Index calculus methods over $E(\mathbb{F}_{q^n})$ Application to the static Diffie-Hellman problem

Vanessa VITSE - Antoine JOUX

Université de Versailles Saint-Quentin, Laboratoire PRISM

March 26, 2010

Hardness of DLP

Discrete logarithm problem (DLP)

Given a group G and $g, h \in G$, find – when it exists – an integer x s.t.

$$h = g^{x}$$

Difficulty is related to the group:

- Generic attack: complexity in $\Omega(\max(\alpha_i \sqrt{p_i}))$ if $\#G = \prod_i p_i^{\alpha_i}$
- 2 $G \subset (\mathbb{F}_q^*, \times)$: index calculus method with complexity in $L_q(1/3)$
- G ⊂ (J_C(F_q), +): index calculus method with sub-exponential complexity (depending of the genus g > 1)

・ 同 ト ・ ヨ ト ・ ヨ ト

Hardness of ECDLP

ECDLP

Given $P \in E(\mathbb{F}_q)$ and $Q \in \langle P \rangle$, find x such that Q = [x]P

Specific attacks on few families of curves:

Transfer methods

- lift to characteristic zero fields: anomalous curves
- \bullet transfer to $\mathbb{F}_{a^k}^*$ via pairings: curves with small embedding degree
- Weil descent: transfer from $E(\mathbb{F}_{p^n})$ to $J_{\mathcal{C}}(\mathbb{F}_p)$ where \mathcal{C} is a genus $g \ge n$ curve

Otherwise, only generic attacks

|▲■▶ ▲ヨ▶ ▲ヨ▶ | ヨ | のくゆ

Trying an index calculus approach over $E(\mathbb{F}_{q^n})$

Basic outline

- Choice of a factor base: $\mathcal{F} = \{P_1, \ldots, P_N\} \subset G$
- **2** Relation search: decompose $[a_i]P + [b_i]Q$ $(a_i, b_i \text{ random})$ into \mathcal{F}

$$[a_i]P + [b_i]Q = \sum_{j=1}^N [c_{i,j}]P_j$$

• Linear algebra: once k relations found (k > N)

- construct the matrices $A = \begin{pmatrix} a_i & b_i \end{pmatrix}_{1 \le i \le k}$ and $M = \begin{pmatrix} c_{i,j} \end{pmatrix}_{1 \le i \le k}$
- Find $v = (v_1, \ldots, v_k) \in \ker({}^tM)$ such that $vA \neq 0$ [r]
- compute the solution of DLP: $x = -(\sum_i a_i v_i) / (\sum_i b_i v_i) \mod r$

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ─ 圖

Results

Results

Original algorithm (Gaudry, Diem)

Complexity of DLP over $E(\mathbb{F}_{q^n})$ in $\tilde{O}(q^{2-\frac{2}{n}})$ but with hidden constant exponential in n^2

- faster than generic methods when $n \ge 3$ and $\log q > C.n$
- sub-exponential complexity when $n = \Theta(\sqrt{\log q})$
- impracticable as soon as n > 4

Results

Results

Original algorithm (Gaudry, Diem)

Complexity of DLP over $E(\mathbb{F}_{q^n})$ in $\tilde{O}(q^{2-\frac{2}{n}})$ but with hidden constant exponential in n^2

- faster than generic methods when $n \ge 3$ and $\log q > C.n$
- sub-exponential complexity when $n = \Theta(\sqrt{\log q})$
- impracticable as soon as n > 4

Our variant

Complexity in $\tilde{O}(q^2)$ but with a better dependency in n

- better than generic methods when $n \ge 5$ and $\log q > c.n$
- better than Gaudry and Diem's method when $\log q < c' \cdot n^3 \log n$
- works for n = 5

イロト イポト イヨト イヨト

Ingredients (1)

Looking for specific relations

- check whether a given random combination R = [a]P + [b]Q can be decomposed as R = P₁ + ... + P_m, for a fixed number m
- convert the decomposition into a multivariate polynomial, but get rid of the variables y_{P_i} by using Semaev's summation polynomials

(日) (周) (三) (三)

Ingredients (1)

Looking for specific relations

- check whether a given random combination R = [a]P + [b]Q can be decomposed as R = P₁ + ... + P_m, for a fixed number m
- convert the decomposition into a multivariate polynomial, but get rid of the variables y_{P_i} by using Semaev's summation polynomials

Semaev's summation polynomials

Let *E* be an elliptic curve defined over *K*. The *m*-th summation polynomial is an irreducible symmetric polynomial $f_m \in K[X_1, \ldots, X_m]$ such that given $P_1 = (x_{P_1}, y_{P_1}), \ldots, P_m = (x_{P_m}, y_{P_m}) \in E(\overline{K}) \setminus \{O\}$, we have

$$f_m(x_{P_1},\ldots,x_{P_m})=0 \Leftrightarrow \exists \epsilon_1,\ldots,\epsilon_m \in \{1,-1\}, \epsilon_1 P_1 + \ldots + \epsilon_m P_m = O$$

イロト イポト イヨト イヨト

Computation of Semaev's summation polynomials

 $E: y^2 = x^3 + ax + b$

• f_m are uniquely determined by induction:

$$f_2(X_1, X_2) = X_1 - X_2$$

$$egin{aligned} f_3(X_1,X_2,X_3) &= (X_1-X_2)^2 X_3^2 - 2 \left((X_1+X_2) (X_1X_2+a) + 2b
ight) X_3 \ &+ (X_1X_2-a)^2 - 4b (X_1+X_2) \end{aligned}$$

and for $m \geq$ 4 and $1 \leq j \leq m-3$ by

$$f_m(X_1, X_2, \dots, X_m) = \operatorname{Res}_X (f_{m-j}(X_1, X_2, \dots, X_{m-j-1}, X), f_{j+2}(X_{m-j}, \dots, X_m, X))$$

② deg_{X_i} $f_m = 2^{m-2}$ ⇒ only computable for small values of m

イロト イポト イヨト イヨト

Ingredients (2)

Weil restriction

- write \mathbb{F}_{q^n} as $\mathbb{F}_q[t]/(f(t))$ where f irreducible of degree n
- convenient choice of $\mathcal{F} = \{P = (x, y) \in E(\mathbb{F}_{q^n}) : x \in \mathbb{F}_q, y \in \mathbb{F}_{q^n}\}$ $\rightsquigarrow R$ given, find $x_{P_1}, \ldots, x_{P_m} \in \mathbb{F}_q, f_{m+1}(x_{P_1}, \ldots, x_{P_m}, x_R) = 0$

イロト イポト イヨト イヨト 二日

Ingredients (2)

Weil restriction

- write \mathbb{F}_{q^n} as $\mathbb{F}_q[t]/(f(t))$ where f irreducible of degree n
- convenient choice of $\mathcal{F} = \{P = (x, y) \in E(\mathbb{F}_{q^n}) : x \in \mathbb{F}_q, y \in \mathbb{F}_{q^n}\}$ $\rightsquigarrow R$ given, find $x_{P_1}, \ldots, x_{P_m} \in \mathbb{F}_q, f_{m+1}(x_{P_1}, \ldots, x_{P_m}, x_R) = 0$

Method

- express the equation in terms of the elementary symmetric polynomials e₁,..., e_m of the variables x_{P1},..., x_{Pm}
- 2 Weil restriction: sort according to the powers of t

$$f_{m+1}(x_{P_1},\ldots,x_{P_m},x_R)=0\Leftrightarrow \sum_{i=0}^{n-1}\varphi_i(e_1,\ldots,e_m)t^i=0$$

Solve the obtained system of n polynomial equations of total degree 2^{m-1} in m unknowns

Choice of m

m = n where n is the degree of the extension field

Choice of m

m = n where n is the degree of the extension field

Complexity of the relation step

• Probability of decomposition as a sum of *n* points:

$$\frac{\#(\mathcal{F}^n/\mathfrak{S}_n)}{\#E(\mathbb{F}_{q^n})} \simeq \frac{q^n}{n!} \frac{1}{q^n} = \frac{1}{n!}$$

 \rightsquigarrow about *n*! trials give one relation

 each trial implies to solve over F_q a system of n polynomial equations in n variables, total degree 2ⁿ⁻¹, generically of dimension 0
 → complexity is polynomial in log q but over-exponential in n

 \Rightarrow total complexity of the relation search step (*n* fixed): $ilde{O}(q)$

イロト イヨト イヨト イヨト

First look at the total complexity

- Relation step: $\tilde{O}(q)$ with constant exponential in n
- 2 Linear algebra step: find a vector in the kernel of a very sparse matrix \rightsquigarrow complexity in $\tilde{O}(q^2)$ using Lanczos algorithm
- \Rightarrow Total complexity in $ilde{O}(q^2)$

First look at the total complexity

- Relation step: $\tilde{O}(q)$ with constant exponential in n
- ② Linear algebra step: find a vector in the kernel of a very sparse matrix \rightsquigarrow complexity in $\tilde{O}(q^2)$ using Lanczos algorithm
- \Rightarrow Total complexity in $ilde{O}(q^2)$

Improvement of the complexity

- rebalance the complexity of the two steps ("double large prime" technique)
- final complexity in $\tilde{O}(q^{2-2/n})$
 - ightarrow better than generic methods for large q as soon as $n \geq 3$

イロト 不得下 イヨト イヨト

A toy example over $\mathbb{F}_{101^2}\simeq \mathbb{F}_{101}[t]/(t^2+t+1)$

•
$$E: y^2 = x^3 + (1+16t)x + (23+43t)$$
 s.t. $\#E = 10273$

random points:

$$P = (71 + 85t, 82 + 47t), Q = (81 + 77t, 61 + 71t)$$

 \rightarrow find x s.t. Q = [x]P

(日) (周) (三) (三)

A toy example over $\mathbb{F}_{101^2}\simeq \mathbb{F}_{101}[t]/(t^2+t+1)$

•
$$E: y^2 = x^3 + (1+16t)x + (23+43t)$$
 s.t. $\#E = 10273$

o random points:

$$P = (71 + 85t, 82 + 47t), Q = (81 + 77t, 61 + 71t)$$

 $\rightarrow \text{ find } x \text{ s.t. } Q = [x]P$

• random combination of P and Q: R = [5962]P + [537]Q = (58 + 68t, 68 + 17t)

くほと くほと くほと

A toy example over $\mathbb{F}_{101^2}\simeq \mathbb{F}_{101}[t]/(t^2+t+1)$

•
$$E: y^2 = x^3 + (1+16t)x + (23+43t)$$
 s.t. $\#E = 10273$

random points:

$$P = (71 + 85t, 82 + 47t), Q = (81 + 77t, 61 + 71t)$$

 $\rightarrow \text{ find } x \text{ s.t. } Q = [x]P$

• random combination of P and Q: R = [5962]P + [537]Q = (58 + 68t, 68 + 17t)

• use 3-rd "symmetrized" Semaev polynomial and Weil restriction:

$$(e_1^2 - 4e_2)x_R^2 - 2(e_1(e_2 + a) + 2b)x_R + (e_2 - a)^2 - 4be_1 = 0$$

$$\Leftrightarrow \quad (32t+53)e_1^2 + (66t+86)e_1e_2 + (12t+49)e_1 + e_2^2 \\ + (42t+89)e_2 + 88t+45 = 0$$

$$\Leftrightarrow \begin{cases} 53e_1^2 + 86e_1e_2 + 49e_1 + e_2^2 + 89e_2 + 45 = 0\\ 32e_1^2 + 66e_1e_2 + 12e_1 + 42e_2 + 88 = 0 \end{cases}$$

くほと くほと くほと

A toy example over $\mathbb{F}_{101^2} \simeq \mathbb{F}_{101}[t]/(t^2+t+1)$

$$\begin{split} \textit{I} = \langle 53e_1^2 + 86e_1e_2 + 49e_1 + e_2^2 + 89e_2 + 45, \\ & 32e_1^2 + 66e_1e_2 + 12e_1 + 42e_2 + 88 \rangle \end{split}$$

• Gröbner basis of I for $lex_{e_1 > e_2}$: $G = \{e_1 + 86e_2^3 + 88e_2^2 + 58e_2 + 99, e_2^4 + 50e_2^3 + 85e_2^2 + 73e_2 + 17\}$

•
$$V(G) = \{(80, 72), (97, 68)\}$$

• solution 1: $(e_1, e_2) = (80, 72) \Rightarrow (x_{P_1}, x_{P_2}) = (5, 75)$
 $\Rightarrow P_1 = (5, 89 + 71t); P_2 = (75, 57 + 74t) \text{ and } P_1 + P_2 = R$
• solution 2: $(e_1, e_2) = (97, 68) \Rightarrow (x_{P_1}, x_{P_2}) = (19, 78)$
 $\Rightarrow P_1 = (19, 35 + 9t); P_2 = (78, 75 + 4t) \text{ and } -P_1 + P_2 = R$

• How many relations ?
$$\# \mathcal{F} = 104 \Rightarrow 105 \text{ relations needed}$$

• Linear algebra $\rightarrow x = 85$

Drawbacks of the original algorithm

Analysis of the system resolution

 $c(n,q) = \text{cost of resolution over } \mathbb{F}_q$ of a system in n eq, n var, deg 2^{n-1} Diem's analysis:

- ideal generically of dimension 0 and of degree $2^{n(n-1)}$
- resolution of with resultants: $c(n,q) \leq Poly(n!2^{n(n-1)}\log q)$

Drawbacks of the original algorithm

Analysis of the system resolution

 $c(n,q) = \text{cost of resolution over } \mathbb{F}_q$ of a system in n eq, n var, deg 2^{n-1} **Diem's analysis:**

- ideal generically of dimension 0 and of degree $2^{n(n-1)}$
- resolution of with resultants: $c(n,q) \leq Poly(n!2^{n(n-1)}\log q)$

Complexity of the system resolution with Gröbner basis

• compute a degrevlex Gröbner basis and use FGLM for ordering change

$$\tilde{O}\left(\left(2^{n(n-1)}e^nn^{-1/2}\right)^{\omega}\right) + \tilde{O}\left((2^{n(n-1)})^3\right)$$
F5 algorithm FGLM

• adding the field equations $x^q - x = 0$ is not practical for large q.

イロト 不得 トイヨト イヨト 二日

Drawbacks of the original algorithm

Analysis of the system resolution

 $c(n,q) = \text{cost of resolution over } \mathbb{F}_{q}$ of a system in *n* eq, *n* var, deg 2^{n-1} Diem's analysis:

- ideal generically of dimension 0 and of degree $2^{n(n-1)}$
- resolution of with resultants: $c(n,q) \leq Poly(n!2^{n(n-1)}\log q)$

Complexity of the system resolution with Gröbner basis

compute a degrevlex Gröbner basis and use FGLM for ordering change

$$\tilde{O}\left(\left(2^{n(n-1)}e^n n^{-1/2}\right)^{\omega}\right) + \tilde{O}\left(\left(2^{n(n-1)}\right)^3\right)$$

F5 algorithm FGLM

• adding the field equations $x^q - x = 0$ is not practical for large q.

huge constant because of the resolution of the polynomial system

Vanessa VITSE - Antoine JOUX (UVSQ)

Our variant

Choose m = n - 1

- compute the *n*-th summation polynomial instead of the (n + 1)-th
- solve system of n equations in (n-1) unknowns
- (n-1)!q expected numbers of trials to get one relation

Computation speed-up

- The system to be solved is generically overdetermined:
 - \succ in general there is no solution over $\overline{\mathbb{F}_q}$: $I=\langle 1
 angle$
 - exceptionally: very few solutions (almost always one)
 - Gröbner basis computation with *degrevlex*, FGLM not needed
- Adapted techniques to solve the system with an "F4-like" algorithm (more convenient than F4, F5 or hybrid approach)

(日) (周) (三) (三)

Complexity of the Gröbner basis computation

Shape of the system

- system of n polynomials of degree 2^{n-2} in n-1 variables
- semi-regular with degree of regularity $d_{reg} \leq \sum_{i=1}^{m} (\deg f_i 1) + 1$

Upper bound

• computation of the row echelon form of the d_{reg} -Macaulay matrix with at most $\binom{n-1+d_{reg}}{n-1}$ columns and smaller number of lines

using fast reduction techniques, the complexity is at most

$$\tilde{O}\left(\binom{n2^{n-2}}{n-1}^{\omega}\right) = \tilde{O}\left(\left(2^{(n-1)(n-2)}e^nn^{-1/2}\right)^{\omega}\right)$$

3

イロト イポト イヨト イヨト

Total complexity of our variant

• Relation search step: (n-1)!q trials to get one relation and q relations needed

$$\Rightarrow \tilde{O}\left((n-1)!q^2\left(2^{(n-1)(n-2)}e^nn^{-1/2}\right)^{\omega}\right)$$

• Linear algebra step: n-1 non-zero entries per row \Rightarrow complexity of $\tilde{O}(nq^2)$

Main result

Let *E* be an elliptic curve defined over \mathbb{F}_{q^n} , there exists an algorithm to solve the DLP in *E* with asymptotic complexity

$$\tilde{O}\left((n-1)!q^2\left(2^{(n-1)(n-2)}e^n n^{-1/2}\right)^{\omega}\right)$$

where $\boldsymbol{\omega}$ is the exponent in the complexity of matrix multiplication.

Comparison of the three attacks of ECDLP over \mathbb{F}_{q^n}

A toy example over $\mathbb{F}_{101^3}\simeq \mathbb{F}_{101}[t]/(t^3+t+1)$

•
$$E: y^2 = x^3 + (44 + 52t + 60t^2)x + (58 + 87t + 74t^2), \ \#E = 1029583$$

• random points:

$$P = (75+24t+84t^2, 61+18t+92t^2), Q = (28+97t+35t^2, 48+64t+7t^2)$$

$$\rightarrow \text{ find } x \text{ s.t. } Q = [x]P$$

(日) (周) (三) (三)

A toy example over $\mathbb{F}_{101^3} \simeq \mathbb{F}_{101}[t]/(t^3+t+1)$

- $E: y^2 = x^3 + (44 + 52t + 60t^2)x + (58 + 87t + 74t^2), \ \#E = 1029583$
- random points:

$$P = (75+24t+84t^2, 61+18t+92t^2), Q = (28+97t+35t^2, 48+64t+7t^2)$$

 $\rightarrow \text{ find } x \text{ s.t. } Q = [x]P$

• random combination of P and Q: $R = [236141]P + [381053]Q = (21 + 94t + 16t^2, 41 + 34t + 80t^2)$

A toy example over $\mathbb{F}_{101^3}\simeq \mathbb{F}_{101}[t]/(t^3+t+1)$

- $E: y^2 = x^3 + (44 + 52t + 60t^2)x + (58 + 87t + 74t^2), \ \#E = 1029583$
- random points:
- $P = (75+24t+84t^2, 61+18t+92t^2), Q = (28+97t+35t^2, 48+64t+7t^2)$ $\rightarrow \text{ find } x \text{ s.t. } Q = [x]P$
- random combination of P and Q: $R = [236141]P + [381053]Q = (21 + 94t + 16t^2, 41 + 34t + 80t^2)$
- use 3-rd "symmetrized" Semaev polynomial and Weil restriction:

$$(e_1^2 - 4e_2)x_R^2 - 2(e_1(e_2 + a) + 2b)x_R + (e_2 - a)^2 - 4be_1 = 0$$

$$\Leftrightarrow \quad (61t^2 + 78t + 59)e_1^2 + (69t^2 + 14t + 59)e_1e_2 + (40t^2 + 20t + 57)e_1 + e_2^2 + (40t^2 + 89t + 80)e_2 + 12t^2 + 11t + 77 = 0$$

$$\Leftrightarrow \quad \begin{cases} 59e_1^2 + 59e_1e_2 + 57e_1 + e_2^2 + 80e_2 + 77 = 0 \\ 78e_1^2 + 14e_1e_2 + 20e_1 + 89e_2 + 11 = 0 \\ 61e_1^2 + 69e_1e_2 + 40e_1 + 40e_2 + 12 = 0 \end{cases}$$

A toy example over $\mathbb{F}_{101^3}\simeq \mathbb{F}_{101}[t]/(t^3+t+1)$

$$\begin{split} \textit{I} = \langle 59e_1^2 + 59e_1e_2 + 57e_1 + e_2^2 + 80e_2 + 77, \\ & 78e_1^2 + 14e_1e_2 + 20e_1 + 89e_2 + 11, \\ & 61e_1^2 + 69e_1e_2 + 40e_1 + 40e_2 + 12 \rangle \end{split}$$

• Gröbner basis of I for
$$degrevlex_{e_1 > e_2}$$
:
 $G = \{e_1 + 32, e_2 + 26\}$

•
$$V(G) = \{(69, 75)\}$$

 $(e_1, e_2) = (69, 75) \Rightarrow (x_{P_1}, x_{P_2}) = (6, 63)$
 $\Rightarrow P_1 = (6, 35 + 93t + 77t^2); P_2 = (63, 2 + 66t + t^2) \text{ and}$
 $P_1 + P_2 = R$

• How many relations ?
$$\# \mathcal{F} = 108 \Rightarrow 109 \text{ relations needed}$$

• Linear algebra
$$\rightarrow x = 370556$$

Comparison with hybrid approach

Applying hybrid approach

- trade-off between exhaustive search on some variables and Gröbner basis techniques
- one specialized variable → compute q Gröbner bases of systems of n equations in n − 1 variables
- but total degree of systems is 2^{n-1} vs 2^{n-2} in our approach

method	nb of systems	nb of eq	nb of var	total degree
Gaudry-Diem	<i>n</i> !	п	п	2^{n-1}
hybrid approach	n! q	п	n-1	2^{n-1}
this work	$(n-1)! \ q$	п	n-1	2 ^{<i>n</i>-2}

Adapted techniques to solve the system

Reminder of Faugère's algorithms

- F4: complete reduction of the polynomials but many critical pairs reduce to zero
- F5: no reduction to zero for semi-regular system but incomplete polynomial reductions may slow down future reductions

An "F4-like" algorithm without reduction to zero

- key observation: all systems considered during the relation step have the same shape
- possible to remove all reductions to zero in latter F4 computations by observing the course of the first execution
- even if this algorithm is probabilist, it gives better results than F5 on the systems arising from index calculus methods

(日) (周) (三) (三)

Quick outline of the "F4-like" algorithm

Run a standard F4 algorithm on the first system, but:

- at each iteration, store the list of all polynomial multiples coming from the critical pairs
- if there is a reduction to zero during the echelon computing phase, remove a well-chosen multiple from the stored list
- For each subsequent system, run a F4 computation with the following modifications (F4Remake):
 - do not maintain nor update a queue of untreated pairs
 - at each iteration, pick directly from the previously stored list the relevant multiples

Practical results on $E(\mathbb{F}_{p^5})$

1 Timings of F4/F4Remake

<i>p</i> ₂	estim. failure probability	F4Precomp	F4Remake	F4	Magma
8 bits	0.11	8.963	2.844	5.903	9.660
16 bits	$4.4 imes10^{-4}$	(19.07)	3.990	9.758	9.870
25 bits	$2.4 imes10^{-6}$	(32.98)	4.942	16.77	118.8
32 bits	$5.8 imes10^{-9}$	(44.33)	8.444	24.56	1046

Ocception 2 Comparison with F5

- F5 (homogenized system): computes 50% more labeled polynomials than F4
- ► F5 (affine system): 600% more than F4!

3

・ 同 ト ・ ヨ ト ・ ヨ ト

Static Diffie-Hellman problem

SDHP

G finite group, $P, Q \in G$ s.t. Q = [d]P where d secret.

- SDHP-solving algorithm A: given P, Q and a challenge X ∈ G → outputs [d]X
- (2) "oracle-assisted" SDHP-solving algorithm \mathcal{A} :
 - learning phase:
 - any number of queries X_1, \ldots, X_l to an oracle $\rightarrow [d]X_1, \ldots, [d]X_l$
 - given a previously unseen challenge $X \rightarrow$ outputs [d]X

イロト イポト イヨト イヨト 二日

Static Diffie-Hellman problem

SDHP

G finite group, $P,Q \in G$ s.t. Q = [d]P where d secret.

- SDHP-solving algorithm A: given P, Q and a challenge X ∈ G → outputs [d]X
- (2) "oracle-assisted" SDHP-solving algorithm \mathcal{A} :
 - learning phase:
 - any number of queries X_1,\ldots,X_l to an oracle $ightarrow [d]X_1,\ldots,[d]X_l$
 - given a previously unseen challenge $X \rightarrow$ outputs [d]X

From decomposition into \mathcal{F} to oracle-assisted SDHP-solving algorithm $\mathcal{F} = \{P_1, \dots, P_l\}$

• learning phase: ask $Q_i = [d]P_i$ for $i = 1, \dots, l$

- decompose the challenge X into the factor base: $X = \sum_{i} [c_i] P_i$
- answer $Y = \sum_i [c_i] Q_i$

Solving SDHP over $G = E(\mathbb{F}_{q^n})$

An oracle-assisted SDHP-solving algorithm

$$\mathcal{F} = \{ P \in E(\mathbb{F}_{q^n}) : P = (x_p, y_p), x_p \in \mathbb{F}_q \}$$

- **()** learning phase: ask the oracle to compute Q = [d]P for each $P \in \mathcal{F}$
- Self-randomization: given a challenge X, pick a random integer r coprime to the order of G and compute $X_r = [r]X$
- check if X_r can be written as a sum of *m* points of \mathcal{F} : $X_r = \sum_{i=1}^m P_i$
- if X_r is not decomposable, go back to step 2; else output $Y = [s] (\sum_{i=1}^{m} Q_i)$ where $s = r^{-1} \mod |G|$.

イロト 不得下 イヨト イヨト

Solving SDHP over $G = E(\mathbb{F}_{q^n})$

An oracle-assisted SDHP-solving algorithm

$$\mathcal{F} = \{ P \in E(\mathbb{F}_{q^n}) : P = (x_p, y_p), x_p \in \mathbb{F}_q \}$$

- **()** learning phase: ask the oracle to compute Q = [d]P for each $P \in \mathcal{F}$
- Self-randomization: given a challenge X, pick a random integer r coprime to the order of G and compute $X_r = [r]X$
- **(a)** check if X_r can be written as a sum of m points of \mathcal{F} : $X_r = \sum_{i=1}^m P_i$
- if X_r is not decomposable, go back to step 2; else output $Y = [s] (\sum_{i=1}^{m} Q_i)$ where $s = r^{-1} \mod |G|$.

Remark

 $P\in \mathcal{F}\Leftrightarrow -P\in \mathcal{F}\rightsquigarrow$ only $\#\mathcal{F}/2$ oracle calls are needed

イロト 不得下 イヨト イヨト 二日

Practical attacks of SDHP over $E(\mathbb{F}_{q^d})$

Extension degree 4 $(q^d = q'^4)$ with Gaudry's approach

- $\simeq q'$ oracle calls needed
- self-randomization: average of 4! trials needed

Extension degree 5 $(q^d = q''^5)$ with our approach

- $\simeq q''$ oracle calls needed
- self-randomization: average of 4!q'' trials needed

Degree of the extension field \mathbb{F}_{q^d}	4 <i>d</i>	5 <i>d</i>	
nb of oracle calls	$\simeq q^{d/4}$	$\simeq q^{d/5}$	
decomposition cost	$ ilde{O}(1)$	$\tilde{O}(q^{d/5})$	
overall complexity	$ ilde{O}(q^{d/4})$	$\tilde{O}(q^{d/5})$	

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Quid of n > 5 ?

Trade-off

• decompose in a small number of points $R = P_1 + \ldots + P_m$

- degree of m + 1-Semaev in 2^{m-1}
- 2 enlarge the factor base ${\cal F}$

probability of decomposition not too small

Example for
$$n = 7$$
, $m = 3$, $\mathbb{F}_{q^7} = \mathbb{F}_q(t)$

$$\mathcal{F} = \{ P \in E(\mathbb{F}_{q^7}) : x_P = x_{0,P} + x_{1,P}t, \quad x_{0,P}, x_{1,P} \in \mathbb{F}_q \}$$

Semaev + Weil descent \rightsquigarrow 7 equations in 6 variables of degree 4 in each variables, total degree 12

Example for
$$n=$$
 7, $m=$ 3, $\mathbb{F}_{q^7}=\mathbb{F}_q(t)$

Remarks

- polynomials no longer symmetric
- \bullet but invariant under the action of \mathfrak{S}_3

-

Example for
$$n = 7$$
, $m = 3$, $\mathbb{F}_{q^7} = \mathbb{F}_q(t)$

Remarks

- polynomials no longer symmetric
- but invariant under the action of \mathfrak{S}_3

How to take advantage of this invariance ?

- working in the invariant ring $\mathbb{F}_q[\underline{X}]^{\mathfrak{S}_3}$ is awkward
 - not a free algebra \rightsquigarrow more variables and equations
 - in our example: 3 additional variables and 5 algebra relations
- SAGBI-Gröbner basis ?

Index calculus methods over $E(\mathbb{F}_{q^n})$ Application to the static Diffie-Hellman problem

Vanessa VITSE - Antoine JOUX

Université de Versailles Saint-Quentin, Laboratoire PRISM

March 26, 2010