Index calculus methods over $E\left(\mathbb{F}_{q^{n}}\right)$
 Application to the static Diffie-Hellman problem

Vanessa VITSE - Antoine JOUX
Université de Versailles Saint-Quentin, Laboratoire PRISM

March 26, 2010

Hardness of DLP

Discrete logarithm problem (DLP)
Given a group G and $g, h \in G$, find - when it exists - an integer x s.t.

$$
h=g^{x}
$$

Difficulty is related to the group:

(1) Generic attack: complexity in $\Omega\left(\max \left(\alpha_{i} \sqrt{p_{i}}\right)\right)$ if $\# G=\prod_{i} p_{i}^{\alpha_{i}}$
(2) $G \subset\left(\mathbb{F}_{q}^{*}, \times\right)$: index calculus method with complexity in $L_{q}(1 / 3)$
(3) $G \subset\left(J_{\mathcal{C}}\left(\mathbb{F}_{q}\right),+\right)$: index calculus method with sub-exponential complexity (depending of the genus $g>1$)

Hardness of ECDLP

ECDLP

Given $P \in E\left(\mathbb{F}_{q}\right)$ and $Q \in\langle P\rangle$, find x such that $Q=[x] P$

Specific attacks on few families of curves:

Transfer methods

- lift to characteristic zero fields: anomalous curves
- transfer to $\mathbb{F}_{q^{k}}^{*}$ via pairings: curves with small embedding degree
- Weil descent: transfer from $E\left(\mathbb{F}_{p^{n}}\right)$ to $J_{\mathcal{C}}\left(\mathbb{F}_{p}\right)$ where \mathcal{C} is a genus $g \geq n$ curve

Otherwise, only generic attacks

Trying an index calculus approach over $E\left(\mathbb{F}_{q^{n}}\right)$

Basic outline

(1) Choice of a factor base: $\mathcal{F}=\left\{P_{1}, \ldots, P_{N}\right\} \subset G$
(2) Relation search: decompose $\left[a_{i}\right] P+\left[b_{i}\right] Q\left(a_{i}, b_{i}\right.$ random) into \mathcal{F}

$$
\left[a_{i}\right] P+\left[b_{i}\right] Q=\sum_{j=1}^{N}\left[c_{i, j}\right] P_{j}
$$

(3) Linear algebra: once k relations found $(k>N)$ construct the matrices $A=\left(\begin{array}{ll}a_{i} & b_{i}\end{array}\right)_{1 \leq i \leq k}$ and $M=\left(c_{i, j}\right)_{\substack{1 \leq i \leq k \\ 1 \leq j \leq N}}$ find $v=\left(v_{1}, \ldots, v_{k}\right) \in \operatorname{ker}\left({ }^{t} M\right)$ such that $v A \neq 0[r]$ compute the solution of DLP: $x=-\left(\sum_{i} a_{i} v_{i}\right) /\left(\sum_{i} b_{i} v_{i}\right) \bmod r$

Results

Original algorithm (Gaudry, Diem)
Complexity of DLP over $E\left(\mathbb{F}_{q^{n}}\right)$ in $\tilde{O}\left(q^{2-\frac{2}{n}}\right)$ but with hidden constant exponential in n^{2}

- faster than generic methods when $n \geq 3$ and $\log q>C . n$
- sub-exponential complexity when $n=\Theta(\sqrt{\log q})$
- impracticable as soon as $n>4$

Results

Original algorithm (Gaudry, Diem)

Complexity of DLP over $E\left(\mathbb{F}_{q^{n}}\right)$ in $\tilde{O}\left(q^{2-\frac{2}{n}}\right)$ but with hidden constant exponential in n^{2}

- faster than generic methods when $n \geq 3$ and $\log q>C . n$
- sub-exponential complexity when $n=\Theta(\sqrt{\log q})$
- impracticable as soon as $n>4$

Our variant

Complexity in $\tilde{O}\left(q^{2}\right)$ but with a better dependency in n

- better than generic methods when $n \geq 5$ and $\log q>c . n$
- better than Gaudry and Diem's method when $\log q<c^{\prime} . n^{3} \log n$
- works for $n=5$

Ingredients (1)

Looking for specific relations

- check whether a given random combination $R=[a] P+[b] Q$ can be decomposed as $R=P_{1}+\ldots+P_{m}$, for a fixed number m
- convert the decomposition into a multivariate polynomial, but get rid of the variables $y_{p_{i}}$ by using Semaev's summation polynomials

Ingredients (1)

Looking for specific relations

- check whether a given random combination $R=[a] P+[b] Q$ can be decomposed as $R=P_{1}+\ldots+P_{m}$, for a fixed number m
- convert the decomposition into a multivariate polynomial, but get rid of the variables $y_{p_{i}}$ by using Semaev's summation polynomials

Semaev's summation polynomials

Let E be an elliptic curve defined over K.
The m-th summation polynomial is an irreducible symmetric polynomial $f_{m} \in K\left[X_{1}, \ldots, X_{m}\right]$ such that given

$$
\begin{aligned}
& P_{1}=\left(x_{P_{1}}, y_{P_{1}}\right), \ldots, P_{m}=\left(x_{P_{m}}, y_{P_{m}}\right) \in E(\bar{K}) \backslash\{O\}, \text { we have } \\
& \quad f_{m}\left(x_{P_{1}}, \ldots, x_{P_{m}}\right)=0 \Leftrightarrow \exists \epsilon_{1}, \ldots, \epsilon_{m} \in\{1,-1\}, \epsilon_{1} P_{1}+\ldots+\epsilon_{m} P_{m}=O
\end{aligned}
$$

Computation of Semaev's summation polynomials

$E: y^{2}=x^{3}+a x+b$
(1) f_{m} are uniquely determined by induction:

$$
\begin{aligned}
& f_{2}\left(X_{1}, X_{2}\right)=X_{1}-X_{2} \\
& f_{3}\left(X_{1}, X_{2}, X_{3}\right)=\left(X_{1}-X_{2}\right)^{2} X_{3}^{2}-2 \\
& \left(\left(X_{1}+X_{2}\right)\left(X_{1} X_{2}+a\right)+2 b\right) X_{3} \\
& \\
& +\left(X_{1} X_{2}-a\right)^{2}-4 b\left(X_{1}+X_{2}\right)
\end{aligned}
$$

and for $m \geq 4$ and $1 \leq j \leq m-3$ by

$$
\begin{aligned}
f_{m}\left(X_{1}, X_{2}, \ldots, X_{m}\right)=\operatorname{Res}_{X}\left(f_{m-j}(\right. & X_{1}, X_{2}, \ldots, \\
& \left.X_{m-j-1}, X\right) \\
& \left.f_{j+2}\left(X_{m-j}, \ldots, X_{m}, X\right)\right)
\end{aligned}
$$

(2) $\operatorname{deg}_{x_{i}} f_{m}=2^{m-2} \Rightarrow$ only computable for small values of m

Ingredients (2)

Weil restriction

- write $\mathbb{F}_{q^{n}}$ as $\mathbb{F}_{q}[t] /(f(t))$ where f irreducible of degree n
- convenient choice of $\mathcal{F}=\left\{P=(x, y) \in E\left(\mathbb{F}_{q^{n}}\right): x \in \mathbb{F}_{q}, y \in \mathbb{F}_{q^{n}}\right\}$ $\rightsquigarrow R$ given, find $x_{P_{1}}, \ldots, x_{P_{m}} \in \mathbb{F}_{q}, f_{m+1}\left(x_{P_{1}}, \ldots, x_{P_{m}}, x_{R}\right)=0$

Ingredients (2)

Weil restriction

- write $\mathbb{F}_{q^{n}}$ as $\mathbb{F}_{q}[t] /(f(t))$ where f irreducible of degree n
- convenient choice of $\mathcal{F}=\left\{P=(x, y) \in E\left(\mathbb{F}_{q^{n}}\right): x \in \mathbb{F}_{q}, y \in \mathbb{F}_{q^{n}}\right\}$ $\rightsquigarrow R$ given, find $x_{P_{1}}, \ldots, x_{P_{m}} \in \mathbb{F}_{q}, f_{m+1}\left(x_{P_{1}}, \ldots, x_{P_{m}}, x_{R}\right)=0$

Method

(1) express the equation in terms of the elementary symmetric polynomials e_{1}, \ldots, e_{m} of the variables $x_{P_{1}}, \ldots, x_{P_{m}}$
(2) Weil restriction: sort according to the powers of t

$$
f_{m+1}\left(x_{P_{1}}, \ldots, x_{P_{m}}, x_{R}\right)=0 \Leftrightarrow \sum_{i=0}^{n-1} \varphi_{i}\left(e_{1}, \ldots, e_{m}\right) t^{i}=0
$$

(3) solve the obtained system of n polynomial equations of total degree 2^{m-1} in m unknowns

Gaudry's original algorithm

Choice of m

$m=n$ where n is the degree of the extension field

Gaudry's original algorithm

Choice of m

$m=n$ where n is the degree of the extension field

Complexity of the relation step

- Probability of decomposition as a sum of n points:

$$
\frac{\#\left(\mathcal{F}^{n} / \mathfrak{S}_{n}\right)}{\# E\left(\mathbb{F}_{q^{n}}\right)} \simeq \frac{q^{n}}{n!} \frac{1}{q^{n}}=\frac{1}{n!}
$$

\rightsquigarrow about n ! trials give one relation

- each trial implies to solve over \mathbb{F}_{q} a system of n polynomial equations in n variables, total degree 2^{n-1}, generically of dimension 0
\rightsquigarrow complexity is polynomial in $\log q$ but over-exponential in n
\Rightarrow total complexity of the relation search step (n fixed): $\tilde{O}(q)$

Gaudry's original algorithm

First look at the total complexity
(1) Relation step: $\tilde{O}(q)$ with constant exponential in n
(2) Linear algebra step: find a vector in the kernel of a very sparse matrix \rightsquigarrow complexity in $\tilde{O}\left(q^{2}\right)$ using Lanczos algorithm
\Rightarrow Total complexity in $\tilde{O}\left(q^{2}\right)$

Gaudry's original algorithm

First look at the total complexity
(1) Relation step: $\tilde{O}(q)$ with constant exponential in n
(2) Linear algebra step: find a vector in the kernel of a very sparse matrix \rightsquigarrow complexity in $\tilde{O}\left(q^{2}\right)$ using Lanczos algorithm
\Rightarrow Total complexity in $\tilde{O}\left(q^{2}\right)$

Improvement of the complexity

- rebalance the complexity of the two steps ("double large prime" technique)
- final complexity in $\tilde{O}\left(q^{2-2 / n}\right)$
\rightarrow better than generic methods for large q as soon as $n \geq 3$

A toy example over $\mathbb{F}_{101^{2}} \simeq \mathbb{F}_{101}[t] /\left(t^{2}+t+1\right)$

- $E: y^{2}=x^{3}+(1+16 t) x+(23+43 t)$ s.t. $\# E=10273$
- random points:
$P=(71+85 t, 82+47 t), Q=(81+77 t, 61+71 t)$
\rightarrow find x s.t. $Q=[x] P$

A toy example over $\mathbb{F}_{101^{2}} \simeq \mathbb{F}_{101}[t] /\left(t^{2}+t+1\right)$

- $E: y^{2}=x^{3}+(1+16 t) x+(23+43 t)$ s.t. $\# E=10273$
- random points:
$P=(71+85 t, 82+47 t), Q=(81+77 t, 61+71 t)$
\rightarrow find x s.t. $Q=[x] P$
- random combination of P and Q :
$R=[5962] P+[537] Q=(58+68 t, 68+17 t)$

A toy example over $\mathbb{F}_{101^{2}} \simeq \mathbb{F}_{101}[t] /\left(t^{2}+t+1\right)$

- $E: y^{2}=x^{3}+(1+16 t) x+(23+43 t)$ s.t. $\# E=10273$
- random points:

$$
P=(71+85 t, 82+47 t), Q=(81+77 t, 61+71 t)
$$

\rightarrow find x s.t. $Q=[x] P$

- random combination of P and Q :

$$
R=[5962] P+[537] Q=(58+68 t, 68+17 t)
$$

- use 3-rd "symmetrized" Semaev polynomial and Weil restriction:

$$
\left.\begin{array}{rl}
& \left(e_{1}^{2}-4 e_{2}\right) x_{R}^{2}-2\left(e_{1}\left(e_{2}+a\right)+2 b\right) x_{R}+\left(e_{2}-a\right)^{2}-4 b e_{1}=0 \\
\Leftrightarrow & (32 t+53) e_{1}^{2}+(66 t+86) e_{1} e_{2}+(12 t+49) e_{1}+e_{2}^{2} \\
+(42 t+89) e_{2}+88 t+45=0
\end{array}\right\} \begin{aligned}
& \Leftrightarrow \\
& \Leftrightarrow
\end{aligned}\left\{\begin{array}{l}
53 e_{1}^{2}+86 e_{1} e_{2}+49 e_{1}+e_{2}^{2}+89 e_{2}+45=0 \\
32 e_{1}^{2}+66 e_{1} e_{2}+12 e_{1}+42 e_{2}+88=0
\end{array}\right.
$$

A toy example over $\mathbb{F}_{101^{2}} \simeq \mathbb{F}_{101}[t] /\left(t^{2}+t+1\right)$

$I=\left\langle 53 e_{1}^{2}+86 e_{1} e_{2}+49 e_{1}+e_{2}^{2}+89 e_{2}+45\right.$,

$$
\left.32 e_{1}^{2}+66 e_{1} e_{2}+12 e_{1}+42 e_{2}+88\right\rangle
$$

- Gröbner basis of $/$ for lex $_{e_{1}>e_{2}}$: $G=\left\{e_{1}+86 e_{2}^{3}+88 e_{2}^{2}+58 e_{2}+99, e_{2}^{4}+50 e_{2}^{3}+85 e_{2}^{2}+73 e_{2}+17\right\}$
- $V(G)=\{(80,72),(97,68)\}$
(1) solution 1: $\left(e_{1}, e_{2}\right)=(80,72) \Rightarrow\left(x_{P_{1}}, x_{P_{2}}\right)=(5,75)$

$$
\Rightarrow P_{1}=(5,89+71 t) ; P_{2}=(75,57+74 t) \text { and } P_{1}+P_{2}=R
$$

(2) solution 2: $\left(e_{1}, e_{2}\right)=(97,68) \Rightarrow\left(x_{P_{1}}, x_{P_{2}}\right)=(19,78)$

$$
\Rightarrow P_{1}=(19,35+9 t) ; P_{2}=(78,75+4 t) \text { and }-P_{1}+P_{2}=R
$$

- How many relations ?
$\# \mathcal{F}=104 \Rightarrow 105$ relations needed
- Linear algebra $\rightarrow x=85$

Drawbacks of the original algorithm

Analysis of the system resolution

$c(n, q)=$ cost of resolution over \mathbb{F}_{q} of a system in n eq, n var, deg 2^{n-1} Diem's analysis:

- ideal generically of dimension 0 and of degree $2^{n(n-1)}$
- resolution of with resultants: $c(n, q) \leq P o l y\left(n!2^{n(n-1)} \log q\right)$

Drawbacks of the original algorithm

Analysis of the system resolution

$c(n, q)=$ cost of resolution over \mathbb{F}_{q} of a system in n eq, n var, deg 2^{n-1} Diem's analysis:

- ideal generically of dimension 0 and of degree $2^{n(n-1)}$
- resolution of with resultants: $c(n, q) \leq \operatorname{Poly}\left(n!2^{n(n-1)} \log q\right)$

Complexity of the system resolution with Gröbner basis

- compute a degrevlex Gröbner basis and use FGLM for ordering change

$$
\begin{gathered}
\tilde{O}\left(\left(2^{n(n-1)} e^{n} n^{-1 / 2}\right)^{\omega}\right)+\tilde{O}\left(\left(2^{n(n-1)}\right)^{3}\right) \\
\text { F5 algorithm } \\
\text { FGLM }
\end{gathered}
$$

- adding the field equations $x^{q}-x=0$ is not practical for large q.

Drawbacks of the original algorithm

Analysis of the system resolution

$c(n, q)=$ cost of resolution over \mathbb{F}_{q} of a system in n eq, n var, deg 2^{n-1} Diem's analysis:

- ideal generically of dimension 0 and of degree $2^{n(n-1)}$
- resolution of with resultants: $c(n, q) \leq \operatorname{Poly}\left(n!2^{n(n-1)} \log q\right)$

Complexity of the system resolution with Gröbner basis

- compute a degrevlex Gröbner basis and use FGLM for ordering change

$$
\begin{array}{cc}
\tilde{O}\left(\left(2^{n(n-1)} e^{n} n^{-1 / 2}\right)^{\omega}\right)+\tilde{O}\left(\left(2^{n(n-1)}\right)^{3}\right) \\
\text { F5 algorithm } & \text { FGLM }
\end{array}
$$

- adding the field equations $x^{q}-x=0$ is not practical for large q.
huge constant because of the resolution of the polynomial system

Our variant

Choose $m=n-1$

- compute the n-th summation polynomial instead of the $(n+1)$-th
- solve system of n equations in $(n-1)$ unknowns
- $(n-1)!q$ expected numbers of trials to get one relation

Computation speed-up

(1) The system to be solved is generically overdetermined:
in general there is no solution over $\overline{\mathbb{F}_{q}}: I=\langle 1\rangle$ exceptionally: very few solutions (almost always one) Gröbner basis computation with degrevlex, FGLM not needed
(2) Adapted techniques to solve the system with an "F4-like" algorithm (more convenient than F4, F5 or hybrid approach)

Complexity of the Gröbner basis computation

Shape of the system

- system of n polynomials of degree 2^{n-2} in $n-1$ variables
- semi-regular with degree of regularity $d_{r e g} \leq \sum_{i=1}^{m}\left(\operatorname{deg} f_{i}-1\right)+1$

Upper bound

- computation of the row echelon form of the $d_{\text {reg }}$-Macaulay matrix with at most $\binom{n-1+d_{\text {reg }}}{n-1}$ columns and smaller number of lines
- using fast reduction techniques, the complexity is at most

$$
\tilde{O}\left(\binom{n 2^{n-2}}{n-1}^{\omega}\right)=\tilde{O}\left(\left(2^{(n-1)(n-2)} e^{n} n^{-1 / 2}\right)^{\omega}\right)
$$

Total complexity of our variant

- Relation search step: $(n-1)$! q trials to get one relation and q relations needed

$$
\Rightarrow \tilde{O}\left((n-1)!q^{2}\left(2^{(n-1)(n-2)} e^{n} n^{-1 / 2}\right)^{\omega}\right)
$$

- Linear algebra step: $n-1$ non-zero entries per row \Rightarrow complexity of $\tilde{O}\left(n q^{2}\right)$

Main result

Let E be an elliptic curve defined over $\mathbb{F}_{q^{n}}$, there exists an algorithm to solve the DLP in E with asymptotic complexity

$$
\tilde{O}\left((n-1)!q^{2}\left(2^{(n-1)(n-2)} e^{n} n^{-1 / 2}\right)^{\omega}\right)
$$

where ω is the exponent in the complexity of matrix multiplication.

Comparison of the three attacks of ECDLP over $\mathbb{F}_{q^{n}}$

A toy example over $\mathbb{F}_{101^{3}} \simeq \mathbb{F}_{101}[t] /\left(t^{3}+t+1\right)$

- $E: y^{2}=x^{3}+\left(44+52 t+60 t^{2}\right) x+\left(58+87 t+74 t^{2}\right), \# E=1029583$
- random points:
$P=\left(75+24 t+84 t^{2}, 61+18 t+92 t^{2}\right), Q=\left(28+97 t+35 t^{2}, 48+64 t+7 t^{2}\right)$
\rightarrow find x s.t. $Q=[x] P$

A toy example over $\mathbb{F}_{101^{3}} \simeq \mathbb{F}_{101}[t] /\left(t^{3}+t+1\right)$

- $E: y^{2}=x^{3}+\left(44+52 t+60 t^{2}\right) x+\left(58+87 t+74 t^{2}\right), \# E=1029583$
- random points:
$P=\left(75+24 t+84 t^{2}, 61+18 t+92 t^{2}\right), Q=\left(28+97 t+35 t^{2}, 48+64 t+7 t^{2}\right)$
\rightarrow find x s.t. $Q=[x] P$
- random combination of P and Q :

$$
R=[236141] P+[381053] Q=\left(21+94 t+16 t^{2}, 41+34 t+80 t^{2}\right)
$$

A toy example over $\mathbb{F}_{101^{3}} \simeq \mathbb{F}_{101}[t] /\left(t^{3}+t+1\right)$

- $E: y^{2}=x^{3}+\left(44+52 t+60 t^{2}\right) x+\left(58+87 t+74 t^{2}\right), \# E=1029583$
- random points:
$P=\left(75+24 t+84 t^{2}, 61+18 t+92 t^{2}\right), Q=\left(28+97 t+35 t^{2}, 48+64 t+7 t^{2}\right)$
\rightarrow find x s.t. $Q=[x] P$
- random combination of P and Q :

$$
R=[236141] P+[381053] Q=\left(21+94 t+16 t^{2}, 41+34 t+80 t^{2}\right)
$$

- use 3-rd "symmetrized" Semaev polynomial and Weil restriction:

$$
\begin{aligned}
& \left(e_{1}^{2}-4 e_{2}\right) x_{R}^{2}-2\left(e_{1}\left(e_{2}+a\right)+2 b\right) x_{R}+\left(e_{2}-a\right)^{2}-4 b e_{1}=0 \\
\Leftrightarrow & \left(61 t^{2}+78 t+59\right) e_{1}^{2}+\left(69 t^{2}+14 t+59\right) e_{1} e_{2}+\left(40 t^{2}+20 t+57\right) e_{1} \\
& +e_{2}^{2}+\left(40 t^{2}+89 t+80\right) e_{2}+12 t^{2}+11 t+77=0 \\
\Leftrightarrow & \left\{\begin{array}{l}
59 e_{1}^{2}+59 e_{1} e_{2}+57 e_{1}+e_{2}^{2}+80 e_{2}+77=0 \\
78 e_{1}^{2}+14 e_{1} e_{2}+20 e_{1}+89 e_{2}+11=0 \\
61 e_{1}^{2}+69 e_{1} e_{2}+40 e_{1}+40 e_{2}+12=0
\end{array}\right.
\end{aligned}
$$

A toy example over $\mathbb{F}_{101^{3}} \simeq \mathbb{F}_{101}[t] /\left(t^{3}+t+1\right)$

$I=\left\langle 59 e_{1}^{2}+59 e_{1} e_{2}+57 e_{1}+e_{2}^{2}+80 e_{2}+77\right.$,

$$
\begin{aligned}
& 78 e_{1}^{2}+14 e_{1} e_{2}+ 20 e_{1}+89 e_{2}+11, \\
&\left.61 e_{1}^{2}+69 e_{1} e_{2}+40 e_{1}+40 e_{2}+12\right\rangle
\end{aligned}
$$

- Gröbner basis of I for degrevlex ${ }_{e_{1}>e_{2}}$: $G=\left\{e_{1}+32, e_{2}+26\right\}$
- $V(G)=\{(69,75)\}$
$\left(e_{1}, e_{2}\right)=(69,75) \Rightarrow\left(x_{P_{1}}, x_{P_{2}}\right)=(6,63)$
$\Rightarrow P_{1}=\left(6,35+93 t+77 t^{2}\right) ; P_{2}=\left(63,2+66 t+t^{2}\right)$ and $P_{1}+P_{2}=R$
- How many relations ?
$\# \mathcal{F}=108 \Rightarrow 109$ relations needed
- Linear algebra $\rightarrow x=370556$

Comparison with hybrid approach

Applying hybrid approach

- trade-off between exhaustive search on some variables and Gröbner basis techniques
- one specialized variable \rightsquigarrow compute q Gröbner bases of systems of n equations in $n-1$ variables
- but total degree of systems is 2^{n-1} vs 2^{n-2} in our approach

method	nb of systems	nb of eq	nb of var	total degree
Gaudry-Diem	$n!$	n	n	2^{n-1}
hybrid approach	$n!q$	n	$n-1$	2^{n-1}
this work	$(n-1)!q$	n	$n-1$	2^{n-2}

Adapted techniques to solve the system

Reminder of Faugère's algorithms

- F4: complete reduction of the polynomials but many critical pairs reduce to zero
- F5: no reduction to zero for semi-regular system but incomplete polynomial reductions may slow down future reductions

An "F4-like" algorithm without reduction to zero

- key observation: all systems considered during the relation step have the same shape
- possible to remove all reductions to zero in latter F4 computations by observing the course of the first execution
- even if this algorithm is probabilist, it gives better results than F5 on the systems arising from index calculus methods

Quick outline of the "F4-like" algorithm

(1) Run a standard F4 algorithm on the first system, but:

- at each iteration, store the list of all polynomial multiples coming from the critical pairs
- if there is a reduction to zero during the echelon computing phase, remove a well-chosen multiple from the stored list
(2) For each subsequent system, run a F4 computation with the following modifications (F4Remake):
- do not maintain nor update a queue of untreated pairs
- at each iteration, pick directly from the previously stored list the relevant multiples

Practical results on $E\left(\mathbb{F}_{p^{5}}\right)$

(1) Timings of F4/F4Remake

$\|p\|_{2}$	estim. failure probability	F4Precomp	F4Remake	F4	Magma
8 bits	0.11	8.963	2.844	5.903	9.660
16 bits	4.4×10^{-4}	(19.07)	3.990	9.758	9.870
25 bits	2.4×10^{-6}	(32.98)	4.942	16.77	118.8
32 bits	5.8×10^{-9}	(44.33)	8.444	24.56	1046

(2) Comparison with F5

- F5 (homogenized system): computes 50% more labeled polynomials than F4
- F5 (affine system): 600% more than F4!

Static Diffie-Hellman problem

SDHP

G finite group, $P, Q \in G$ s.t. $Q=[d] P$ where d secret.
(1) SDHP-solving algorithm \mathcal{A} : given P, Q and a challenge $X \in G \rightarrow$ outputs [d] X
(2) "oracle-assisted" SDHP-solving algorithm \mathcal{A} :
learning phase:
any number of queries X_{1}, \ldots, X_{I} to an oracle $\rightarrow[d] X_{1}, \ldots,[d] X_{1}$ given a previously unseen challenge $X \rightarrow$ outputs [d]X

Static Diffie-Hellman problem

SDHP

G finite group, $P, Q \in G$ s.t. $Q=[d] P$ where d secret.
(1) SDHP-solving algorithm \mathcal{A} : given P, Q and a challenge $X \in G \rightarrow$ outputs [d]X
(2) "oracle-assisted" SDHP-solving algorithm \mathcal{A} :

- learning phase:
any number of queries X_{1}, \ldots, X_{I} to an oracle $\rightarrow[d] X_{1}, \ldots,[d] X_{I}$ given a previously unseen challenge $X \rightarrow$ outputs $[d] X$

From decomposition into \mathcal{F} to oracle-assisted SDHP-solving algorithm $\mathcal{F}=\left\{P_{1}, \ldots, P_{l}\right\}$

- learning phase: ask $Q_{i}=[d] P_{i}$ for $i=1, \ldots, l$
- decompose the challenge X into the factor base: $X=\sum_{i}\left[c_{i}\right] P_{i}$
- answer $Y=\sum_{i}\left[c_{i}\right] Q_{i}$

Solving SDHP over $G=E\left(\mathbb{F}_{q^{n}}\right)$

An oracle-assisted SDHP-solving algorithm
$\mathcal{F}=\left\{P \in E\left(\mathbb{F}_{q^{n}}\right): P=\left(x_{p}, y_{p}\right), x_{p} \in \mathbb{F}_{q}\right\}$
(1) learning phase: ask the oracle to compute $Q=[d] P$ for each $P \in \mathcal{F}$
© self-randomization: given a challenge X, pick a random integer r coprime to the order of G and compute $X_{r}=[r] X$

- check if X_{r} can be written as a sum of m points of $\mathcal{F}: X_{r}=\sum_{i=1}^{m} P_{i}$
(0) if X_{r} is not decomposable, go back to step 2; else output $Y=[s]\left(\sum_{i=1}^{m} Q_{i}\right)$ where $s=r^{-1} \bmod |G|$.

Solving SDHP over $G=E\left(\mathbb{F}_{q^{n}}\right)$

An oracle-assisted SDHP-solving algorithm
$\mathcal{F}=\left\{P \in E\left(\mathbb{F}_{q^{n}}\right): P=\left(x_{p}, y_{p}\right), x_{p} \in \mathbb{F}_{q}\right\}$
(1) learning phase: ask the oracle to compute $Q=[d] P$ for each $P \in \mathcal{F}$
© self-randomization: given a challenge X, pick a random integer r coprime to the order of G and compute $X_{r}=[r] X$

- check if X_{r} can be written as a sum of m points of $\mathcal{F}: X_{r}=\sum_{i=1}^{m} P_{i}$
(0) if X_{r} is not decomposable, go back to step 2; else output $Y=[s]\left(\sum_{i=1}^{m} Q_{i}\right)$ where $s=r^{-1} \bmod |G|$.

Remark

$P \in \mathcal{F} \Leftrightarrow-P \in \mathcal{F} \rightsquigarrow$ only $\# \mathcal{F} / 2$ oracle calls are needed

Practical attacks of SDHP over $E\left(\mathbb{F}_{q^{d}}\right)$

Extension degree $4\left(q^{d}=q^{\prime 4}\right)$ with Gaudry's approach

- $\simeq q^{\prime}$ oracle calls needed
- self-randomization: average of 4 ! trials needed

Extension degree $5\left(q^{d}=q^{\prime \prime 5}\right)$ with our approach

- $\simeq q^{\prime \prime}$ oracle calls needed
- self-randomization: average of $4!q^{\prime \prime}$ trials needed

Degree of the extension field $\mathbb{F}_{q^{d}}$	$4 \mid d$	$5 \mid d$
nb of oracle calls	$\simeq q^{d / 4}$	$\simeq q^{d / 5}$
decomposition cost	$\tilde{O}(1)$	$\tilde{O}\left(q^{d / 5}\right)$
overall complexity	$\tilde{O}\left(q^{d / 4}\right)$	$\tilde{O}\left(q^{d / 5}\right)$

Quid of $n>5$?

Trade-off

(1) decompose in a small number of points $R=P_{1}+\ldots+P_{m}$ degree of $m+1$-Semaev in 2^{m-1}
(2) enlarge the factor base \mathcal{F}
probability of decomposition not too small

Example for $n=7, m=3, \mathbb{F}_{q^{7}}=\mathbb{F}_{q}(t)$

$$
\mathcal{F}=\left\{P \in E\left(\mathbb{F}_{q^{7}}\right): x_{P}=x_{0, P}+x_{1, P} t, \quad x_{0, P}, x_{1, P} \in \mathbb{F}_{q}\right\}
$$

Semaev + Weil descent $\rightsquigarrow 7$ equations in 6 variables of degree 4 in each variables, total degree 12

Example for $n=7, m=3, \mathbb{F}_{q^{7}}=\mathbb{F}_{q}(t)$

Remarks

- polynomials no longer symmetric
- but invariant under the action of \mathfrak{S}_{3}

Example for $n=7, m=3, \mathbb{F}_{q^{7}}=\mathbb{F}_{q}(t)$

Remarks

- polynomials no longer symmetric
- but invariant under the action of \mathfrak{S}_{3}

How to take advantage of this invariance ?

- working in the invariant ring $\mathbb{F}_{q}[\underline{X}]^{\mathfrak{C}_{3}}$ is awkward
not a free algebra \rightsquigarrow more variables and equations
in our example: 3 additional variables and 5 algebra relations
- SAGBI-Gröbner basis ?

Index calculus methods over $E\left(\mathbb{F}_{q^{n}}\right)$
 Application to the static Diffie-Hellman problem

Vanessa VITSE - Antoine JOUX
Université de Versailles Saint-Quentin, Laboratoire PRISM

March 26, 2010

