Problème du logarithme discret sur courbes elliptiques

Vanessa VITSE

Université de Versailles Saint-Quentin, Laboratoire PRISM

Groupe de travail équipe ARITH – LIRMM

Vanessa VITSE (UVSQ)

DLP over elliptic curves

Discrete logarithm problem (DLP)

Given a group G and $g, h \in G$, find – when it exists – an integer x s.t.

$$h = g^{x}$$

3

・ 同 ト ・ ヨ ト ・ ヨ ト

Discrete logarithm problem (DLP)

Given a group G and g, $h \in G$, find – when it exists – an integer x s.t.

$$h = g^{x}$$

Difficulty is related to the group:

• Generic attack: complexity in $\Omega(\max(\alpha_i \sqrt{p_i}))$ if $\#G = \prod_i p_i^{\alpha_i}$

< 回 ト < 三 ト < 三 ト

Discrete logarithm problem (DLP)

Given a group G and $g, h \in G$, find – when it exists – an integer x s.t.

$$h = g^{x}$$

Difficulty is related to the group:

- Generic attack: complexity in $\Omega(\max(\alpha_i \sqrt{p_i}))$ if $\#G = \prod_i p_i^{\alpha_i}$
- G ⊂ (ℤ/nℤ, +): solving DLP has polynomial complexity with extended Euclid algorithm

くほと くほと くほと

Discrete logarithm problem (DLP)

Given a group G and $g, h \in G$, find – when it exists – an integer x s.t.

$$h = g^{x}$$

Difficulty is related to the group:

- Generic attack: complexity in $\Omega(\max(\alpha_i \sqrt{p_i}))$ if $\#G = \prod_i p_i^{\alpha_i}$
- G ⊂ (ℤ/nℤ, +): solving DLP has polynomial complexity with extended Euclid algorithm
- $G \subset (\mathbb{F}_q^*, \times)$: index calculus method with complexity in $L_q(1/3)$ where $L_q(\alpha) = \exp(c(\log q)^{\alpha}(\log \log q)^{1-\alpha})$.

イロト イポト イヨト イヨト 二日

Discrete logarithm problem (DLP)

Given a group G and $g, h \in G$, find – when it exists – an integer x s.t.

$$h = g^{x}$$

Difficulty is related to the group:

- Generic attack: complexity in $\Omega(\max(\alpha_i \sqrt{p_i}))$ if $\#G = \prod_i p_i^{\alpha_i}$
- ③ G ⊂ (ℤ/nℤ, +): solving DLP has polynomial complexity with extended Euclid algorithm
- $G \subset (\mathbb{F}_q^*, \times)$: index calculus method with complexity in $L_q(1/3)$ where $L_q(\alpha) = \exp(c(\log q)^{\alpha}(\log \log q)^{1-\alpha})$.
- G ⊂ (Jac_C(𝔽_q), +): index calculus method asymptotically faster than generic attacks, depending of the genus g > 2

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Elliptic curve DLP

Good candidates for DLP-based cryptosystems: elliptic curves defined over finite fields

ECDLP: Given $P \in E(\mathbb{F}_q)$ and $Q \in \langle P \rangle$ find x such that Q = [x]P

- On 𝔽_p (p prime): in general, no known attack better than generic algorithms
 → good security
- On 𝔽_{pⁿ} (for faster hardware arithmetic): possible to apply *index calculus* → security reduction in some cases

Section 1

The index calculus method

3

3

Image: A match a ma

Introduction to index calculus

Originally developed for the factorization of large integers, improving on the square congruence method of Fermat.

Index calculus based Number/Function Field Sieve hold records for both integer factorization and finite field DLP.

Idea

- Find group relations between a "small" number of generators (or *factor base* elements)
- With sufficiently many relations and linear algebra, deduce the group structure and the DL of elements

(日) (周) (三) (三)

Basic outline

 $(G,+)=\langle g
angle$ finite abelian group of prime order r, $h\in G$

• Choice of a factor base: $\mathcal{F} = \{g_1, \ldots, g_N\} \subset G$

E ∽QQ

Basic outline

 $(G,+)=\langle g
angle$ finite abelian group of prime order r, $h\in G$

- Choice of a factor base: $\mathcal{F} = \{g_1, \ldots, g_N\} \subset G$
- **2** Relation search: decompose $[a_i]g + [b_i]h(a_i, b_i \text{ random})$ into \mathcal{F}

$$[a_i]g + [b_i]h = \sum_{j=1}^N [c_{ij}]g_j, ext{ where } c_{ij} \in \mathbb{Z}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Basic outline

 $({\it G},+)=\langle g
angle$ finite abelian group of prime order r, $h\in {\it G}$

- Choice of a factor base: $\mathcal{F} = \{g_1, \dots, g_N\} \subset G$
- **2** Relation search: decompose $[a_i]g + [b_i]h(a_i, b_i \text{ random})$ into \mathcal{F}

$$[a_i]g + [b_i]h = \sum_{j=1}^N [c_{ij}]g_j, ext{ where } c_{ij} \in \mathbb{Z}$$

- Solution Linear algebra: once k relations found $(k \ge N)$
 - construct the matrices $A = \begin{pmatrix} a_i & b_i \end{pmatrix}_{1 \le i \le k}$ and $M = \begin{pmatrix} c_{ij} \end{pmatrix}_{1 \le i \le k}$
 - ▶ find $v = (v_1, ..., v_k) \in \ker({}^tM)$ such that $vA \neq \begin{pmatrix} 0 & 0 \end{pmatrix} \mod r$
 - compute the solution of DLP: $x = -(\sum_{i} a_i v_i) / (\sum_{i} b_i v_i) \mod r$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

- Choice of factor base: equivalence classes of prime integers smaller than a smoothness bound B (usually together with -1)
- Relation search: a combination $[a_i]g$ yields a relation if its representative in $\left[-\frac{p-1}{2}; \frac{p-1}{2}\right]$ is *B*-smooth

一日、

- Choice of factor base: equivalence classes of prime integers smaller than a smoothness bound B (usually together with -1)
- Relation search: a combination $[a_i]g$ yields a relation if its representative in $\left[-\frac{p-1}{2}; \frac{p-1}{2}\right]$ is *B*-smooth

p = 107, $G = \mathbb{Z}/p\mathbb{Z}^*$, g = 31, $\mathcal{F} = \{-1; 2; 3; 5; 7\}$, find the DL of h = 19.

- 本間下 本臣下 本臣下 三臣

- Choice of factor base: equivalence classes of prime integers smaller than a smoothness bound B (usually together with -1)
- Relation search: a combination $[a_i]g$ yields a relation if its representative in $\left[-\frac{p-1}{2}; \frac{p-1}{2}\right]$ is *B*-smooth

p = 107, $G = \mathbb{Z}/p\mathbb{Z}^*$, g = 31, $\mathcal{F} = \{-1; 2; 3; 5; 7\}$, find the DL of h = 19.

$$g^{1} = 31$$
, not smooth
 $g^{2} = -2 = -1 \times 2$
 $g^{3} = 45 = 3^{2} \times 5$
 $g^{4} = 4 = 2^{2}$
 $g^{5} = 17$, not smooth

Introduction

An example: the prime field case

- Choice of factor base: equivalence classes of prime integers smaller than a smoothness bound B (usually together with -1)
- Relation search: a combination $[a_i]g$ yields a relation if its representative in $\left[-\frac{p-1}{2}; \frac{p-1}{2}\right]$ is *B*-smooth

p = 107, $G = \mathbb{Z}/p\mathbb{Z}^*$, g = 31, $\mathcal{F} = \{-1; 2; 3; 5; 7\}$, find the DL of h = 19.

- Choice of factor base: equivalence classes of prime integers smaller than a smoothness bound B (usually together with -1)
- Relation search: a combination $[a_i]g$ yields a relation if its representative in $\left[-\frac{p-1}{2}; \frac{p-1}{2}\right]$ is *B*-smooth

$$p = 107, \ G = \mathbb{Z}/p\mathbb{Z}^*, \ g = 31, \ \mathcal{F} = \{-1; 2; 3; 5; 7\}, \text{ find the DL of } h = 19.$$

$$\begin{pmatrix} 2\\3\\4\\13\\14\\15\\16\\21 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 & 0 & 0\\0 & 0 & 2 & 1 & 0\\0 & 2 & 0 & 0 & 0\\1 & 0 & 0 & 0 & 2\\1 & 0 & 1 & 0 & 1\\1 & 0 & 2 & 0 & 0\\0 & 1 & 1 & 0 & 1\\1 & 0 & 0 & 1 & 1 \end{pmatrix} X \mod 106 \Rightarrow X = \begin{pmatrix} 53\\55\\34\\41\\33 \end{pmatrix}$$

一日、

- Choice of factor base: equivalence classes of prime integers smaller than a smoothness bound B (usually together with -1)
- Relation search: a combination $[a_i]g$ yields a relation if its representative in $\left[-\frac{p-1}{2}; \frac{p-1}{2}\right]$ is *B*-smooth

 $p = 107, \ G = \mathbb{Z}/p\mathbb{Z}^*, \ g = 31, \ \mathcal{F} = \{-1; 2; 3; 5; 7\}, \ \text{find the DL of } h = 19.$

$$\log(-1) = 53$$
 $\log(2) = 55$ $\log(3) = 34$ $\log(5) = 41$ $\log(7) = 33$

$$gh = 54 = 2 \times 3^3 = (g^{55})(g^{34})^3 = g^{51} \Rightarrow h = g^{50}$$

General remarks

- Relation search very specific to the group and can be the main obstacle
- ② On the other hand, linear algebra almost the same for all groups
- Salance to find between the two phases:
 - ▶ if #F small, few relations needed and fast linear algebra but small probability of decomposition ~→ many trials before finding a relation
 - ▶ if #*F* large, easy to find relations but many of them needed and slow linear algebra

A (10) A (10) A (10)

The linear algebra step

The matrix of relations

- very large for real-world applications: typical size is several millions rows/columns.
- extremely sparse: only a few non-zero coefficients per row

 \Rightarrow use sparse linear algebra techniques instead of standard resolution tools

The linear algebra step

The matrix of relations

- very large for real-world applications: typical size is several millions rows/columns.
- extremely sparse: only a few non-zero coefficients per row

 \Rightarrow use sparse linear algebra techniques instead of standard resolution tools

Main ideas:

- Keep the matrix sparse (Gauss)
- Use matrix-vector products: cost only proportional to the number of non-zero entries

Two principal algorithms: Lanczos and Wiedemann

Complexity in $O(n^2c)$ if n relations with c non-zero entries per relation

3

Improving the linear algebra step

Remark

- Relation search always straightforward to distribute
- Not so true for the linear algebra

Often advantageous to compute many more relations than needed and use extra information to simplify the relation matrix

Two methods:

 Structured Gaussian elimination: Particularly well-suited when elements of the factor base have different frequencies (e.g on finite fields)

Large prime variations

Structured Gaussian elimination [LaMacchia-Odlyzko]

Goal: reduce the size of the matrix while keeping it sparse. Distinction between the matrix columns (i.e. the factor base elements):

- dense columns correspond to "small primes"
- other columns correspond to "large primes"

Structured Gaussian elimination [LaMacchia-Odlyzko]

Goal: reduce the size of the matrix while keeping it sparse. Distinction between the matrix columns (i.e. the factor base elements):

- dense columns correspond to "small primes"
- other columns correspond to "large primes"
- If a column contains only one non-zero entry, remove it and the corresponding row.

Also, remove columns/rows containing only zeroes.

- Ø Mark some new columns as dense
- ${f 0}$ Find rows with only one ± 1 coefficient in the non-dense part
 - Use this coefficient as a pivot to clear its column
 - Remove corresponding row and column
- Remove rows that have become too dense and go back to step 1

E 5 4 E 5

Image: A matrix and a matrix

The hyperelliptic curve case

 $\mathcal{H}: y^2 + h_0(x)y = h_1(x), \quad h_0, h_1 \in \mathbb{F}_q[x], \text{ deg } h_0 \leq g, \text{ deg } h_1 = 2g + 1$ hyperelliptic curve of genus g with (unique) point at infinity $\mathcal{O}_{\mathcal{H}}$

hyperelliptic involution *ι*: (*x*_P, *y*_P) → (*x*_P, -*y*_P - *h*₀(*x*_P))
#*H*(𝔽_{*a*}) ≃ *q*

Vanessa VITSE (UVSQ)

The Jacobian variety of \mathcal{H}

Divisor class group

Elements of $Jac_{\mathcal{H}}$ are (equivalence class of) formal sums of points of \mathcal{H}

Vanessa VITSE (UVSQ)

The Jacobian variety of \mathcal{H}

Divisor class group

Elements of Jac_H are (equivalence class of) formal sums of points of \mathcal{H}

The Jacobian variety of \mathcal{H}

Divisor class group

Elements of Jac_H are (equivalence class of) formal sums of points of \mathcal{H}

Vanessa VITSE (UVSQ)

The Jacobian variety of \mathcal{H}

Divisor class group

Elements of $Jac_{\mathcal{H}}$ are (equivalence class of) formal sums of points of \mathcal{H}

The Jacobian variety of \mathcal{H}

Divisor class group

Elements of $Jac_{\mathcal{H}}$ are (equivalence class of) formal sums of points of \mathcal{H}

The Jacobian variety of \mathcal{H}

Divisor class group

Elements of Jac_H are (equivalence class of) formal sums of points of \mathcal{H}

Representations of elements of $Jac_{\mathcal{H}}$ Reduced representation

An element $[D] \in \mathsf{Jac}_{\mathcal{H}}(\mathbb{F}_q)$ has a unique reduced representation

 $D \sim (P_1) + \dots + (P_r) - r(\mathcal{O}_{\mathcal{H}}), \quad r \leq g, \ P_i \neq \iota(P_j) \text{ for } i \neq j$

Mumford representation

One-to-one correspondence between elements of $Jac_{\mathcal{H}}(\mathbb{F}_q)$ and couples of polynomials $(u, v) \in \mathbb{F}_q[x]^2$ s.t.

- u monic, deg $u \leq g$
- deg $v < \deg u$
- *u* divides $v^2 + vh_0 h_1$
- Cantor's algorithm for addition law
- $\# \operatorname{Jac}_{\mathcal{H}}(\mathbb{F}_q) \simeq q^g$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Adleman-DeMarrais-Huang's index calculus

Analog of the integer factorization for elements of the Jacobian variety:

Proposition

Let $D = (u, v) \in \operatorname{Jac}_{\mathcal{H}}(\mathbb{F}_q)$. If *u* factorizes as $\prod_i u_i$ over \mathbb{F}_q , then

•
$$D_j = (u_j, v_j)$$
 is in $Jac_{\mathcal{H}}(\mathbb{F}_q)$, where $v_j = v \mod u_j$

•
$$D = \sum_j D_j$$

くほと くほと くほと

Adleman-DeMarrais-Huang's index calculus

Analog of the integer factorization for elements of the Jacobian variety:

Proposition

Let $D = (u, v) \in \mathsf{Jac}_{\mathcal{H}}(\mathbb{F}_q)$. If u factorizes as $\prod_j u_j$ over \mathbb{F}_q , then

•
$$D_j = (u_j, v_j)$$
 is in $Jac_{\mathcal{H}}(\mathbb{F}_q)$, where $v_j = v \mod u_j$

•
$$D = \sum_j D_j$$

Allows to apply index calculus [Enge-Gaudry]

- Factor base: F = {(u, v) ∈ Jac_H(𝔽_q) : u irreducible, deg u ≤ B} ("small prime divisors")
- Element $[a_i]D_0 + [b_i]D_1$ yields a relation if corresponding u polynomial is B-smooth

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Adleman-DeMarrais-Huang's index calculus

Analog of the integer factorization for elements of the Jacobian variety:

Proposition

Let $D = (u, v) \in \text{Jac}_{\mathcal{H}}(\mathbb{F}_q)$. If u factorizes as $\prod_j u_j$ over \mathbb{F}_q , then

•
$$D_j = (u_j, v_j)$$
 is in $\operatorname{Jac}_{\mathcal{H}}(\mathbb{F}_q)$, where $v_j = v \mod u_j$

•
$$D = \sum_j D_j$$

Allows to apply index calculus [Enge-Gaudry]

- Factor base: F = {(u, v) ∈ Jac_H(𝔽_q) : u irreducible, deg u ≤ B} ("small prime divisors")
- Element $[a_i]D_0 + [b_i]D_1$ yields a relation if corresponding u polynomial is B-smooth

Subexponential complexity in $L_{q^g}(1/2)$ when $q \to \infty$ and $g = \Omega(\log q)$

イロト イヨト イヨト イヨト

The small genus case

Gaudry's algorithm for small genus curves

- Factor base: $\mathcal{F} = \{(u, v) \in \mathsf{Jac}_{\mathcal{H}}(\mathbb{F}_q) : \deg u = 1\}$ of size $\simeq q$
- D = (u, v) decomposable $\Leftrightarrow u$ splits over \mathbb{F}_q
- Probability of decomposition $\simeq 1/g!$
- $\Rightarrow O(g!q) \text{ tests (relation search)} + O(gq^2) \text{ field operations (linear alg.)}$ **Total cost**: $O((g^2 \log^3 q)g!q + (g^2 \log q)q^2)$
The small genus case

Gaudry's algorithm for small genus curves

- Factor base: $\mathcal{F} = \{(u, v) \in \mathsf{Jac}_{\mathcal{H}}(\mathbb{F}_q) : \deg u = 1\}$ of size $\simeq q$
- D = (u, v) decomposable $\Leftrightarrow u$ splits over \mathbb{F}_q
- Probability of decomposition $\simeq 1/g!$
- $\Rightarrow O(g!q) \text{ tests (relation search)} + O(gq^2) \text{ field operations (linear alg.)}$ **Total cost**: $O((g^2 \log^3 q)g!q + (g^2 \log q)q^2)$

For fixed genus g, relation search in $\tilde{O}(q)$ vs linear algebra in $\tilde{O}(q^2)$

• resolution of the DLP in $\tilde{O}(q^2)$

 \Rightarrow better than generic attacks as soon as g > 4

possible improvement by rebalancing the two phases

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

The hyperelliptic case

Double large prime variation

Gaudry - Thomé - Thériault - Diem

- Define new factor base $\mathcal{F}' \subset \mathcal{F}$ with $\#\mathcal{F}' = q^{\alpha}$ \mathcal{F}' : "small primes" $\mathcal{F} \setminus \mathcal{F}'$: "large primes" \rightsquigarrow linear algebra in $\tilde{O}(q^{2\alpha})$
- Keep relations involving at most two large primes, discard others
- After collecting $\simeq \# \mathcal{F}$ relations 2LP, possible to eliminate the large primes and obtain $\simeq \# \mathcal{F}'$ relations involving only small primes
- Asymptotically optimal choice α = 1 − 1/g
 → total complexity in Õ(q^{2-2/g})
 → better than generic attacks as soon as g >

 \rightsquigarrow better than generic attacks as soon as $g\geq 3$

• Practical best choice depends on actual cost of the 2 phases and computing power available

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Index calculus on small degree plane curves [Diem '06]

Diem's algorithm

- applies to Jacobians of curves admitting a small degree plane model
- uses divisors of simple functions to find relations between factor base elements
- relies strongly on the double large prime variation

Index calculus on small degree plane curves [Diem '06]

Diem's algorithm

- applies to Jacobians of curves admitting a small degree plane model
- uses divisors of simple functions to find relations between factor base elements
- relies strongly on the double large prime variation

For $\mathcal{C}_{|\mathbb{F}_q}$ of fixed degree d, complexity in $\tilde{O}(q^{2-2/(d-2)})$

- most genus g curves admit a plane model of degree g + 1 \rightsquigarrow complexity in $\tilde{O}(q^{2-2/(g-1)})$
- not true for hyperelliptic curves

Index calculus on small degree plane curves [Diem '06]

Diem's algorithm

- applies to Jacobians of curves admitting a small degree plane model
- uses divisors of simple functions to find relations between factor base elements
- relies strongly on the double large prime variation

For $\mathcal{C}_{|\mathbb{F}_q}$ of fixed degree d, complexity in $ilde{O}(q^{2-2/(d-2)})$

- most genus g curves admit a plane model of degree g + 1 \rightsquigarrow complexity in $\tilde{O}(q^{2-2/(g-1)})$
- not true for hyperelliptic curves

Consequence

Jacobians of non-hyperelliptic curves usually weaker than those of hyperelliptic curves (especially true for g = 3).

イロト イヨト イヨト イヨト

The non-hyperelliptic case

Idea of index calculus on small degree plane curves

• Take P_1, P_2 small primes

- Take P_1, P_2 small primes
- L line through P_1 and P_2 if $L \cap C(\mathbb{F}_q) = \{P_1, \dots, P_d\}$, then relation:

 $(P_1) + \cdots + (P_d) - D_{\infty} \sim 0$

- Take P_1, P_2 small primes
- L line through P_1 and P_2 if $L \cap C(\mathbb{F}_q) = \{P_1, \dots, P_d\}$, then relation:

 $(P_1)+\cdots+(P_d)-D_\infty\sim 0$

- Take P_1, P_2 small primes
- L line through P_1 and P_2 if $L \cap C(\mathbb{F}_q) = \{P_1, \dots, P_d\}$, then relation:

 $(P_1)+\cdots+(P_d)-D_\infty\sim 0$

Summary

Asymptotic comparison on $\operatorname{Jac}_{\mathcal{C}}(\mathbb{F}_q)$

Genus	2	3	4	5
Generic methods	q	$q^{3/2}$	q^2	$q^{5/2}$
Classical index calculus	q^2	q^2	q^2	q^2
2LP, hyperelliptic case	q	$q^{4/3}$	$q^{3/2}$	$q^{8/5}$
2LP, small degree case (non hyperelliptic)	_	q	q ^{4/3}	q ^{3/2}

э

Summary

Asymptotic comparison on $\operatorname{Jac}_{\mathcal{C}}(\mathbb{F}_q)$

Genus	2	3	4	5
Generic methods	q	$q^{1.5}$	q^2	$q^{2.5}$
Classical index calculus	q^2	q^2	q^2	q^2
2LP, hyperelliptic case	q	$q^{1.33}$	$q^{1.5}$	$q^{1.6}$
2LP, small degree case (non hyperelliptic)	_	q	q ^{1.33}	$q^{1.5}$

э

Section 2

Decomposition index calculus

Vanessa VITSE (UVSQ)

DLP over elliptic curves

2 November 2011 21 / 34

イロト イヨト イヨト イヨト

э

Application to elliptic curves

No canonical choice of factor base nor natural way of finding decompositions

3

∃ → (∃ →

Attack on $E(\mathbb{F}_{a^n})$

Application to elliptic curves

No canonical choice of factor base nor natural way of finding decompositions

What kind of "decomposition" over E(K)?

Main idea [Semaev '04]:

- consider decompositions in a fixed number of points of \mathcal{F} $R = [a]P + [b]Q = P_1 + \cdots + P_m$
- convert this algebraically by using the (m+1)-th summation polynomial:

$$f_{m+1}(x_R, x_{P_1}, \dots, x_{P_m}) = 0$$

$$\Leftrightarrow \exists \epsilon_1, \dots, \epsilon_m \in \{1, -1\}, R = \epsilon_1 P_1 + \dots + \epsilon_m P_m$$

- 3

(日) (周) (三) (三)

Gaudry and Diem (2004)

"Decomposition attack": index calculus on $E(\mathbb{F}_{q^n})$

- Natural factor base: $\mathcal{F} = \{(x, y) \in E(\mathbb{F}_{q^n}) : x \in \mathbb{F}_q\}, \ \#\mathcal{F} \simeq q$
- Relations involve *n* points: $R = P_1 + \cdots + P_n$
- Restriction of scalars: decompose along a \mathbb{F}_q -linear basis of \mathbb{F}_{q^n}

$$f_{n+1}(x_R, x_{P_1}, \dots, x_{P_n}) = 0 \Leftrightarrow \begin{cases} \varphi_1(x_{P_1}, \dots, x_{P_n}) = 0 \\ \vdots \\ \varphi_n(x_{P_1}, \dots, x_{P_n}) = 0 \end{cases}$$
(S_R)

One decomposition trial \leftrightarrow resolution of \mathcal{S}_R over \mathbb{F}_q

(日) (周) (三) (三)

Gaudry and Diem (2004)

"Decomposition attack": index calculus on $E(\mathbb{F}_{q^n})$

- Natural factor base: $\mathcal{F} = \{(x, y) \in E(\mathbb{F}_{q^n}) : x \in \mathbb{F}_q\}, \ \#\mathcal{F} \simeq q$
- Relations involve *n* points: $R = P_1 + \cdots + P_n$
- Restriction of scalars: decompose along a \mathbb{F}_q -linear basis of \mathbb{F}_{q^n}

$$f_{n+1}(x_R, x_{P_1}, \dots, x_{P_n}) = 0 \Leftrightarrow \begin{cases} \varphi_1(x_{P_1}, \dots, x_{P_n}) = 0 \\ \vdots \\ \varphi_n(x_{P_1}, \dots, x_{P_n}) = 0 \end{cases}$$
(S_R)

One decomposition trial \leftrightarrow resolution of \mathcal{S}_R over \mathbb{F}_q

• With "double large prime" variation, overall complexity in $\tilde{O}\left(n!2^{3n(n-1)}q^{2-2/n}\right)$

• Bottleneck: deg $I(S_R) = 2^{n(n-1)}$. But most solutions not in \mathbb{F}_q

イロト 不得下 イヨト イヨト 二日

Variant "n - 1" [Joux-V. '10]

Decompositions into m = n - 1 points

- compute the *n*-th summation polynomial (instead of n + 1-th) with partially symmetrized resultant
- solve \mathcal{S}_R with n-1 var, n eq and total degree 2^{n-2}
- (n-1)!q expected numbers of trials to get one relation

Computation speed-up

• S_R is overdetermined and $I(S_R)$ has very low degree (0 or 1 excep.)

- resolution with a *grevlex* Gröbner basis
- no need to change order (FGLM)
- Speed up computations with F4Remake

イロト 不得下 イヨト イヨト 二日

Comparaison of the three attacks of ECDLP over \mathbb{F}_{q^n}

Under some heuristic assumptions, complexity of variant n-1 in

$$\tilde{O}\left((n-1)!\left(2^{(n-1)(n-2)}e^nn^{-1/2}\right)^{\omega}q^2\right)$$

Example of application to $E(\mathbb{F}_{p^5})$

Standard 'Well Known Group' 3 Oakley curve

E elliptic curve defined over $\mathbb{F}_{2^{155}}$, # $E(\mathbb{F}_{2^{155}}) = 12 \cdot 3805993847215893016155463826195386266397436443$

- $\mathcal{F} = \{ P \in E(\mathbb{F}_{2^{155}}) : x(P) \in \mathbb{F}_{2^{31}} \}$
- Decomposition test with variant n 1 takes 22.95 ms using F4Remake (on 2.93 GHz Intel Xeon)

Example of application to $E(\mathbb{F}_{p^5})$

Standard 'Well Known Group' 3 Oakley curve

E elliptic curve defined over $\mathbb{F}_{2^{155}}$, # $E(\mathbb{F}_{2^{155}}) = 12 \cdot 3805993847215893016155463826195386266397436443$

- $\mathcal{F} = \{ P \in E(\mathbb{F}_{2^{155}}) : x(P) \in \mathbb{F}_{2^{31}} \}$
- Decomposition test with variant n 1 takes 22.95 ms using F4Remake (on 2.93 GHz Intel Xeon)

- too slow for complete DLP resolution
- but efficient threat for Oracle-assisted Static Diffie-Hellman Problem (only one relation needed)

- 3

(日) (周) (三) (三)

 $\mathcal{H}|_{\mathbb{F}_{q^n}}$ hyperelliptic curve of genus g with a unique point $\mathcal O$ at infinity

Gaudry's framework

- Factor base containing about q elements $\mathcal{F} = \{ D_Q \in \mathsf{Jac}_{\mathcal{H}}(\mathbb{F}_{q^n}) : D_Q \sim (Q) - (\mathcal{O}), Q \in \mathcal{H}(\mathbb{F}_{q^n}), x(Q) \in \mathbb{F}_q \}$
- Decomposition search: try to write arbitrary divisor D ∈ Jac_H(𝔽_{qⁿ}) as sum of ng divisors of F

Asymptotic complexity for *n*, *g* fixed in $\tilde{O}(q^{2-2/ng})$

- 4 週 ト - 4 三 ト - 4 三 ト

 $\mathcal{H}|_{\mathbb{F}_{q^n}}$ hyperelliptic curve of genus g with a unique point $\mathcal O$ at infinity

Gaudry's framework

- Factor base containing about q elements $\mathcal{F} = \{ D_Q \in \mathsf{Jac}_{\mathcal{H}}(\mathbb{F}_{q^n}) : D_Q \sim (Q) - (\mathcal{O}), Q \in \mathcal{H}(\mathbb{F}_{q^n}), x(Q) \in \mathbb{F}_q \}$
- Decomposition search: try to write arbitrary divisor D ∈ Jac_H(𝔽_{qⁿ}) as sum of ng divisors of F

Asymptotic complexity for *n*, *g* fixed in $\tilde{O}(q^{2-2/ng})$

How to check if *D* can be decomposed?

- Semaev's summation polynomials are no longer available
- use Riemann-Roch based reformulation of Nagao instead

(日) (周) (三) (三)

Main difficulty in Nagao's decompositions

Solve a 0-dim quadratic polynomial system of (n-1)ng eq./var. for each divisor $D(=[a_i]D_0 + [b_i]D_1) \in Jac_{\mathcal{H}}(\mathbb{F}_{q^n})$.

• complexity at least polynomial in $d = 2^{(n-1)ng}$

• relevant only for *n* and *g* small enough

Main difficulty in Nagao's decompositions

Solve a 0-dim quadratic polynomial system of (n-1)ng eq./var. for each divisor $D(=[a_i]D_0 + [b_i]D_1) \in Jac_{\mathcal{H}}(\mathbb{F}_{q^n})$.

- complexity at least polynomial in $d = 2^{(n-1)ng}$
- relevant only for *n* and *g* small enough

In practice:

- Decompositions as $D \sim \sum_{i=1}^{ng} \left((\mathcal{Q}_i) (\mathcal{O}_{\mathcal{H}}) \right)$ are too slow to compute
- Faster alternative [Joux-V.]: compute relations involving only elements of $\ensuremath{\mathcal{F}}$

$$\sum_{i=1}^{ng+2} \left(\left(\mathcal{Q}_i
ight) - \left(\mathcal{O}_\mathcal{H}
ight)
ight) \sim 0$$

(日) (周) (三) (三)

Attack on $Jac_{\mathcal{H}}(\mathbb{F}_{q^n})$

The modified relation search

- ${\mathcal H}$ hyperelliptic curve of genus g defined over ${\mathbb F}_{q^n},\ n\geq 2$
 - find relations of the form $\sum_{i=1}^{ng+2}\left((\mathcal{Q}_i)-(\mathcal{O}_{\mathcal{H}})
 ight)\sim 0$
 - linear algebra: deduce DL of factor base elements up to a constant
 - descent phase: compute two Nagao-style decompositions to complete the DLP resolution

Attack on $Jac_{\mathcal{H}}(\mathbb{F}_{q^n})$

The modified relation search

- ${\mathcal H}$ hyperelliptic curve of genus g defined over ${\mathbb F}_{q^n},\ n\geq 2$
 - find relations of the form $\sum_{i=1}^{ng+2} \left((Q_i) (\mathcal{O}_{\mathcal{H}}) \right) \sim 0$
 - linear algebra: deduce DL of factor base elements up to a constant
 - descent phase: compute two Nagao-style decompositions to complete the DLP resolution
 - With Nagao: about (ng)! q quadratic polynomial systems of n(n-1)g eq./var. to solve
 - With variant: only 1 under-determined quadratic system of n(n-1)g + 2n 2 eq. and n(n-1)g + 2n var.

- 3

(日) (周) (三) (三)

Attack on $Jac_{\mathcal{H}}(\mathbb{F}_{q^n})$

The modified relation search

- ${\mathcal H}$ hyperelliptic curve of genus g defined over ${\mathbb F}_{q^n},\ n\geq 2$
 - find relations of the form $\sum_{i=1}^{ng+2} \left((Q_i) (\mathcal{O}_{\mathcal{H}}) \right) \sim 0$
 - linear algebra: deduce DL of factor base elements up to a constant
 - descent phase: compute two Nagao-style decompositions to complete the DLP resolution
 - With Nagao: about (ng)! q quadratic polynomial systems of n(n-1)g eq./var. to solve
 - With variant: only 1 under-determined quadratic system of n(n-1)g + 2n 2 eq. and n(n-1)g + 2n var.

Speed-up

Much faster to compute decompositions with our variant

ightarrow about 960 times faster for (n,g)=(2,3) on a 150-bit curve

Section 3

Cover and decomposition attacks

3

- ∢ ≣ →

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Let *E* be an elliptic curve defined over \mathbb{F}_{q^n} and *C* a curve defined over \mathbb{F}_q , such that there exists a **cover map** $\pi : \mathcal{C}(\mathbb{F}_{q^n}) \to E(\mathbb{F}_{q^n})$.

Let *E* be an elliptic curve defined over \mathbb{F}_{q^n} and *C* a curve defined over \mathbb{F}_q , such that there exists a **cover map** $\pi : \mathcal{C}(\mathbb{F}_{q^n}) \to E(\mathbb{F}_{q^n})$.

• transfer the DLP from $E(\mathbb{F}_{q^n})$ to $\operatorname{Jac}_{\mathcal{C}}(\mathbb{F}_q)$

$$\begin{array}{ccc} \mathcal{C}(\mathbb{F}_{q^n}) & \operatorname{Jac}_{\mathcal{C}}(\mathbb{F}_{q^n}) \xrightarrow{T_r} \operatorname{Jac}_{\mathcal{C}}(\mathbb{F}_q) \\ & & & \\ & & & \\ & & & \\ \pi^* & & & \\ & & & \\ E(\mathbb{F}_{q^n}) & & \operatorname{Jac}_{E}(\mathbb{F}_{q^n}) \simeq E(\mathbb{F}_{q^n}) \end{array} g \text{ genus of } \mathcal{C} \\ & & \text{s.t. } g \ge n \end{array}$$

$$\pi^*((P)) = \sum_{Q \in \pi^{-1}(\{P\})}(Q), \quad Tr(D) = \sum_{\sigma \in \mathsf{Gal}(\mathbb{F}_{q^n}/\mathbb{F}_q)} D^{\sigma}$$

Let *E* be an elliptic curve defined over \mathbb{F}_{q^n} and *C* a curve defined over \mathbb{F}_q , such that there exists a **cover map** $\pi : \mathcal{C}(\mathbb{F}_{q^n}) \to E(\mathbb{F}_{q^n})$.

• transfer the DLP from $E(\mathbb{F}_{q^n})$ to $\operatorname{Jac}_{\mathcal{C}}(\mathbb{F}_q)$

$$\begin{array}{ccc} \mathcal{C}(\mathbb{F}_{q^n}) & \operatorname{Jac}_{\mathcal{C}}(\mathbb{F}_{q^n}) \xrightarrow{Tr} \operatorname{Jac}_{\mathcal{C}}(\mathbb{F}_q) \\ & & & \\ \downarrow^{\pi} & & \pi^* \uparrow & & \\ \mathcal{E}(\mathbb{F}_{q^n}) & \operatorname{Jac}_{\mathcal{E}}(\mathbb{F}_{q^n}) \simeq \mathcal{E}(\mathbb{F}_{q^n}) \end{array}$$

2 use index calculus on $\operatorname{Jac}_{\mathcal{C}}(\mathbb{F}_q)$, complexity in

- $\tilde{O}(q^{2-2/g})$ if C is hyperelliptic with small genus g [Gaudry '00]
- $\tilde{O}(q^{2-2/(d-2)})$ if C has a small degree d plane model [Diem '06]

イロト イポト イヨト イヨト 二日

Let *E* be an elliptic curve defined over \mathbb{F}_{q^n} and *C* a curve defined over \mathbb{F}_q , such that there exists a cover map $\pi : \mathcal{C}(\mathbb{F}_{a^n}) \to E(\mathbb{F}_{a^n})$.

1 transfer the DLP from $E(\mathbb{F}_{q^n})$ to $Jac_{\mathcal{C}}(\mathbb{F}_q)$

$$\begin{array}{ccc} \mathcal{C}(\mathbb{F}_{q^n}) & \operatorname{Jac}_{\mathcal{C}}(\mathbb{F}_{q^n}) \xrightarrow{Tr} \operatorname{Jac}_{\mathcal{C}}(\mathbb{F}_q) \\ & & & \\ \downarrow^{\pi} & & \pi^* \uparrow & & \\ E(\mathbb{F}_{q^n}) & \operatorname{Jac}_{E}(\mathbb{F}_{q^n}) \simeq E(\mathbb{F}_{q^n}) \end{array}$$

2 use index calculus on $\operatorname{Jac}_{\mathcal{C}}(\mathbb{F}_{a})$, complexity in

- $\tilde{O}(q^{2-2/g})$ if C is hyperelliptic with small genus g [Gaudry '00]
- $\tilde{O}(a^{2-2/(d-2)})$ if C has a small degree d plane model [Diem '06]

The Gaudry-Heß-Smart technique Construct $\mathcal{C}_{|\mathbb{F}_{q}}$ and $\pi: \mathcal{C} \to E$ from $E_{|\mathbb{F}_{q}}$ and a degree 2 map $E \to \mathbb{P}^{1}$ Vanessa VITSE (UVSQ) 2 November 2011 31 / 34

Let *E* be an elliptic curve defined over \mathbb{F}_{q^n} and *C* a curve defined over \mathbb{F}_q , such that there exists a **cover map** $\pi : \mathcal{C}(\mathbb{F}_{q^n}) \to E(\mathbb{F}_{q^n})$.

• transfer the DLP from $E(\mathbb{F}_{q^n})$ to $\operatorname{Jac}_{\mathcal{C}}(\mathbb{F}_q)$

$$\begin{array}{ccc} \mathcal{C}(\mathbb{F}_{q^n}) & \operatorname{Jac}_{\mathcal{C}}(\mathbb{F}_{q^n}) \xrightarrow{Tr} \operatorname{Jac}_{\mathcal{C}}(\mathbb{F}_q) \\ & & & \\ \downarrow^{\pi} & & & \\ \mathcal{E}(\mathbb{F}_{q^n}) & \operatorname{Jac}_{E}(\mathbb{F}_{q^n}) \simeq E(\mathbb{F}_{q^n}) \end{array} g \text{ genus of } \mathcal{C} \\ & & \text{s.t. } g \ge n \end{array}$$

2 use index calculus on $Jac_{\mathcal{C}}(\mathbb{F}_q)$, complexity in

- $\tilde{O}(q^{2-2/g})$ if C is hyperelliptic with small genus g [Gaudry '00]
- $\tilde{O}(q^{2-2/(d-2)})$ if C has a small degree d plane model [Diem '06]

The Gaudry-Heß-Smart technique

Problem: for most elliptic curves, $g(\mathcal{C})$ is of the order of 2^n

Vanessa VITSE (UVSQ)

A combined attack

- Let $E(\mathbb{F}_{q^n})$ elliptic curve such that
 - *n* is too large for a practical decomposition attack
 - \bullet GHS provides covering curves ${\cal C}$ with too large genus

A combined attack

- Let $E(\mathbb{F}_{q^n})$ elliptic curve such that
 - *n* is too large for a practical decomposition attack
 - \bullet GHS provides covering curves ${\cal C}$ with too large genus

Cover and decomposition attack [Joux-V.]

If *n* composite, combine both approaches:

- **(**) use GHS on the subextension $\mathbb{F}_{q^n}/\mathbb{F}_{q^d}$ to transfer the DL to $\operatorname{Jac}_{\mathcal{C}}(\mathbb{F}_{q^d})$
- 2 then use decomposition attack on $Jac_{\mathcal{C}}(\mathbb{F}_{q^d})$ with base field \mathbb{F}_q to solve the DLP
A combined attack

- Let $E(\mathbb{F}_{q^n})$ elliptic curve such that
 - *n* is too large for a practical decomposition attack
 - GHS provides covering curves C with too large genus

Cover and decomposition attack [Joux-V.]

If *n* composite, combine both approaches:

- **(**) use GHS on the subextension $\mathbb{F}_{q^n}/\mathbb{F}_{q^d}$ to transfer the DL to $\operatorname{Jac}_{\mathcal{C}}(\mathbb{F}_{q^d})$
- 2 then use decomposition attack on $Jac_{\mathcal{C}}(\mathbb{F}_{q^d})$ with base field \mathbb{F}_q to solve the DLP

 \rightarrow well adapted for curves defined over some Optimal Extension Fields

Comparisons and complexity estimates for 160 bits based on Magma

p 27-bit prime, $E(\mathbb{F}_{p^6})$ elliptic curve with 160-bit prime order subgroup

< 4 → <

Comparisons and complexity estimates for 160 bits based on Magma

p 27-bit prime, $E(\mathbb{F}_{p^6})$ elliptic curve with 160-bit prime order subgroup

• Generic attacks: $\tilde{O}(p^3)$ cost, $\approx 5 \times 10^{13}$ years

Comparisons and complexity estimates for 160 bits based on Magma

p 27-bit prime, $E(\mathbb{F}_{p^6})$ elliptic curve with 160-bit prime order subgroup

• Generic attacks: $ilde{O}(p^3)$ cost, $pprox 5 imes 10^{13}$ years

Pormer index calculus methods:

	Decomposition	GHS
$\mathbb{F}_{p^6}/\mathbb{F}_{p^2}$	$ ilde{O}(p^2)$ memory bottleneck	
$\mathbb{F}_{p^6}/\mathbb{F}_p$	intractable	efficient for $\leq 1/p^3$ curves $g=9:~ ilde{O}(p^{7/4}),pprox 1500$ years

Comparisons and complexity estimates for 160 bits based on Magma

p 27-bit prime, $E(\mathbb{F}_{p^6})$ elliptic curve with 160-bit prime order subgroup

 ${\small \small \bigcirc } {\small \small Generic attacks: ~ \tilde{O}(p^3) \mbox{ cost}, \approx 5 \times 10^{13} \mbox{ years} }$

Pormer index calculus methods:

	Decomposition	GHS
$\mathbb{F}_{p^6}/\mathbb{F}_{p^2}$	$ ilde{O}(p^2)$ memory bottleneck	
$\mathbb{F}_{p^6}/\mathbb{F}_p$	intractable	efficient for $\leq 1/p^3$ curves $g=9:~ ilde{O}(p^{7/4}),pprox 1500$ years

Over and decomposition:

 $\tilde{O}(p^{5/3})$ cost using a hyperelliptic genus 3 cover defined over \mathbb{F}_{p^2}

- \rightarrow occurs directly for $1/\textit{p}^2$ curves and most curves after isogeny walk
 - Nagao-style decomposition: pprox 750 years
 - Modified relation search: \approx 300 years

- 31

イロト 不得下 イヨト イヨト

Cover attacks

A concrete attack on a 150-bit curve

 $E: y^2 = x(x - \alpha)(x - \sigma(\alpha))$ defined over \mathbb{F}_{p^6} where $p = 2^{25} + 35$, such that $\#E = 4 \cdot 356814156285346166966901450449051336101786213$

• Previously unreachable curve: GHS gives cover over \mathbb{F}_{p} of genus 33...

A concrete attack on a 150-bit curve

E : $y^2 = x(x - \alpha)(x - \sigma(\alpha))$ defined over \mathbb{F}_{p^6} where $p = 2^{25} + 35$, such that $\#E = 4 \cdot 356814156285346166966901450449051336101786213$

- Previously unreachable curve: GHS gives cover over \mathbb{F}_p of genus 33...
- Complete resolution of DLP in about 1 month with cover and decomposition, using genus 3 hyperelliptic cover $\mathcal{H}_{|\mathbb{F}_{n^2}}$

Relation search

• lex GB: 2.7 sec with one core⁽¹⁾ • sieving: $p^2/(2 \cdot 8!) \simeq 1.4 \times 10^{10}$ relations in 62 h on 1 024 cores⁽²⁾ \rightarrow 960× faster than Nagao

Linear algebra

- SGE: 25.5 h on 32 cores⁽²⁾ \rightarrow fivefold reduction
- Lanczos: 28.5 days on 64 cores⁽²⁾ (200 MB of data broadcast/round)

(Descent phase done in \sim 14 s for one point)

⁽¹⁾ Magma on 2.6 GHz Intel Core 2 Duo

²⁾ 2.93 GHz quadri-core Intel Xeon 5550

Vanessa VITSE (UVSQ)

DLP over elliptic curves