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-
Background

The Elliptic Curve Discrete Log Problem
E elliptic curve defined over finite field Fy, and P, Q € E(Fg).

Goal (ECDLP) : compute x s.t. Q@ = [x]P

o If F, prime field: no known non-generic algorithms in general.

o If F, = F,» extension field: decomposition index calculus
(Gaudry/Diem).
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Decomposition index calculus

Outline of the attack:

@ Choose a factor base F C E(Fgn).

@ Relation search step: look for decompositions of the form

[a]P+[b]Q:P1+---+Pn, P, e F

© Linear algebra step: once ~ |F| relations are computed, use sparse
matrix algorithms to extract discrete log of Q.
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Decomposition index calculus

Outline of the attack:

@ Choose a factor base F C E(Fgr).

@ Relation search step: look for decompositions of the form

[a]P+[D]Q=P1+ -+ Py, PieF

© Linear algebra step: once ~ | F| relations are computed, use sparse
matrix algorithms to extract discrete log of Q.

Made possible by the Weil restriction structure:
define F as algebraic curve in E seen as a dim. n abelian variety over .
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BN
Gaudry/Diem’s decomposition

e Standard choice is F = {P € E(Fgn) : x(P) € Fg}
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Gaudry/Diem’s decomposition
e Standard choice is F = {P € E(Fgn) : x(P) € Fg}
@ Use Semaev polynomials:
Semaev summation polynomials

For all k > 2, there exists Sy € Fgn[Xi,..., Xk] s.t.

Sk(x1, ..., x) =0 <= 3P; € E(Fq),x(Pi) =xiand > Pi=0
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Gaudry/Diem’s decomposition

e Standard choice is F = {P € E(Fgn) : x(P) € Fg}
@ Use Semaev polynomials:

Semaev summation polynomials

For all k > 2, there exists Sy € Fgn[Xi,..., Xk] s.t.

Sk(x1, ..., x) =0 <= 3P; € E(Fq),x(Pi) =xiand > Pi=0

degree 272 in each var. — hard to compute for k > 5
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Gaudry/Diem’s decomposition
e Standard choice is F = {P € E(Fgn) : x(P) € Fg}
@ Use Semaev polynomials:

Semaev summation polynomials
For all k > 2, there exists Sy € Fgn[Xi,..., Xk] s.t.

Sk(x1, ..., x) =0 <= 3P; € E(Fq),x(Pi) =xiand > Pi=0

degree 272 in each var. — hard to compute for k > 5

@ Decomposition try for R = [a]P + [b]Q: solve
Snt1(x1, .., X, X(R)) = 0 with x; € Fq

Restriction of scalar ~» resolution of multivariate polynomial system

with n var./eqn., total degree n2"2.
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Gaudry/Diem’s decomposition
e Standard choice is F = {P € E(Fgn) : x(P) € Fg}
@ Use Semaev polynomials:

Semaev summation polynomials
For all k > 2, there exists Sy € Fgn[Xi,..., Xk] s.t.

Sk(x1, ..., x) =0 <= 3P; € E(Fq),x(Pi) =xiand > Pi=0

degree 272 in each var. — hard to compute for k > 5

@ Decomposition try for R = [a]P + [b]Q: solve
Snt1(x1, .., X, X(R)) = 0 with x; € Fq
Restriction of scalar ~» resolution of multivariate polynomial system
with n var./eqn., total degree n2"~2. This is the hardest part.
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Natural improvements

» Factor base 7 = {P € E(Fgn) : x(P) € Fg} is invariant by —:

PeF&-PeF

— possible to divide size of factor base by 2 by considering
decompositions of the form R = £P;--- £ P,
— less relations needed and faster linear algebra
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Natural improvements

» Factor base F = {P € E(Fqn) : x(P) € Fq} is invariant by —:

PeF&-PeF

— possible to divide size of factor base by 2 by considering
decompositions of the form R = £P;--- £ P,
— less relations needed and faster linear algebra

» Semaev polynomials are symmetric (in the usual sense)

— expression in terms of elementary symmetric polynomials
e1=X1+--+ X, ..., en=X1...X, speeds up computation of
polynomials and resolution of systems
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Natural improvements

» Factor base F = {P € E(Fqn) : x(P) € Fq} is invariant by —:

PeF&-PeF

— possible to divide size of factor base by 2 by considering
decompositions of the form R = £P;--- £ P,
— less relations needed and faster linear algebra

» Semaev polynomials are symmetric (in the usual sense)

— expression in terms of elementary symmetric polynomials
e1=X1+--+ X, ..., en=X1...X, speeds up computation of
polynomials and resolution of systems

Computation of decompositions still slow if n < 4, intractable if n > 5 J
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Our contribution

Main idea

Replace x by arbitrary rational map ¢ : E — Fgn in definition of factor
base:
F={PecE[Fq):p(P)eFg}

Implies ability to define and compute associated summation polynomials.

Useful generalization?

Vanessa VITSE (UJF) Summation polynomials and symmetries 14 December 2013 6 /25



Our contribution

Main idea

Replace x by arbitrary rational map ¢ : E — Fgn in definition of factor
base:
F={PecE[Fq):p(P)eFg}

Implies ability to define and compute associated summation polynomials.

Useful generalization? Yes!
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Our contribution

Main idea

Replace x by arbitrary rational map ¢ : E — Fgn in definition of factor
base:
F={PecE[Fq):p(P)eFg}

Implies ability to define and compute associated summation polynomials.

Useful generalization? Yes!

If ¢ well-chosen:
@ F can have more invariance properties — further reduction of its size

@ associated summation polynomial have more symmetries — easier to
compute and faster decompositions
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Summation polynomials

Theorem

For any rational map ¢ : E — Fgn and k > 3, there exists a unique monic
P,k € Fgn[X1, ..., Xk], irreducible, symmetric, s.t.

Pok(a,...,ax) =0 <= 3P; € E(Fq),p(P)) = aj and > Pi=0
i
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Summation polynomials

Theorem

For any rational map ¢ : E — Fgn and k > 3, there exists a unique monic
P,k € Fgn[X1, ..., Xk], irreducible, symmetric, s.t.

Pok(a,...,ax) =0 <= 3P; € E(Fq),p(P)) = aj and > Pi=0
i

degx. P,k proportional to (deg ©)¥ in general, and also for all interesting
cases so far

— computation tractable only if deg ¢ and k small.
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Computation of summation polynomials
First method: Riemann-Roch
Observation

Pi+ -+ Py =0 & 3f € Fy(C) sit. div(f) = (P1) + -+ + (Px) — k(O)
Function f in Riemann-Roch space L(k(0O)).
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Computation of summation polynomials
First method: Riemann-Roch
Observation

Pi+ -+ Py =0 & 3f € Fy(C) sit. div(f) = (P1) + -+ + (Px) — k(O)
Function f in Riemann-Roch space L(k(0O)).

@ Write equation of E in terms of ¢ and a 2nd var. w (usually x or y)
@ Compute basis of L(k(O)) = (1, fa(p, w), ..., fk(v, w)) and consider
f= fk((pa W) + )\k—lfk—l(% W) + )\1
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Computation of summation polynomials
First method: Riemann-Roch

Observation

Pi+ -+ Py =0 & 3f € Fy(C) sit. div(f) = (P1) + -+ + (Px) — k(O)
Function f in Riemann-Roch space L(k(0O)).

@ Write equation of E in terms of ¢ and a 2nd var. w (usually x or y)
@ Compute basis of L(k(O)) = (1, fa(p, w), ..., fk(v, w)) and consider
f= fk((pa W) + )\k—lfk—l(% W) + )\1

© Resultant of f with equation of E wrt. w gives degree k polynomial F
in Fqn[)\l, ey )\k_l][go]
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Computation of summation polynomials
First method: Riemann-Roch

Observation

Pi+ -+ Py =0 & 3f € Fy(C) sit. div(f) = (P1) + -+ + (Px) — k(O)
Function f in Riemann-Roch space L(k(0O)).

@ Write equation of E in terms of ¢ and a 2nd var. w (usually x or y)
@ Compute basis of L(k(O)) = (1, fa(p, w), ..., fk(v, w)) and consider
f=fi(p,w) + M—1fe—1(p,w) +---+ N1

© Resultant of f with equation of E wrt. w gives degree k polynomial F
in IFan\l, ey )\k_l][go]

Steps 2-3 similar to Nagao's method for higher genus decomposition
attacks J
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Computation of summation polynomials

First

method: Riemann-Roch

Observation

Pi+ - +P.=0&df € I_Fq(C) s.t. div(f) = (P1)+--~ +(Pk) = k(O)
Function f in Riemann-Roch space L(k(0O)).

Write equation of E in terms of ¢ and a 2nd var. w (usually x or y)
Compute basis of L(k(O)) = (1, (¢, w), ..., fk(p, w)) and consider
f = filo,w) + M1fi—1(oow) + -+ M

Resultant of f with equation of E wrt. w gives degree k polynomial F
in Fqn[)\l, ey )\k_l][go]

Equate coeff. of F with elementary sym. polynomials ey, ..., e and
compute Grobner basis of these k equations wrt. elimination order.

The Grobner basis contains P, , symmetrized, i.e. expressed in terms
of €1,...,6€k
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DESSS———....
Computation of summation polynomials

Second method: induction and resultants

Observation

Py + -+ P; -
P1+---+Pk:(9<:>EIQeEs.t.{1+ tFh+Q=0

Piait--+P—Q=0
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Computation of summation polynomials

Second method: induction and resultants

Observation

Pr+---+P+Q=0

Pi+ - -+P.=0«3Q € E s.t.
1 k {ij+1+..._|_Pk_Q:(’)

Assume for simplicity o(P) = ¢(—P) VP € E. Then

Pi+---+P.=0

Psj+1(@(P1), ..., ¢(Pj), X) and Py k_j+1(¢(Pj+1), - - ¢(Pk), X)
haVe a common root
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Computation of summation polynomials

Second method: induction and resultants

Observation

Pr+---+P+Q=0

Pi+ - -+P.=0«3Q € E s.t.
1 k {ij+1+..._|_Pk_Q:(')

Assume for simplicity o(P) = ¢(—P) VP € E. Then

Pi+---+P.=0

Psj+1(@(P1), ..., ¢(Pj), X) and Py k_j+1(¢(Pj+1), - - ¢(Pk), X)
haVe a common root

Po(Xiy -, Xi) = Res(Po 1 (Xt -, Xj, X)), Pk jun (Xjas -+, X, X)) |

Computation by induction still requires to know P, 3.
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DESSS———....
Action of small torsion points

Fact: many elliptic curves only have near-prime cardinality
— admit small order points. Use them to speed DLP!
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Action of small torsion points

Fact: many elliptic curves only have near-prime cardinality
— admit small order points. Use them to speed DLP!

Let T € E(Fg4n) point of small order ¢, 71 : E — E translation-by- T map.
Suppose F invariant by 71, i.e. P € Fiff P+ T € F. Then:
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Action of small torsion points

Fact: many elliptic curves only have near-prime cardinality
— admit small order points. Use them to speed DLP!

Let T € E(Fg4n) point of small order ¢, 71 : E — E translation-by- T map.
Suppose F invariant by 71, i.e. P € Fiff P+ T € F. Then:

@ Each decomposition R = P; + - - - + P, yields many more:

R = (Pi+T)+(P+[(—-1]T)+ -+ P,
= (PL+T)+(P2+T)+(P3s+[(-2]T)+---+ Py
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Action of small torsion points

Fact: many elliptic curves only have near-prime cardinality
— admit small order points. Use them to speed DLP!

Let T € E(Fg4n) point of small order ¢, 71 : E — E translation-by- T map.
Suppose F invariant by 71, i.e. P € Fiff P+ T € F. Then:

@ Each decomposition R = P; + - - - + P, yields many more:

R = (Pi+T)+(P+[(—-1]T)+ -+ P,
= (PL+T)+(P2+T)+(P3s+[(-2]T)+---+ Py

@ Size of F can be effectively divided by ¢
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Equivariant morphisms

Goal: factor base F = {P : ¢(P) € F4} invariant by 77, T € E[(]
First idea

Look for invariant ¢ : E — Fgn, i.e.

o(P+ T)=¢(P)VYPe€E.
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Equivariant morphisms

Goal: factor base F = {P: ¢(P) € Fq} invariant by 7, T € E[/]
First idea

Look for invariant ¢ : E — Fgn, i.e.

o(P+ T)=¢(P)VYPe€E.

But then ¢ factorizes through quotient isogeny E — E/7y:
/

m 4
E E/ry Fgr

4

Equivalent decompositions on E with ¢ and on E; 1y with 4!
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Equivariant morphisms

Goal: factor base F = {P: ¢(P) € Fq} invariant by 7, T € E[/]

Firstdea BAD IDEA
Look for invariant ¢ : E — Fgn, i.e.

©(P+ T)=¢(P)VYPe€E.

But then ¢ factorizes through quotient isogeny E — E/7y:

!
E/T)

™

E ¥

Fgn
e

Equivalent decompositions on E with ¢ and on E; 1y with 4!
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Equivariant morphisms

Goal: factor base F = {P: ¢(P) € Fq} invariant by 77, T € E[/]
Better idea

Look for equivariant ¢ : E — Fgn, i.e. I rational map f : Fgn — Fgn s.t.

o(P+ T)="f(e(P)) VP € E.
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Equivariant morphisms

Goal: factor base F = {P: ¢(P) € Fq} invariant by 77, T € E[/]
Better idea

Look for equivariant ¢ : E — Fgn, i.e. I rational map f : Fgn — Fgn s.t.

o(P+ T)="f(e(P)) VP € E.

0Sof)=fo...of =Id
@ Also invariance of F requires [, stable by f

= f element of PGL(2,Fg) of exact order ¢
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Existence

Theorem
The torsion subgroups wrt. which a rational map ¢ : E — Fgn can be
equivariant but not invariant are:
e E[2]
e (T) C E[{], with either
¢ = char(Fy)
lg—1
fg+1

In all cases deg(y) is a multiple of £.

Also possible equivariance (or invariance for £ = 2) wrt. [—1] map
P —P
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Two-torsion in char 2: morphism

E : y? + xy = x3 + ax? + b ordinary elliptic curve over binary field Fgn.
Non-trivial 2-torsion point is T, = (0, b'/?).
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Two-torsion in char 2: morphism

E : y? + xy = x3 + ax? + b ordinary elliptic curve over binary field Fgn.
Non-trivial 2-torsion point is T, = (0, b'/?).

Proposition
1/4

W. Then VP € E,
X

Let o : E = Fgn, (x,y) —

@ o(P+ T2)=¢(P)+1
© ¢(—P) = ¢(P)
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Two-torsion in char 2: morphism

E : y? + xy = x3 + ax? + b ordinary elliptic curve over binary field Fgn.
Non-trivial 2-torsion point is T, = (0, b'/?).

Proposition
1/4

W. Then VP € E,
X

Let o : E = Fgn, (x,y) —

@ o(P+ T2)=¢(P)+1
© ¢(—P) = ¢(P)

Factor base can be effectively divided by 4 — #F ~ q/4
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Two-torsion in char 2: summation polynomials

Since Pr+---+ Pc=(PL+ T2) + (P2 + T2) + P+ + P =,
we have P, i (X1,..., Xik) = Po (X1 +1, X0 +1,X3,..., X)) = ...

— invariant if even number of 41 added.
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Two-torsion in char 2: summation polynomials

Since P+ +Pc=(Pi+T)+(Po+To)+P3+-+P=...,
we have P, i (X1,..., Xik) = Po (X1 +1, X0 +1,X3,..., X)) = ...

— invariant if even number of 41 added.

Proposition

o P,y invariant under affine action of the group Gy = (Z/2Z)*~1 x &.

@ Invariant ring Fgn[X, ... , X]% free algebra, generated by

61=X1+“‘+Xk
$5=Y1Yo+ -+ Y1 Yk

Sk = Yl Yk
where Y; = X,-2 + X;.
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Two-torsion in char 2: results (1)

Writing down P, i in terms of invariant generators ey, s,

...,S, makes a
huge difference:
k 3| 4 5 6 7 8
Semaev nb of monomials | 3 | 6 | 39 | 638 - -
polynomials timings Os | Os | 26s | 7255 X X
Py« nb of monomials | 2 3 9 50 2247 | 470369
timings Os | Os | Os 1s | 383s | 40.5h

Computations for k =4 to 7 in two steps:

@ take resultant of partially symmetrized summation polynomials

@ express resultant in terms of invariant generators using elimination
(Grobner basis)
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Two-torsion in char 2: results (1)

Writing down P, i in terms of invariant generators eg, S, ..., S, makes a
huge difference:
k 31 4 5 6 7 8
Semaev nb of monomials | 3 | 6 | 39 | 638 - -
polynomials timings Os | Os | 26s | 7255 X X
Py« nb of monomials | 2 3 9 50 2247 | 470369
timings Os | Os | Os 1s | 383s | 40.5h

Computations for k =4 to 7 in two steps:

@ take resultant of partially symmetrized summation polynomials

@ express resultant in terms of invariant generators using elimination

(Grobner basis)

Resultant too large for k = 8 case — dedicated interpolation technique
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Two-torsion in char 2: results (2)

Target: IPSEC Oakley curve, defined over Fosixs.
Cardinality is 12 times a 151-bit prime — can use 2-torsion point.

Difficulty of point decomposition R =Py +---+ Ps, P, € F 7
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Two-torsion in char 2: results (2)

Target: IPSEC Oakley curve, defined over Fosixs.
Cardinality is 12 times a 151-bit prime — can use 2-torsion point.

Difficulty of point decomposition R =Py +---+ Ps, P, € F 7

Gaudry-Diem’s approach: intractable. Resolution of corresponding
polynomial system does not succeed on a personal computer
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Two-torsion in char 2: results (2)

Target: IPSEC Oakley curve, defined over Fosixs.
Cardinality is 12 times a 151-bit prime — can use 2-torsion point.

Difficulty of point decomposition R =Py +---+ Ps, P, € F 7

Gaudry-Diem’s approach: intractable. Resolution of corresponding
polynomial system does not succeed on a personal computer

“n— 1" approach: only known approach before this work. Estimated
timing for one relation is & 37 years (but easy to distribute).
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Two-torsion in char 2: results (2)

Target: IPSEC Oakley curve, defined over Fosixs.
Cardinality is 12 times a 151-bit prime — can use 2-torsion point.

Difficulty of point decomposition R =Py +---+ Ps, P, € F 7

Gaudry-Diem's approach: intractable. Resolution of corresponding
polynomial system does not succeed on a personal computer

“n— 1" approach: only known approach before this work. Estimated
timing for one relation is & 37 years (but easy to distribute).

With additional symmetries: == 20 min for one relation.

Still too slow for ECDLP resolution, but threatens non-standard problems
e.g. oracle-assisted static Diffie-Hellman.
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Two-torsion in odd char: morphism

E : y? = cx(x — 1)(x — A) elliptic curve over Fyn in twisted Legendre form.
Three non-trivial 2-torsion points To = (0,0), T1 = (1,0), T = (A, 0).
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Two-torsion in odd char: morphism

E : y? = cx(x — 1)(x — A) elliptic curve over Fyn in twisted Legendre form.
Three non-trivial 2-torsion points To = (0,0), 71 = (1,0), T2 = (A, 0).

Proposition
If X and 1 — X\ squares, then 3¢ : E — Fqn degree 2 map s.t. VP € E,
1 1
@ o (P+ To)=—p(P), P+ T)=—, P+ T)=——
(P+To)=—¢(P), #(P+T)= . w(P+To)=——r5

o p(—P) = »(P)

Factor base can be effectively divided by 8 — #F ~ q/8
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Two-torsion in odd char: morphism

E : y? = cx(x — 1)(x — A) elliptic curve over Fyn in twisted Legendre form.
Three non-trivial 2-torsion points To = (0,0), 71 = (1,0), T2 = (A, 0).

Proposition
If X and 1 — X\ squares, then 3¢ : E — Fqn degree 2 map s.t. VP € E,

o o(P+To)=—p(P), (P+Th)= ﬁ PP+ Tp) = —
o o(~P) = o(P)

R
©(P)

Factor base can be effectively divided by 8 — #F ~ q/8

Note: z+> —z, z+> 1/z and z — —1/z “simplest” choice of
homographies. Only one can be affine.
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Two-torsion in odd char: summation polynomials (1)

o P, (Xi,.

S Xk) = Poi(=X1, = X2, X3,..., X)) = ...
Invariance by any even number of sign changes.
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Two-torsion in odd char: summation polynomials (1)

(] Pap,k(Xla e ,Xk) = P%k(—Xl, —Xg, X3, e 7Xk) = ...
Invariance by any even number of sign changes.

@ However P%k(Xl, e ,Xk) 75 P%k(l/Xl, 1/X2, X3, ce ,Xk). So?
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Two-torsion in odd char: summation polynomials (1)

(] P@p,k(Xla e ,Xk) = P%k(—Xl, —Xg, )(37 e 7Xk) = ...
Invariance by any even number of sign changes.

@ However P(p7k(X1, . ,Xk) 75 P%k(l/Xl, 1/X2,X3, ce ,Xk). So?
» Either only use first invariance (from (P + To) = —p(P)).

Then P, , belongs to explicit invariant ring — results as in char. 2
case.
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N
Two-torsion in odd char: summation polynomials (1)

(] P@p,k(Xla e ,Xk) = P%k(—Xl, —Xg, )(37 e 7Xk) = ...
Invariance by any even number of sign changes.

@ However P@7k(X1, . ,Xk) 75 P%k(l/Xl, 1/X2,X3, ce ,Xk). So?

» Either only use first invariance (from ¢(P + To) = —¢(P)).
Then P, , belongs to explicit invariant ring — results as in char. 2
case.

» Or consider invariant rational fraction

P (Xt .05 Xi)
X1 Xk

Q(p,k(le sy Xk) =

and work with invariant fields instead.
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Two-torsion in odd char: summation polynomials (2)

Proposition
® Qu « Is invariant under action of the group
Gy = (Z)27 x 7.J27)K ! x &.
o Invariant field Fgn (X1, ... , Xx)® has explicit generators
wo, W1,01,...,0k_2.
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N
Two-torsion in odd char: summation polynomials (2)

Proposition
® Qu « Is invariant under action of the group
Gy = (Z)27 x 7.J27)K ! x &.
o Invariant field Fgn (X1, ... , Xx)® has explicit generators
wo, W1,01,...,0k_2.

FYI:
o; = i-th elementary symmetric polynomial in X? + Xl_z, e ,X,f + Xk_2

wo = SN 500/ (X Xa), = T sy /(X Xa), where

s; = i-th elementary symmetric polynomial in X2,..., X2 (and so = 1).
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DESSS———....
Symmetrization
How to express an invariant rational fraction in terms of generators of the
invariant field?

J
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Symmetrization

How to express an invariant rational fraction in terms of generators of the
invariant field?

» For polynomials in invariant ring: elimination theory.

If new generators are Y; = fi(Xi,..., Xx), compute Grébner basis of
{Yl—fl,...,ym—fm} - K[Xl,...,Xk,Yl,...,Ym] wrt. an
elimination order, then compute normal form of invariant polynomial.
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Symmetrization

How to express an invariant rational fraction in terms of generators of the
invariant field?

» For polynomials in invariant ring: elimination theory.

If new generators are Y; = fi(Xi,..., Xx), compute Grébner basis of
{Yl —f,...,Ym— fm} - K[Xl,...,Xk, Yl,...,Ym] wrt. an
elimination order, then compute normal form of invariant polynomial.

» For rational fractions in invariant field: 77

However in our case ng,k is polynomial in our choice of invariant
generators
— inductive computation with partially symmetrized resultants OK.
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Two-torsion in odd char: results (1)

k 3| 4 5 6

Semaev polynomials 5136 | 940 -
P@,k(sl, ey Sk—1, ek) 5113 | 182 | 4125
Qp’k(Ul,...,Uk_z,WQ,Wl) 3 6 32 396

Comparison of number of monomials for:
@ Semaev polynomials, symmetrized wrt. the action of &
@ P, symmetrized wrt. the action of only one 2-torsion point

® Q, k symmetrized wrt. the action of the full 2-torsion
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Two-torsion in odd char: results (1)

k 3| 4 5 6

Semaev polynomials 5136 | 940 -
P@,k(sl, ey Sk—1, ek) 5113 | 182 | 4125
Qp’k(Ul,...,Uk_z,WQ,Wl) 3 6 32 396

Comparison of number of monomials for:

@ Semaev polynomials, symmetrized wrt. the action of &

@ P, symmetrized wrt. the action of only one 2-torsion point

® Q, k symmetrized wrt. the action of the full 2-torsion

Note: less sparse than in char. 2
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Two-torsion in odd char: results (2)

Target: random curve over OEF F (531 413y, with full 2-torsion and
near-prime cardinality.

Difficulty of point decomposition R=P; +---+ Ps, P, € F 7
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Target: random curve over OEF F (531 413y, with full 2-torsion and
near-prime cardinality.
Difficulty of point decomposition R=P; +---+ Ps, P, € F 7

Gaudry-Diem’s approach: intractable.

With one 2-torsion point: = 90 h for one relation.
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Two-torsion in odd char: results (2)

Target: random curve over OEF F (531 413y, with full 2-torsion and
near-prime cardinality.

Difficulty of point decomposition R=P; +---+ Ps, P, € F 7
Gaudry-Diem’s approach: intractable.
With one 2-torsion point: = 90 h for one relation.

With full 2-torsion: ~ 15 min for one relation.
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Further developments

» Higher order torsion points:
Computations for small values of £ > 2 are possible.

Pro: smaller factor base — less relations and faster linear algebra

Con: larger degree for summation polynomials — harder
decompositions
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Further developments

» Higher order torsion points:
Computations for small values of £ > 2 are possible.
Pro: smaller factor base — less relations and faster linear algebra

Con: larger degree for summation polynomials — harder
decompositions

» More automorphisms (j = 0 or 1728):
Equivariance of ¢ wrt. automorphisms besides [—1] would lead to
more symmetries.
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