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Motivation

Motivation
An example of algebraic cryptanalysis

Discrete logarithm problem over elliptic curves (ECDLP)

Given P ∈ E (Fqn) and Q ∈ 〈P〉, find x such that Q = [x ]P

Basic outline of index calculus method for DLP
1 define a factor base: F = {P1, . . . ,PN}
2 relation search: for random (ai , bi ), try to decompose [ai ]P + [bi ]Q as

sum of points in F
3 linear algebra step: once k > N relations found, deduce with sparse

techniques the DLP of Q
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Motivation

Motivation
An example of algebraic cryptanalysis

Relation search

Factor base: F = {(x , y) ∈ E (Fqn) : x ∈ Fq}
Goal: find a least #F decompositions of random combination
R = [a]P + [b]Q into m points of F : R = P1 + . . . + Pm

Algebraic attack

for each R, construct the corresponding polynomial system SR
I Semaev’s summation polynomials and symmetrization
I Weil restriction: write Fqn as Fq[t]/(f (t))

SR = {f1, . . . , fn} ⊂ Fq[X1, . . . ,Xm]
I coefficients depend polynomially on xR

each decomposition trial ↔ find the solutions of SR over Fq
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Techniques for resolution of polynomial systems

Techniques for resolution of polynomial systems

F4: efficient implementation of Buchberger’s algorithm

linear algebra to reduce a large number of critical pairs
(lcm, u1, f1, u2, f2) where lcm = LM(f1) ∨ LM(f2), ui = lcm

LM(fi )

selection strategy (e.g. lowest total degree lcm)

at each step construct a Macaulay-style matrix containing
I products ui fi coming from the selected critical pairs
I polynomials from preprocessing phase

polynomial P coeff(P,m)

monomial m

Macaulay-style
matrix
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Techniques for resolution of polynomial systems

Techniques for resolution of polynomial systems

Standard Gröbner basis algorithms

1 F4 algorithm
I fast and complete reductions of critical pairs
I drawback: many reductions to zero

2 F5 algorithm
I elaborate criterion → skip unnecessary reductions
I drawback: incomplete polynomial reductions

multipurpose algorithms

do not take advantage of the common shape of the systems

knowledge of a prior computation
→ no more reduction to zero in F4 ?
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Techniques for resolution of polynomial systems

Specifically devised algorithms

Outline of our F4 variant
1 F4Precomp: on the first system

I at each step, store the list of all involved polynomial multiples
I reduction to zero → remove well-chosen multiple from the list

2 F4Remake: for each subsequent system

I no queue of untreated pairs
I at each step, pick directly from the list the relevant multiples

Former works

Gröbner trace for modular computation of rational GB [Traverso]

Comprehensive Gröbner basis
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Analysis of F4Remake

Analysis of F4Remake

“Similar” systems

parametric family of systems: {F1(y), . . . ,Fr (y)}y∈K`

where F1, . . . ,Fr ∈ K[Y1, . . . ,Y`][X1, . . . ,Xn]

{f1, . . . , fr} ⊂ K[X ] random instance of this parametric family

Generic behaviour
1 “compute” the GB of 〈F1, . . . ,Fr 〉 in K(Y )[X ] with F4 algorithm
2 f1, . . . , fr behaves generically if during the GB computation with F4

I same number of iterations
I at each step, same new leading monomials → similar critical pairs

F4Remake computes successfully the GB of f1, . . . , fr
if the system behaves generically
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Analysis of F4Remake

Analysis of F4Remake

“Modular” systems

F1, . . . ,Fr ∈ Z[X ] system of primitive polynomials

f1, . . . , fr ∈ Fp[X ] its reduction modulo a prime p

F4-lucky primes

1 “compute” the GB of 〈F1, . . . ,Fr 〉 in Q[X ] with F4 algorithm
2 p is F4-lucky prime if during the GB computation of f1, . . . , fr with F4

I same number of iterations
I at each step, same new leading monomials → similar critical pairs

F4Remake computes successfully the GB of f1, . . . , fr
if p is F4-lucky
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Analysis of F4Remake

Algebraic condition for generic behaviour

1 Assume f1, . . . , fr behaves generically until the (i − 1)-th step
2 At step i , F4 constructs

I Mg =matrix of polynomial multiples at step i for the parametric system
I M =matrix of polynomial multiples at step i for f1, . . . , fr

3 Reduced row echelon form of Mg and M

s

LT (M)

RTZ

Ag,0

0
Ag ,1

Ag ,2Ag ,3

A0

0
A1

A2A3

f1, . . . , fr behaves generically at step i ⇔ B has full rank
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Analysis of F4Remake

Probability of success

Heuristic assumption

The B matrices are uniformly random over Mn,`(Fq)

Probability estimates over Fq

The probability that a system f1, . . . , fr behaves generically is heuristically
greater than c(q)nstep where

c(q) =
∞∏
i=1

(1− q−i ) −→
q→∞

1

nstep is the number of steps during the F4 computation of the
parametric system F1, . . . ,Fr ∈ K(Y )[X ]
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Analysis of F4Remake

The generic polynomial case

Generic systems

generic polynomial: F ∈ K[Yi1,...,in ][X1, . . . ,Xn],

F =
∑

i1+...+in≤d
Yi1,...,inX

i1
1 . . .X in

n

good models for polynomial with random coefficients

Analysis of F4Remake

Heuristic makes sense

Upper bound on nstep:
∑r

i=1(deg Fi − 1) + 1 (Macaulay bound)
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Analysis of F4Remake

Application to index calculus method for ECDLP

Joux-V. approach

ECDLP: P ∈ E (Fqn),Q ∈ 〈P〉, find x such that Q = [x ]P

find ' q decompositions of random combination R = [a]P + [b]Q
into n − 1 points of F = {P ∈ E (Fqn) : xP ∈ Fq}

solve ' q2 overdetermined systems of n eq. and n − 1 var. over Fq

heuristic assumption makes sense
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Analysis of F4Remake

Experimental results on E (Fp5)

|p|2 est. failure proba. F4Precomp F4Remake F4 Magma

8 bits 0.11 8.963 2.844 5.903 9.660

16 bits 4.4× 10−4 (19.07) 3.990 9.758 9.870

25 bits 2.4× 10−6 (32.98) 4.942 16.77 118.8

32 bits 5.8× 10−9 (44.33) 8.444 24.56 1046
Times in seconds, using a 2.6 GHz Intel Core 2 Duo processor

Comparison with F5

both algorithms eliminate all reductions to zero, but

F5 computes a much larger GB:
17249 labeled polynomials against 2789 with F4

signature condition in F5 → redundant polynomials
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Analysis of F4Remake

Limits of the heuristic assumption

Specific case

Parametric polynomials with highest degree homogeneous part in K[X ]

heuristic assumption not valid

but generic behaviour until the first fall of degree occurs

UOV example: m = 16, n = 48, K = F16

Hybrid approach: specialization of 3 variables

Pk =
16∑

i ,j=1

akijxixj +
16∑
i=1

bki xi + ck , k = 1 . . . 16

Gröbner basis with F4Remake:

6 steps and a fall of degree at step 5  c(16)2 ' 0.87

exhaustive exploration  actual probability of success is 80.859%
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