \Leftrightarrow \exists f \in \overline{\mathbb{F}}_q(\mathcal{C}) \text{ s.t. } \operatorname{div}(f) = (P_1) + \cdots + (P_k) - k(\mathcal{O})$ Function f in Riemann-Roch space $\mathcal{L}(k(\mathcal{O}))$.

- **1** Write equation of *E* in terms of φ and a 2nd var. *w* (usually *x* or *y*)
- Compute basis of $\mathcal{L}(k(\mathcal{O})) = \langle 1, f_2(\varphi, w), \dots, f_k(\varphi, w) \rangle$ and consider $f = f_k(\varphi, w) + \lambda_{k-1}f_{k-1}(\varphi, w) + \dots + \lambda_1$

First method: Riemann-Roch

Observation

 $P_1 + \cdots + P_k = \mathcal{O} \Leftrightarrow \exists f \in \overline{\mathbb{F}}_q(\mathcal{C}) \text{ s.t. } \operatorname{div}(f) = (P_1) + \cdots + (P_k) - k(\mathcal{O})$ Function f in Riemann-Roch space $\mathcal{L}(k(\mathcal{O}))$.

- **1** Write equation of *E* in terms of φ and a 2nd var. *w* (usually *x* or *y*)
- **2** Compute basis of $\mathcal{L}(k(\mathcal{O})) = \langle 1, f_2(\varphi, w), \dots, f_k(\varphi, w) \rangle$ and consider $f = f_k(\varphi, w) + \lambda_{k-1}f_{k-1}(\varphi, w) + \dots + \lambda_1$
- Sesultant of f with equation of E wrt. w gives degree k polynomial F in 𝔽_{qⁿ}[λ₁,..., λ_{k−1}][φ]

First method: Riemann-Roch

Observation

 $P_1 + \cdots + P_k = \mathcal{O} \Leftrightarrow \exists f \in \overline{\mathbb{F}}_q(\mathcal{C}) \text{ s.t. } \operatorname{div}(f) = (P_1) + \cdots + (P_k) - k(\mathcal{O})$ Function f in Riemann-Roch space $\mathcal{L}(k(\mathcal{O}))$.

- **1** Write equation of *E* in terms of φ and a 2nd var. *w* (usually *x* or *y*)
- **2** Compute basis of $\mathcal{L}(k(\mathcal{O})) = \langle 1, f_2(\varphi, w), \dots, f_k(\varphi, w) \rangle$ and consider $f = f_k(\varphi, w) + \lambda_{k-1}f_{k-1}(\varphi, w) + \dots + \lambda_1$
- Resultant of f with equation of E wrt. w gives degree k polynomial F in F_{qⁿ}[λ₁,..., λ_{k-1}][φ]

Steps 2-3 similar to Nagao's method for higher genus decomposition attacks

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

First method: Riemann-Roch

Observation

 $P_1 + \cdots + P_k = \mathcal{O} \Leftrightarrow \exists f \in \overline{\mathbb{F}}_q(\mathcal{C}) \text{ s.t. } \operatorname{div}(f) = (P_1) + \cdots + (P_k) - k(\mathcal{O})$ Function f in Riemann-Roch space $\mathcal{L}(k(\mathcal{O}))$.

- **(1)** Write equation of *E* in terms of φ and a 2nd var. *w* (usually *x* or *y*)
- **2** Compute basis of $\mathcal{L}(k(\mathcal{O})) = \langle 1, f_2(\varphi, w), \dots, f_k(\varphi, w) \rangle$ and consider $f = f_k(\varphi, w) + \lambda_{k-1}f_{k-1}(\varphi, w) + \dots + \lambda_1$
- Sesultant of f with equation of E wrt. w gives degree k polynomial F in 𝔽_{qⁿ}[λ₁,..., λ_{k−1}][φ]
- Equate coeff. of F with elementary sym. polynomials e₁,..., e_k and compute Gröbner basis of these k equations wrt. elimination order.
- The Gröbner basis contains P_{\varphi,k} symmetrized, i.e. expressed in terms of e₁,..., e_k

Second method: induction and resultants

Observation

$$P_1 + \dots + P_k = \mathcal{O} \Leftrightarrow \exists Q \in E \text{ s.t. } \begin{cases} P_1 + \dots + P_j + Q = \mathcal{O} \\ P_{j+1} + \dots + P_k - Q = \mathcal{O} \end{cases}$$

(日) (同) (三) (三)

Second method: induction and resultants

Observation

$$P_1 + \dots + P_k = \mathcal{O} \Leftrightarrow \exists Q \in E \text{ s.t. } \begin{cases} P_1 + \dots + P_j + Q = \mathcal{O} \\ P_{j+1} + \dots + P_k - Q = \mathcal{O} \end{cases}$$

Assume for simplicity $\varphi(P) = \varphi(-P) \ \forall P \in E$. Then

$$\begin{array}{c} P_1 + \dots + P_k = \mathcal{O} \\ & \textcircled{}\\ P_{\varphi, j+1}(\varphi(P_1), \dots, \varphi(P_j), X) \text{ and } P_{\varphi, k-j+1}(\varphi(P_{j+1}), \dots, \varphi(P_k), X) \\ & \text{have a common root} \end{array}$$

Second method: induction and resultants

Observation

$$P_1 + \dots + P_k = \mathcal{O} \Leftrightarrow \exists Q \in E \text{ s.t. } \begin{cases} P_1 + \dots + P_j + Q = \mathcal{O} \\ P_{j+1} + \dots + P_k - Q = \mathcal{O} \end{cases}$$

Assume for simplicity $\varphi(P) = \varphi(-P) \ \forall P \in E$. Then

$$\begin{array}{c} P_1 + \dots + P_k = \mathcal{O} \\ & \uparrow \\ P_{\varphi, j+1}(\varphi(P_1), \dots, \varphi(P_j), X) \text{ and } P_{\varphi, k-j+1}(\varphi(P_{j+1}), \dots, \varphi(P_k), X) \\ & \text{have a common root} \end{array}$$

$$P_{\varphi,k}(X_1,\ldots,X_k) = \operatorname{Res}(P_{\varphi,j+1}(X_1,\ldots,X_j,X),P_{\varphi,k-j+1}(X_{j+1},\ldots,X_k,X))$$

Computation by induction still requires to know $P_{\varphi,3}$.

Vanessa VITSE (UJF)

◆□▶ ◆帰▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Fact: many elliptic curves only have *near-prime* cardinality \rightarrow admit small order points. Use them to speed DLP!

3

∃ ► < ∃ ►</p>

< 4 → <

Fact: many elliptic curves only have *near-prime* cardinality \rightarrow admit small order points. Use them to speed DLP!

Let $T \in E(\mathbb{F}_{q^n})$ point of small order ℓ , $\tau_T : E \to E$ translation-by-T map. Suppose \mathcal{F} invariant by τ_T , i.e. $P \in \mathcal{F}$ iff $P + T \in \mathcal{F}$. Then:

くほと くほと くほと

Fact: many elliptic curves only have *near-prime* cardinality \rightarrow admit small order points. Use them to speed DLP!

Let $T \in E(\mathbb{F}_{q^n})$ point of small order ℓ , $\tau_T : E \to E$ translation-by-T map. Suppose \mathcal{F} invariant by τ_T , i.e. $P \in \mathcal{F}$ iff $P + T \in \mathcal{F}$. Then:

• Each decomposition $R = P_1 + \cdots + P_n$ yields many more:

$$R = (P_1 + T) + (P_2 + [\ell - 1]T) + \dots + P_n$$

= (P_1 + T) + (P_2 + T) + (P_3 + [\ell - 2]T) + \dots + P_n
= \dots

くほと くほと くほと

Fact: many elliptic curves only have *near-prime* cardinality \rightarrow admit small order points. Use them to speed DLP!

Let $T \in E(\mathbb{F}_{q^n})$ point of small order ℓ , $\tau_T : E \to E$ translation-by-T map. Suppose \mathcal{F} invariant by τ_T , i.e. $P \in \mathcal{F}$ iff $P + T \in \mathcal{F}$. Then:

• Each decomposition $R = P_1 + \cdots + P_n$ yields many more:

$$R = (P_1 + T) + (P_2 + [\ell - 1]T) + \dots + P_n$$

= (P_1 + T) + (P_2 + T) + (P_3 + [\ell - 2]T) + \dots + P_n
= \dots

 \bullet Size of ${\mathcal F}$ can be effectively divided by ℓ

4月15 4 日 5 4 日 5

Goal: factor base $\mathcal{F} = \{P : \varphi(P) \in \mathbb{F}_q\}$ invariant by τ_T , $T \in E[\ell]$

First idea

Look for *invariant* $\varphi : E \to \mathbb{F}_{q^n}$, i.e.

$$\varphi(P+T)=\varphi(P) \; \forall P\in E.$$

イロト 不得 トイヨト イヨト 二日

Goal: factor base $\mathcal{F} = \{P : \varphi(P) \in \mathbb{F}_q\}$ invariant by τ_T , $T \in E[\ell]$

First idea

Look for *invariant* $\varphi : E \to \mathbb{F}_{q^n}$, i.e.

 $\varphi(P+T)=\varphi(P) \; \forall P\in E.$

But then φ factorizes through quotient isogeny $E \to E/_{\langle T \rangle}$:

Equivalent decompositions on E with φ and on $E_{/\langle T \rangle}$ with φ' !

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Goal: factor base $\mathcal{F} = \{P : \varphi(P) \in \mathbb{F}_q\}$ invariant by τ_T , $T \in E[\ell]$

Eirst idea BAD IDEA

Look for *invariant* $\varphi : E \to \mathbb{F}_{q^n}$, i.e.

$$\varphi(P+T)=\varphi(P) \;\forall P\in E.$$

But then φ factorizes through quotient isogeny $E \to E/_{\langle T \rangle}$:

Equivalent decompositions on E with φ and on $E_{/\langle T \rangle}$ with φ' !

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Goal: factor base $\mathcal{F} = \{P : \varphi(P) \in \mathbb{F}_q\}$ invariant by τ_T , $T \in E[\ell]$

Better idea

Look for equivariant $\varphi: E \to \mathbb{F}_{q^n}$, i.e. \exists rational map $f: \mathbb{F}_{q^n} \to \mathbb{F}_{q^n}$ s.t.

 $\varphi(P+T)=f(\varphi(P)) \;\forall P\in E.$

- 本語 医 本 医 医 一 医

Goal: factor base $\mathcal{F} = \{P : \varphi(P) \in \mathbb{F}_q\}$ invariant by τ_T , $T \in E[\ell]$

Better idea

Look for equivariant $\varphi: E \to \mathbb{F}_{q^n}$, i.e. \exists rational map $f: \mathbb{F}_{q^n} \to \mathbb{F}_{q^n}$ s.t.

 $\varphi(P+T)=f(\varphi(P)) \;\forall P\in E.$

• So
$$f^{(\ell)} = f \circ \cdots \circ f = Id$$

- Also invariance of \mathcal{F} requires \mathbb{F}_q stable by f
- \Rightarrow f element of $PGL(2, \mathbb{F}_q)$ of exact order ℓ

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Existence

Theorem

The torsion subgroups wrt. which a rational map $\varphi : E \to \mathbb{F}_{q^n}$ can be equivariant but not invariant are:

•
$$E[2]$$

• $\langle T \rangle \subset E[\ell]$, with either
• $\ell = char(\mathbb{F}_q)$
• $\ell | q - 1$
• $\ell | q + 1$

In all cases deg(φ) is a multiple of ℓ .

Also possible equivariance (or invariance for $\ell=2)$ wrt. [-1] map $P\mapsto -P$

- 3

- 4 目 ト - 4 日 ト

Two-torsion in char 2: morphism

 $E: y^2 + xy = x^3 + ax^2 + b$ ordinary elliptic curve over binary field \mathbb{F}_{q^n} . Non-trivial 2-torsion point is $T_2 = (0, b^{1/2})$.

- 3

くほと くほと くほと

Two-torsion in char 2: morphism

 $E: y^2 + xy = x^3 + ax^2 + b$ ordinary elliptic curve over binary field \mathbb{F}_{q^n} . Non-trivial 2-torsion point is $T_2 = (0, b^{1/2})$.

Proposition
Let
$$\varphi : E \to \mathbb{F}_{q^n}$$
, $(x, y) \mapsto \frac{b^{1/4}}{x + b^{1/4}}$. Then $\forall P \in E$,
• $\varphi(P + T_2) = \varphi(P) + 1$
• $\varphi(-P) = \varphi(P)$

Two-torsion in char 2: morphism

 $E: y^2 + xy = x^3 + ax^2 + b$ ordinary elliptic curve over binary field \mathbb{F}_{q^n} . Non-trivial 2-torsion point is $T_2 = (0, b^{1/2})$.

Proposition
Let
$$\varphi : E \to \mathbb{F}_{q^n}$$
, $(x, y) \mapsto \frac{b^{1/4}}{x + b^{1/4}}$. Then $\forall P \in E$,
• $\varphi(P + T_2) = \varphi(P) + 1$
• $\varphi(-P) = \varphi(P)$

Factor base can be effectively divided by 4 $ightarrow \# \mathcal{F} pprox q/4$

Two-torsion in char 2: summation polynomials

Since $P_1 + \dots + P_k = (P_1 + T_2) + (P_2 + T_2) + P_3 + \dots + P_k = \dots$, we have $P_{\varphi,k}(X_1, \dots, X_k) = P_{\varphi,k}(X_1 + 1, X_2 + 1, X_3, \dots, X_k) = \dots$

 \rightarrow invariant if even number of +1 added.

Two-torsion in char 2: summation polynomials

Since $P_1 + \dots + P_k = (P_1 + T_2) + (P_2 + T_2) + P_3 + \dots + P_k = \dots$, we have $P_{\varphi,k}(X_1, \dots, X_k) = P_{\varphi,k}(X_1 + 1, X_2 + 1, X_3, \dots, X_k) = \dots$

 \rightarrow invariant if even number of +1 added.

Proposition

- P_{φ,k} invariant under affine action of the group G₂ = (ℤ/2ℤ)^{k-1} × 𝔅_k.
- Invariant ring $\mathbb{F}_{q^n}[X_1,\ldots,X_k]^{G_2}$ free algebra, generated by

$$e_1 = X_1 + \dots + X_k$$

$$s_2 = Y_1 Y_2 + \dots + Y_{k-1} Y_k$$

$$\vdots$$

$$s_k = Y_1 \dots Y_k$$

where $Y_i = X_i^2 + X_i$.

Writing down $P_{\varphi,k}$ in terms of invariant generators e_1, s_2, \ldots, s_k makes a **huge** difference:

k		3	4	5	6	7	8
Semaev	nb of monomials	3	6	39	638	-	-
polynomials	timings	0 s	0 s	26 s	725 s	×	×
$P_{arphi,k}$	nb of monomials	2	3	9	50	2 2 4 7	470 369
	timings	0 s	0 s	0 s	1s	383 s	40.5 h

Computations for k = 4 to 7 in two steps:

- **1** take resultant of partially symmetrized summation polynomials
- express resultant in terms of invariant generators using elimination (Gröbner basis)

くほと くほと くほと

Writing down $P_{\varphi,k}$ in terms of invariant generators e_1, s_2, \ldots, s_k makes a **huge** difference:

k		3	4	5	6	7	8
Semaev	nb of monomials	3	6	39	638	-	-
polynomials	timings	0 s	0 s	26 s	725 s	×	×
$P_{arphi,k}$	nb of monomials	2	3	9	50	2 2 4 7	470 369
	timings	0 s	0 s	0 s	1s	383 s	40.5 h

Computations for k = 4 to 7 in two steps:

- **()** take resultant of partially symmetrized summation polynomials
- express resultant in terms of invariant generators using elimination (Gröbner basis)

Resultant too large for k = 8 case \rightarrow dedicated interpolation technique

- 3

Target: IPSEC Oakley curve, defined over $\mathbb{F}_{2^{31\times 5}}$. Cardinality is 12 times a 151-bit prime \rightarrow can use 2-torsion point. Difficulty of point decomposition $R = P_1 + \cdots + P_5$, $P_i \in \mathcal{F}$?

3

< 回 ト < 三 ト < 三 ト

Target: IPSEC Oakley curve, defined over $\mathbb{F}_{2^{31\times 5}}$. Cardinality is 12 times a 151-bit prime \rightarrow can use 2-torsion point. Difficulty of point decomposition $R = P_1 + \cdots + P_5$, $P_i \in \mathcal{F}$?

Gaudry-Diem's approach: intractable. Resolution of corresponding polynomial system does not succeed on a personal computer

< 回 ト < 三 ト < 三 ト

Target: IPSEC Oakley curve, defined over $\mathbb{F}_{2^{31\times 5}}$. Cardinality is 12 times a 151-bit prime \rightarrow can use 2-torsion point. Difficulty of point decomposition $R = P_1 + \cdots + P_5$, $P_i \in \mathcal{F}$?

Gaudry-Diem's approach: intractable. Resolution of corresponding polynomial system does not succeed on a personal computer

"n - 1" approach: only known approach before this work. Estimated timing for one relation is ≈ 37 years (but easy to distribute).

Target: IPSEC Oakley curve, defined over $\mathbb{F}_{2^{31\times 5}}$. Cardinality is 12 times a 151-bit prime \rightarrow can use 2-torsion point. Difficulty of point decomposition $R = P_1 + \cdots + P_5$, $P_i \in \mathcal{F}$?

Gaudry-Diem's approach: intractable. Resolution of corresponding polynomial system does not succeed on a personal computer

"n - 1" approach: only known approach before this work. Estimated timing for one relation is ≈ 37 years (but easy to distribute).

With additional symmetries: \approx 20 min for one relation.

Still too slow for ECDLP resolution, but threatens non-standard problems e.g. oracle-assisted static Diffie-Hellman.

Two-torsion in odd char: morphism

 $E: y^2 = c x(x-1)(x-\lambda)$ elliptic curve over \mathbb{F}_{q^n} in twisted Legendre form. Three non-trivial 2-torsion points $T_0 = (0,0)$, $T_1 = (1,0)$, $T_2 = (\lambda,0)$.

イロト 不得下 イヨト イヨト 二日

Two-torsion in odd char: morphism

 $E: y^2 = c x(x-1)(x-\lambda)$ elliptic curve over \mathbb{F}_{q^n} in twisted Legendre form. Three non-trivial 2-torsion points $T_0 = (0,0)$, $T_1 = (1,0)$, $T_2 = (\lambda,0)$.

Proposition
If
$$\lambda$$
 and $1 - \lambda$ squares, then $\exists \varphi : E \to \mathbb{F}_{q^n}$ degree 2 map s.t. $\forall P \in E$,
• $\varphi(P + T_0) = -\varphi(P)$, $\varphi(P + T_1) = \frac{1}{\varphi(P)}$, $\varphi(P + T_2) = -\frac{1}{\varphi(P)}$
• $\varphi(-P) = \varphi(P)$

Factor base can be effectively divided by 8 ightarrow $\# \mathcal{F} pprox q/8$

- 3

・ 同 ト ・ 三 ト ・ 三 ト

Two-torsion in odd char: morphism

 $E: y^2 = c x(x-1)(x-\lambda)$ elliptic curve over \mathbb{F}_{q^n} in twisted Legendre form. Three non-trivial 2-torsion points $T_0 = (0,0)$, $T_1 = (1,0)$, $T_2 = (\lambda,0)$.

Proposition If λ and $1 - \lambda$ squares, then $\exists \varphi : E \to \mathbb{F}_{q^n}$ degree 2 map s.t. $\forall P \in E$, • $\varphi(P + T_0) = -\varphi(P)$, $\varphi(P + T_1) = \frac{1}{\varphi(P)}$, $\varphi(P + T_2) = -\frac{1}{\varphi(P)}$ • $\varphi(-P) = \varphi(P)$

Factor base can be effectively divided by 8 ightarrow $\# \mathcal{F} pprox q/8$

Note: $z \mapsto -z$, $z \mapsto 1/z$ and $z \mapsto -1/z$ "simplest" choice of homographies. Only one can be affine.

• $P_{\varphi,k}(X_1,\ldots,X_k) = P_{\varphi,k}(-X_1,-X_2,X_3,\ldots,X_k) = \ldots$ Invariance by any even number of sign changes.

- P_{φ,k}(X₁,...,X_k) = P_{φ,k}(-X₁,-X₂,X₃,...,X_k) = ... Invariance by any even number of sign changes.
- However $P_{\varphi,k}(X_1, ..., X_k) \neq P_{\varphi,k}(1/X_1, 1/X_2, X_3, ..., X_k)$. So ?

- $P_{\varphi,k}(X_1,\ldots,X_k) = P_{\varphi,k}(-X_1,-X_2,X_3,\ldots,X_k) = \ldots$ Invariance by any even number of sign changes.
- However $P_{\varphi,k}(X_1,\ldots,X_k) \neq P_{\varphi,k}(1/X_1,1/X_2,X_3,\ldots,X_k)$. So ?
- ► Either only use first invariance (from φ(P + T₀) = −φ(P)). Then P_{φ,k} belongs to explicit invariant ring → results as in char. 2 case.

- $P_{\varphi,k}(X_1,\ldots,X_k) = P_{\varphi,k}(-X_1,-X_2,X_3,\ldots,X_k) = \ldots$ Invariance by any even number of sign changes.
- However $P_{\varphi,k}(X_1,\ldots,X_k) \neq P_{\varphi,k}(1/X_1,1/X_2,X_3,\ldots,X_k)$. So ?
- ► Either only use first invariance (from φ(P + T₀) = −φ(P)). Then P_{φ,k} belongs to explicit invariant ring → results as in char. 2 case.
- Or consider invariant *rational fraction*

$$Q_{\varphi,k}(X_1,\ldots,X_k)=\frac{P_{\varphi,k}(X_1,\ldots,X_k)}{X_1\ldots X_k}$$

and work with invariant fields instead.

Proposition

- Q_{φ,k} is invariant under action of the group G₄ = (ℤ/2ℤ × ℤ/2ℤ)^{k-1} ⋊ 𝔅_k.
- Invariant field F_{qⁿ}(X₁,..., X_k)^{G₄} has explicit generators w₀, w₁, σ₁,..., σ_{k-2}.

- 3

Proposition

- $Q_{\varphi,k}$ is invariant under action of the group $G_4 = (\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z})^{k-1} \rtimes \mathfrak{S}_k.$
- Invariant field F_{qⁿ}(X₁,..., X_k)^{G₄} has explicit generators w₀, w₁, σ₁,..., σ_{k-2}.

FYI:

 $\sigma_i = i$ -th elementary symmetric polynomial in $X_1^2 + X_1^{-2}, \ldots, X_k^2 + X_k^{-2}$

Proposition

- $Q_{\varphi,k}$ is invariant under action of the group $G_4 = (\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z})^{k-1} \rtimes \mathfrak{S}_k.$
- Invariant field F_{qⁿ}(X₁,..., X_k)^{G₄} has explicit generators w₀, w₁, σ₁,..., σ_{k-2}.

FYI:

$$\begin{split} \sigma_i &= i\text{-th elementary symmetric polynomial in } X_1^2 + X_1^{-2}, \dots, X_k^2 + X_k^{-2} \\ w_0 &= \sum_{i=0}^{\lfloor n/2 \rfloor} s_{2i}/(X_1 \cdots X_n), \quad w_1 = \sum_{i=1}^{\lfloor (n-1)/2 \rfloor} s_{2i+1}/(X_1 \cdots X_n), \text{ where} \\ s_i &= i\text{-th elementary symmetric polynomial in } X_1^2, \dots, X_n^2 \text{ (and } s_0 = 1). \end{split}$$

How to express an invariant rational fraction in terms of generators of the invariant field?

・ 同 ト ・ ヨ ト ・ ヨ ト

How to express an invariant rational fraction in terms of generators of the invariant field?

► For polynomials in invariant ring: **elimination theory**.

If new generators are $Y_i = f_i(X_1, \ldots, X_k)$, compute Gröbner basis of $\{Y_1 - f_1, \ldots, Y_m - f_m\} \subset K[X_1, \ldots, X_k, Y_1, \ldots, Y_m]$ wrt. an elimination order, then compute normal form of invariant polynomial.

How to express an invariant rational fraction in terms of generators of the invariant field?

► For polynomials in invariant ring: **elimination theory**.

If new generators are $Y_i = f_i(X_1, \ldots, X_k)$, compute Gröbner basis of $\{Y_1 - f_1, \ldots, Y_m - f_m\} \subset K[X_1, \ldots, X_k, Y_1, \ldots, Y_m]$ wrt. an elimination order, then compute normal form of invariant polynomial.

For rational fractions in invariant field: ??

不可し イヨト イヨト

How to express an invariant rational fraction in terms of generators of the invariant field?

► For polynomials in invariant ring: **elimination theory**.

If new generators are $Y_i = f_i(X_1, \ldots, X_k)$, compute Gröbner basis of $\{Y_1 - f_1, \ldots, Y_m - f_m\} \subset K[X_1, \ldots, X_k, Y_1, \ldots, Y_m]$ wrt. an elimination order, then compute normal form of invariant polynomial.

► For rational fractions in invariant field: ??

However in our case $Q_{\varphi,k}$ is **polynomial** in our choice of invariant generators

 \rightarrow inductive computation with partially symmetrized resultants OK.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト … ヨ

k	3	4	5	6
Semaev polynomials		36	940	-
$P_{\varphi,k}(s_1,\ldots,s_{k-1},e_k)$	5	13	182	4125
$Q_{\varphi,k}(\sigma_1,\ldots,\sigma_{k-2},w_0,w_1)$	3	6	32	396

Comparison of number of monomials for:

- Semaev polynomials, symmetrized wrt. the action of \mathfrak{S}_k
- $P_{\varphi,k}$ symmetrized wrt. the action of only one 2-torsion point
- $Q_{\varphi,k}$ symmetrized wrt. the action of the full 2-torsion

k	3	4	5	6
Semaev polynomials		36	940	-
$P_{\varphi,k}(s_1,\ldots,s_{k-1},e_k)$	5	13	182	4125
$Q_{\varphi,k}(\sigma_1,\ldots,\sigma_{k-2},w_0,w_1)$	3	6	32	396

Comparison of number of monomials for:

- Semaev polynomials, symmetrized wrt. the action of \mathfrak{S}_k
- $P_{\varphi,k}$ symmetrized wrt. the action of only one 2-torsion point
- $Q_{\varphi,k}$ symmetrized wrt. the action of the full 2-torsion

Note: less sparse than in char. 2

Target: random curve over OEF $\mathbb{F}_{(2^{31}+413)^5}$, with full 2-torsion and near-prime cardinality.

Difficulty of point decomposition $R = P_1 + \cdots + P_5$, $P_i \in \mathcal{F}$?

くぼう くほう くほう しほ

Target: random curve over OEF $\mathbb{F}_{(2^{31}+413)^5}$, with full 2-torsion and near-prime cardinality.

Difficulty of point decomposition $R = P_1 + \cdots + P_5$, $P_i \in \mathcal{F}$?

Gaudry-Diem's approach: intractable.

・ 同 ト ・ ヨ ト ・ ヨ ト

Target: random curve over OEF $\mathbb{F}_{(2^{31}+413)^5}$, with full 2-torsion and near-prime cardinality.

Difficulty of point decomposition $R = P_1 + \cdots + P_5$, $P_i \in \mathcal{F}$?

Gaudry-Diem's approach: intractable.

With one 2-torsion point: \approx 90 h for one relation.

不可し イヨト イヨト

Target: random curve over OEF $\mathbb{F}_{(2^{31}+413)^5}$, with full 2-torsion and near-prime cardinality.

Difficulty of point decomposition $R = P_1 + \cdots + P_5$, $P_i \in \mathcal{F}$?

Gaudry-Diem's approach: intractable.

With one 2-torsion point: \approx 90 h for one relation.

With full 2-torsion: \approx 15 min for one relation.

Further developments

Higher order torsion points:
 Computations for small values of l > 2 are possible.

Pro: smaller factor base \rightarrow less relations and faster linear algebra Con: larger degree for summation polynomials \rightarrow harder decompositions

Further developments

► Higher order torsion points: Computations for small values of ℓ > 2 are possible.

Pro: smaller factor base \rightarrow less relations and faster linear algebra Con: larger degree for summation polynomials \rightarrow harder decompositions

 More automorphisms (j = 0 or 1728): Equivariance of φ wrt. automorphisms besides [-1] would lead to more symmetries.

Summation polynomials and symmetries for the ECDLP over extension fields

Vanessa VITSE Joint work with Faugère, Huot, Joux and Renault

Université Joseph Fourier - Grenoble