
Problème du logarithme discret sur courbes elliptiques

Vanessa VITSE
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Background Generalities on DLP

Discrete logarithm problem

Discrete logarithm problem (DLP)

Given a group G and g , h ∈ G , find – when it exists – an integer x s.t.

h = g x

Difficulty is related to the group:

1 Generic attack: complexity in Ω(max(αi
√
pi )) if #G =

∏
i p

αi
i

2 G ⊂ (Z/nZ,+): solving DLP has polynomial complexity with
extended Euclid algorithm

3 G ⊂ (F∗q,×): index calculus method with complexity in Lq(1/3)
where Lq(α) = exp(c(log q)α(log log q)1−α).

4 G ⊂ (JacC(Fq),+): index calculus method asymptotically faster than
generic attacks, depending of the genus g > 2
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Background Generalities on DLP

Elliptic curve DLP

Good candidates for DLP-based cryptosystems:
elliptic curves defined over finite fields

P•

Q
•

−(P + Q)•

P + Q •

ECDLP: Given P ∈ E (Fq) and Q ∈ 〈P〉
find x such that Q = [x ]P

On Fp (p prime): in general, no known
attack better than generic algorithms
→ good security

On Fpn (for faster hardware arithmetic):
possible to apply index calculus
→ security reduction in some cases

Vanessa VITSE (UVSQ) DLP over elliptic curves 2 November 2011 3 / 34



The index calculus method

Section 1

The index calculus method
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The index calculus method Introduction

Introduction to index calculus

Originally developed for the factorization of large integers, improving on
the square congruence method of Fermat.

Index calculus based Number/Function Field Sieve hold records for both
integer factorization and finite field DLP.

Idea

Find group relations between a “small” number of generators (or
factor base elements)

With sufficiently many relations and linear algebra, deduce the group
structure and the DL of elements
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The index calculus method Introduction

Basic outline

(G ,+) = 〈g〉 finite abelian group of prime order r , h ∈ G

1 Choice of a factor base: F = {g1, . . . , gN} ⊂ G

2 Relation search: decompose [ai ]g + [bi ]h (ai , bi random) into F

[ai ]g + [bi ]h =
N∑
j=1

[cij ]gj , where cij ∈ Z

3 Linear algebra: once k relations found (k ≥ N)

I construct the matrices A =
(
ai bi

)
1≤i≤k

and M = (cij) 1≤i≤k
1≤j≤N

I find v = (v1, . . . , vk) ∈ ker(tM) such that vA 6=
(
0 0

)
mod r

I compute the solution of DLP: x = − (
∑

i aivi ) / (
∑

i bivi ) mod r
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The index calculus method Introduction

An example: the prime field case

Choice of factor base: equivalence classes of prime integers smaller
than a smoothness bound B (usually together with −1)

Relation search: a combination [ai ]g yields a relation if its

representative in
[
−p−1

2 ; p−1
2

]
is B-smooth

p = 107, G = Z/pZ∗, g = 31, F = {−1; 2; 3; 5; 7}, find the DL of h = 19.



2

3

4

13

14

15

16

21


=



−1 2 3 5 7

1 1 0 0 0

0 0 2 1 0

0 2 0 0 0

1 0 0 0 2

1 0 1 0 1

1 0 2 0 0

0 1 1 0 1

1 0 0 1 1


X mod 106 ⇒ X =


53
55
34
41
33
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The index calculus method Introduction

General remarks

1 Relation search very specific to the group and can be the main
obstacle

2 On the other hand, linear algebra almost the same for all groups

3 Balance to find between the two phases:

I if #F small, few relations needed and fast linear algebra
but small probability of decomposition  many trials before
finding a relation

I if #F large, easy to find relations
but many of them needed and slow linear algebra
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The index calculus method Introduction

The linear algebra step

The matrix of relations

very large for real-world applications: typical size is several millions
rows/columns.

extremely sparse: only a few non-zero coefficients per row

⇒ use sparse linear algebra techniques instead of standard resolution tools

Main ideas:

Keep the matrix sparse (���XXXGauss)

Use matrix-vector products: cost only proportional to the number of
non-zero entries

Two principal algorithms: Lanczos and Wiedemann

Complexity in O(n2c) if n relations with c non-zero entries per relation
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The index calculus method Introduction

Improving the linear algebra step

Remark

Relation search always straightforward to distribute

Not so true for the linear algebra

Often advantageous to compute many more relations than needed and use
extra information to simplify the relation matrix

Two methods:

1 Structured Gaussian elimination:
Particularly well-suited when elements of the factor base have
different frequencies (e.g on finite fields)

2 Large prime variations
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The index calculus method Introduction

Structured Gaussian elimination [LaMacchia-Odlyzko]

Goal: reduce the size of the matrix while keeping it sparse.
Distinction between the matrix columns (i.e. the factor base elements):

dense columns correspond to “small primes”

other columns correspond to “large primes”

1 If a column contains only one non-zero entry, remove it and the
corresponding row.
Also, remove columns/rows containing only zeroes.

2 Mark some new columns as dense
3 Find rows with only one ±1 coefficient in the non-dense part

I Use this coefficient as a pivot to clear its column
I Remove corresponding row and column

4 Remove rows that have become too dense and go back to step 1
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The index calculus method The hyperelliptic case

The hyperelliptic curve case

H : y2 + h0(x)y = h1(x), h0, h1 ∈ Fq[x ], deg h0 ≤ g , deg h1 = 2g + 1
hyperelliptic curve of genus g with (unique) point at infinity OH

hyperelliptic involution ι : (xP , yP) 7→ (xP ,−yP − h0(xP))
#H(Fq) ' q

P
•

ι(P)
•
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The index calculus method The hyperelliptic case

The Jacobian variety of H

Divisor class group

Elements of JacH are (equivalence class of) formal sums of points of H

C : f (x , y) = 0 intersects H in P1, ...,Pm  (P1)+· · ·+(Pm)−m(OH) ∼ 0

P1•

P2
•

D=(P1)+(P2)−2(OH)
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Divisor class group

Elements of JacH are (equivalence class of) formal sums of points of H

C : f (x , y) = 0 intersects H in P1, ...,Pm  (P1)+· · ·+(Pm)−m(OH) ∼ 0

P1•

P2
•

2(P1)+(P2)+(P3)+(P4)−5(OH) ∼ 0

Vanessa VITSE (UVSQ) DLP over elliptic curves 2 November 2011 13 / 34



The index calculus method The hyperelliptic case

The Jacobian variety of H

Divisor class group

Elements of JacH are (equivalence class of) formal sums of points of H

C : f (x , y) = 0 intersects H in P1, ...,Pm  (P1)+· · ·+(Pm)−m(OH) ∼ 0

Q1
•

ι(Q1)•

−
(

(Q1)−(OH)
)
∼ (ι(Q1))−(OH)
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The index calculus method The hyperelliptic case

The Jacobian variety of H

Divisor class group

Elements of JacH are (equivalence class of) formal sums of points of H

C : f (x , y) = 0 intersects H in P1, ...,Pm  (P1)+· · ·+(Pm)−m(OH) ∼ 0

P1•
P2
•

P3•

P4•

Addition law ?
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The index calculus method The hyperelliptic case

The Jacobian variety of H

Divisor class group

Elements of JacH are (equivalence class of) formal sums of points of H

C : f (x , y) = 0 intersects H in P1, ...,Pm  (P1)+· · ·+(Pm)−m(OH) ∼ 0

P1•
P2
•

P3•

P4•

P1•
P2
•

P3•

P4•Q1
•

Q2• Reduction:

(P1)+(P2)+(P3)+(P4)−4(OH)

∼ −(Q1)−(Q2)+2(OH)

∼ (ι(Q1))+(ι(Q2))−2(OH)
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The index calculus method The hyperelliptic case

Representations of elements of JacH
Reduced representation

An element [D] ∈ JacH(Fq) has a unique reduced representation

D ∼ (P1) + · · ·+ (Pr )− r(OH), r ≤ g , Pi 6= ι(Pj) for i 6= j

Mumford representation

One-to-one correspondence between elements of JacH(Fq) and couples of
polynomials (u, v) ∈ Fq[x ]2 s.t.

u monic, deg u ≤ g

deg v < deg u

u divides v2 + vh0 − h1

Cantor’s algorithm for addition law

#JacH(Fq) ' qg
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The index calculus method The hyperelliptic case

Adleman-DeMarrais-Huang’s index calculus

Analog of the integer factorization for elements of the Jacobian variety:

Proposition

Let D = (u, v) ∈ JacH(Fq). If u factorizes as
∏

j uj over Fq, then

Dj = (uj , vj) is in JacH(Fq), where vj = v mod uj

D =
∑

j Dj

Allows to apply index calculus [Enge-Gaudry]

Factor base: F = {(u, v) ∈ JacH(Fq) : u irreducible, deg u ≤ B}
(“small prime divisors”)

Element [ai ]D0 + [bi ]D1 yields a relation if corresponding u
polynomial is B-smooth

Subexponential complexity in Lqg (1/2) when q →∞ and g = Ω(log q)
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The index calculus method The hyperelliptic case

The small genus case

Gaudry’s algorithm for small genus curves

Factor base: F = {(u, v) ∈ JacH(Fq) : deg u = 1} of size ' q

D = (u, v) decomposable ⇔ u splits over Fq

Probability of decomposition ' 1/g !

⇒ O(g !q) tests (relation search) + O(gq2) field operations (linear alg.)

Total cost: O((g2 log3 q)g !q + (g2 log q)q2)

For fixed genus g , relation search in Õ(q) vs linear algebra in Õ(q2)

resolution of the DLP in Õ(q2)
⇒ better than generic attacks as soon as g > 4

possible improvement by rebalancing the two phases
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The index calculus method The hyperelliptic case

Double large prime variation

Gaudry - Thomé - Thériault - Diem

Define new factor base F ′ ⊂ F with #F ′ = qα

F ′: “small primes” F \ F ′: “large primes”
 linear algebra in Õ(q2α)

Keep relations involving at most two large primes, discard others

After collecting ' #F relations 2LP, possible to eliminate the large
primes and obtain ' #F ′ relations involving only small primes

Asymptotically optimal choice α = 1− 1/g
 total complexity in Õ(q2−2/g )
 better than generic attacks as soon as g ≥ 3

Practical best choice depends on actual cost of the 2 phases and
computing power available
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The index calculus method The non-hyperelliptic case

Index calculus on small degree plane curves [Diem ’06]

Diem’s algorithm

applies to Jacobians of curves admitting a small degree plane model

uses divisors of simple functions to find relations between factor base
elements

relies strongly on the double large prime variation

For C|Fq
of fixed degree d , complexity in Õ(q2−2/(d−2))

most genus g curves admit a plane model of degree g + 1
 complexity in Õ(q2−2/(g−1))

not true for hyperelliptic curves

Consequence

Jacobians of non-hyperelliptic curves usually weaker than those of
hyperelliptic curves (especially true for g = 3).
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The index calculus method The non-hyperelliptic case

Idea of index calculus on small degree plane curves

Take P1,P2 small primes

L line through P1 and P2

if L ∩ C(Fq) = {P1, . . . ,Pd},
then relation:
(P1) + · · ·+ (Pd)− D∞ ∼ 0
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The index calculus method The non-hyperelliptic case

Summary

Asymptotic comparison on JacC(Fq)

Genus 2 3 4 5

Generic methods q q3/2 q2 q5/2

Classical index calculus q2 q2 q2 q2

2LP, hyperelliptic case q q4/3 q3/2 q8/5

2LP, small degree case
(non hyperelliptic)

− q q4/3 q3/2

Vanessa VITSE (UVSQ) DLP over elliptic curves 2 November 2011 20 / 34



The index calculus method The non-hyperelliptic case

Summary

Asymptotic comparison on JacC(Fq)

Genus 2 3 4 5

Generic methods q q1.5 q2 q2.5

Classical index calculus q2 q2 q2 q2

2LP, hyperelliptic case q q1.33 q1.5 q1.6

2LP, small degree case
(non hyperelliptic)

− q q1.33 q1.5

Vanessa VITSE (UVSQ) DLP over elliptic curves 2 November 2011 20 / 34



Decomposition index calculus

Section 2

Decomposition index calculus
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Decomposition index calculus Attack on E(Fqn )

Application to elliptic curves

No canonical choice of factor base nor natural way of finding
decompositions

What kind of “decomposition” over E (K )?

Main idea [Semaev ’04]:

consider decompositions in a fixed number of points of F
R = [a]P + [b]Q = P1 + · · ·+ Pm

convert this algebraically by using the (m + 1)-th summation
polynomial:

fm+1(xR , xP1 , . . . , xPm) = 0

⇔ ∃ε1, . . . , εm ∈ {1,−1},R = ε1P1 + · · ·+ εmPm
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Decomposition index calculus Attack on E(Fqn )

Gaudry and Diem (2004)

“Decomposition attack”: index calculus on E (Fqn)

Natural factor base: F = {(x , y) ∈ E (Fqn) : x ∈ Fq}, #F ' q

Relations involve n points: R = P1 + · · ·+ Pn

Restriction of scalars: decompose along a Fq-linear basis of Fqn

fn+1(xR , xP1 , . . . , xPn) = 0⇔


ϕ1(xP1 , . . . , xPn) = 0

...

ϕn(xP1 , . . . , xPn) = 0

(SR)

One decomposition trial ↔ resolution of SR over Fq

With “double large prime” variation, overall complexity in
Õ
(
n!23n(n−1)q2−2/n

)
Bottleneck: deg I (SR) = 2n(n−1). But most solutions not in Fq
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Decomposition index calculus Variant n − 1

Variant “n − 1” [Joux-V. ’10]

Decompositions into m = n − 1 points

compute the n-th summation polynomial (instead of n + 1-th) with
partially symmetrized resultant

solve SR with n − 1 var, n eq and total degree 2n−2

(n − 1)!q expected numbers of trials to get one relation

Computation speed-up

1 SR is overdetermined and I (SR) has very low degree (0 or 1 excep.)
I resolution with a grevlex Gröbner basis
I no need to change order (FGLM)

2 Speed up computations with F4Remake
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Decomposition index calculus Variant n − 1

Comparaison of the three attacks of ECDLP over Fqn

log2 q

n

1
2
3
4
5

...

Θ(log2 q)

Θ( 3
√

log2 q)

[Pollard] [Variant n − 1]

[Gaudry-Diem]

Under some heuristic assumptions, complexity of variant n − 1 in

Õ
(

(n − 1)!
(

2(n−1)(n−2)enn−1/2
)ω

q2
)
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Decomposition index calculus Variant n − 1

Example of application to E (Fp5)

Standard ’Well Known Group’ 3 Oakley curve

E elliptic curve defined over F2155 ,
#E (F2155) = 12 · 3805993847215893016155463826195386266397436443

F = {P ∈ E (F2155) : x(P) ∈ F231}

Decomposition test with variant n − 1 takes 22.95 ms using
F4Remake (on 2.93 GHz Intel Xeon)

too slow for complete DLP resolution

but efficient threat for Oracle-assisted Static Diffie-Hellman Problem
(only one relation needed)
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Decomposition index calculus Attack on JacH(Fqn )

Decompositions on JacH(Fqn)

H|Fqn
hyperelliptic curve of genus g with a unique point O at infinity

Gaudry’s framework

Factor base containing about q elements
F = {DQ ∈ JacH(Fqn) : DQ ∼ (Q)− (O),Q ∈ H(Fqn), x(Q) ∈ Fq}
Decomposition search: try to write arbitrary divisor D ∈ JacH(Fqn) as
sum of ng divisors of F

Asymptotic complexity for n, g fixed in Õ(q2−2/ng )

How to check if D can be decomposed?

Semaev’s summation polynomials are no longer available

use Riemann-Roch based reformulation of Nagao instead
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Decomposition index calculus Attack on JacH(Fqn )

Decompositions on JacH(Fqn)

Main difficulty in Nagao’s decompositions

Solve a 0-dim quadratic polynomial system of (n − 1)ng eq./var. for each
divisor D(= [ai ]D0 + [bi ]D1) ∈ JacH(Fqn).

complexity at least polynomial in d = 2(n−1)ng

relevant only for n and g small enough

In practice:

Decompositions as D ∼
∑ng

i=1 ((Qi )− (OH)) are too slow to compute

Faster alternative [Joux-V.]: compute relations involving only
elements of F

ng+2∑
i=1

((Qi )− (OH)) ∼ 0
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Decomposition index calculus Attack on JacH(Fqn )

The modified relation search

H hyperelliptic curve of genus g defined over Fqn , n ≥ 2

find relations of the form
∑ng+2

i=1 ((Qi )− (OH)) ∼ 0

linear algebra: deduce DL of factor base elements up to a constant

descent phase: compute two Nagao-style decompositions to complete
the DLP resolution

With Nagao: about (ng)! q quadratic polynomial systems of
n(n − 1)g eq./var. to solve

With variant: only 1 under-determined quadratic system of
n(n − 1)g + 2n − 2 eq. and n(n − 1)g + 2n var.

Speed-up

Much faster to compute decompositions with our variant
→ about 960 times faster for (n, g) = (2, 3) on a 150-bit curve
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Cover and decomposition attacks

Section 3

Cover and decomposition attacks
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Cover and decomposition attacks Cover attacks

Transfer of the ECDLP via cover maps
Let E be an elliptic curve defined over Fqn and C a curve defined over Fq,
such that there exists a cover map π : C(Fqn)→ E (Fqn).

1 transfer the DLP from E (Fqn) to JacC(Fq)

C(Fqn)

π

��

JacC(Fqn)
Tr // JacC(Fq)

E (Fqn) JacE (Fqn) ' E (Fqn)

π∗

OO 66 g genus of C
s.t. g ≥ n

π∗((P)) =
∑

Q∈π−1({P})(Q), Tr(D) =
∑

σ∈Gal(Fqn/Fq) D
σ2 use index calculus on JacC(Fq), complexity in

I Õ(q2−2/g ) if C is hyperelliptic with small genus g [Gaudry ’00]
I Õ(q2−2/(d−2)) if C has a small degree d plane model [Diem ’06]

The Gaudry-Heß-Smart technique

Construct C|Fq
and π : C → E from E|Fqn

and a degree 2 map E → P1
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Cover and decomposition attacks Cover attacks

Transfer of the ECDLP via cover maps
Let E be an elliptic curve defined over Fqn and C a curve defined over Fq,
such that there exists a cover map π : C(Fqn)→ E (Fqn).

1 transfer the DLP from E (Fqn) to JacC(Fq)

C(Fqn)

π

��
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σ

2 use index calculus on JacC(Fq), complexity in

I Õ(q2−2/g ) if C is hyperelliptic with small genus g [Gaudry ’00]
I Õ(q2−2/(d−2)) if C has a small degree d plane model [Diem ’06]

The Gaudry-Heß-Smart technique

Problem: for most elliptic curves, g(C) is of the order of 2n
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Cover and decomposition attacks Cover attacks

A combined attack

Let E (Fqn) elliptic curve such that

n is too large for a practical decomposition attack

GHS provides covering curves C with too large genus

Cover and decomposition attack [Joux-V.]

If n composite, combine both approaches:

1 use GHS on the subextension Fqn/Fqd to transfer the DL to JacC(Fqd )

2 then use decomposition attack on JacC(Fqd ) with base field Fq to
solve the DLP

→ well adapted for curves defined over some Optimal Extension Fields
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Cover and decomposition attacks Cover attacks

The sextic extension case
Comparisons and complexity estimates for 160 bits based on Magma

p 27-bit prime, E (Fp6) elliptic curve with 160-bit prime order subgroup

1 Generic attacks: Õ(p3) cost, ≈ 5× 1013 years

2 Former index calculus methods:

Decomposition GHS

Fp6/Fp2 Õ(p2) memory bottleneck

Fp6/Fp intractable
efficient for ≤ 1/p3 curves

g = 9: Õ(p7/4), ≈ 1 500 years

3 Cover and decomposition:
Õ(p5/3) cost using a hyperelliptic genus 3 cover defined over Fp2

→ occurs directly for 1/p2 curves and most curves after isogeny walk

I Nagao-style decomposition: ≈ 750 years
I Modified relation search: ≈ 300 years
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1 Generic attacks: Õ(p3) cost, ≈ 5× 1013 years

2 Former index calculus methods:

Decomposition GHS
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Cover and decomposition attacks Cover attacks

A concrete attack on a 150-bit curve

E : y2 = x(x − α)(x − σ(α)) defined over Fp6 where p = 225 + 35, such
that #E = 4 · 356814156285346166966901450449051336101786213

Previously unreachable curve: GHS gives cover over Fp of genus 33...

Complete resolution of DLP in about 1 month
with cover and decomposition, using genus 3 hyperelliptic cover H|Fp2

Relation search

lex GB: 2.7 sec with one core(1)

sieving: p2/(2 · 8!) ' 1.4× 1010

relations in 62 h on 1 024 cores(2)

→ 960× faster than Nagao

Linear algebra

SGE: 25.5 h on 32 cores(2)

→ fivefold reduction

Lanczos: 28.5 days on 64 cores(2)

(200 MB of data broadcast/round)

(Descent phase done in ∼ 14 s for one point)

(1) Magma on 2.6 GHz Intel Core 2 Duo (2) 2.93GHz quadri-core Intel Xeon 5550
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