A variant of the F4 algorithm

Vanessa VITSE - Antoine JOUX

Université de Versailles Saint-Quentin, Laboratoire PRISM

June 24, 2010

Motivation

An example of algebraic cryptanalysis

Discrete logarithm problem over elliptic curves (ECDLP)
Given $P \in E\left(\mathbb{F}_{q^{n}}\right)$ and $Q \in\langle P\rangle$, find x such that $Q=[x] P$

Motivation

An example of algebraic cryptanalysis

Discrete logarithm problem over elliptic curves (ECDLP)

Given $P \in E\left(\mathbb{F}_{q^{n}}\right)$ and $Q \in\langle P\rangle$, find x such that $Q=[x] P$

Basic outline of index calculus method for DLP

(1) define a factor base: $\mathcal{F}=\left\{P_{1}, \ldots, P_{N}\right\}$
(2) relation search: for random $\left(a_{i}, b_{i}\right)$, try to decompose $\left[a_{i}\right] P+\left[b_{i}\right] Q$ as sum of points in \mathcal{F}
(3) linear algebra step: once $k>N$ relations found, deduce with sparse techniques the DLP of Q

Motivation

An example of algebraic cryptanalysis

Relation search

- Factor base: $\mathcal{F}=\left\{(x, y) \in E\left(\mathbb{F}_{q^{n}}\right): x \in \mathbb{F}_{q}\right\}$
- Goal: find a least $\# \mathcal{F}$ decompositions of random combination $R=[a] P+[b] Q$ into m points of $\mathcal{F}: R=P_{1}+\ldots+P_{m}$

Algebraic attack

- for each R, construct the corresponding polynomial system \mathcal{S}_{R}

Semaev's summation polynomials and symmetrization
Weil restriction: write $\mathbb{F}_{q^{n}}$ as $\mathbb{F}_{q}[t] /(f(t))$

- $\mathcal{S}_{R}=\left\{f_{1}, \ldots, f_{n}\right\} \subset \mathbb{F}_{q}\left[X_{1}, \ldots, X_{m}\right]$
coefficients depend polynomially on x_{R}
each decomposition trial \leftrightarrow find the solutions of \mathcal{S}_{R} over \mathbb{F}_{q}

Techniques for resolution of polynomial systems

F4: efficient implementation of Buchberger's algorithm

- linear algebra to reduce a large number of critical pairs $\left(I c m, u_{1}, f_{1}, u_{2}, f_{2}\right)$ where $\operatorname{lcm}=L M\left(f_{1}\right) \vee L M\left(f_{2}\right), u_{i}=\frac{I c m}{L M\left(f_{i}\right)}$
- selection strategy (e.g. lowest total degree Icm)
- at each step construct a Macaulay-style matrix containing products $u_{i} f_{i}$ coming from the selected critical pairs polynomials from preprocessing phase
monomial m
\downarrow

Macaulay-style matrix

Techniques for resolution of polynomial systems

Standard Gröbner basis algorithms

(1) F4 algorithm
fast and complete reductions of critical pairs
drawback: many reductions to zero
(2) F5 algorithm
elaborate criterion \rightarrow skip unnecessary reductions drawback: incomplete polynomial reductions

- multipurpose algorithms
- do not take advantage of the common shape of the systems
- knowledge of a prior computation
\rightarrow no more reduction to zero in F4 ?

Specifically devised algorithms

Outline of our F4 variant

(1) F4Precomp: on the first system
at each step, store the list of all involved polynomial multiples reduction to zero \rightarrow remove well-chosen multiple from the list
(2) F4Remake: for each subsequent system no queue of untreated pairs at each step, pick directly from the list the relevant multiples

Former works

- Gröbner trace for modular computation of rational GB [Traverso]
- Comprehensive Gröbner basis

Analysis of F4Remake

"Similar" systems

- parametric family of systems: $\left\{F_{1}(y), \ldots, F_{r}(y)\right\}_{y \in \mathbb{K}^{\ell}}$ where $F_{1}, \ldots, F_{r} \in \mathbb{K}\left[Y_{1}, \ldots, Y_{\ell}\right]\left[X_{1}, \ldots, X_{n}\right]$
- $\left\{f_{1}, \ldots, f_{r}\right\} \subset \mathbb{K}[\underline{X}]$ random instance of this parametric family

Generic behaviour

(1) "compute" the GB of $\left\langle F_{1}, \ldots, F_{r}\right\rangle$ in $\mathbb{K}(\underline{Y})[\underline{X}]$ with F 4 algorithm
(2) f_{1}, \ldots, f_{r} behaves generically if during the GB computation with F4 same number of iterations
at each step, same new leading monomials \rightarrow similar critical pairs

Analysis of F4Remake

"Similar" systems

- parametric family of systems: $\left\{F_{1}(y), \ldots, F_{r}(y)\right\}_{y \in \mathbb{K}^{\ell}}$ where $F_{1}, \ldots, F_{r} \in \mathbb{K}\left[Y_{1}, \ldots, Y_{\ell}\right]\left[X_{1}, \ldots, X_{n}\right]$
- $\left\{f_{1}, \ldots, f_{r}\right\} \subset \mathbb{K}[\underline{X}]$ random instance of this parametric family

Generic behaviour

(1) "compute" the GB of $\left\langle F_{1}, \ldots, F_{r}\right\rangle$ in $\mathbb{K}(\underline{Y})[\underline{X}]$ with F 4 algorithm
(2) f_{1}, \ldots, f_{r} behaves generically if during the GB computation with F4 same number of iterations at each step, same new leading monomials \rightarrow similar critical pairs

F4Remake computes successfully the GB of f_{1}, \ldots, f_{r} if the system behaves generically

Analysis of F4Remake

"Modular" systems

- $F_{1}, \ldots, F_{r} \in \mathbb{Z}[\underline{X}]$ system of primitive polynomials
- $f_{1}, \ldots, f_{r} \in \mathbb{F}_{p}[\underline{X}]$ its reduction modulo a prime p

F4-lucky primes

(1) "compute" the GB of $\left\langle F_{1}, \ldots, F_{r}\right\rangle$ in $\mathbb{Q}[\underline{X}]$ with F4 algorithm
(2) p is F4-lucky prime if during the GB computation of f_{1}, \ldots, f_{r} with F4 same number of iterations at each step, same new leading monomials \rightarrow similar critical pairs

Analysis of F4Remake

"Modular" systems

- $F_{1}, \ldots, F_{r} \in \mathbb{Z}[\underline{X}]$ system of primitive polynomials
- $f_{1}, \ldots, f_{r} \in \mathbb{F}_{p}[\underline{X}]$ its reduction modulo a prime p

F4-lucky primes

(1) "compute" the GB of $\left\langle F_{1}, \ldots, F_{r}\right\rangle$ in $\mathbb{Q}[\underline{X}]$ with F4 algorithm
(2) p is F4-lucky prime if during the GB computation of f_{1}, \ldots, f_{r} with F4 same number of iterations at each step, same new leading monomials \rightarrow similar critical pairs

F4Remake computes successfully the GB of f_{1}, \ldots, f_{r} if p is F4-lucky

Algebraic condition for generic behaviour

(1) Assume f_{1}, \ldots, f_{r} behaves generically until the ($i-1$)-th step
(2) At step $i, \mathrm{~F} 4$ constructs

- $M_{g}=$ matrix of polynomial multiples at step i for the parametric system
- $M=$ matrix of polynomial multiples at step i for f_{1}, \ldots, f_{r}

Algebraic condition for generic behaviour

(1) Assume f_{1}, \ldots, f_{r} behaves generically until the $(i-1)$-th step
(2) At step $i, \mathrm{~F} 4$ constructs

- $M_{g}=$ matrix of polynomial multiples at step i for the parametric system
- $M=$ matrix of polynomial multiples at step i for f_{1}, \ldots, f_{r}
(3) Reduced row echelon form of M_{g} and M

$\left(\begin{array}{c|c}A_{0} & A_{1} \\ 0 & A_{2}\end{array}\right)$

Algebraic condition for generic behaviour

(1) Assume f_{1}, \ldots, f_{r} behaves generically until the $(i-1)$-th step
(2) At step i, F4 constructs

- $M_{g}=$ matrix of polynomial multiples at step i for the parametric system
- $M=$ matrix of polynomial multiples at step i for f_{1}, \ldots, f_{r}
(3) Reduced row echelon form of M_{g} and M

$$
\left(\begin{array}{c|c}
I_{s} & B_{g, 1} \\
\hline 0 & B_{g, 2}
\end{array}\right) \quad\left(\begin{array}{c|c}
I_{s} & B_{1} \\
\hline 0 & B_{2}
\end{array}\right)
$$

Algebraic condition for generic behaviour

(1) Assume f_{1}, \ldots, f_{r} behaves generically until the ($i-1$)-th step
(2) At step i, F4 constructs

- $M_{g}=$ matrix of polynomial multiples at step i for the parametric system
- $M=$ matrix of polynomial multiples at step i for f_{1}, \ldots, f_{r}
(3) Reduced row echelon form of M_{g} and M

Algebraic condition for generic behaviour

(1) Assume f_{1}, \ldots, f_{r} behaves generically until the ($i-1$)-th step
(2) At step i, F4 constructs

- $M_{g}=$ matrix of polynomial multiples at step i for the parametric system
- $M=$ matrix of polynomial multiples at step i for f_{1}, \ldots, f_{r}
(3) Reduced row echelon form of $M g$ and M
$\left(\begin{array}{c|c|c}I_{s} & 0 & C_{g, 1} \\ \hline 0 & I_{\ell} & C_{g, 2} \\ \hline 0 & 0 & 0\end{array}\right)$
$\left(\begin{array}{c|c|c}I_{s} & & B_{1}^{\prime} \\ \hline 0 & B & B_{2}^{\prime}\end{array}\right) ?$

Algebraic condition for generic behaviour

(1) Assume f_{1}, \ldots, f_{r} behaves generically until the ($i-1$)-th step
(2) At step i, F4 constructs

- $M_{g}=$ matrix of polynomial multiples at step i for the parametric system
- $M=$ matrix of polynomial multiples at step i for f_{1}, \ldots, f_{r}
(3) Reduced row echelon form of M_{g} and M
\(\left(\begin{array}{c|c|c}I_{s} \& 0 \& C_{g, 1}

\hline 0 \& I_{\ell} \& C_{g, 2}

\hline 0 \& 0 \& 0\end{array}\right) \quad\left(\right.\)| I_{s} | B_{1}^{\prime} | |
| :--- | :--- | :---: |
| 0 | B | |
| I_{2}^{\prime} | | |$)$

f_{1}, \ldots, f_{r} behaves generically at step $i \Leftrightarrow B$ has full rank

Probability of success

Heuristic assumption

The B matrices are uniformly random over $\mathcal{M}_{n, \ell}\left(\mathbb{F}_{q}\right)$

Probability estimates over \mathbb{F}_{q}

The probability that a system f_{1}, \ldots, f_{r} behaves generically is heuristically greater than $c(q)^{n_{\text {step }}}$ where

- $c(q)=\prod_{i=1}^{\infty}\left(1-q^{-i}\right) \underset{q \rightarrow \infty}{\longrightarrow} 1$
- $n_{\text {step }}$ is the number of steps during the F4 computation of the parametric system $F_{1}, \ldots, F_{r} \in \mathbb{K}(\underline{Y})[\underline{X}]$

The generic polynomial case

Generic systems

- generic polynomial: $F \in \mathbb{K}\left[Y_{i_{1}, \ldots, i_{n}}\right]\left[X_{1}, \ldots, X_{n}\right]$,

$$
F=\sum_{i_{1}+\ldots+i_{n} \leq d} Y_{i_{1}, \ldots, i_{n}} X_{1}^{i_{1}} \ldots X_{n}^{i_{n}}
$$

- good models for polynomial with random coefficients

Analysis of F4Remake

- Heuristic makes sense
- Upper bound on $n_{\text {step }}: \sum_{i=1}^{r}\left(\operatorname{deg} F_{i}-1\right)+1$ (Macaulay bound)

Application to index calculus method for ECDLP

Joux-V. approach

ECDLP: $P \in E\left(\mathbb{F}_{q^{n}}\right), Q \in\langle P\rangle$, find x such that $Q=[x] P$

- find $\simeq q$ decompositions of random combination $R=[a] P+[b] Q$ into $n-1$ points of $\mathcal{F}=\left\{P \in E\left(\mathbb{F}_{q^{n}}\right): x_{P} \in \mathbb{F}_{q}\right\}$
- solve $\simeq q^{2}$ overdetermined systems of n eq. and $n-1$ var. over \mathbb{F}_{q}
- heuristic assumption makes sense

Experimental results on $E\left(\mathbb{F}_{p^{5}}\right)$

$\|p\|_{2}$	est. failure proba.	F4Precomp	F4Remake	F4	Magma
8 bits	0.11	8.963	2.844	5.903	9.660
16 bits	4.4×10^{-4}	(19.07)	3.990	9.758	9.870
25 bits	2.4×10^{-6}	(32.98)	4.942	16.77	118.8
32 bits	5.8×10^{-9}	(44.33)	8.444	24.56	1046

Times in seconds, using a 2.6 GHz Intel Core 2 Duo processor

Experimental results on $E\left(\mathbb{F}_{p^{5}}\right)$

$\|p\|_{2}$	est. failure proba.	F4Precomp	F4Remake	F4	Magma
8 bits	0.11	8.963	2.844	5.903	9.660
16 bits	4.4×10^{-4}	(19.07)	3.990	9.758	9.870
25 bits	2.4×10^{-6}	(32.98)	4.942	16.77	118.8
32 bits	5.8×10^{-9}	(44.33)	8.444	24.56	1046

Times in seconds, using a 2.6 GHz Intel Core 2 Duo processor

Comparison with F5

- both algorithms eliminate all reductions to zero, but
- F5 computes a much larger GB:

17249 labeled polynomials against 2789 with F4

- signature condition in F5 \rightarrow redundant polynomials

Limits of the heuristic assumption

Specific case

Parametric polynomials with highest degree homogeneous part in $\mathbb{K}[\underline{X}]$

- heuristic assumption not valid
- but generic behaviour until the first fall of degree occurs

UOV example: $m=16, n=48, \mathbb{K}=\mathbb{F}_{16}$

$$
P_{k}=\sum_{i, j=1}^{16} a_{i j}^{k} x_{i} x_{j}+\sum_{i=1}^{16} b_{i}^{k} x_{i}+c^{k}, \quad k=1 \ldots 16
$$

Limits of the heuristic assumption

Specific case

Parametric polynomials with highest degree homogeneous part in $\mathbb{K}[\underline{X}]$

- heuristic assumption not valid
- but generic behaviour until the first fall of degree occurs

UOV example: $m=16, n=48, \mathbb{K}=\mathbb{F}_{16}$
Hybrid approach: specialization of 3 variables
$P_{k}=\sum_{i, j=1}^{13} a_{i j}^{k} x_{i} x_{j}+\sum_{i=1}^{13}\left(b_{i}^{k}+\sum_{j=14}^{16} a_{i j}^{k} x_{j}\right) x_{i}+\left(\sum_{i, j=14}^{16} a_{i j}^{k} x_{i} x_{j}+\sum_{i=14}^{16} b_{i}^{k} x_{i}+c^{k}\right)$
Gröbner basis with F4Remake:

- 6 steps and a fall of degree at step $5 \rightsquigarrow c(16)^{2} \simeq 0.87$
- exhaustive exploration \rightsquigarrow actual probability of success is 80.859%

A variant of the F4 algorithm

Vanessa VITSE - Antoine JOUX

Université de Versailles Saint-Quentin, Laboratoire PRISM

June 24, 2010

