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Background

The Elliptic Curve Discrete Log Problem

E elliptic curve defined over finite field Fq, and P,Q ∈ E (Fq).

Goal (ECDLP) : compute x s.t. Q = [x ]P

If Fq prime field: no known non-generic algorithms in general.

If Fq = Fpn extension field: decomposition index calculus
(Gaudry/Diem).
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Decomposition index calculus

Outline of the attack:

1 Choose a factor base F ⊂ E (Fqn).

2 Relation search step: look for decompositions of the form

[a]P + [b]Q = P1 + · · ·+ Pn, Pi ∈ F

3 Linear algebra step: once ≈ |F| relations are computed, use sparse
matrix algorithms to extract discrete log of Q.

Made possible by the Weil restriction structure:
define F as algebraic curve in E seen as a dim. n abelian variety over Fq.
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Gaudry/Diem’s decomposition

Standard choice is F = {P ∈ E (Fqn) : x(P) ∈ Fq}
Use Semaev polynomials:

Semaev summation polynomials

For all k ≥ 2, there exists Sk ∈ Fqn [X1, . . . ,Xk ] s.t.

Sk(x1, . . . , xk) = 0⇐⇒ ∃Pi ∈ E (Fq), x(Pi ) = xi and
∑
i

Pi = O

degree 2k−2 in each var. → hard to compute for k ≥ 5

Decomposition try for R = [a]P + [b]Q: solve
Sn+1(x1, . . . , xn, x(R)) = 0 with xi ∈ Fq

Restriction of scalar  resolution of multivariate polynomial system
with n var./eqn., total degree n 2n−2.

This is the hardest part.
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Restriction of scalar  resolution of multivariate polynomial system
with n var./eqn., total degree n 2n−2. This is the hardest part.
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Natural improvements

I Factor base F = {P ∈ E (Fqn) : x(P) ∈ Fq} is invariant by −:

P ∈ F ⇔ −P ∈ F

→ possible to divide size of factor base by 2 by considering
decompositions of the form R = ±P1 · · · ± Pn

→ less relations needed and faster linear algebra

I Semaev polynomials are symmetric (in the usual sense)

→ expression in terms of elementary symmetric polynomials
e1 = X1 + · · ·+ Xn, . . . , en = X1 . . .Xn speeds up computation of
polynomials and resolution of systems

Computation of decompositions still slow if n ≤ 4, intractable if n ≥ 5
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Our contribution

Main idea

Replace x by arbitrary rational map ϕ : E → Fqn in definition of factor
base:

F = {P ∈ E (Fqn) : ϕ(P) ∈ Fq}

Implies ability to define and compute associated summation polynomials.

Useful generalization?

Yes!

If ϕ well-chosen:

F can have more invariance properties → further reduction of its size

associated summation polynomial have more symmetries → easier to
compute and faster decompositions
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Summation polynomials

Theorem

For any rational map ϕ : E → Fqn and k ≥ 3, there exists a unique monic
Pϕ,k ∈ Fqn [X1, . . . ,Xk ], irreducible, symmetric, s.t.

Pϕ,k(a1, . . . , ak) = 0⇐⇒ ∃Pi ∈ E (Fq), ϕ(Pi ) = ai and
∑
i

Pi = O

degXi
Pϕ,k proportional to (degϕ)k in general, and also for all interesting

cases so far
→ computation tractable only if degϕ and k small.
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Computation of summation polynomials
First method: Riemann-Roch

Observation

P1 + · · ·+ Pk = O ⇔ ∃f ∈ F̄q(C ) s.t. div(f ) = (P1) + · · ·+ (Pk)− k(O)
Function f in Riemann-Roch space L(k(O)).

1 Write equation of E in terms of ϕ and a 2nd var. w (usually x or y)

2 Compute basis of L(k(O)) = 〈1, f2(ϕ,w), . . . , fk(ϕ,w)〉 and consider
f = fk(ϕ,w) + λk−1fk−1(ϕ,w) + · · ·+ λ1

3 Resultant of f with equation of E wrt. w gives degree k polynomial F
in Fqn [λ1, . . . , λk−1][ϕ]

Steps 2-3 similar to Nagao’s method for higher genus decomposition
attacks
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f = fk(ϕ,w) + λk−1fk−1(ϕ,w) + · · ·+ λ1

3 Resultant of f with equation of E wrt. w gives degree k polynomial F
in Fqn [λ1, . . . , λk−1][ϕ]

4 Equate coeff. of F with elementary sym. polynomials e1, . . . , ek and
compute Gröbner basis of these k equations wrt. elimination order.

5 The Gröbner basis contains Pϕ,k symmetrized, i.e. expressed in terms
of e1, . . . , ek
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Computation of summation polynomials
Second method: induction and resultants

Observation

P1 + · · ·+ Pk = O ⇔ ∃Q ∈ E s.t.

{
P1 + · · ·+ Pj + Q = O
Pj+1 + · · ·+ Pk − Q = O

Assume for simplicity ϕ(P) = ϕ(−P) ∀P ∈ E . Then

P1 + · · ·+ Pk = O
m

Pϕ,j+1(ϕ(P1), . . . , ϕ(Pj),X ) and Pϕ,k−j+1(ϕ(Pj+1), . . . , ϕ(Pk),X )
have a common root

Pϕ,k(X1, . . . ,Xk) = Res(Pϕ,j+1(X1, . . . ,Xj ,X ),Pϕ,k−j+1(Xj+1, . . . ,Xk ,X ))

Computation by induction still requires to know Pϕ,3.
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Action of small torsion points

Fact: many elliptic curves only have near-prime cardinality
→ admit small order points. Use them to speed DLP!

Let T ∈ E (Fqn) point of small order `, τT : E → E translation-by-T map.
Suppose F invariant by τT , i.e. P ∈ F iff P + T ∈ F . Then:

Each decomposition R = P1 + · · ·+ Pn yields many more:

R = (P1 + T ) + (P2 + [`− 1]T ) + · · ·+ Pn

= (P1 + T ) + (P2 + T ) + (P3 + [`− 2]T ) + · · ·+ Pn

= . . .

Size of F can be effectively divided by `
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Equivariant morphisms

Goal: factor base F = {P : ϕ(P) ∈ Fq} invariant by τT , T ∈ E [`]

First idea

Look for invariant ϕ : E → Fqn , i.e.

ϕ(P + T ) = ϕ(P) ∀P ∈ E .

But then ϕ factorizes through quotient isogeny E → E/〈T 〉:

E E/〈T 〉 Fqn
π

ϕ

ϕ′

Equivalent decompositions on E with ϕ and on E/〈T 〉 with ϕ′!
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(((((
First idea BAD IDEA

Look for invariant ϕ : E → Fqn , i.e.
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Equivariant morphisms

Goal: factor base F = {P : ϕ(P) ∈ Fq} invariant by τT , T ∈ E [`]

Better idea

Look for equivariant ϕ : E → Fqn , i.e. ∃ rational map f : Fqn → Fqn s.t.

ϕ(P + T ) = f (ϕ(P)) ∀P ∈ E .

So f (`) = f ◦ · · · ◦ f = Id

Also invariance of F requires Fq stable by f

⇒ f element of PGL(2,Fq) of exact order `
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Existence

Theorem

The torsion subgroups wrt. which a rational map ϕ : E → Fqn can be
equivariant but not invariant are:

E [2]

〈T 〉 ⊂ E [`], with either
I ` = char(Fq)
I `|q − 1
I `|q + 1

In all cases deg(ϕ) is a multiple of `.

Also possible equivariance (or invariance for ` = 2) wrt. [−1] map
P 7→ −P
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Two-torsion in char 2: morphism

E : y 2 + xy = x3 + ax2 + b ordinary elliptic curve over binary field Fqn .
Non-trivial 2-torsion point is T2 = (0, b1/2).

Proposition

Let ϕ : E → Fqn , (x , y) 7→ b1/4

x + b1/4
. Then ∀P ∈ E ,

ϕ(P + T2) = ϕ(P) + 1

ϕ(−P) = ϕ(P)

Factor base can be effectively divided by 4 → #F ≈ q/4
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Two-torsion in char 2: summation polynomials
Since P1 + · · ·+ Pk = (P1 + T2) + (P2 + T2) + P3 + · · ·+ Pk = . . . ,
we have Pϕ,k(X1, . . . ,Xk) = Pϕ,k(X1 + 1,X2 + 1,X3, . . . ,Xk) = . . .

→ invariant if even number of +1 added.

Proposition

Pϕ,k invariant under affine action of the group G2 = (Z/2Z)k−1 oSk .

Invariant ring Fqn [X1, . . . ,Xk ]G2 free algebra, generated by

e1 = X1 + · · ·+ Xk

s2 = Y1Y2 + · · ·+ Yk−1Yk

...

sk = Y1 . . .Yk

where Yi = X 2
i + Xi .
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Two-torsion in char 2: results (1)

Writing down Pϕ,k in terms of invariant generators e1, s2, . . . , sk makes a
huge difference:

k 3 4 5 6 7 8

Semaev nb of monomials 3 6 39 638 – –
polynomials timings 0 s 0 s 26 s 725 s × ×

Pϕ,k nb of monomials 2 3 9 50 2 247 470 369
timings 0 s 0 s 0 s 1 s 383 s 40.5 h

Computations for k = 4 to 7 in two steps:

1 take resultant of partially symmetrized summation polynomials

2 express resultant in terms of invariant generators using elimination
(Gröbner basis)

Resultant too large for k = 8 case → dedicated interpolation technique
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Two-torsion in char 2: results (2)

Target: IPSEC Oakley curve, defined over F231×5 .
Cardinality is 12 times a 151-bit prime → can use 2-torsion point.

Difficulty of point decomposition R = P1 + · · ·+ P5, Pi ∈ F ?

Gaudry-Diem’s approach: intractable. Resolution of corresponding
polynomial system does not succeed on a personal computer

“n − 1” approach: only known approach before this work. Estimated
timing for one relation is ≈ 37 years (but easy to distribute).

With additional symmetries: ≈ 20 min for one relation.

Still too slow for ECDLP resolution, but threatens non-standard problems
e.g. oracle-assisted static Diffie-Hellman.
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Two-torsion in odd char: morphism

E : y 2 = c x(x − 1)(x −λ) elliptic curve over Fqn in twisted Legendre form.
Three non-trivial 2-torsion points T0 = (0, 0), T1 = (1, 0), T2 = (λ, 0).

Proposition

If λ and 1− λ squares, then ∃ϕ : E → Fqn degree 2 map s.t. ∀P ∈ E ,

ϕ(P + T0) = −ϕ(P), ϕ(P + T1) =
1

ϕ(P)
, ϕ(P + T2) = − 1

ϕ(P)

ϕ(−P) = ϕ(P)

Factor base can be effectively divided by 8 → #F ≈ q/8

Note: z 7→ −z , z 7→ 1/z and z 7→ −1/z “simplest” choice of
homographies. Only one can be affine.
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Two-torsion in odd char: summation polynomials (1)

Pϕ,k(X1, . . . ,Xk) = Pϕ,k(−X1,−X2,X3, . . . ,Xk) = . . .
Invariance by any even number of sign changes.

However Pϕ,k(X1, . . . ,Xk) 6= Pϕ,k(1/X1, 1/X2,X3, . . . ,Xk). So ?

I Either only use first invariance (from ϕ(P + T0) = −ϕ(P)).
Then Pϕ,k belongs to explicit invariant ring → results as in char. 2
case.

I Or consider invariant rational fraction

Qϕ,k(X1, . . . ,Xk) =
Pϕ,k(X1, . . . ,Xk)

X1 . . .Xk

and work with invariant fields instead.
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Two-torsion in odd char: summation polynomials (2)

Proposition

Qϕ,k is invariant under action of the group
G4 = (Z/2Z× Z/2Z)k−1 oSk .

Invariant field Fqn(X1, . . . ,Xk)G4 has explicit generators
w0,w1, σ1, . . . , σk−2.

FYI:

σi = i-th elementary symmetric polynomial in X 2
1 + X−2

1 , . . . ,X 2
k + X−2

k

w0 =
∑bn/2c

i=0 s2i/(X1 · · ·Xn), w1 =
∑b(n−1)/2c

i=1 s2i+1/(X1 · · ·Xn), where

si = i-th elementary symmetric polynomial in X 2
1 , . . . ,X

2
n (and s0 = 1).
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Symmetrization

How to express an invariant rational fraction in terms of generators of the
invariant field?

I For polynomials in invariant ring: elimination theory.

If new generators are Yi = fi (X1, . . . ,Xk), compute Gröbner basis of
{Y1 − f1, . . . ,Ym − fm} ⊂ K [X1, . . . ,Xk ,Y1, . . . ,Ym] wrt. an
elimination order, then compute normal form of invariant polynomial.

I For rational fractions in invariant field: ??

However in our case Qϕ,k is polynomial in our choice of invariant
generators
→ inductive computation with partially symmetrized resultants OK.
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Two-torsion in odd char: results (1)

k 3 4 5 6

Semaev polynomials 5 36 940 –

Pϕ,k(s1, . . . , sk−1, ek) 5 13 182 4125

Qϕ,k(σ1, . . . , σk−2,w0,w1) 3 6 32 396

Comparison of number of monomials for:

Semaev polynomials, symmetrized wrt. the action of Sk

Pϕ,k symmetrized wrt. the action of only one 2-torsion point

Qϕ,k symmetrized wrt. the action of the full 2-torsion

Note: less sparse than in char. 2
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Two-torsion in odd char: results (2)

Target: random curve over OEF F(231+413)5 , with full 2-torsion and
near-prime cardinality.

Difficulty of point decomposition R = P1 + · · ·+ P5, Pi ∈ F ?

Gaudry-Diem’s approach: intractable.

With one 2-torsion point: ≈ 90 h for one relation.

With full 2-torsion: ≈ 15 min for one relation.
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Further developments

I Higher order torsion points:
Computations for small values of ` > 2 are possible.

Pro: smaller factor base → less relations and faster linear algebra

Con: larger degree for summation polynomials → harder
decompositions

I More automorphisms (j = 0 or 1728):
Equivariance of ϕ wrt. automorphisms besides [−1] would lead to
more symmetries.
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