Cover and Decomposition Attacks on Elliptic Curves

Vanessa VITSE Joint work with Antoine JOUX

Université de Versailles Saint-Quentin, Laboratoire PRiSM

Elliptic Curve Cryptography - ECC 2011

Vanessa VITSE (UVSQ)

Section 1

Background

Vanessa VITSE (UVSQ)

Cover and decomposition attacks

3

<ロ> (日) (日) (日) (日) (日)

Hardness of ECDLP

ECDLP

Given $P \in E(\mathbb{F}_q)$ and $Q \in \langle P \rangle$, find x such that Q = [x]P

Attacks on special curves

- Curves defined over prime fields
 - small embedding degree (transfer via pairings)
 - anomalous curves (p-adic lifts)
- Curves defined over extension fields
 - Weil descent [Frey]:

transfer from $E(\mathbb{F}_{p^n})$ to $\operatorname{Jac}_{\mathcal{C}}(\mathbb{F}_p)$ where \mathcal{C} is a genus $g \geq n$ curve

• Decomposition index calculus on $E(\mathbb{F}_{p^n})$

- 3

- 4 同 6 4 日 6 4 日 6

Hardness of ECDLP

ECDLP

Given $P \in E(\mathbb{F}_q)$ and $Q \in \langle P
angle$, find x such that Q = [x]P

Attacks on special curves

- Curves defined over prime fields
 - small embedding degree (transfer via pairings)
 - anomalous curves (p-adic lifts)
- Curves defined over extension fields
 - Weil descent [Frey]:

transfer from $E(\mathbb{F}_{p^n})$ to $\operatorname{Jac}_{\mathcal{C}}(\mathbb{F}_p)$ where \mathcal{C} is a genus $g \ge n$ curve

• Decomposition index calculus on $E(\mathbb{F}_{p^n})$

Objective of this talk

Present a combined attack for curves over extension fields

Vanessa VITSE (UVSQ)

ヘロト 人間ト 人間ト 人間

Weil descent

Transfer of the ECDLP via cover maps

Let $\mathcal{W} = \mathcal{W}_{\mathbb{F}_{q^n}/\mathbb{F}_q}(E)$ be the **Weil restriction** of $E_{|\mathbb{F}_{q^n}}$ elliptic curve. Inclusion of a curve $\mathcal{C}_{|\mathbb{F}_q} \hookrightarrow \mathcal{W}$ induces a **cover map** $\pi : \mathcal{C}(\mathbb{F}_{q^n}) \to E(\mathbb{F}_{q^n})$.

Transfer of the ECDLP via cover maps

Let $\mathcal{W} = \mathcal{W}_{\mathbb{F}_{q^n}/\mathbb{F}_q}(E)$ be the **Weil restriction** of $E_{|\mathbb{F}_{q^n}}$ elliptic curve. Inclusion of a curve $\mathcal{C}_{|\mathbb{F}_q} \hookrightarrow \mathcal{W}$ induces a **cover map** $\pi : \mathcal{C}(\mathbb{F}_{q^n}) \to E(\mathbb{F}_{q^n})$.

• transfer the DLP from $\langle P \rangle \subset E(\mathbb{F}_{q^n})$ to $\operatorname{Jac}_{\mathcal{C}}(\mathbb{F}_q)$

Transfer of the ECDLP via cover maps

Let $\mathcal{W} = \mathcal{W}_{\mathbb{F}_{q^n}/\mathbb{F}_q}(E)$ be the **Weil restriction** of $E_{|\mathbb{F}_{q^n}}$ elliptic curve. Inclusion of a curve $\mathcal{C}_{|\mathbb{F}_q} \hookrightarrow \mathcal{W}$ induces a **cover map** $\pi : \mathcal{C}(\mathbb{F}_{q^n}) \to E(\mathbb{F}_{q^n})$.

• transfer the DLP from $\langle P \rangle \subset E(\mathbb{F}_{q^n})$ to $\operatorname{Jac}_{\mathcal{C}}(\mathbb{F}_q)$

 $\begin{array}{ccc} \mathcal{C}(\mathbb{F}_{q^n}) & \operatorname{Jac}_{\mathcal{C}}(\mathbb{F}_{q^n}) \xrightarrow{Tr} \operatorname{Jac}_{\mathcal{C}}(\mathbb{F}_q) \\ & & & \\ \downarrow^{\pi} & & \pi^* \uparrow & & \\ \mathcal{E}(\mathbb{F}_{q^n}) & \operatorname{Jac}_{E}(\mathbb{F}_{q^n}) \simeq E(\mathbb{F}_{q^n}) \end{array} \qquad g \text{ genus of } \mathcal{C} \\ & & \text{s.t. } g \ge n \end{array}$

② use index calculus on Jac_C(𝔽_q):
 → efficient if C is hyperelliptic with small genus g [Gaudry] or has a small degree plane model [Diem]

・何・ ・ヨ・ ・ヨ・ ・ヨ

Transfer of the ECDLP via cover maps

Let $\mathcal{W} = \mathcal{W}_{\mathbb{F}_{q^n}/\mathbb{F}_q}(E)$ be the **Weil restriction** of $E_{|\mathbb{F}_{q^n}}$ elliptic curve. Inclusion of a curve $\mathcal{C}_{|\mathbb{F}_q} \hookrightarrow \mathcal{W}$ induces a **cover map** $\pi : \mathcal{C}(\mathbb{F}_{q^n}) \to E(\mathbb{F}_{q^n})$.

• transfer the DLP from $\langle P \rangle \subset E(\mathbb{F}_{q^n})$ to $\operatorname{Jac}_{\mathcal{C}}(\mathbb{F}_q)$

 $\begin{array}{ccc} \mathcal{C}(\mathbb{F}_{q^n}) & \operatorname{Jac}_{\mathcal{C}}(\mathbb{F}_{q^n}) \xrightarrow{Tr} \operatorname{Jac}_{\mathcal{C}}(\mathbb{F}_q) \\ & & & \\ \downarrow^{\pi} & & \pi^* \uparrow & & \\ \mathcal{E}(\mathbb{F}_{q^n}) & \operatorname{Jac}_{E}(\mathbb{F}_{q^n}) \simeq E(\mathbb{F}_{q^n}) \end{array} \qquad g \text{ genus of } \mathcal{C} \\ & & \text{s.t. } g \ge n \end{array}$

② use index calculus on Jac_C(𝔽_q):
 → efficient if C is hyperelliptic with small genus g [Gaudry] or has a small degree plane model [Diem]

Find a convenient curve ${\mathcal C}$ with a genus small enough? \rightarrow GHS technique and isogeny walk

イロト イポト イヨト イヨト 二日

Decomposition attack on DLP over $\mathcal{A}_{|\mathbb{F}_{q}}$, *n*-dimensional abelian variety

Gaudry's method

- Choose U ⊂ A dense affine subset and coord. (x₁,...,x_n, y₁,..., y_m) on U s.t. F_q(A) algebraic extension of F_q(x₁,...,x_n)
- 3 Define factor base $\mathcal{F} = \{P \in U : x_2(P) = \ldots = x_n(P) = 0\}$
- Obecompose enough points of A as sum of n points of F using group law over A ↔ solve a multivariate polynomial system (and check rationality of solutions)
- Extract the logarithms with sparse linear algebra

- 3

- 4 同 6 4 日 6 4 日 6

Decomposition attack on DLP over $\mathcal{A}_{|\mathbb{F}_{q}}$, *n*-dimensional abelian variety

Gaudry's method

- Choose U ⊂ A dense affine subset and coord. (x₁,...,x_n, y₁,..., y_m) on U s.t. F_q(A) algebraic extension of F_q(x₁,...,x_n)
- 3 Define factor base $\mathcal{F} = \{P \in U : x_2(P) = \ldots = x_n(P) = 0\}$
- Obecompose enough points of A as sum of n points of F using group law over A ↔ solve a multivariate polynomial system (and check rationality of solutions)
- Extract the logarithms with sparse linear algebra

${\mathcal F}$ should have $\simeq q$ points

- ightarrow need O(q) relations
- ightarrow linear algebra in $ilde{O}(\mathit{nq}^2)$

- 3

(日) (周) (三) (三)

Decomposition attack on DLP over $\mathcal{A}_{|\mathbb{F}_{q}}$, *n*-dimensional abelian variety

Gaudry's method

- Choose U ⊂ A dense affine subset and coord. (x₁,...,x_n, y₁,..., y_m) on U s.t. F_q(A) algebraic extension of F_q(x₁,...,x_n)
- 3 Define factor base $\mathcal{F} = \{P \in U : x_2(P) = \ldots = x_n(P) = 0\}$
- Obecompose enough points of A as sum of n points of F using group law over A ↔ solve a multivariate polynomial system (and check rationality of solutions)
- Extract the logarithms with sparse linear algebra

For fixed *n*, one relation costs $\tilde{O}(1)$ \Rightarrow relation search in $\tilde{O}(q)$ vs linear algebra in $\tilde{O}(q^2)$

- 31

イロト 不得下 イヨト イヨト

Decomposition attack on DLP over $\mathcal{A}_{|\mathbb{F}_{q}}$, *n*-dimensional abelian variety

Gaudry's method

- Choose U ⊂ A dense affine subset and coord. (x₁,...,x_n, y₁,..., y_m) on U s.t. F_q(A) algebraic extension of F_q(x₁,...,x_n)
- 3 Define factor base $\mathcal{F} = \{P \in U : x_2(P) = \ldots = x_n(P) = 0\}$
- Obecompose enough points of A as sum of n points of F using group law over A ↔ solve a multivariate polynomial system (and check rationality of solutions)
- Extract the logarithms with sparse linear algebra

Rebalance with double large prime variation: (heuristic) asymptotic complexity in $\tilde{O}(q^{2-2/n})$ as $q \to \infty$, *n* fixed

- Generalizes the classical index calculus on $\mathcal{A} = \operatorname{Jac}_{\mathcal{H}}(\mathbb{F}_q)$ where \mathcal{H} is hyperelliptic with small genus g
- Main application so far: $\mathcal{A} = W_{\mathbb{F}_{q^n}/\mathbb{F}_q}(E)$ where E elliptic curve defined over \mathbb{F}_{q^n} [Gaudry-Diem]

12 N 4 12 N

- Generalizes the classical index calculus on $\mathcal{A} = \operatorname{Jac}_{\mathcal{H}}(\mathbb{F}_q)$ where \mathcal{H} is hyperelliptic with small genus g
- Main application so far: $\mathcal{A} = W_{\mathbb{F}_{q^n}/\mathbb{F}_q}(E)$ where E elliptic curve defined over \mathbb{F}_{q^n} [Gaudry-Diem]

Practical difficulty

In general, polynomial systems arising from decompositions are huge \rightsquigarrow find nice representations of $\mathcal A$ and clever reformulation of the decompositions

- For elliptic curves, use Semaev's summation polynomials
- For A = W_{Fqⁿ/Fq}(Jac_H(Fqⁿ)): no equivalent of Semaev's polynomials, use reformulation by Nagao instead

- 3

イロト イポト イヨト イヨト

Section 2

Decomposition attack on hyperelliptic curves defined over extension fields

Vanessa VITSE (UVSQ)

Cover and decomposition attacks

3

E 6 4 E 6

47 ▶

Decomposition for Jacobians over extension fields

 \mathcal{C} curve defined over \mathbb{F}_{q^n} of genus g with a unique point \mathcal{O} at infinity $\rightarrow \mathcal{A} = W_{\mathbb{F}_{q^n}/\mathbb{F}_q}(\operatorname{Jac}_{\mathcal{C}}(\mathbb{F}_{q^n}))$ has dim. ng

Framework

• Factor base: $\mathcal{F} = \{ D_Q \in \mathsf{Jac}_{\mathcal{C}}(\mathbb{F}_{q^n}) : D_Q \sim (Q) - (\mathcal{O}), Q \in \mathcal{C}(\mathbb{F}_{q^n}), x(Q) \in \mathbb{F}_{q} \}$

about q elements in ${\mathcal F}$

Decomposition of an arbitrary divisor D ∈ Jac_C(𝔽_{qⁿ}) into ng divisors of the factor base D ~ ∑_{i=1}^{ng} ((Q_i) - (O))

• Sparse linear algebra + double large prime variation

The Riemann-Roch based approach of Nagao

How to check if D can be decomposed ?

$$D + \sum_{i=1}^{ng} \left((Q_i) - (\mathcal{O}) \right) \sim 0 \Leftrightarrow D + \sum_{i=1}^{ng} \left((Q_i) - (\mathcal{O}) \right) = div(f)$$

where $f \in \mathcal{L}_D = \mathcal{L}(ng(\mathcal{O}) - D)$, \mathbb{F}_{q^n} -vector space of dim. (n-1)g + 1

The Riemann-Roch based approach of Nagao

How to check if D can be decomposed ?

$$D + \sum_{i=1}^{ng} \left((Q_i) - (\mathcal{O}) \right) \sim 0 \Leftrightarrow D + \sum_{i=1}^{ng} \left((Q_i) - (\mathcal{O}) \right) = div(f)$$

where $f \in \mathcal{L}_D = \mathcal{L}\left(\textit{ng}(\mathcal{O}) - D \right)$, \mathbb{F}_{q^n} -vector space of dim. (n-1)g+1

- Set of decomp. of D parametrized by $\mathbb{P}(\mathcal{L}_D) \simeq \mathbb{P}^\ell$, $\ell = (n-1)g$
- $(\lambda_1, \ldots, \lambda_\ell)$ affine chart of $\mathbb{P}(\mathcal{L}_D)$ s.t. $Q_i \neq \mathcal{O}$ for all $i = 1, \ldots, ng$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

The Riemann-Roch based approach of Nagao

How to check if D can be decomposed ?

$$D + \sum_{i=1}^{ng} \left((Q_i) - (\mathcal{O}) \right) \sim 0 \Leftrightarrow D + \sum_{i=1}^{ng} \left((Q_i) - (\mathcal{O}) \right) = div(f)$$

where $f \in \mathcal{L}_D = \mathcal{L}(ng(\mathcal{O}) - D)$, \mathbb{F}_{q^n} -vector space of dim. (n-1)g + 1

- Set of decomp. of D parametrized by $\mathbb{P}(\mathcal{L}_D) \simeq \mathbb{P}^\ell$, $\ell = (n-1)g$
- $(\lambda_1, \ldots, \lambda_\ell)$ affine chart of $\mathbb{P}(\mathcal{L}_D)$ s.t. $Q_i \neq \mathcal{O}$ for all $i = 1, \ldots, ng$

Goal: determine $\lambda_1, \ldots, \lambda_\ell$ such that $x(Q_i) \in \mathbb{F}_q$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Nagao's approach for hyperelliptic curves

Given the Mumford representation of $D = (u, v) \in \mathsf{Jac}_\mathcal{H}(\mathbb{F}_{q^n})$

• $\mathcal{L}(ng(\mathcal{O}_{\mathcal{H}}) - D) = \langle u, xu, \dots, x^{m_1}u, y - v, x(y - v), \dots, x^{m_2}(y - v) \rangle$

$$f_{\lambda_1,...,\lambda_{\ell+1}}(x,y) = u \sum_{i=0}^{m_1} \lambda_{2i+1} x^i + (y-v) \sum_{i=0}^{m_2} \lambda_{2i+2} x^i$$

Affine chart of $\mathbb{P}(\mathcal{L}_D) \leftrightarrow \lambda_{\ell+1} = 1$

Generalities

Nagao's approach for hyperelliptic curves

Given the Mumford representation of $D = (u, v) \in Jac_{\mathcal{H}}(\mathbb{F}_{a^n})$

• $\mathcal{L}(ng(\mathcal{O}_{\mathcal{H}}) - D) = \langle u, xu, \dots, x^{m_1}u, y - v, x(y - v), \dots, x^{m_2}(y - v) \rangle$

$$f_{\lambda_1,...,\lambda_{\ell+1}}(x,y) = u \sum_{i=0}^{m_1} \lambda_{2i+1} x^i + (y-v) \sum_{i=0}^{m_2} \lambda_{2i+2} x^i$$

Affine chart of $\mathbb{P}(\mathcal{L}_D) \leftrightarrow \lambda_{\ell+1} = 1$

• Using equation of \mathcal{H} , compute $f_{\lambda_1,\dots,\lambda_{\ell},1}(x,y) \cdot f_{\lambda_1,\dots,\lambda_{\ell},1}(x,-y)/u$ to get a new polynomial with roots $x(Q_1), \ldots, x(Q_{ng})$:

$$\mathcal{F}_{\lambda_1,\ldots,\lambda_\ell}(x) = x^{ng} + \sum_{i=0}^{ng-1} c_i(\lambda_1,\ldots,\lambda_\ell) x^i$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Generalities

Nagao's approach for hyperelliptic curves

Given the Mumford representation of $D = (u, v) \in Jac_{\mathcal{H}}(\mathbb{F}_{a^n})$

• $\mathcal{L}(ng(\mathcal{O}_{\mathcal{H}}) - D) = \langle u, xu, \dots, x^{m_1}u, y - v, x(y - v), \dots, x^{m_2}(y - v) \rangle$

$$f_{\lambda_1,...,\lambda_{\ell+1}}(x,y) = u \sum_{i=0}^{m_1} \lambda_{2i+1} x^i + (y-v) \sum_{i=0}^{m_2} \lambda_{2i+2} x^i$$

Affine chart of $\mathbb{P}(\mathcal{L}_D) \leftrightarrow \lambda_{\ell+1} = 1$

• Using equation of \mathcal{H} , compute $f_{\lambda_1,\dots,\lambda_{\ell},1}(x,y) \cdot f_{\lambda_1,\dots,\lambda_{\ell},1}(x,-y)/u$ to get a new polynomial with roots $x(Q_1), \ldots, x(Q_{n\sigma})$:

$$\mathcal{F}_{\lambda_1,\ldots,\lambda_\ell}(x) = x^{ng} + \sum_{i=0}^{ng-1} c_i(\lambda_1,\ldots,\lambda_\ell) x^i$$

 \rightarrow coefficient c_i of x^i is quadratic in the $\lambda_i \in \mathbb{F}_{q^n}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Nagao's approach for hyperelliptic curves

 $F_{\lambda_1,\ldots,\lambda_\ell}(x) = x^{ng} + \sum_{i=0}^{ng-1} c_i(\lambda_1,\ldots,\lambda_\ell) x^i$ with roots $x(Q_1),\ldots,x(Q_{ng})$

ightarrow Weil restriction of scalars: let $\mathbb{F}_{q^n} = \mathbb{F}_q(t)$ and write

$$\begin{cases} \lambda_i = \lambda_{i,0} + \lambda_{i,1}t + \dots + \lambda_{i,n-1}t^{n-1} \\ c_i(\lambda_1, \dots, \lambda_\ell) = \sum_{j=0}^{n-1} c_{i,j}(\lambda_{1,0}, \dots, \lambda_{\ell,n-1})t^j \end{cases}$$

Nagao's approach for hyperelliptic curves

 $F_{\lambda_1,\ldots,\lambda_\ell}(x) = x^{ng} + \sum_{i=0}^{ng-1} c_i(\lambda_1,\ldots,\lambda_\ell) x^i$ with roots $x(Q_1),\ldots,x(Q_{ng})$

ightarrow Weil restriction of scalars: let $\mathbb{F}_{q^n} = \mathbb{F}_q(t)$ and write

$$\begin{cases} \lambda_i = \lambda_{i,0} + \lambda_{i,1}t + \dots + \lambda_{i,n-1}t^{n-1} \\ c_i(\lambda_1, \dots, \lambda_\ell) = \sum_{j=0}^{n-1} c_{i,j}(\lambda_{1,0}, \dots, \lambda_{\ell,n-1})t^j \end{cases}$$

Then

$$F_{\lambda_1,\ldots,\lambda_\ell} \in \mathbb{F}_q[x] \Leftrightarrow \forall i \in \{0,\ldots,ng-1\}, \forall j \in \{1,\ldots,n-1\}, \ c_{i,j} = 0$$

Generalities

Nagao's approach for hyperelliptic curves

$$\mathcal{F}_{\lambda_1,\dots,\lambda_\ell}(x) = x^{ng} + \sum_{i=0}^{ng-1} c_i(\lambda_1,\dots,\lambda_\ell) x^i$$
 with roots $x(Q_1),\dots,x(Q_{ng})$

 \rightarrow Weil restriction of scalars: let $\mathbb{F}_{q^n} = \mathbb{F}_q(t)$ and write

$$\begin{cases} \lambda_i = \lambda_{i,0} + \lambda_{i,1}t + \dots + \lambda_{i,n-1}t^{n-1} \\ c_i(\lambda_1, \dots, \lambda_\ell) = \sum_{j=0}^{n-1} c_{i,j}(\lambda_{1,0}, \dots, \lambda_{\ell,n-1})t^j \end{cases}$$

Then

$$F_{\lambda_1,\ldots,\lambda_\ell} \in \mathbb{F}_q[x] \Leftrightarrow \forall i \in \{0,\ldots,ng-1\}, \forall j \in \{1,\ldots,n-1\}, c_{i,j} = 0$$

Decomposition of D

- solve a quadratic polynomial system of (n-1)ng eq./var.
- test if $F_{\lambda_1,\dots,\lambda_\ell}$ is split in $\mathbb{F}_q[x]$
- recover decomposition from roots of $F_{\lambda_1,\ldots,\lambda_\ell}$

3

イロト イポト イヨト イヨト

Example for a genus 2 curve over $\mathbb{F}_{67^2} = \mathbb{F}_{67}[t]/(t^2-2)$

 $\mathcal{H}: y^2 = x^5 + (50t + 66)x^4 + (40t + 22)x^3 + (65t + 23)x^2 + (61t + 3)x + 43t + 6$ Decomposition of $D = [x^2 + (52t + 3)x + 21t + 2, (22t + 41)x + 25t + 42] \in \mathsf{Jac}_{\mathcal{H}}(\mathbb{F}_{67^2})$

- 本間 と えき と えき とうき

Example for a genus 2 curve over $\mathbb{F}_{67^2} = \mathbb{F}_{67}[t]/(t^2-2)$

 $\mathcal{H}: y^2 = x^5 + (50t + 66)x^4 + (40t + 22)x^3 + (65t + 23)x^2 + (61t + 3)x + 43t + 6$ Decomposition of $D = [x^2 + (52t + 3)x + 21t + 2, (22t + 41)x + 25t + 42] \in Jac_{\mathcal{H}}(\mathbb{F}_{67^2})$

• consider $\mathcal{L}(4(\mathcal{O}_{\mathcal{H}}) - D) = \langle u(x), y - v(x), x u(x) \rangle$

• from $f_{\lambda_1,\lambda_2,1}(x,y) = x u(x) + \lambda_1(y - v(x)) + \lambda_2 u(x)$ and h(x) $\rightarrow F_{\lambda_1,\lambda_2}(x) = x^4 + (-\lambda_1^2 + 2\lambda_2 + 52t + 3)x^3 + \ldots \in \mathbb{F}_{67}[x]$ with roots $x(Q_i)$

• find
$$\lambda_1, \lambda_2 \in \mathbb{F}_{67^2}$$
 s.t. F_{λ_1, λ_2} is in $\mathbb{F}_{67}[x]$
 $\Rightarrow \lambda_1, \lambda_2$ such that
$$\begin{cases} -\lambda_1^2 + 2\lambda_2 + 52t + 3 \in \mathbb{F}_{67} \\ \vdots \end{cases}$$

Example for a genus 2 curve over $\mathbb{F}_{67^2} = \mathbb{F}_{67}[t]/(t^2-2)$

Weil restriction: let $\lambda_1 = \lambda_{1,0} + t\lambda_{1,1}$ and $\lambda_2 = \lambda_{2,0} + t\lambda_{2,1}$

 $F_{\lambda_1,\lambda_2}(x) \in \mathbb{F}_{67}[x] \Rightarrow \begin{cases} -2\lambda_{1,0}\lambda_{1,1} + 2\lambda_{2,1} + 52 = 0 \\ \vdots \end{cases}$ with 2 solutions: • $\lambda_1 = 7 + 40t$, $\lambda_2 = 8 + 53t$: $F_{\lambda_1,\lambda_2}(x) = x^4 + 53x^3 + 26x^2 + 44x + 12$ • $\lambda_1 = 55 + 37t$, $\lambda_2 = 52 - t$: $F_{\lambda_1, \lambda_2}(x) = (x - 23)(x - 34)(x - 51)(x - 54)$ From $f_{\lambda_1,\lambda_2,1}(x,y) = x u(x) + \lambda_1(y - v(x)) + \lambda_2 u(x) = 0$ recover $y(Q_i)$ $\rightsquigarrow D = (Q_1) + (Q_2) + (Q_3) + (Q_4) - 4(O_{\mathcal{H}})$ where $Q_1 = \begin{vmatrix} 23 \\ 23t+12 \end{vmatrix}$, $Q_2 = \begin{vmatrix} 34 \\ 10t+43 \end{vmatrix}$, $Q_3 = \begin{vmatrix} 51 \\ 17t+3 \end{vmatrix}$, $Q_4 = \begin{vmatrix} 54 \\ 23t+15 \end{vmatrix}$

Vanessa VITSE (UVSQ)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Complexity on hyperelliptic curves

Double large prime variation

Asymptotic complexity in $ilde{O}(q^{2-2/ng})$ as $q o \infty$, n fixed

- 御下 - 西下 - 西下 - 西

Complexity on hyperelliptic curves

Double large prime variation

Asymptotic complexity in $ilde{O}(q^{2-2/ng})$ as $q o \infty$, n fixed

What about hidden constants?

- 1 decomp. test \leftrightarrow solve a quadratic system of (n-1)ng eq/var
 - Zero-dimensional ideal of degree $d = 2^{(n-1)ng}$
 - Resolution with a lexicographic Gröbner basis computation
 Tools: grevlex basis with F4Remake + ordering change with FGLM
 - Complexity: at least in $d^3 = 2^{3(n-1)ng}$

 \rightarrow relevant only for *n* and *g* small enough

イロト 不得 トイヨト イヨト 二日

Complexity on hyperelliptic curves

Double large prime variation

Asymptotic complexity in $ilde{O}(q^{2-2/ng})$ as $q o \infty$, n fixed

What about hidden constants?

- 1 decomp. test \leftrightarrow solve a quadratic system of (n-1)ng eq/var
 - Zero-dimensional ideal of degree $d = 2^{(n-1)ng}$
 - Resolution with a lexicographic Gröbner basis computation
 Tools: grevlex basis with F4Remake + ordering change with FGLM
 - Complexity: at least in $d^3 = 2^{3(n-1)ng}$

 \rightarrow relevant only for n and g small enough

Huge cost of decompositions \rightarrow need for rebalance not so clear in practice

(日) (同) (三) (三)

Remark on the non-hyperelliptic case

C non-hyperelliptic curve defined over \mathbb{F}_{q^n} of genus g, with a unique point $\mathcal{O} \in \mathcal{C}(\mathbb{F}_{q^n})$ at infinity

- Compute a basis of $\mathcal{L}(ng(\mathcal{O}) D))$ [Heß] and express $f_{\lambda_1,\ldots,\lambda_{\ell+1}}$ wrt this basis
- Use (multi-)resultant to compute $F_{\lambda_1,\dots,\lambda_\ell}(x)$ from $f_{\lambda_1,\dots,\lambda_\ell,1}$ and equations of \mathcal{C}

Remark on the non-hyperelliptic case

C non-hyperelliptic curve defined over \mathbb{F}_{q^n} of genus g, with a unique point $\mathcal{O} \in C(\mathbb{F}_{q^n})$ at infinity

- Compute a basis of L(ng(O) − D)) [Heβ] and express f_{λ1,...,λℓ+1} wrt this basis
- Use (multi-)resultant to compute $F_{\lambda_1,...,\lambda_\ell}(x)$ from $f_{\lambda_1,...,\lambda_\ell,1}$ and equations of C

Decomposition of D

Need to solve a polynomial system of (n-1)ng equations and variables with degree > 2

 \Rightarrow Resolution of the polynomial system (much) more complicated than in the hyperelliptic case

3

・ロン ・四 ・ ・ ヨン ・ ヨン

Remark on the elliptic curve case

Gaudry and Diem's original approach

Decomposition of a random point into sum of *n* points $Q_1, ..., Q_n \in \mathcal{F}$ using Semaev summation's polynomials

Nagao versus Semaev for decomposition:

- n(n-1) var/eq of deg. 2 \leftrightarrow n var/eq of deg. 2ⁿ⁻¹ Nagao's decomposition is actually slower than Semaev's approach
- Alternative method to compute symmetrized summation polynomials:
 - Occupie $F_{\lambda_1,\ldots,\lambda_\ell}(x)$, identify its coefficients with elementary symmetric polynomials of $x(Q_1), \ldots, x(Q_n)$

2 Eliminate the variables $\lambda_1, \ldots, \lambda_\ell$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Modification of the relation search [Joux-V.]

 ${\mathcal H}$ hyperelliptic curve of genus g with a unique point ${\mathcal O}_{{\mathcal H}}$ at infinity

In practice, decompositions as $D \sim \sum_{i=1}^{ng} ((Q_i) - (\mathcal{O}_{\mathcal{H}}))$ are too slow to compute

Another type of relations

Compute relations involving only elements of \mathcal{F} :

$$\sum_{i=1}^m \left(\left(\mathcal{Q}_i \right) - \left(\mathcal{O}_\mathcal{H} \right) \right) \sim 0$$

Heuristically, expected number of such relations is $\simeq q^{m-ng}/m!$ \rightarrow as $\simeq q$ relations are needed, consider m = ng + 2

Modification of the relation search [Joux-V.]

 \mathcal{H} hyperelliptic curve of genus g defined over \mathbb{F}_{q^n} , $n \geq 2$ Find relations of the form $\sum_{i=1}^{ng+2} ((Q_i) - (\mathcal{O}_{\mathcal{H}})) \sim 0$

- Riemann-Roch based approach: work in L((ng + 2)(O_H)) = ⟨1, x, x²,..., x^{m1}, y, yx,..., yx^{m2}⟩ of dimension ℓ + 1 = (n − 1)g + 3
- Derive $F_{\lambda_1,...,\lambda_\ell}(x)$ whose roots are $x(Q_1),\ldots,x(Q_{ng+2})$
- *F*_{λ1,...,λℓ}(x) ∈ 𝔽_q[x] ⇒ under-determined quadratic polynomial system of n(n-1)g + 2n - 2 equations in n(n-1)g + 2n variables.
- After initial lex Gröbner basis precomputation, each specialization of the last two variables yields an easy to solve system.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Modified index calculus algorithm

 ${\mathcal H}$ hyperelliptic curve defined over ${\mathbb F}_{q^n}$ of genus g

Precomputation on $\operatorname{Jac}_{\mathcal{H}}(\mathbb{F}_{q^n})$

- Find enough relations between factor base elements
- Do linear algebra to get logs of factor base elements (up to a multiplicative constant)

< 回 > < 三 > < 三 >

Modified index calculus algorithm

 ${\mathcal H}$ hyperelliptic curve defined over ${\mathbb F}_{q^n}$ of genus g

Precomputation on $\operatorname{Jac}_{\mathcal{H}}(\mathbb{F}_{q^n})$

- Find enough relations between factor base elements
- Do linear algebra to get logs of factor base elements (up to a multiplicative constant)

Individual logarithms on $\operatorname{Jac}_{\mathcal{H}}(\mathbb{F}_{q^n})$

How to find x such that $D_2 = [x]D_1$?

- Use some Nagao's style decompositions into ng divisors to obtain a representation of a multiple $[r]D_1$ as sum of factor base elements
- Recover discrete logarithms in base D_1 of all factor base elements
- Decompose a multiple of D_2 and deduce its logarithm

- 3

イロト イポト イヨト イヨト

 \mathcal{H} hyperelliptic curve of genus g defined over $\mathbb{F}_{q^2} = \mathbb{F}_q(t)/(P(t))$ with imaginary model $y^2 = h(x)$ where deg h = 2g + 1.

• Riemann-Roch: $f(x, y) = (x^{g+1} + \lambda_g x^g + \ldots + \lambda_0) + \mu y$

$$\Rightarrow F_{\lambda_0,\ldots,\lambda_g,\mu}(x) = (x^{g+1} + \lambda_g x^g + \ldots + \lambda_0)^2 - \mu^2 h(x)$$

New results

A special case: quadratic extensions

 \mathcal{H} hyperelliptic curve of genus g defined over $\mathbb{F}_{q^2} = \mathbb{F}_q(t)/(P(t))$ with imaginary model $y^2 = h(x)$ where deg h = 2g + 1.

• Riemann-Roch: $f(x, y) = (x^{g+1} + \lambda_{\sigma} x^g + \ldots + \lambda_0) + \mu y$

$$\Rightarrow F_{\lambda_0,\ldots,\lambda_g,\mu}(x) = (x^{g+1} + \lambda_g x^g + \ldots + \lambda_0)^2 - \mu^2 h(x)$$

• $\mu = 0 \rightsquigarrow$ trivial relation of the form $(P_1) + (\iota(P_1)) + \ldots + (P_{g+1}) + (\iota(P_{g+1})) - (2g+2)\mathcal{O}_{\mathcal{H}} \sim 0$

 \mathcal{H} hyperelliptic curve of genus g defined over $\mathbb{F}_{q^2} = \mathbb{F}_q(t)/(P(t))$ with imaginary model $y^2 = h(x)$ where deg h = 2g + 1.

• Riemann-Roch: $f(x, y) = (x^{g+1} + \lambda_g x^g + \ldots + \lambda_0) + \mu y$

$$\Rightarrow F_{\lambda_0,\ldots,\lambda_g,\mu}(x) = (x^{g+1} + \lambda_g x^g + \ldots + \lambda_0)^2 - \mu^2 h(x)$$

•
$$\mu = 0 \rightsquigarrow$$
 trivial relation of the form
 $(P_1) + (\iota(P_1)) + \ldots + (P_{g+1}) + (\iota(P_{g+1})) - (2g+2)\mathcal{O}_{\mathcal{H}} \sim 0$

• Weil restriction: $\lambda_i = \lambda_{i,0} + t\lambda_{i,1}$ and $\mu^2 = \mu_0 + t\mu_1$

$$\begin{aligned} & \mathcal{F}_{\lambda_0,\dots,\lambda_g,\mu}(x) \in \mathbb{F}_q[x] \text{ and } \mu \neq 0 \\ & \Leftrightarrow (\lambda_{0,0},\dots,\lambda_{g,0},\lambda_{0,1},\dots,\lambda_{g,1},\mu_0,\mu_1) \in \mathbb{V}_{\mathbb{F}_q}(\mathrm{I}\!:\!(\mu_0,\mu_1)) \end{aligned}$$

where I is the ideal corresponding to the quadratic polynomial system of 2g + 2 equations in 2g + 4 variables.

Vanessa VITSE (UVSQ)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Key point

Define \mathbb{F}_{q^2} as $\mathbb{F}_q(t)/(t^2-\omega) \rightsquigarrow$ additional structure on the equations

$$F_{\lambda_0,\dots,\lambda_g,\mu}(x) = (1 \cdot x^{g+1} + \lambda_g x^g + \dots + \lambda_0)^2 - \mu^2 h(x) \in \mathbb{F}_q[x] \Leftrightarrow$$

$$2(1 \cdot x^{g+1} + \lambda_{g,0} x^g + \dots + \lambda_{0,0}) (\lambda_{g,1} x^g + \dots + \lambda_{0,1}) - \mu_0 h_1(x) - \mu_1 h_0(x) = 0$$

- 3

くほと くほと くほと

Key point

Define \mathbb{F}_{q^2} as $\mathbb{F}_q(t)/(t^2-\omega) \rightsquigarrow$ additional structure on the equations

$$F_{\lambda_0,\dots,\lambda_g,\mu}(x) = (1 \cdot x^{g+1} + \lambda_g x^g + \dots + \lambda_0)^2 - \mu^2 h(x) \in \mathbb{F}_q[x] \Leftrightarrow$$

$$2(1 \cdot x^{g+1} + \lambda_{g,0} x^g + \dots + \lambda_{0,0})(\lambda_{g,1} x^g + \dots + \lambda_{0,1}) - \mu_0 h_1(x) - \mu_1 h_0(x) = 0$$

The polynomials generating I are multi-homogeneous of deg (1, 1) in $(1, \lambda_{0,0}, \ldots, \lambda_{g,0}), (\lambda_{0,1}, \ldots, \lambda_{g,1}, \mu_0, \mu_1)$

 \rightarrow speeds up the computation of the lex Gröbner basis:

genus	2	3	4	
nb eq./var.	6/8	8/10	10/12	$(g \log_2 q \simeq 70)$
approx. timing	$< 1 { m sec}$	2 sec	1 h	

The polynomials generating I are multi-homogeneous of deg (1, 1) in $(1, \lambda_{0,0}, \ldots, \lambda_{g,0}), (\lambda_{0,1}, \ldots, \lambda_{g,1}, \mu_0, \mu_1)$

 $\rightarrow \pi_1(\mathbb{V}(I:(\mu_0,\mu_1))) = \pi_1(\mathbb{V}(I:(\lambda_{0,1},\ldots,\lambda_{g,1},\mu_0,\mu_1))) \text{ has dim. } 1$ where $\pi_1:(\lambda_{0,0},...,\lambda_{g,0},\lambda_{0,1},...,\lambda_{g,1},\mu_0,\mu_1) \mapsto (\lambda_{0,0},...,\lambda_{g,0})$

New results

A special case: quadratic extensions

The polynomials generating I are multi-homogeneous of deg (1, 1) in $(1, \lambda_{0,0}, \ldots, \lambda_{g,0}), (\lambda_{0,1}, \ldots, \lambda_{g,1}, \mu_0, \mu_1)$

 $\rightarrow \pi_1(\mathbb{V}(I:(\mu_0,\mu_1))) = \pi_1(\mathbb{V}(I:(\lambda_{0,1},\ldots,\lambda_{g,1},\mu_0,\mu_1))) \text{ has dim. } 1$ where $\pi_1:(\lambda_{0,0},...,\lambda_{g,0},\lambda_{0,1},...,\lambda_{g,1},\mu_0,\mu_1) \mapsto (\lambda_{0,0},...,\lambda_{g,0})$

Decomposition method

Outer loop:

"specialization": instead of evaluating e.g. $\lambda_{0,0}$, choose of a point $(\lambda_{0,0}, ..., \lambda_{g,0}) \in \pi_1(\mathbb{V}(I:(\mu_0, \mu_1)))$

remaining variables lie in a one-dimensional vector space

Inner loop:

- specialization of a second variable $\lambda_{0,1} \rightsquigarrow$ easy to solve system

factorization of $F_{\lambda_0,...,\lambda_g,\mu}(x)\in \mathbb{F}_q[x] \rightsquigarrow$ potential relation

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

A second improvement: sieving

Idea: combine the modified relation search with a sieving technique \rightarrow avoid the factorization of $F_{\lambda_0,...,\lambda_g,\mu}$ in $\mathbb{F}_q[x]$

E 5 4 E

< 4 → <

A second improvement: sieving

Idea: combine the modified relation search with a sieving technique \rightarrow avoid the factorization of $F_{\lambda_0,...,\lambda_g,\mu}$ in $\mathbb{F}_q[x]$

Sieving method

- Specialize $\lambda_{0,0}, ..., \lambda_{g,0}$ and express all remaining var. in terms of $\lambda_{0,1}$ $\rightarrow F$ becomes a polynomial in $\mathbb{F}_q[x, \lambda_{0,1}]$ of degree 2 in $\lambda_{0,1}$
- **2** Enumeration in $x \in \mathbb{F}_q$ instead of $\lambda_{0,1}$
 - \rightarrow corresponding values of $\lambda_{0,1}$ are easier to compute
- **③** Possible to recover the values of $\lambda_{0,1}$ for which there were deg_x F associated values of x

Time-memory trade-off:
$$\lambda_{0,1}$$
012 \cdots i \cdots $p-1$ $\#x$ x_0 x_1 x_2 \cdots x_i \cdots x_{p-1}

- 3

イロト 不得下 イヨト イヨト

Complexity with the modified relation search

On the asymptotic side..

Decomposition in ng + 2 instead of ng points seems worse:

- Double large prime variation less efficient: $\rightarrow O(q^{2-2/(ng+2)})$ instead of $O(q^{2-2/ng})$ with Gaudry/Nagao
- Speed-up by sieving only on x-coordinates of "small primes" $\rightarrow O(q^{2-2/(ng+1)})$

くほと くほと くほと

Complexity with the modified relation search

On the asymptotic side..

Decomposition in ng + 2 instead of ng points seems worse:

- Double large prime variation less efficient: $\rightarrow O(q^{2-2/(ng+2)})$ instead of $O(q^{2-2/ng})$ with Gaudry/Nagao
- Speed-up by sieving only on x-coordinates of "small primes" $\rightarrow O(q^{2-2/(ng+1)})$

But in practice..

- much faster to compute decompositions with our variant \rightarrow about 800 times faster for (n, g) = (2, 3) on a 150-bit curve
- better actual complexity for all accessible values of q

3

(日) (周) (三) (三)

Section 3

Cover and decomposition attacks

Vanessa VITSE (UVSQ)

Cover and decomposition attacks

20 September 2011 25 / 32

(日) (周) (三) (三)

э

A combined attack

- Let $E(\mathbb{F}_{q^n})$ elliptic curve such that
 - \bullet GHS provides covering curves ${\cal C}$ with too large genus
 - *n* is too large for a practical decomposition attack

A combined attack

- Let $E(\mathbb{F}_{q^n})$ elliptic curve such that
 - \bullet GHS provides covering curves ${\cal C}$ with too large genus
 - *n* is too large for a practical decomposition attack

Cover and decomposition attack [Joux-V.]

If *n* composite, combine both approaches:

- **(**) use GHS on the subextension $\mathbb{F}_{q^n}/\mathbb{F}_{q^d}$ to transfer the DL to $\operatorname{Jac}_{\mathcal{C}}(\mathbb{F}_{q^d})$
- 2 then use decomposition attack on ${\rm Jac}_{\mathcal C}(\mathbb F_{q^d})$ with base field $\mathbb F_q$ to solve the DLP

A B F A B F

Attacks on elliptic curves defined over \mathbb{F}_{q^6}

Extension degree n = 6 recommended for some Optimal Extension Fields

Potential existing attacks on $E(\mathbb{F}_{q^6})$:

- With the extension $\mathbb{F}_{q^6}/\mathbb{F}_q$
 - Decomposition attack fails to compute any relation
 - GHS: cover C_{|𝔽q} with genus g ≥ 9 (genus 9 very rare: less than q³ curves) → index calculus on Jac_C(𝔽q) is usually slower than generic attacks

Attacks on elliptic curves defined over \mathbb{F}_{q^6}

Extension degree n = 6 recommended for some Optimal Extension Fields

Potential existing attacks on $E(\mathbb{F}_{q^6})$:

- With the extension $\mathbb{F}_{q^6}/\mathbb{F}_q$
 - Decomposition attack fails to compute any relation
 - GHS: cover C_{|𝔽q} with genus g ≥ 9 (genus 9 very rare: less than q³ curves) → index calculus on Jac_C(𝔽q) is usually slower than generic attacks
- **2** With the extension $\mathbb{F}_{q^6}/\mathbb{F}_{q^2}$
 - decomposition attack or GHS with hyperelliptic genus 3 cover asymptotically in $\tilde{O}(q^{8/3})$, only slightly better than generic attacks in $\tilde{O}(q^3)$
 - GHS with non-hyperelliptic genus 3 cover asymptotically in $\tilde{O}(q^2)$

イロト 不得下 イヨト イヨト 二日

Attacks on elliptic curves defined over \mathbb{F}_{q^6}

Extension degree n = 6 recommended for some Optimal Extension Fields

Potential existing attacks on $E(\mathbb{F}_{q^6})$:

- With the extension $\mathbb{F}_{q^6}/\mathbb{F}_q$
 - Decomposition attack fails to compute any relation
 - GHS: cover C_{|𝔽q} with genus g ≥ 9 (genus 9 very rare: less than q³ curves) → index calculus on Jac_C(𝔽q) is usually slower than generic attacks
- **2** With the extension $\mathbb{F}_{q^6}/\mathbb{F}_{q^2}$
 - decomposition attack or GHS with hyperelliptic genus 3 cover asymptotically in $\tilde{O}(q^{8/3})$, only slightly better than generic attacks in $\tilde{O}(q^3)$
 - GHS with non-hyperelliptic genus 3 cover asymptotically in $\tilde{O}(q^2)$
- **③** With the extension $\mathbb{F}_{q^6}/\mathbb{F}_{q^3}$: no improvement over generic attacks

Cover and decomposition attack on $E(\mathbb{F}_{q^6})$

Most interesting tower of extensions: $\mathbb{F}_{q^6} - \mathbb{F}_{q^2} - \mathbb{F}_q$ \rightarrow favorable case for the decomposition step ($\mathbb{F}_{q^2}/\mathbb{F}_q$ extension)

くほと くほと くほと

Cover and decomposition attack on $E(\mathbb{F}_{q^6})$

Most interesting tower of extensions: $\mathbb{F}_{q^6} - \mathbb{F}_{q^2} - \mathbb{F}_q$ \rightarrow favorable case for the decomposition step ($\mathbb{F}_{q^2}/\mathbb{F}_q$ extension)

• Most curves admit a non-hyperelliptic genus 3 cover defined over \mathbb{F}_{q^2} [Momose-Chao], they are of the form

$$E: y^2 = (x - \alpha)(x - \alpha^{q^2})(x - \beta)(x - \beta^{q^2}),$$

where $\alpha, \beta \in \mathbb{F}_{q^6} \setminus \mathbb{F}_{q^2}$ or $\alpha \in \mathbb{F}_{q^{12}} \setminus (\mathbb{F}_{q^4} \cup \mathbb{F}_{q^6})$ and $\beta = \alpha^{q^6}$

- 4回 ト 4 ヨ ト - 4 ヨ ト - ヨ

Cover and decomposition attack on $E(\mathbb{F}_{q^6})$

Most interesting tower of extensions: $\mathbb{F}_{q^6} - \mathbb{F}_{q^2} - \mathbb{F}_q$ \rightarrow favorable case for the decomposition step ($\mathbb{F}_{q^2}/\mathbb{F}_q$ extension)

• Most curves admit a non-hyperelliptic genus 3 cover defined over \mathbb{F}_{q^2} [Momose-Chao], they are of the form

$$E: y^2 = (x - \alpha)(x - \alpha^{q^2})(x - \beta)(x - \beta^{q^2}),$$

where $\alpha, \beta \in \mathbb{F}_{q^6} \setminus \mathbb{F}_{q^2}$ or $\alpha \in \mathbb{F}_{q^{12}} \setminus (\mathbb{F}_{q^4} \cup \mathbb{F}_{q^6})$ and $\beta = \alpha^{q^6}$

• Curves admitting a hyperelliptic genus 3 cover defined over \mathbb{F}_{q^2} :

$$E: \; y^2 = h(x)(x-lpha)(x-lpha^{q^2})$$
, where $lpha \in \mathbb{F}_{q^6} \setminus \mathbb{F}_{q^2}, \; h \in \mathbb{F}_{q^2}[x]$

- occurs for $\Theta(q^4)$ curves directly [Thériault]
- ▶ occurs for most curves with cardinality divisible by 4, after an isogeny walk of length O(q²)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Estimations for *E* elliptic curve defined over \mathbb{F}_{p^6} with $|p| \simeq 27$ bits and $\#E(\mathbb{F}_{p^6}) = 4\ell$ with ℓ a 160-bit prime

Attack	Asymptotic	Memory	Computation time
	complexity	complexity	estimate (years)
Pollard on $E(\mathbb{F}_{p^6})$	$\tilde{O}(p^3)$	$ ilde{O}(1)$	$5.0 imes10^{13}$

- 3

- 4 週 ト - 4 三 ト - 4 三 ト

Estimations for *E* elliptic curve defined over \mathbb{F}_{p^6} with $|p| \simeq 27$ bits and $\#E(\mathbb{F}_{p^6}) = 4\ell$ with ℓ a 160-bit prime

Attest	Asymptotic	Memory	Computation time
ALLACK	complexity	complexity	estimate (years)
Pollard on $E(\mathbb{F}_{p^6})$	$\tilde{O}(p^3)$	$ ilde{O}(1)$	$5.0 imes10^{13}$
Ind. calc. on $Jac_\mathcal{H}(\mathbb{F}_{p^2})$, $g=3^{(*)}$	$ ilde{O}(p^{8/3})$	$\tilde{O}(p^2)$	$7.2 imes10^{10}$
Ind. calc. on $Jac_\mathcal{C}(\mathbb{F}_{p^2}),\ d=4$	$\tilde{O}(p^2)$	$\tilde{O}(p^2)$	670 000
Decompositions on $E((\mathbb{F}_{p^2})^3)$	$ ilde{O}(p^{8/3})$	$\tilde{O}(p^2)$	$1.3 imes10^{12}$

(*): only for
$$\Theta(p^4)$$
 curves

Vanessa VITSE (UVSQ)

- 3

- 4 週 ト - 4 三 ト - 4 三 ト

Estimations for *E* elliptic curve defined over \mathbb{F}_{p^6} with $|p| \simeq 27$ bits and $\#E(\mathbb{F}_{p^6}) = 4\ell$ with ℓ a 160-bit prime

Attack	Asymptotic	Memory	Computation time
ALLACK	complexity	complexity	estimate (years)
Pollard on $E(\mathbb{F}_{p^6})$	$\tilde{O}(p^3)$	$ ilde{O}(1)$	$5.0 imes10^{13}$
Ind. calc. on $Jac_\mathcal{H}(\mathbb{F}_{p^2}), \ g=3^{(*)}$	$ ilde{O}(p^{8/3})$	$\tilde{O}(p^2)$	$7.2 imes 10^{10}$
Ind. calc. on $\operatorname{Jac}_{\mathcal{C}}(\mathbb{F}_{p^2}), \ d=4$	$\tilde{O}(p^2)$	$\tilde{O}(p^2)$	670 000
Decompositions on $E((\mathbb{F}_{p^2})^3)$	$ ilde{O}(p^{8/3})$	$\tilde{O}(p^2)$	1.3×10^{12}
Ind. calc. on $Jac_\mathcal{C}(\mathbb{F}_p)$, $d=10^{(**)}$	$ ilde{O}(p^{7/4})$	$\tilde{O}(p)$	1 370

(*): only for
$$\Theta(p^4)$$
 curves
Vanessa VITSE (UVSQ)

Cover and decomposition attacks

(**): only for $O(p^3)$ curves

B A B A B OQO

Estimations for *E* elliptic curve defined over \mathbb{F}_{p^6} with $|p| \simeq 27$ bits and $\#E(\mathbb{F}_{p^6}) = 4\ell$ with ℓ a 160-bit prime

Attack	Asymptotic	Memory	Computation time
Allack	complexity	complexity	estimate (years)
Pollard on $E(\mathbb{F}_{p^6})$	$\tilde{O}(p^3)$	$ ilde{O}(1)$	$5.0 imes10^{13}$
Ind. calc. on $Jac_\mathcal{H}(\mathbb{F}_{p^2}), \ g=3^{(*)}$	$ ilde{O}(p^{8/3})$	$\tilde{O}(p^2)$	$7.2 imes10^{10}$
Ind. calc. on $Jac_\mathcal{C}(\mathbb{F}_{p^2}),\ d=4$	$\tilde{O}(p^2)$	$\tilde{O}(p^2)$	670 000
Decompositions on $E((\mathbb{F}_{p^2})^3)$	$ ilde{O}(p^{8/3})$	$\tilde{O}(p^2)$	1.3×10^{12}
Ind. calc. on $Jac_\mathcal{C}(\mathbb{F}_p)$, $d=10^{(**)}$	$ ilde{O}(p^{7/4})$	$\tilde{O}(p)$	1 370
Decomp. on $Jac_\mathcal{H}(\mathbb{F}_{p^3}), \ g=2$	$ ilde{O}(p^{5/3})$	$\tilde{O}(p)$	$4.5 imes10^{6}$
Decomp. on $Jac_{\mathcal{H}}(\mathbb{F}_{p^2}), g = 3^{(*)}$	$ ilde{O}(p^{5/3})$	$\tilde{O}(p)$	730
Sieving on ${\sf Jac}_{\mathcal H}(\mathbb F_{p^2}),g=3^{(*)}$	$ ilde{O}(p^{12/7})$	$\tilde{O}(p)$	430

(*): only for $\Theta(p^4)$ curves Vanessa VITSE (UVSQ)

Cover and decomposition attacks

(**): only for $O(p^3)$ curves

≡ nar

A 150-bit example

A seemingly secure curve

E : $y^2 = x(x - \alpha)(x - \sigma(\alpha))$ defined over \mathbb{F}_{p^6} where $p = 2^{25} + 35$, such that $\#E = 4 \cdot 356814156285346166966901450449051336101786213$.

GHS $\rightsquigarrow \mathbb{F}_p$ -defined cover of genus 33, too large for efficient index calculus

Decomposition on the genus 3 hyperelliptic cover $\mathcal{H}_{|\mathbb{F}_{p^2}}$: using structured Gaussian elimination instead of the 2LP variation

Relation search

- lex GB of a system of 8 eq. and 10 var. in 2.7 sec with one core (Magma on a 2.6 GHz Intel Core 2 Duo proc)
- sieving phase: 1.4 × 10¹⁰ ≃ p²/(2 · 8!) relations in about 15h30 with 4 096 cores (2.93 GHz quadri-core Intel Xeon 5550 proc)
 → 800 times faster than Nagao's

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

A 150-bit example

Decomposition on the genus 3 hyperelliptic cover $\mathcal{H}_{|\mathbb{F}_{n^2}}$:

2 Linear algebra on the very sparse matrix of relations:

- Structured Gaussian elimination: 24h30 with 32 cores → reduces by a factor 5.4 the number of unknowns
- Lanczos algorithm: 28.5 days with 64 cores (MPI communications) (2.93 GHz quadri-core Intel Xeon 5550 proc)
- Obscent phase: $\simeq 14 \sec$ for one point with one core (2.6 GHz Intel Core 2 Duo proc)

A 150-bit example

Decomposition on the genus 3 hyperelliptic cover $\mathcal{H}_{|\mathbb{F}_{n^2}}$:

2 Linear algebra on the very sparse matrix of relations:

- Structured Gaussian elimination: 24h30 with 32 cores → reduces by a factor 5.4 the number of unknowns
- Lanczos algorithm: 28.5 days with 64 cores (MPI communications) (2.93 GHz quadri-core Intel Xeon 5550 proc)
- Obscent phase: $\simeq 14 \sec$ for one point with one core (2.6 GHz Intel Core 2 Duo proc)
 - Complete resolution in about 1 month
 - Linear algebra by far the slowest phase (parallelization issue: 200 MB of data broadcast at each round)
 - No further balance possible due to relation exhaustion

- 4 週 ト - 4 三 ト - 4 三 ト

Cover and Decomposition Attacks on Elliptic Curves

Vanessa VITSE Joint work with Antoine JOUX

Université de Versailles Saint-Quentin, Laboratoire PRiSM

Elliptic Curve Cryptography - ECC 2011

Vanessa VITSE (UVSQ)