F4 traces and index calculus on elliptic curves over extension fields

Vanessa VITSE - Antoine JOUX

Université de Versailles Saint-Quentin, Laboratoire PRISM

October 1, 2010

Vanessa VITSE - Antoine JOUX (UVSQ)

Part I

Index calculus methods

Vanessa VITSE - Antoine JOUX (UVSQ)

F4 traces and index calculus

October 1, 2010 2 / 33

-

< A >

Hardness of ECDLP

ECDLP

Given $P \in E(\mathbb{F}_q)$ and $Q \in \langle P \rangle$, find x such that Q = [x]P

Specific attacks on few families of curves:

Transfer methods

- lift to characteristic zero fields: anomalous curves
- \bullet transfer to $\mathbb{F}_{a^k}^*$ via pairings: curves with small embedding degree
- Weil descent: transfer from $E(\mathbb{F}_{q^n})$ to $J_{\mathcal{C}}(\mathbb{F}_q)$ where \mathcal{C} is a genus $g \ge n$ curve

Otherwise, only generic attacks

|▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣 □ の Q ()

Trying an index calculus approach

- Index calculus usually the best attack of the DLP over finite fields and hyperelliptic curves
- No known equivalent on $E(\mathbb{F}_p)$, p prime
- Feasible on $E(\mathbb{F}_{p^n})$ and better than Weil descent or generic algorithms

Trying an index calculus approach

- Index calculus usually the best attack of the DLP over finite fields and hyperelliptic curves
- No known equivalent on $E(\mathbb{F}_p)$, p prime
- Feasible on $E(\mathbb{F}_{p^n})$ and better than Weil descent or generic algorithms

Basic outline of index calculus method for DLP

- define a factor base: $\mathcal{F} = \{P_1, \ldots, P_N\}$
- P relation search: for random (a_i, b_i) , try to decompose $[a_i]P + [b_i]Q$ as sum of points in *F*
- linear algebra step: once k > N relations found, deduce with sparse algebra techniques the DLP of Q

・ロト ・聞ト ・ ヨト ・ ヨト

Results

Original algorithm (Gaudry, Diem)

Complexity of DLP over $E(\mathbb{F}_{q^n})$ in $\tilde{O}(q^{2-\frac{2}{n}})$ but with hidden constant exponential in n^2

- faster than generic methods when $n \ge 3$ and $\log q > C.n$
- sub-exponential complexity when $n = \Theta(\sqrt{\log q})$
- impracticable as soon as n > 4

Results

Original algorithm (Gaudry, Diem)

Complexity of DLP over $E(\mathbb{F}_{q^n})$ in $\tilde{O}(q^{2-\frac{2}{n}})$ but with hidden constant exponential in n^2

- faster than generic methods when $n \ge 3$ and $\log q > C.n$
- sub-exponential complexity when $n = \Theta(\sqrt{\log q})$
- impracticable as soon as n > 4

Our variant

Complexity in $\tilde{O}(q^2)$ but with a better dependency in n

- faster than generic methods when $n \geq 5$ and $\log q \geq 2\omega n$
- faster than Gaudry and Diem's method when log $q \leq \frac{3-\omega}{2}n^3$
- works for n = 5

Comparison of the three attacks of ECDLP over \mathbb{F}_{q^n}

Comparison of Pollard's rho method, Gaudry and Diem's attack and our attack for ECDLP over \mathbb{F}_{q^n} , $n \ge 1$.

Ingredients of index calculus approaches

Goal

Find at least $\#\mathcal{F}$ decompositions of random combinations R = [a]P + [b]Q

What kind of "decomposition" over E(K)

Semaev (2004): consider decompositions in a fixed number of points of ${\cal F}$

$$R = [a]P + [b]Q = P_1 + \ldots + P_m$$

• use the (m + 1)-th summation polynomial:

$$f_{m+1}(x_R, x_{P_1}, \dots, x_{P_m}) = 0$$

$$\Leftrightarrow \exists \epsilon_1, \dots, \epsilon_m \in \{1, -1\}, R = \epsilon_1 P_1 + \dots + \epsilon_m P_m$$

• Nagao's alternative approach with divisors: work with $f \in \mathcal{L}((m+1)(\infty) - (R))$ instead

Ingredients

Ingredients of index calculus approaches (2)

Convenient factor base on $E(\mathbb{F}_{q^n})$ – Gaudry (2004)

- Natural factor base: $\mathcal{F} = \{(x, y) \in E(\mathbb{F}_{q^n}) : x \in \mathbb{F}_q\}, \ |\mathcal{F}| \simeq q$
- Weil restriction: decompose along a \mathbb{F}_q -linear basis of \mathbb{F}_{q^n}

$$f_{m+1}(x_R, x_{P_1}, \dots, x_{P_m}) = 0 \Leftrightarrow \begin{cases} \varphi_1(x_{P_1}, \dots, x_{P_m}) = 0 \\ \vdots \\ \varphi_n(x_{P_1}, \dots, x_{P_m}) = 0 \end{cases}$$
(S_R)

Additional trick: symmetrization of the equations

One decomposition trial \leftrightarrow resolution of S_R over \mathbb{F}_q

Ingredients

Ingredients of index calculus approaches (2)

Convenient factor base on $E(\mathbb{F}_{q^n})$ – Gaudry (2004)

- Natural factor base: $\mathcal{F} = \{(x,y) \in E(\mathbb{F}_{q^n}) : x \in \mathbb{F}_q\}, \ |\mathcal{F}| \simeq q$
- Weil restriction: decompose along a \mathbb{F}_q -linear basis of \mathbb{F}_{q^n}

$$f_{m+1}(x_R, x_{P_1}, \dots, x_{P_m}) = 0 \Leftrightarrow \begin{cases} \varphi_1(x_{P_1}, \dots, x_{P_m}) = 0 \\ \vdots \\ \varphi_n(x_{P_1}, \dots, x_{P_m}) = 0 \end{cases}$$
(S_R)

• Additional trick: symmetrization of the equations

One decomposition trial \leftrightarrow resolution of \mathcal{S}_R over \mathbb{F}_q

Gaudry's original attack

- m = n: as many equations as unknowns, S_R has total degree 2^{n-1}
- Diem: $I(S_R)$ has dimension 0 and degree $2^{n(n-1)}$

Example of Gaudry's approach over $\mathbb{F}_{101^3}(\simeq \mathbb{F}_{101}[t]/(t^3+t+1))$ • $E: y^2 = x^3 + (44 + 52t + 60t^2)x + (58 + 87t + 74t^2), \ \#E = 1029583$

base point: $P \begin{vmatrix} 25+58t+23t^2 \\ 96+69t+37t^2 \end{vmatrix}$

challenge point: $Q \begin{vmatrix} 89+78t+52t^2 \\ 14+79t+71t^2 \end{vmatrix}$

Example of Gaudry's approach over $\mathbb{F}_{101^3}(\simeq \mathbb{F}_{101}[t]/(t^3+t+1))$

•
$$E: y^2 = x^3 + (44 + 52t + 60t^2)x + (58 + 87t + 74t^2), \ \#E = 1029583$$

base point: $P \begin{vmatrix} 25+58t+23t^2 \\ 96+69t+37t^2 \end{vmatrix}$ challenge point: $Q \begin{vmatrix} 89+78t+52t^2 \\ 14+79t+71t^2 \end{vmatrix}$

• random combination of P and Q:

$$R = [658403]P + [919894]Q = \begin{vmatrix} 44+57t+55t^2\\8+11t+73t^2 \end{vmatrix}$$

Example of Gaudry's approach over $\mathbb{F}_{101^3}(\simeq \mathbb{F}_{101}[t]/(t^3+t+1))$

•
$$E: y^2 = x^3 + (44 + 52t + 60t^2)x + (58 + 87t + 74t^2), \ \#E = 1029583$$

base point: $P \begin{vmatrix} 25+58t+23t^2 \\ 96+69t+37t^2 \end{vmatrix}$ challenge point: $Q \begin{vmatrix} 89+78t+52t^2 \\ 14+79t+71t^2 \end{vmatrix}$

• random combination of P and Q:

$$R = [658403]P + [919894]Q = \begin{vmatrix} 44+57t+55t^2\\8+11t+73t^2 \end{vmatrix}$$

1

• compute 4-th summation polynomial with resultant: $f_4(X_1, X_2, X_3, X_4) = Res_X(f_3(X_1, X_2, X), f_3(X_3, X_4, X))$ where $f_3=(X_1-X_2)^2X_3^2-2((X_1+X_2)(X_1X_2+a)+2b)X_3+(X_1X_2-a)^2-4b(X_1+X_2))$

Example of Gaudry's approach over $\mathbb{F}_{101^3}(\simeq \mathbb{F}_{101}[t]/(t^3+t+1))$

•
$$E: y^2 = x^3 + (44 + 52t + 60t^2)x + (58 + 87t + 74t^2), \ \#E = 1029583$$

base point: $P \begin{vmatrix} 25+58t+23t^2 \\ 96+69t+37t^2 \end{vmatrix}$ challenge point: $Q \begin{vmatrix} 89+78t+52t^2 \\ 14+79t+71t^2 \end{vmatrix}$

• random combination of P and Q:

$$R = [658403]P + [919894]Q = \begin{vmatrix} 44+57t+55t^2\\8+11t+73t^2 \end{vmatrix}$$

- compute 4-th summation polynomial with resultant: $f_4(X_1, X_2, X_3, X_4) = Res_X(f_3(X_1, X_2, X), f_3(X_3, X_4, X))$ where $f_3=(X_1-X_2)^2X_3^2-2((X_1+X_2)(X_1X_2+a)+2b)X_3+(X_1X_2-a)^2-4b(X_1+X_2))$
- after partial symmetrisation, solve in $s_1, s_2, s_3 \in \mathbb{F}_{101}$

$$f_4(s_1, s_2, s_3, x_R) = x_R^4 s_2^4 + 93 x_R^4 s_1 s_2^2 s_3 \\ + 16 x_R^4 s_1^2 s_3^2 + \dots + 94 b^3 s_3 = 0 \qquad \Leftrightarrow \qquad \begin{cases} 28 s_1^4 + 94 s_1^3 s_2 + \dots + 4s_3 + 69 = 0 \\ 49 s_1^4 + 72 s_1^3 s_2 + \dots + 14s_3 + 100 = 0 \\ 32 s_1^4 + 97 s_1^3 s_2 + \dots + 50 s_3 + 8 = 0 \end{cases}$$

• Gröbner basis of $I(S_R)$ for $lex_{s_1 > s_2 > s_3}$:

 $G = \{s_1 + 33s_3^{63} + 23s_3^{62} + \dots + 95, s_2 + 80s_3^{63} + 79s_3^{62} + \dots + 45, s_3^{64} + 36s_3^{63} + 80s_3^{62} + \dots + 56\}$

(4個) (4回) (4回) (5)

• Gröbner basis of $I(\mathcal{S}_R)$ for $lex_{s_1 > s_2 > s_3}$:

 $G = \{s_1 + 33s_3^{63} + 23s_3^{62} + \dots + 95, s_2 + 80s_3^{63} + 79s_3^{62} + \dots + 45, s_3^{64} + 36s_3^{63} + 80s_3^{62} + \dots + 56\}$

• $V(I(S_R)) = \{(30, 3, 53), (75, 25, 75)\}$

• Gröbner basis of $I(\mathcal{S}_R)$ for $lex_{s_1>s_2>s_3}$:

$$G = \{s_1 + 33s_3^{63} + 23s_3^{62} + \dots + 95, s_2 + 80s_3^{63} + 79s_3^{62} + \dots + 45, s_3^{64} + 36s_3^{63} + 80s_3^{62} + \dots + 56\}$$

•
$$V(I(S_R)) = \{(30, 3, 53), (75, 25, 75)\}$$

* $X^3 - 30X^2 + 3X - 53$ irreducible over $\mathbb{F}_{101}[X]$

• Gröbner basis of $I(\mathcal{S}_R)$ for $lex_{s_1 > s_2 > s_3}$:

$$G = \{s_1 + 33s_3^{63} + 23s_3^{62} + \dots + 95, s_2 + 80s_3^{63} + 79s_3^{62} + \dots + 45, s_3^{64} + 36s_3^{63} + 80s_3^{62} + \dots + 56\}$$

•
$$V(I(S_R)) = \{(30, 3, 53), (75, 25, 75)\}$$

* $X^3 - 30X^2 + 3X - 53$ irreducible over $\mathbb{F}_{101}[X]$
* $X^3 - 75X^2 + 25X - 75 = (X - 4)(X - 7)(X - 64)$
 $\Rightarrow P_1 \begin{vmatrix} 4 \\ 27+34t+91t^2 \end{vmatrix} P_2 \begin{vmatrix} 7 \\ 58+95t+91t^2 \end{vmatrix} P_3 \begin{vmatrix} 64 \\ 76+54t+18t^2 \end{vmatrix}$ and $P_1 - P_2 + P_3 = R$

Vanessa VITSE - Antoine JOUX (UVSQ)

• Gröbner basis of $I(\mathcal{S}_R)$ for $lex_{s_1 > s_2 > s_3}$:

$$G = \{s_1 + 33s_3^{63} + 23s_3^{62} + \dots + 95, s_2 + 80s_3^{63} + 79s_3^{62} + \dots + 45, s_3^{64} + 36s_3^{63} + 80s_3^{62} + \dots + 56\}$$

•
$$V(I(S_R)) = \{(30, 3, 53), (75, 25, 75)\}$$

* $X^3 - 30X^2 + 3X - 53$ irreducible over $\mathbb{F}_{101}[X]$
* $X^3 - 75X^2 + 25X - 75 = (X - 4)(X - 7)(X - 64)$
 $\Rightarrow P_1 \begin{vmatrix} 4 & \\ 27+34t+91t^2 & P_2 \end{vmatrix} \begin{vmatrix} 7 & \\ 58+95t+91t^2 & P_3 \end{vmatrix} \begin{vmatrix} 64 \\ 76+54t+18t^2 & \text{and } P_1 - P_2 + P_3 = R \end{vmatrix}$

- Number of relations needed: $\#\mathcal{F} = 108 \Rightarrow 109$
- Linear algebra $\rightarrow x = 771080$

Complexity estimates of Gaudry-Diem version

Analysis

- Relation step: solve *n*!*q* systems
- Each resolution with Gröbner tools has complexity in $\tilde{O}(2^{3n(n-1)})$
- Sparse linear algebra in $ilde{O}(q^2)$
- "Double large prime" variation \rightarrow overall complexity in

 $\tilde{O}(n!2^{3n(n-1)}q^{2-2/n})$

- bottleneck: I(S_R) has degree 2ⁿ⁽ⁿ⁻¹⁾
 but most solutions not in F_q
- however adding $x^q x = 0$ not practical for large q

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Instead of using Semaev's summation polynomials,

• consider $\mathcal{L}(4(\infty) - (R))$ with basis $\langle x - x_R, y - y_R, x(x - x_R) \rangle$

- 人間下 人居下 人居下 二日

Instead of using Semaev's summation polynomials,

- consider $\mathcal{L}(4(\infty) (R))$ with basis $\langle x x_R, y y_R, x(x x_R) \rangle$
- starting from $f(x, y) = x(x x_R) + \lambda(y y_R) + \mu(x x_R)$ compute $F(x) = f(x, y)f(x, -y)/(x - x_R)$ $\rightarrow F(x) = x^3 + (-\lambda^2 + 2\mu - x_R)x^2 + (-x_R\lambda^2 - 2y_R\lambda + \mu^2 - 2x_R\mu)x$ $-((x_R^2 + a)\lambda^2 + 2y_R\lambda\mu + x_R\mu^2)$

roots of F correspond to x-coord. of the P_i in the decomposition of R

Instead of using Semaev's summation polynomials,

- consider $\mathcal{L}(4(\infty) (R))$ with basis $\langle x x_R, y y_R, x(x x_R) \rangle$
- starting from $f(x, y) = x(x x_R) + \lambda(y y_R) + \mu(x x_R)$ compute $F(x) = f(x, y)f(x, -y)/(x - x_R)$ $\rightarrow F(x) = x^3 + (-\lambda^2 + 2\mu - x_R)x^2 + (-x_R\lambda^2 - 2y_R\lambda + \mu^2 - 2x_R\mu)x$ $-((x_R^2 + a)\lambda^2 + 2y_R\lambda\mu + x_R\mu^2)$

roots of *F* correspond to *x*-coord. of the *P_i* in the decomposition of *R* • $x(P_i) \in \mathbb{F}_{101} \Rightarrow F \in \mathbb{F}_{101}[x]$ find $\lambda, \mu \in \mathbb{F}_{101^3}$ such that $\begin{cases}
-\lambda^2 + 2\mu - x_R \in \mathbb{F}_{101} \\
-x_R \lambda^2 - 2y_R \lambda + \mu^2 - 2x_R \mu \in \mathbb{F}_{101} \\
(x_R^2 + a)\lambda^2 + 2y_R \lambda \mu + x_R \mu^2 \in \mathbb{F}_{101}
\end{cases}$

Instead of using Semaev's summation polynomials,

- consider $\mathcal{L}(4(\infty) (R))$ with basis $\langle x x_R, y y_R, x(x x_R) \rangle$
- starting from $f(x, y) = x(x x_R) + \lambda(y y_R) + \mu(x x_R)$ compute $F(x) = f(x, y)f(x, -y)/(x - x_R)$ $\rightarrow F(x) = x^3 + (-\lambda^2 + 2\mu - x_R)x^2 + (-x_R\lambda^2 - 2y_R\lambda + \mu^2 - 2x_R\mu)x$ $-((x_R^2 + a)\lambda^2 + 2y_R\lambda\mu + x_R\mu^2)$

roots of *F* correspond to *x*-coord. of the *P_i* in the decomposition of *R* • $x(P_i) \in \mathbb{F}_{101} \Rightarrow F \in \mathbb{F}_{101}[x]$ find $\lambda, \mu \in \mathbb{F}_{101^3}$ such that $\begin{cases}
-\lambda^2 + 2\mu - x_R \in \mathbb{F}_{101} \\
-x_R \lambda^2 - 2y_R \lambda + \mu^2 - 2x_R \mu \in \mathbb{F}_{101} \\
(x_R^2 + a)\lambda^2 + 2y_R \lambda \mu + x_R \mu^2 \in \mathbb{F}_{101}
\end{cases}$

• Weil restriction: solve a quadratic polynomial system with 6 var/eq check if resulting *F* splits in linear factors

Remarks on Nagao's approach

Analysis

- differs from Gaudry only in the polynomial system to solve
- actual resolution slower
- \rightarrow not relevant for the elliptic case

Remarks on Nagao's approach

Analysis

- differs from Gaudry only in the polynomial system to solve
- actual resolution slower

 \rightarrow not relevant for the elliptic case

Practical interest

 \bullet in the previous example, eliminating λ,μ in

$$\begin{cases} s_1 = -\lambda^2 + 2\mu - x_R \\ s_2 = -x_R\lambda^2 - 2y_R\lambda + \mu^2 - 2x_R\mu \\ s_3 = (x_R^2 + a)\lambda^2 + 2y_R\lambda\mu + x_R\mu^2 \end{cases}$$
 yields the partially

symmetrized summation polynomial $f_4(s_1, s_2, s_3, x_R)$

- \rightarrow alternate computation of summation polynomials
- can be easily generalised to hyperelliptic curves whereas Semaev cannot

Joux-V. approach

Decompositions into m = n - 1 points

- compute the *n*-th summation polynomial (instead of n + 1-th) with partially symmetrized resultant
- solve S_R with n-1 var, n eq and total degree 2^{n-2}
- (n-1)!q expected numbers of trials to get one relation

Joux-V. approach

Decompositions into m = n - 1 points

- compute the *n*-th summation polynomial (instead of n + 1-th) with partially symmetrized resultant
- solve \mathcal{S}_R with n-1 var, n eq and total degree 2^{n-2}
- (n-1)!q expected numbers of trials to get one relation

Computation speed-up

- S_R is overdetermined and $I(S_R)$ has very low degree
 - resolution with a degrevlex Gröbner basis
 - no need to change order (FGLM)
- Speed up computations with "F4 traces"

Overall complexity in
$$ilde{O}ig((n-1)!2^{\omega(n-1)(n-2)}e^{\omega n}q^2ig)$$

- 4 同 6 4 日 6 4 日 6

• E, P and Q as before, random combination of P and Q:

$$R = [357347]P + [488870]Q = \begin{vmatrix} 6+63t+58t^2\\11+97t+95t^2 \end{vmatrix}$$

< A > < 3

•
$$E, P$$
 and Q as before, random combination of P and Q :

$$R = [357347]P + [488870]Q = \begin{vmatrix} 6+63t+58t^2\\ 11+97t+95t^2 \end{vmatrix}$$

• use 3-rd "symmetrized" Semaev polynomial and Weil restriction:

$$(s_1^2 - 4s_2)x_R^2 - 2(s_1(s_2 + a) + 2b)x_R + (s_2 - a)^2 - 4bs_1 = 0$$

$$\Leftrightarrow \quad (83t + 89t^2)s_1^2 + (89 + 76t + 86t^2)s_1s_2 + (5 + 98t + 45t^2)s_1 + s_2^2 + (13 + 69t + 29t^2)s_2 + 8 + 96t + 51t^2 = 0$$

$$\Leftrightarrow \quad \begin{cases} 89s_1s_2 + 5s_1 + s_2^2 + 13s_2 + 8 = 0 \\ 83s_1^2 + 76s_1s_2 + 98s_1 + 69s_2 + 96 = 0 \\ 89s_1^2 + 86s_1s_2 + 45s_1 + 29s_2 + 51 = 0 \end{cases}$$

$$\begin{split} \mathrm{I}(\mathcal{S}_{\mathcal{R}}) &= \langle 89s_1s_2 + 5s_1 + s_2^2 + 13s_2 + 8, \\ & 83s_1^2 + 76s_1s_2 + 98s_1 + 69s_2 + 96, \\ & 89s_1^2 + 86s_1s_2 + 45s_1 + 29s_2 + 51 \rangle \end{split}$$

• Gröbner basis of $I(S_R)$ for degrevlex_{s1>s2} : $G = \{s_1 + 89, s_2 + 49\}$

- 4 週 ト - 4 三 ト - 4 三 ト

$$\begin{split} \mathrm{I}(\mathcal{S}_{\mathcal{R}}) &= \langle 89s_1s_2 + 5s_1 + s_2^2 + 13s_2 + 8, \\ & 83s_1^2 + 76s_1s_2 + 98s_1 + 69s_2 + 96, \\ & 89s_1^2 + 86s_1s_2 + 45s_1 + 29s_2 + 51 \rangle \end{split}$$

- Gröbner basis of $I(\mathcal{S}_R)$ for $degrevlex_{s_1>s_2}$: $G = \{s_1 + 89, s_2 + 49\}$
- $V(I(S_R)) = \{(12, 52)\} \rightarrow X^2 12X + 52 = (X 46)(X 67)$

$$\begin{split} \mathrm{I}(\mathcal{S}_{\mathcal{R}}) &= \langle 89s_1s_2 + 5s_1 + s_2^2 + 13s_2 + 8, \\ & 83s_1^2 + 76s_1s_2 + 98s_1 + 69s_2 + 96, \\ & 89s_1^2 + 86s_1s_2 + 45s_1 + 29s_2 + 51 \rangle \end{split}$$

• Gröbner basis of $I(S_R)$ for degrevlex_{s1>s2} : $G = \{s_1 + 89, s_2 + 49\}$

•
$$V(I(S_R)) = \{(12, 52)\} \rightarrow X^2 - 12X + 52 = (X - 46)(X - 67)$$

 $\Rightarrow P_1 \begin{vmatrix} 46 \\ 29 + 55t + 56t^2 \end{vmatrix} \stackrel{67}{}_{20 + 8t + 59t^2} \text{ and } P_1 + P_2 = R$

- 4 週 ト - 4 三 ト - 4 三 ト

$$\begin{split} \mathrm{I}(\mathcal{S}_{\mathcal{R}}) &= \langle 89s_1s_2 + 5s_1 + s_2^2 + 13s_2 + 8, \\ & 83s_1^2 + 76s_1s_2 + 98s_1 + 69s_2 + 96, \\ & 89s_1^2 + 86s_1s_2 + 45s_1 + 29s_2 + 51 \rangle \end{split}$$

• Gröbner basis of $I(\mathcal{S}_R)$ for $degrevlex_{s_1>s_2}$: $G=\{s_1+89,s_2+49\}$

•
$$V(I(S_R)) = \{(12, 52)\} \rightarrow X^2 - 12X + 52 = (X - 46)(X - 67)$$

 $\Rightarrow P_1 \begin{vmatrix} 46 \\ 29 + 55t + 56t^2 \end{vmatrix} \stackrel{67}{_{20+8t+59t^2}} \text{ and } P_1 + P_2 = R$

- Number of relations needed: $\#\mathcal{F}=108\Rightarrow109$
- Linear algebra $\rightarrow x = 771080$

Summary

Comparison between the three approaches

	Gaudry-Diem	Nagao	Joux-V.
nb of points	m = n	m = n	m = n - 1
decomp. trials	n!q	n!q	$(n-1)!q^2$
features	deg 2 ^{<i>n</i>-1}	deg 2	deg 2 ^{<i>n</i>-2}
of \mathcal{S}_R	<i>n</i> eq/var	n(n-1) eq/var	n eq, $n-1$ var
$deg(\mathrm{I}(\mathcal{S}_{\mathcal{R}}))$	$2^{n(n-1)}$	$2^{n(n-1)}$	0 (1 exceptionally)
complexity	$n!2^{3n(n-1)}q^{2-2/n}$	$n! 2^{2\omega n(n-1)} q^{2-2/n}$	$(n-1)!2^{\omega(n-1)(n-2)}e^{\omega n}q^2$

3

・ロン ・四 ・ ・ ヨン ・ ヨン

Part II

F4 traces

Vanessa VITSE - Antoine JOUX (UVSQ)

3

<ロ> (日) (日) (日) (日) (日)

Gröbner basis: a tool for polynomial system solving

 $\mathrm{I} = \langle \mathit{f}_1, \ldots, \mathit{f}_r \rangle \subset \mathbb{K}[\mathit{X}_1, \ldots, \mathit{X}_n]$ ideal

Gröbner basis

 ${\it G}=\{g_1,\ldots,g_s\}\subset {\rm I}$ is a Gröbner basis of ${\rm I}$ if

 $\langle LT(g_1), \ldots, LT(g_s) \rangle = LT(I)$

Buchberger's algorithm

• S-polynomial:
$$f_1, f_2 \in \mathbb{K}[X_1, \dots, X_n]$$

 $S(f_1, f_2) = \frac{LM(f_1) \lor LM(f_2)}{LT(f_1)} f_1 - \frac{LM(f_1) \lor LM(f_2)}{LT(f_2)} f_2$

- Buchberger's theorem: $G = \{g_1, \dots, g_s\}$ Gröbner basis $\Leftrightarrow \overline{S(g_i, g_j)}^G = 0$ for all i, j
- Buchberger's algorithm: compute iteratively the remainder by G of every possible S-polynomials and add it to G

イロト イヨト イヨト イヨト

Techniques for resolution of polynomial systems

F4: efficient implementation of Buchberger's algorithm

- linear algebra to reduce a large number of critical pairs $(lcm, u_1, f_1, u_2, f_2)$ where $lcm = LM(f_1) \lor LM(f_2)$, $u_i = \frac{lcm}{LM(f_i)}$
- selection strategy (e.g. lowest total degree lcm)
- at each step construct a Macaulay-style matrix containing
 - products u_if_i coming from the selected critical pairs
 - polynomials from preprocessing phase

Techniques for resolution of polynomial systems

Standard Gröbner basis algorithms

- F4 algorithm ('99)
 - fast and complete reductions of critical pairs
 - drawback: many reductions to zero

F5 algorithm ('02)

- elaborate criterion \rightarrow skip unnecessary reductions
- drawback: incomplete polynomial reductions

- multipurpose algorithms
- do not take advantage of the common shape of the systems
- knowledge of a prior computation
 - \rightarrow no more reduction to zero in F4 ?

- A E N A E N

Specifically devised algorithms

Outline of our F4 variant

- F4Precomp: on the first system
 - at each step, store the list of all involved polynomial multiples
 - reduction to zero \rightarrow remove well-chosen multiple from the list
- F4Remake: for each subsequent system
 - no queue of untreated pairs
 - at each step, pick directly from the list the relevant multiples

Former works

- \bullet Idea originating from CRT computation of GB over $\mathbb Q$
- Traverso 88: precise definition of *Gröbner traces* for the Buchberger algorithm, but behaviour analysis restricted to the rational case

(日) (周) (三) (三)

Analysis of F4Remake

"Similar" systems

- parametric family of systems: $\{F_1(y), \ldots, F_r(y)\}_{y \in \mathbb{K}^\ell}$ where $F_1, \ldots, F_r \in \mathbb{K}[Y_1, \ldots, Y_\ell][X_1, \ldots, X_n]$
- $\{f_1, \ldots, f_r\} \subset \mathbb{K}[\underline{X}]$ random instance of this parametric family

Generic behaviour

- "compute" the GB of $\langle F_1, \ldots, F_r \rangle$ in $\mathbb{K}(\underline{Y})[\underline{X}]$ with F4 algorithm
- **2** f_1, \ldots, f_r behaves generically if during the GB computation with F4
 - same number of iterations
 - $\,\,$ at each step, same new leading monomials \rightarrow similar critical pairs

Analysis of F4Remake

"Similar" systems

- parametric family of systems: $\{F_1(y), \ldots, F_r(y)\}_{y \in \mathbb{K}^\ell}$ where $F_1, \ldots, F_r \in \mathbb{K}[Y_1, \ldots, Y_\ell][X_1, \ldots, X_n]$
- $\{f_1, \ldots, f_r\} \subset \mathbb{K}[\underline{X}]$ random instance of this parametric family

Generic behaviour

- "compute" the GB of $\langle F_1, \ldots, F_r \rangle$ in $\mathbb{K}(\underline{Y})[\underline{X}]$ with F4 algorithm
- f₁,..., f_r behaves generically if during the GB computation with F4
 same number of iterations
 - \blacktriangleright at each step, same new leading monomials \rightarrow similar critical pairs

F4Remake computes successfully the GB of f_1, \ldots, f_r if the system behaves generically

Vanessa VITSE - Antoine JOUX (UVSQ)

3

・ロン ・四 ・ ・ ヨン ・ ヨン

- **(**) Assume f_1, \ldots, f_r behaves generically until the (i 1)-th step
- 2 At step *i*, F4 constructs
 - M_g =matrix of polynomial multiples at step *i* for the parametric system
 - $M = \text{matrix of polynomial multiples at step } i \text{ for } f_1, \ldots, f_r$

< 回 ト < 三 ト < 三 ト

- **(**) Assume f_1, \ldots, f_r behaves generically until the (i 1)-th step
- At step i, F4 constructs
 - M_g =matrix of polynomial multiples at step *i* for the parametric system
 - $M = \text{matrix of polynomial multiples at step } i \text{ for } f_1, \dots, f_r$
- **③** Reduced row echelon form of M_g and M

- **(**) Assume f_1, \ldots, f_r behaves generically until the (i-1)-th step
- At step i, F4 constructs
 - M_g =matrix of polynomial multiples at step *i* for the parametric system
 - $M = \text{matrix of polynomial multiples at step } i \text{ for } f_1, \dots, f_r$
- **③** Reduced row echelon form of M_g and M

- **()** Assume f_1, \ldots, f_r behaves generically until the (i 1)-th step
- At step i, F4 constructs
 - M_g =matrix of polynomial multiples at step *i* for the parametric system
 - ► M =matrix of polynomial multiples at step i for f₁,..., f_r
- **③** Reduced row echelon form of M_g and M

- **()** Assume f_1, \ldots, f_r behaves generically until the (i 1)-th step
- 2 At step *i*, F4 constructs
 - M_g =matrix of polynomial multiples at step *i* for the parametric system
 - $M = \text{matrix of polynomial multiples at step } i \text{ for } f_1, \dots, f_r$
- **③** Reduced row echelon form of M_g and M

- **()** Assume f_1, \ldots, f_r behaves generically until the (i-1)-th step
- 2 At step *i*, F4 constructs
 - M_g =matrix of polynomial multiples at step *i* for the parametric system
 - $M = \text{matrix of polynomial multiples at step } i \text{ for } f_1, \dots, f_r$
- **③** Reduced row echelon form of M_g and M

 f_1, \ldots, f_r behaves generically at step $i \Leftrightarrow B$ has full rank

イロト 不得下 イヨト イヨト 二日

Probability of success

Heuristic assumption

B matrices are uniformly random over $\mathcal{M}_{n,\ell}(\mathbb{F}_q)$

- makes sense for \mathcal{S}_R arising from index calculus
- not always valid, but generic behaviour can often be deduced for the first stages of F4

Probability estimates over \mathbb{F}_q

Under heuristic assumption:

 $\mathsf{Proba}(\{f_1,\ldots,f_r\} \text{ behaves generically}) \geq c(q)^{n_{step}}$

• $n_{step} = nb$ of steps during F4 computation for the parametric system

•
$$c(q) = \prod_{i=1}^{\infty} (1-q^{-i}) \underset{q \to \infty}{\longrightarrow} 1$$

F4Remake

Experimental results: index calculus on $E(\mathbb{F}_{p^5})$

$ p _2$	est. failure proba.	F4Remake	F4 (Joux-V.)	F4 (Magma)
8 bits	0.11	2.844	5.903	9.660
16 bits	$4.4 imes10^{-4}$	3.990	9.758	9.870
25 bits	$2.4 imes10^{-6}$	4.942	16.77	118.8
32 bits	$5.8 imes10^{-9}$	8.444	24.56	1046

Times in seconds, using a 2.6 GHz Intel Core 2 Duo processor. Precomputation done in 8.963 s on an 8-bit field.

- N

F4Remake

Experimental results: index calculus on $E(\mathbb{F}_{p^5})$

$ p _2$	est. failure proba.	F4Remake	F4 (Joux-V.)	F4 (Magma)
8 bits	0.11	2.844	5.903	9.660
16 bits	$4.4 imes10^{-4}$	3.990	9.758	9.870
25 bits	$2.4 imes10^{-6}$	4.942	16.77	118.8
32 bits	$5.8 imes10^{-9}$	8.444	24.56	1046

Times in seconds, using a 2.6 GHz Intel Core 2 Duo processor. Precomputation done in 8.963 s on an 8-bit field.

Comparison with F5

- both algorithms eliminate all reductions to zero, but
- F5 computes a much larger GB: 17249 labeled polynomials against 2789 with F4
- $\bullet\,$ signature condition in F5 $\rightarrow\,$ redundant polynomials

A (1) > A (2) > A

Part III

Application to the Static Diffie-Hellman Problem

Vanessa VITSE - Antoine JOUX (UVSQ)

F4 traces and index calculus

___ ▶

Static Diffie-Hellman problem

Observation

Semaev's decomposition into a factor base leads to an oracle-assisted solution of SDHP

Static Diffie-Hellman problem

Given G a finite group, $P, Q \in G$ s.t. Q = [d]P where d secret, and a challenge $X \in G$, compute [d]X.

Oracle-assisted SDHP: G finite group and d secret integer

- Initial learning phase: the attacker has access to an oracle which outputs [d] Y for any Y in G
- After a number of oracle queries, the attacker has to compute [d]X for a previously unseen challenge X

イロト 不得下 イヨト イヨト 二日

Solving SDHP over $G = E(\mathbb{F}_{q^n})$

$$\mathcal{F} = \{ P \in E(\mathbb{F}_{q^n}) : P = (x_p, y_p), x_p \in \mathbb{F}_q \}$$

- Learning phase: ask the oracle to compute Q = [d]P for each $P \in \mathcal{F}$
- Given a challenge X,
 - **(**) pick a random integer r coprime with |G| and compute [r]X
 - ② check if [r]X can be written as a sum of m points of F: [r]X = ±P₁ ± P₂ ± · · · ± P_m
 - if [r]X is not decomposable, go back to step 1; else output $Y = [s] \left(\sum_{i=1}^{m} [d]P_i \right)$ where $s = r^{-1} \mod |G|$.

Remarks

- only one decomposition is needed \rightarrow no linear algebra step but the q oracle queries are the bottleneck
- Granger (2010): balance the two stages by reducing the factor base à la Harley

- 32

・ロン ・四 ・ ・ ヨン ・ ヨン

An interesting target (joint work with R. Granger)

IPSEC Oakley key determination protocol 'well known group' 3 curve $\mathbb{F}_{2^{155}} = \mathbb{F}_2[u]/(u^{155} + u^{62} + 1) \qquad G = E(\mathbb{F}_{2^{155}}) \text{ where}$ $E: y^2 + xy = x^3 + (u^{18} + u^{17} + u^{16} + u^{13} + u^{12} + u^9 + u^8 + u^7 + u^3 + u^2 + u + 1)$ #G = 12 * 3805993847215893016155463826195386266397436443

Remarks

- $\mathbb{F}_{2^{155}} = \mathbb{F}_{(2^{31})^5} \to$ curve known to be theoretically weaker than curves over comparable size prime fields
- decomposition as sum of 5 points not realisable
 → Gaudry's approach doesn't work on this curve
- we show that an actual attack with our approach is feasible

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Algebraic attack features

For each decomposition trial:

- associate to [r]X the overdetermined symmetrized system $S_r = \{\varphi_1, \ldots, \varphi_5\} \subset \mathbb{F}_{2^{31}}[s_1, \ldots, s_4]$ of total degree 8
- solve S_r in $\mathbb{F}_{2^{31}}$ with degrevlex Gröbner basis computation Expected number of decomposition tests: $4!2^{31} \simeq 5.10^{10}$

過 ト イヨ ト イヨト

Algebraic attack features

For each decomposition trial:

- associate to [r]X the overdetermined symmetrized system $S_r = \{\varphi_1, \dots, \varphi_5\} \subset \mathbb{F}_{2^{31}}[s_1, \dots, s_4]$ of total degree 8
- solve S_r in $\mathbb{F}_{2^{31}}$ with degrevlex Gröbner basis computation Expected number of decomposition tests: $4!2^{31} \simeq 5.10^{10}$

Timings

• Magma (V2.15-15): each decomposition trial takes about 1 sec

イロト 不得下 イヨト イヨト

Algebraic attack features

For each decomposition trial:

- associate to [r]X the overdetermined symmetrized system $S_r = \{\varphi_1, \dots, \varphi_5\} \subset \mathbb{F}_{2^{31}}[s_1, \dots, s_4]$ of total degree 8
- solve S_r in $\mathbb{F}_{2^{31}}$ with degrevlex Gröbner basis computation Expected number of decomposition tests: $4!2^{31} \simeq 5.10^{10}$

Timings

- Magma (V2.15-15): each decomposition trial takes about 1 sec
- F4Variant + dedicated optimizations of arithmetic and linear algebra
 → only 22.95 ms per test on a 2.93 GHz Intel Xeon processor
 (≃ 400× faster than results in odd characteristic)

Conclusion

- A variant of the index calculus method on elliptic curves over small degree extension fields
- F4 traces: a new tool for Gröbner basis computations
 → useful as soon as one needs to solve several systems with similar shapes
- Our variant still to slow to threaten DLP on curves with current level of security but efficient on non-standard problems
- In particular, feasible attack on the 'Well Known Group' 3 Oakley curve:

 \rightarrow oracle-assisted SDHP solvable in ≤ 2 weeks with 1000 processors after a learning phase of 2^{30} oracle queries

F4 traces and index calculus on elliptic curves over extension fields

Vanessa VITSE - Antoine JOUX

Université de Versailles Saint-Quentin, Laboratoire PRISM

October 1, 2010

Vanessa VITSE - Antoine JOUX (UVSQ)

F4 traces and index calculus

October 1, 2010 33 / 33