A variant of the F4 algorithm

Vanessa VITSE - Antoine JOUX

Université de Versailles Saint-Quentin, Laboratoire PRISM

June 24, 2010

Vanessa VITSE - Antoine JOUX (UVSQ)

• • • • • • • • • • • •

Motivation

An example of algebraic cryptanalysis

Discrete logarithm problem over elliptic curves (ECDLP) Given $P \in E(\mathbb{F}_{q^n})$ and $Q \in \langle P \rangle$, find x such that Q = [x]P

Motivation

An example of algebraic cryptanalysis

Discrete logarithm problem over elliptic curves (ECDLP) Given $P \in E(\mathbb{F}_{q^n})$ and $Q \in \langle P \rangle$, find x such that Q = [x]P

Basic outline of index calculus method for DLP

- define a factor base: $\mathcal{F} = \{P_1, \ldots, P_N\}$
- P relation search: for random (a_i, b_i) , try to decompose $[a_i]P + [b_i]Q$ as sum of points in *F*
- Inear algebra step: once k > N relations found, deduce with sparse techniques the DLP of Q

Motivation

An example of algebraic cryptanalysis

Relation search

• Factor base:
$$\mathcal{F} = \{(x, y) \in E(\mathbb{F}_{q^n}) : x \in \mathbb{F}_q\}$$

• Goal: find a least $\#\mathcal{F}$ decompositions of random combination R = [a]P + [b]Q into *m* points of \mathcal{F} : $R = P_1 + \ldots + P_m$

Algebraic attack

for each R, construct the corresponding polynomial system S_R
 Semaev's summation polynomials and symmetrization
 Weil restriction: write F_{qⁿ} as F_q[t]/(f(t))

•
$$\mathcal{S}_R = \{f_1, \ldots, f_n\} \subset \mathbb{F}_q[X_1, \ldots, X_m]$$

coefficients depend polynomially on x_R

each decomposition trial \leftrightarrow find the solutions of \mathcal{S}_R over \mathbb{F}_q

Techniques for resolution of polynomial systems

F4: efficient implementation of Buchberger's algorithm

- linear algebra to reduce a large number of critical pairs $(lcm, u_1, f_1, u_2, f_2)$ where $lcm = LM(f_1) \lor LM(f_2)$, $u_i = \frac{lcm}{LM(f_i)}$
- selection strategy (e.g. lowest total degree lcm)
- at each step construct a Macaulay-style matrix containing
 - products $u_i f_i$ coming from the selected critical pairs
 - polynomials from preprocessing phase

Techniques for resolution of polynomial systems

Standard Gröbner basis algorithms

- F4 algorithm
 - fast and complete reductions of critical pairs
 - drawback: many reductions to zero

P5 algorithm

- elaborate criterion \rightarrow skip unnecessary reductions
- drawback: incomplete polynomial reductions

- multipurpose algorithms
- do not take advantage of the common shape of the systems
- knowledge of a prior computation
 - \rightarrow no more reduction to zero in F4 ?

Specifically devised algorithms

Outline of our F4 variant

- F4Precomp: on the first system
 - at each step, store the list of all involved polynomial multiples
 - reduction to zero ightarrow remove well-chosen multiple from the list
- F4Remake: for each subsequent system
 - no queue of untreated pairs
 - at each step, pick directly from the list the relevant multiples

Former works

- Gröbner trace for modular computation of rational GB [Traverso]
- Comprehensive Gröbner basis

"Similar" systems

- parametric family of systems: $\{F_1(y), \ldots, F_r(y)\}_{y \in \mathbb{K}^\ell}$ where $F_1, \ldots, F_r \in \mathbb{K}[Y_1, \ldots, Y_\ell][X_1, \ldots, X_n]$
- $\{f_1, \ldots, f_r\} \subset \mathbb{K}[\underline{X}]$ random instance of this parametric family

Generic behaviour

- "compute" the GB of $\langle F_1, \ldots, F_r \rangle$ in $\mathbb{K}(\underline{Y})[\underline{X}]$ with F4 algorithm
- **2** f_1, \ldots, f_r behaves generically if during the GB computation with F4
 - same number of iterations
 - at each step, same new leading monomials ightarrow similar critical pairs

イロト イポト イヨト イヨト 二日

"Similar" systems

- parametric family of systems: $\{F_1(y), \ldots, F_r(y)\}_{y \in \mathbb{K}^\ell}$ where $F_1, \ldots, F_r \in \mathbb{K}[Y_1, \ldots, Y_\ell][X_1, \ldots, X_n]$
- $\{f_1, \ldots, f_r\} \subset \mathbb{K}[\underline{X}]$ random instance of this parametric family

Generic behaviour

- "compute" the GB of $\langle F_1, \ldots, F_r \rangle$ in $\mathbb{K}(\underline{Y})[\underline{X}]$ with F4 algorithm
- f₁,..., f_r behaves generically if during the GB computation with F4
 same number of iterations
 - at each step, same new leading monomials ightarrow similar critical pairs

F4Remake computes successfully the GB of f_1, \ldots, f_r if the system behaves generically

"Modular" systems

- $F_1, \ldots, F_r \in \mathbb{Z}[\underline{X}]$ system of primitive polynomials
- $f_1, \ldots, f_r \in \mathbb{F}_p[\underline{X}]$ its reduction modulo a prime p

F4-lucky primes

- "compute" the GB of $\langle F_1, \ldots, F_r \rangle$ in $\mathbb{Q}[\underline{X}]$ with F4 algorithm
- **2** *p* is F4-lucky prime if during the GB computation of f_1, \ldots, f_r with F4
 - same number of iterations
 - at each step, same new leading monomials ightarrow similar critical pairs

"Modular" systems

- $F_1, \ldots, F_r \in \mathbb{Z}[\underline{X}]$ system of primitive polynomials
- $f_1, \ldots, f_r \in \mathbb{F}_p[\underline{X}]$ its reduction modulo a prime p

F4-lucky primes

- "compute" the GB of $\langle F_1, \ldots, F_r \rangle$ in $\mathbb{Q}[\underline{X}]$ with F4 algorithm
- **2** *p* is F4-lucky prime if during the GB computation of f_1, \ldots, f_r with F4
 - same number of iterations
 - at each step, same new leading monomials ightarrow similar critical pairs

F4Remake computes successfully the GB of f_1, \ldots, f_r if p is F4-lucky

- **(**) Assume f_1, \ldots, f_r behaves generically until the (i 1)-th step
- 2 At step *i*, F4 constructs
 - M_g =matrix of polynomial multiples at step *i* for the parametric system
 - $M = \text{matrix of polynomial multiples at step } i \text{ for } f_1, \ldots, f_r$

▲ @ ▶ ▲ @ ▶ ▲

- **(**) Assume f_1, \ldots, f_r behaves generically until the (i 1)-th step
- At step i, F4 constructs
 - M_g =matrix of polynomial multiples at step *i* for the parametric system
 - $M = \text{matrix of polynomial multiples at step } i \text{ for } f_1, \dots, f_r$
- **③** Reduced row echelon form of M_g and M

- **(**) Assume f_1, \ldots, f_r behaves generically until the (i 1)-th step
- At step i, F4 constructs
 - M_g =matrix of polynomial multiples at step *i* for the parametric system
 - $M = \text{matrix of polynomial multiples at step } i \text{ for } f_1, \ldots, f_r$
- **③** Reduced row echelon form of M_g and M

・ 同 ト ・ ヨ ト ・ ヨ ト

- **()** Assume f_1, \ldots, f_r behaves generically until the (i 1)-th step
- At step i, F4 constructs
 - M_g =matrix of polynomial multiples at step *i* for the parametric system
 - $M = \text{matrix of polynomial multiples at step } i \text{ for } f_1, \dots, f_r$
- **③** Reduced row echelon form of M_g and M

- **()** Assume f_1, \ldots, f_r behaves generically until the (i 1)-th step
- 2 At step *i*, F4 constructs
 - M_g =matrix of polynomial multiples at step *i* for the parametric system
 - $M = \text{matrix of polynomial multiples at step } i \text{ for } f_1, \ldots, f_r$
- **③** Reduced row echelon form of M_g and M

・ 何 ト ・ ヨ ト ・ ヨ ト

- **()** Assume f_1, \ldots, f_r behaves generically until the (i-1)-th step
- At step i, F4 constructs
 - M_g =matrix of polynomial multiples at step *i* for the parametric system
 - $M = \text{matrix of polynomial multiples at step } i \text{ for } f_1, \ldots, f_r$
- **③** Reduced row echelon form of M_g and M

 f_1, \ldots, f_r behaves generically at step $i \Leftrightarrow B$ has full rank

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ─ 圖

Probability of success

Heuristic assumption

The *B* matrices are uniformly random over $\mathcal{M}_{n,\ell}(\mathbb{F}_q)$

Probability estimates over \mathbb{F}_q

The probability that a system f_1, \ldots, f_r behaves generically is heuristically greater than $c(q)^{n_{step}}$ where

•
$$c(q) = \prod_{i=1}^{\infty} (1-q^{-i}) \underset{q \to \infty}{\longrightarrow} 1$$

• n_{step} is the number of steps during the F4 computation of the parametric system $F_1, \ldots, F_r \in \mathbb{K}(\underline{Y})[\underline{X}]$

The generic polynomial case

Generic systems

• generic polynomial: $F \in \mathbb{K}[Y_{i_1,...,i_n}][X_1,...,X_n]$,

$$F = \sum_{i_1 + \ldots + i_n \leq d} Y_{i_1, \ldots, i_n} X_1^{i_1} \ldots X_n^{i_n}$$

good models for polynomial with random coefficients

Analysis of F4Remake

- Heuristic makes sense
- Upper bound on n_{step} : $\sum_{i=1}^{r} (\deg F_i 1) + 1$ (Macaulay bound)

Application to index calculus method for ECDLP

Joux-V. approach

 $\mathsf{ECDLP} \colon P \in E(\mathbb{F}_{q^n}), Q \in \langle P \rangle, \text{ find } x \text{ such that } Q = [x]P$

 find ≃ q decompositions of random combination R = [a]P + [b]Q into n − 1 points of F = {P ∈ E(F_{qⁿ}) : x_P ∈ F_q}

• solve $\simeq q^2$ overdetermined systems of n eq. and n-1 var. over \mathbb{F}_q

heuristic assumption makes sense

Experimental results on $E(\mathbb{F}_{p^5})$

$ p _2$	est. failure proba.	F4Precomp	F4Remake	F4	Magma
8 bits	0.11	8.963	2.844	5.903	9.660
16 bits	$4.4 imes10^{-4}$	(19.07)	3.990	9.758	9.870
25 bits	$2.4 imes10^{-6}$	(32.98)	4.942	16.77	118.8
32 bits	$5.8 imes10^{-9}$	(44.33)	8.444	24.56	1046

Times in seconds, using a 2.6 GHz Intel Core 2 Duo processor

< ロ > < 同 > < 三 > < 三

Experimental results on $E(\mathbb{F}_{p^5})$

$ p _2$	est. failure proba.	F4Precomp	F4Remake	F4	Magma
8 bits	0.11	8.963	2.844	5.903	9.660
16 bits	$4.4 imes10^{-4}$	(19.07)	3.990	9.758	9.870
25 bits	$2.4 imes10^{-6}$	(32.98)	4.942	16.77	118.8
32 bits	$5.8 imes10^{-9}$	(44.33)	8.444	24.56	1046

Times in seconds, using a 2.6 GHz Intel Core 2 Duo processor

Comparison with F5

- both algorithms eliminate all reductions to zero, but
- F5 computes a much larger GB: 17249 labeled polynomials against 2789 with F4
- \bullet signature condition in F5 \rightarrow redundant polynomials

Limits of the heuristic assumption

Specific case

Parametric polynomials with highest degree homogeneous part in $\mathbb{K}[\underline{X}]$

- heuristic assumption not valid
- but generic behaviour until the first fall of degree occurs

UOV example: m = 16, n = 48, $\mathbb{K} = \mathbb{F}_{16}$

$$P_k = \sum_{i,j=1}^{16} a_{ij}^k x_i x_j + \sum_{i=1}^{16} b_i^k x_i + c^k, \quad k = 1 \dots 16$$

Limits of the heuristic assumption

Specific case

Parametric polynomials with highest degree homogeneous part in $\mathbb{K}[\underline{X}]$

- heuristic assumption not valid
- but generic behaviour until the first fall of degree occurs

UOV example: m = 16, n = 48, $\mathbb{K} = \mathbb{F}_{16}$

Hybrid approach: specialization of 3 variables

$$P_{k} = \sum_{i,j=1}^{13} a_{ij}^{k} x_{i} x_{j} + \sum_{i=1}^{13} \left(b_{i}^{k} + \sum_{j=14}^{16} a_{ij}^{k} x_{j} \right) x_{i} + \left(\sum_{i,j=14}^{16} a_{ij}^{k} x_{i} x_{j} + \sum_{i=14}^{16} b_{i}^{k} x_{i} + c^{k} \right)$$

Gröbner basis with F4Remake:

- 6 steps and a fall of degree at step 5 \rightsquigarrow $c(16)^2\simeq 0.87$
- exhaustive exploration \rightsquigarrow actual probability of success is 80.859%

A variant of the F4 algorithm

Vanessa VITSE - Antoine JOUX

Université de Versailles Saint-Quentin, Laboratoire PRISM

June 24, 2010

Vanessa VITSE - Antoine JOUX (UVSQ)

A variant of the F4 algorithm

▶ ৰ ≣ ▶ ≣ ৩৫৫ June 24, 2010 15 / 1

< ロ > < 同 > < 回 > < 回 > < 回 > < 回