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Part I

Index calculus methods
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Context

Hardness of ECDLP

ECDLP

Given P ∈ E (Fq) and Q ∈ 〈P〉, find x such that Q = [x ]P

Specific attacks on few families of curves:

Transfer methods

lift to characteristic zero fields: anomalous curves

transfer to F∗
qk via pairings: curves with small embedding degree

Weil descent: transfer from E (Fqn) to JC(Fq) where C is a genus
g ≥ n curve

Otherwise, only generic attacks
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Context

Trying an index calculus approach

Index calculus usually the best attack of the DLP over finite fields
and hyperelliptic curves

No known equivalent on E (Fp), p prime

Feasible on E (Fpn) and better than Weil descent or generic algorithms

Basic outline of index calculus method for DLP
1 define a factor base: F = {P1, . . . ,PN}
2 relation search: for random (ai , bi ), try to decompose [ai ]P + [bi ]Q as

sum of points in F
3 linear algebra step: once k > N relations found, deduce with sparse

algebra techniques the DLP of Q
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Results

Results

Original algorithm (Gaudry, Diem)

Complexity of DLP over E (Fqn) in Õ(q2− 2
n ) but with hidden constant

exponential in n2

faster than generic methods when n ≥ 3 and log q > C .n

sub-exponential complexity when n = Θ(
√

log q)

impracticable as soon as n > 4

Our variant

Complexity in Õ(q2) but with a better dependency in n

faster than generic methods when n ≥ 5 and log q ≥ 2ωn

faster than Gaudry and Diem’s method when log q ≤ 3−ω
2 n3

works for n = 5
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Results

Comparison of the three attacks of ECDLP over Fqn

log2 q

n

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16 O(log2 q)

O( 3
√

log2 q)

[Pollard] [this work]

[Gaudry-Diem]

Comparison of Pollard’s rho method, Gaudry and Diem’s attack and our attack
for ECDLP over Fqn , n ≥ 1.
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Ingredients

Ingredients of index calculus approaches

Goal

Find at least #F decompositions of random combinations R = [a]P + [b]Q

What kind of “decomposition” over E (K )

Semaev (2004): consider decompositions in a fixed number of points of F

R = [a]P + [b]Q = P1 + . . .+ Pm

use the (m + 1)-th summation polynomial:

fm+1(xR , xP1 , . . . , xPm) = 0

⇔ ∃ε1, . . . , εm ∈ {1,−1},R = ε1P1 + · · ·+ εmPm

Nagao’s alternative approach with divisors:
work with f ∈ L

(
(m + 1)(∞)− (R)

)
instead
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Ingredients

Ingredients of index calculus approaches (2)

Convenient factor base on E (Fqn) – Gaudry (2004)

Natural factor base: F = {(x , y) ∈ E (Fqn) : x ∈ Fq}, |F| ' q

Weil restriction: decompose along a Fq-linear basis of Fqn

fm+1(xR , xP1 , . . . , xPm) = 0⇔


ϕ1(xP1 , . . . , xPm) = 0
...

ϕn(xP1 , . . . , xPm) = 0

(SR)

Additional trick: symmetrization of the equations

One decomposition trial ↔ resolution of SR over Fq

Gaudry’s original attack

m = n: as many equations as unknowns, SR has total degree 2n−1

Diem: I(SR) has dimension 0 and degree 2n(n−1)
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Three different approaches

Example of Gaudry’s approach over F1013

(
'F101[t]/(t3+t+1)

)
E : y2 = x3 + (44 + 52t + 60t2)x + (58 + 87t + 74t2), #E = 1029583

base point: P
25+58t+23t2

96+69t+37t2
challenge point: Q

89+78t+52t2

14+79t+71t2

random combination of P and Q:

R = [658403]P + [919894]Q =
44+57t+55t2

8+11t+73t2

compute 4-th summation polynomial with resultant:
f4(X1,X2,X3,X4) = ResX

(
f3(X1,X2,X ), f3(X3,X4,X )

)
where f3=(X1−X2)2X 2

3−2((X1+X2)(X1X2+a)+2b)X3+(X1X2−a)2−4b(X1+X2)

after partial symmetrisation, solve in s1, s2, s3 ∈ F101

f4(s1, s2, s3, xR) = x4
Rs4

2 + 93x4
Rs1s

2
2 s3

+16x4
Rs2

1 s2
3 + · · ·+ 94b3s3 = 0

⇔


28s4

1 + 94s3
1 s2 + · · ·+ 4s3 + 69 = 0

49s4
1 + 72s3

1 s2 + · · ·+ 14s3 + 100 = 0

32s4
1 + 97s3

1 s2 + · · ·+ 50s3 + 8 = 0

Vanessa VITSE - Antoine JOUX (UVSQ) F4 traces and index calculus October 1, 2010 9 / 33



Three different approaches

Example of Gaudry’s approach over F1013

(
'F101[t]/(t3+t+1)

)
E : y2 = x3 + (44 + 52t + 60t2)x + (58 + 87t + 74t2), #E = 1029583

base point: P
25+58t+23t2

96+69t+37t2
challenge point: Q

89+78t+52t2

14+79t+71t2

random combination of P and Q:

R = [658403]P + [919894]Q =
44+57t+55t2

8+11t+73t2

compute 4-th summation polynomial with resultant:
f4(X1,X2,X3,X4) = ResX

(
f3(X1,X2,X ), f3(X3,X4,X )

)
where f3=(X1−X2)2X 2

3−2((X1+X2)(X1X2+a)+2b)X3+(X1X2−a)2−4b(X1+X2)

after partial symmetrisation, solve in s1, s2, s3 ∈ F101

f4(s1, s2, s3, xR) = x4
Rs4

2 + 93x4
Rs1s

2
2 s3

+16x4
Rs2

1 s2
3 + · · ·+ 94b3s3 = 0

⇔


28s4

1 + 94s3
1 s2 + · · ·+ 4s3 + 69 = 0

49s4
1 + 72s3

1 s2 + · · ·+ 14s3 + 100 = 0

32s4
1 + 97s3

1 s2 + · · ·+ 50s3 + 8 = 0

Vanessa VITSE - Antoine JOUX (UVSQ) F4 traces and index calculus October 1, 2010 9 / 33



Three different approaches

Example of Gaudry’s approach over F1013

(
'F101[t]/(t3+t+1)

)
E : y2 = x3 + (44 + 52t + 60t2)x + (58 + 87t + 74t2), #E = 1029583

base point: P
25+58t+23t2

96+69t+37t2
challenge point: Q

89+78t+52t2

14+79t+71t2

random combination of P and Q:

R = [658403]P + [919894]Q =
44+57t+55t2

8+11t+73t2

compute 4-th summation polynomial with resultant:
f4(X1,X2,X3,X4) = ResX

(
f3(X1,X2,X ), f3(X3,X4,X )

)
where f3=(X1−X2)2X 2

3−2((X1+X2)(X1X2+a)+2b)X3+(X1X2−a)2−4b(X1+X2)

after partial symmetrisation, solve in s1, s2, s3 ∈ F101

f4(s1, s2, s3, xR) = x4
Rs4

2 + 93x4
Rs1s

2
2 s3

+16x4
Rs2

1 s2
3 + · · ·+ 94b3s3 = 0

⇔


28s4

1 + 94s3
1 s2 + · · ·+ 4s3 + 69 = 0

49s4
1 + 72s3

1 s2 + · · ·+ 14s3 + 100 = 0

32s4
1 + 97s3

1 s2 + · · ·+ 50s3 + 8 = 0

Vanessa VITSE - Antoine JOUX (UVSQ) F4 traces and index calculus October 1, 2010 9 / 33



Three different approaches

Example of Gaudry’s approach over F1013

(
'F101[t]/(t3+t+1)

)
E : y2 = x3 + (44 + 52t + 60t2)x + (58 + 87t + 74t2), #E = 1029583

base point: P
25+58t+23t2

96+69t+37t2
challenge point: Q

89+78t+52t2

14+79t+71t2

random combination of P and Q:

R = [658403]P + [919894]Q =
44+57t+55t2

8+11t+73t2

compute 4-th summation polynomial with resultant:
f4(X1,X2,X3,X4) = ResX

(
f3(X1,X2,X ), f3(X3,X4,X )

)
where f3=(X1−X2)2X 2

3−2((X1+X2)(X1X2+a)+2b)X3+(X1X2−a)2−4b(X1+X2)

after partial symmetrisation, solve in s1, s2, s3 ∈ F101

f4(s1, s2, s3, xR) = x4
Rs4

2 + 93x4
Rs1s

2
2 s3

+16x4
Rs2

1 s2
3 + · · ·+ 94b3s3 = 0

⇔


28s4

1 + 94s3
1 s2 + · · ·+ 4s3 + 69 = 0

49s4
1 + 72s3

1 s2 + · · ·+ 14s3 + 100 = 0

32s4
1 + 97s3

1 s2 + · · ·+ 50s3 + 8 = 0

Vanessa VITSE - Antoine JOUX (UVSQ) F4 traces and index calculus October 1, 2010 9 / 33



Three different approaches

Example of Gaudry’s approach over F1013

(
'F101[t]/(t3+t+1)

)
I(SR) = 〈28s4

1 + 94s3
1 s2 + · · ·+ 4s3 + 69, 49s4

1 + 72s3
1 s2 + · · ·+ 14s3 + 100,

32s4
1 + 97s3

1 s2 + · · ·+ 50s3 + 8〉

Gröbner basis of I(SR) for lex s1>s2>s3 :

G = {s1 + 33s63
3 + 23s62

3 + · · ·+ 95, s2 + 80s63
3 + 79s62

3 + · · ·+ 45,

s64
3 + 36s63

3 + 80s62
3 + · · ·+ 56}

V
(
I(SR)

)
= {(30, 3, 53), (75, 25, 75)}

∗ X 3 − 30X 2 + 3X − 53 irreducible over F101[X ]
∗ X 3 − 75X 2 + 25X − 75 = (X − 4)(X − 7)(X − 64)

⇒ P1
4
27+34t+91t2

P2
7
58+95t+91t2

P3
64
76+54t+18t2

and P1−P2 +P3 = R

Number of relations needed: #F = 108⇒ 109

Linear algebra → x = 771080
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Gröbner basis of I(SR) for lex s1>s2>s3 :

G = {s1 + 33s63
3 + 23s62

3 + · · ·+ 95, s2 + 80s63
3 + 79s62

3 + · · ·+ 45,

s64
3 + 36s63

3 + 80s62
3 + · · ·+ 56}

V
(
I(SR)

)
= {(30, 3, 53), (75, 25, 75)}

∗ X 3 − 30X 2 + 3X − 53 irreducible over F101[X ]
∗ X 3 − 75X 2 + 25X − 75 = (X − 4)(X − 7)(X − 64)

⇒ P1
4
27+34t+91t2

P2
7
58+95t+91t2

P3
64
76+54t+18t2

and P1−P2 + P3 = R

Number of relations needed: #F = 108⇒ 109

Linear algebra → x = 771080

Vanessa VITSE - Antoine JOUX (UVSQ) F4 traces and index calculus October 1, 2010 10 / 33



Three different approaches

Complexity estimates of Gaudry-Diem version

Analysis

Relation step: solve n!q systems

Each resolution with Gröbner tools has complexity in Õ
(
23n(n−1)

)
Sparse linear algebra in Õ(q2)

“Double large prime” variation → overall complexity in

Õ
(
n!23n(n−1)q2−2/n

)

bottleneck: I(SR) has degree 2n(n−1)

but most solutions not in Fq

however adding xq − x = 0 not practical for large q
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Three different approaches

Example of Nagao’s approach over F1013

Instead of using Semaev’s summation polynomials,

consider L
(
4(∞)− (R)

)
with basis 〈x − xR , y − yR , x(x − xR)〉

starting from f (x , y) = x(x − xR) + λ(y − yR) + µ(x − xR)

compute F (x) = f (x , y)f (x ,−y)/(x − xR)

→ F (x) = x3 + (−λ2 + 2µ− xR)x2 + (−xRλ
2 − 2yRλ+ µ2 − 2xRµ)x

−
(
(x2

R + a)λ2 + 2yRλµ+ xRµ
2
)

roots of F correspond to x-coord. of the Pi in the decomposition of R

x(Pi ) ∈ F101 ⇒ F ∈ F101[x ]

find λ, µ ∈ F1013 such that


−λ2 + 2µ− xR ∈ F101

−xRλ
2 − 2yRλ+ µ2 − 2xRµ ∈ F101

(x2
R + a)λ2 + 2yRλµ+ xRµ

2 ∈ F101

Weil restriction: solve a quadratic polynomial system with 6 var/eq
check if resulting F splits in linear factors
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Three different approaches

Remarks on Nagao’s approach

Analysis

differs from Gaudry only in the polynomial system to solve

actual resolution slower

→ not relevant for the elliptic case

Practical interest

in the previous example, eliminating λ, µ in
s1 = −λ2 + 2µ− xR

s2 = −xRλ
2 − 2yRλ+ µ2 − 2xRµ

s3 = (x2
R + a)λ2 + 2yRλµ+ xRµ

2

yields the partially

symmetrized summation polynomial f4(s1, s2, s3, xR)
→ alternate computation of summation polynomials

can be easily generalised to hyperelliptic curves whereas Semaev
cannot
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Three different approaches

Joux-V. approach

Decompositions into m = n − 1 points

compute the n-th summation polynomial (instead of n + 1-th) with
partially symmetrized resultant

solve SR with n − 1 var, n eq and total degree 2n−2

(n − 1)!q expected numbers of trials to get one relation

Computation speed-up

1 SR is overdetermined and I(SR) has very low degree
I resolution with a degrevlex Gröbner basis
I no need to change order (FGLM)

2 Speed up computations with “F4 traces”

Overall complexity in Õ
(
(n − 1)!2ω(n−1)(n−2)eωnq2

)
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Three different approaches

A toy example over F1013

(
'F101[t]/(t3+t+1)

)
E ,P and Q as before, random combination of P and Q:

R = [357347]P + [488870]Q =
6+63t+58t2

11+97t+95t2

use 3-rd “symmetrized” Semaev polynomial and Weil restriction:

(s2
1 − 4s2)x2

R − 2(s1(s2 + a) + 2b)xR + (s2 − a)2 − 4bs1 = 0

⇔ (83t + 89t2)s2
1 + (89 + 76t + 86t2)s1s2 + (5 + 98t + 45t2)s1

+s2
2 + (13 + 69t + 29t2)s2 + 8 + 96t + 51t2 = 0

⇔


89s1s2 + 5s1 + s2

2 + 13s2 + 8 = 0

83s2
1 + 76s1s2 + 98s1 + 69s2 + 96 = 0

89s2
1 + 86s1s2 + 45s1 + 29s2 + 51 = 0
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Three different approaches

A toy example over F1013

(
'F101[t]/(t3+t+1)

)
I(SR) = 〈89s1s2 + 5s1 + s2

2 + 13s2 + 8,

83s2
1 + 76s1s2 + 98s1 + 69s2 + 96,

89s2
1 + 86s1s2 + 45s1 + 29s2 + 51〉

Gröbner basis of I(SR) for degrevlex s1>s2
: G = {s1 + 89, s2 + 49}

V
(
I(SR)

)
= {(12, 52)} → X 2 − 12X + 52 = (X − 46)(X − 67)

⇒ P1
46
29+55t+56t2

P2
67
20+8t+59t2

and P1 + P2 = R

Number of relations needed: #F = 108⇒ 109

Linear algebra → x = 771080
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Three different approaches

Summary
Comparison between the three approaches

Gaudry-Diem Nagao Joux-V.

nb of points m = n m = n m = n − 1

decomp. trials n!q n!q (n − 1)!q2

features deg 2n−1 deg 2 deg 2n−2

of SR n eq/var n(n − 1) eq/var n eq, n − 1 var

deg(I(SR)) 2n(n−1) 2n(n−1) 0 (1 exceptionally)

complexity n!23n(n-1)q2-2/n n!22ωn(n-1)q2-2/n (n−1)!2ω(n-1)(n-2)eωnq2
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Part II

F4 traces
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Gröbner basics

Gröbner basis: a tool for polynomial system solving

I = 〈f1, . . . , fr 〉 ⊂ K[X1, . . . ,Xn] ideal

Gröbner basis

G = {g1, . . . , gs} ⊂ I is a Gröbner basis of I if

〈LT (g1), . . . , LT (gs)〉 = LT (I)

Buchberger’s algorithm

S-polynomial: f1, f2 ∈ K[X1, . . . ,Xn]

S(f1, f2) = LM(f1)∨LM(f2)
LT (f1) f1 − LM(f1)∨LM(f2)

LT (f2) f2

Buchberger’s theorem:

G = {g1, . . . , gs} Gröbner basis ⇔ S(gi , gj)
G

= 0 for all i , j

Buchberger’s algorithm: compute iteratively the remainder by G of
every possible S-polynomials and add it to G

Vanessa VITSE - Antoine JOUX (UVSQ) F4 traces and index calculus October 1, 2010 19 / 33



Gröbner basics

Techniques for resolution of polynomial systems

F4: efficient implementation of Buchberger’s algorithm

linear algebra to reduce a large number of critical pairs
(lcm, u1, f1, u2, f2) where lcm = LM(f1) ∨ LM(f2), ui = lcm

LM(fi )

selection strategy (e.g. lowest total degree lcm)

at each step construct a Macaulay-style matrix containing
I products ui fi coming from the selected critical pairs
I polynomials from preprocessing phase

polynomial P coeff(P,m)

monomial m

Macaulay-style
matrix
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Gröbner basics

Techniques for resolution of polynomial systems

Standard Gröbner basis algorithms

1 F4 algorithm (’99)
I fast and complete reductions of critical pairs
I drawback: many reductions to zero

2 F5 algorithm (’02)
I elaborate criterion → skip unnecessary reductions
I drawback: incomplete polynomial reductions

multipurpose algorithms

do not take advantage of the common shape of the systems

knowledge of a prior computation
→ no more reduction to zero in F4 ?
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F4Remake

Specifically devised algorithms

Outline of our F4 variant
1 F4Precomp: on the first system

I at each step, store the list of all involved polynomial multiples
I reduction to zero → remove well-chosen multiple from the list

2 F4Remake: for each subsequent system

I no queue of untreated pairs
I at each step, pick directly from the list the relevant multiples

Former works

Idea originating from CRT computation of GB over Q
Traverso 88: precise definition of Gröbner traces for the Buchberger
algorithm, but behaviour analysis restricted to the rational case
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F4Remake

Analysis of F4Remake

“Similar” systems

parametric family of systems: {F1(y), . . . ,Fr (y)}y∈K`

where F1, . . . ,Fr ∈ K[Y1, . . . ,Y`][X1, . . . ,Xn]

{f1, . . . , fr} ⊂ K[X ] random instance of this parametric family

Generic behaviour
1 “compute” the GB of 〈F1, . . . ,Fr 〉 in K(Y )[X ] with F4 algorithm
2 f1, . . . , fr behaves generically if during the GB computation with F4

I same number of iterations
I at each step, same new leading monomials → similar critical pairs

F4Remake computes successfully the GB of f1, . . . , fr
if the system behaves generically
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F4Remake

Algebraic condition for generic behaviour

1 Assume f1, . . . , fr behaves generically until the (i − 1)-th step
2 At step i , F4 constructs

I Mg =matrix of polynomial multiples at step i for the parametric system
I M =matrix of polynomial multiples at step i for f1, . . . , fr

3 Reduced row echelon form of Mg and M

s

LT (M)

RTZ

Ag,0

0
Ag ,1

Ag ,2Ag ,3

A0

0
A1

A2A3

f1, . . . , fr behaves generically at step i ⇔ B has full rank
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F4Remake

Probability of success

Heuristic assumption

B matrices are uniformly random over Mn,`(Fq)

makes sense for SR arising from index calculus

not always valid, but generic behaviour can often be deduced for the
first stages of F4

Probability estimates over Fq

Under heuristic assumption:

Proba({f1, . . . , fr} behaves generically) ≥ c(q)nstep

nstep = nb of steps during F4 computation for the parametric system

c(q) =
∞∏
i=1

(1− q−i ) −→
q→∞

1
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F4Remake

Experimental results: index calculus on E (Fp5)

|p|2 est. failure proba. F4Remake F4 (Joux-V.) F4 (Magma)

8 bits 0.11 2.844 5.903 9.660

16 bits 4.4× 10−4 3.990 9.758 9.870

25 bits 2.4× 10−6 4.942 16.77 118.8

32 bits 5.8× 10−9 8.444 24.56 1046

Times in seconds, using a 2.6 GHz Intel Core 2 Duo processor.
Precomputation done in 8.963 s on an 8-bit field.

Comparison with F5

both algorithms eliminate all reductions to zero, but

F5 computes a much larger GB:
17249 labeled polynomials against 2789 with F4

signature condition in F5 → redundant polynomials
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Part III

Application to the Static Diffie-Hellman Problem
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Static Diffie-Hellman Problem

Static Diffie-Hellman problem

Observation

Semaev’s decomposition into a factor base leads to an oracle-assisted
solution of SDHP

Static Diffie-Hellman problem

Given G a finite group, P,Q ∈ G s.t. Q = [d ]P where d secret, and a
challenge X ∈ G , compute [d ]X .

Oracle-assisted SDHP: G finite group and d secret integer

Initial learning phase: the attacker has access to an oracle which
outputs [d ]Y for any Y in G

After a number of oracle queries, the attacker has to compute [d ]X
for a previously unseen challenge X
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Static Diffie-Hellman Problem

Solving SDHP over G = E (Fqn)

F = {P ∈ E (Fqn) : P = (xp, yp), xp ∈ Fq}
Learning phase: ask the oracle to compute Q = [d ]P for each P ∈ F
Given a challenge X ,

1 pick a random integer r coprime with |G | and compute [r ]X
2 check if [r ]X can be written as a sum of m points of F :

[r ]X = ±P1 ± P2 ± · · · ± Pm

3 if [r ]X is not decomposable, go back to step 1;
else output Y = [s] (

∑m
i=1[d ]Pi ) where s = r−1 mod |G |.

Remarks

only one decomposition is needed → no linear algebra step
but the q oracle queries are the bottleneck

Granger (2010): balance the two stages by reducing the factor base à
la Harley
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Static Diffie-Hellman Problem

An interesting target (joint work with R. Granger)

IPSEC Oakley key determination protocol ’well known group’ 3 curve

F2155 = F2[u]/(u155 + u62 + 1) G = E (F2155) where
E : y2+xy = x3+(u18+u17+u16+u13+u12+u9+u8+u7+u3+u2+u+1)
#G = 12 ∗ 3805993847215893016155463826195386266397436443

Remarks

F2155 = F(231)5 → curve known to be theoretically weaker than curves
over comparable size prime fields

decomposition as sum of 5 points not realisable
→ Gaudry’s approach doesn’t work on this curve

we show that an actual attack with our approach is feasible
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Static Diffie-Hellman Problem

Results

Algebraic attack features

For each decomposition trial:

associate to [r ]X the overdetermined symmetrized system
Sr = {ϕ1, . . . , ϕ5} ⊂ F231 [s1, . . . , s4] of total degree 8

solve Sr in F231 with degrevlex Gröbner basis computation

Expected number of decomposition tests: 4!231 ' 5.1010

Timings

Magma (V2.15-15): each decomposition trial takes about 1 sec

F4Variant + dedicated optimizations of arithmetic and linear algebra
→ only 22.95 ms per test on a 2.93 GHz Intel Xeon processor
(' 400× faster than results in odd characteristic)
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Conclusion

A variant of the index calculus method on elliptic curves over small
degree extension fields

F4 traces: a new tool for Gröbner basis computations
→ useful as soon as one needs to solve several systems with similar
shapes

Our variant still to slow to threaten DLP on curves with current level
of security but efficient on non-standard problems

In particular, feasible attack on the ’Well Known Group’ 3 Oakley
curve:
→ oracle-assisted SDHP solvable in ≤ 2 weeks with 1000 processors
after a learning phase of 230 oracle queries
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