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RN Motivation

Hardness of ECDLP
ECDLP

Given P € E(F,) and Q € (P), find x such that Q = [x]P

Attacks on special curves

@ Curves defined over prime fields
» small embedding degree (transfer via pairings)
» anomalous curves (p-adic lifts)

@ Curves defined over extension fields
» Weil descent [Frey]:

transfer from E(Fp») to Jace(F,) where C is a genus g > n curve

» Decomposition index calculus on E(F )
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RN Motivation

Hardness of ECDLP

ECDLP
Given P € E(F,) and Q € (P), find x such that Q = [x]P J

Attacks on special curves

@ Curves defined over prime fields
» small embedding degree (transfer via pairings)
» anomalous curves (p-adic lifts)

@ Curves defined over extension fields
» Weil descent [Frey]:

transfer from E(Fp») to Jace(F,) where C is a genus g > n curve
» Decomposition index calculus on E(Fpn)

Objective of this talk

Present a combined attack for curves over extension fields J
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EETNICITN  Weil descent:

Transfer of the ECDLP via cover maps

Let W = W]Fq,,/]Fq(E) be the Weil restriction of E|Fq,, elliptic curve.
Inclusion of a curve Cz, < W induces a cover map 7 : C(Fgn) — E(Fgn).
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EETNICITN  Weil descent:

Transfer of the ECDLP via cover maps

Let W = W]Fqn/]Fq(E) be the Weil restriction of E|]Fq,, elliptic curve.
Inclusion of a curve Cz, < W induces a cover map 7 : C(Fgn) — E(Fgn).

@ transfer the DLP from (P) C E(Fgn) to Jace(Fq)

C(Fqn) Jace(Fgn) . Jace(Fy)
T g genus of C
- A s of

E(Fgn) Jacg(Fgn) ~ E(iﬁqn)
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EETNICITN  Weil descent:

Transfer of the ECDLP via cover maps

Let W = W]Fq,,/]Fq(E) be the Weil restriction of Ep , elliptic curve.
Inclusion of a curve Cz, < W induces a cover map 7 : C(Fgn) — E(Fgn).

@ transfer the DLP from (P) C E(Fgn) to Jace(Fq)
Tr

C(Fgn) Jace(Fgn) ——— Jace(Fy)
T g genus of C
LW W*T st.g>n
E(Fqn) Jace(Fgn) ~ E(Fqn)

@ use index calculus on Jace(Fy):
— efficient if C is hyperelliptic with small genus g [Gaudry] or has a
small degree plane model [Diem]
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EETNICITN  Weil descent:

Transfer of the ECDLP via cover maps

Let W = Wurqn/nrq(E) be the Weil restriction of Ep , elliptic curve.
Inclusion of a curve Cz, < W induces a cover map 7 : C(Fgn) — E(Fgn).

@ transfer the DLP from (P) C E(Fgn) to Jace(Fq)
C(Fqn) Jace(Fgn) — = Jace(F,)

T g genus of C
- A s of

E(Fgn) Jacg(Fgn) ~ E(iﬁqn)

@ use index calculus on Jace(Fy):
— efficient if C is hyperelliptic with small genus g [Gaudry] or has a

small degree plane model [Diem]

Find a convenient curve C with a genus small enough?
— GHS technique and isogeny walk
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Index calculus on small dimension abelian varieties

Decomposition attack on DLP over A, n-dimensional abelian variety

Gaudry's method
© Choose U C A dense affine subset and coord. (x1,...,Xn, Y1, ¥Ym)
on U s.t. Fg(.A) algebraic extension of Fg(x1,. .., Xn)
@ Define factor base F = {P € U : x2(P) = ... = xo(P) =0}
© Decompose enough points of A as sum of n points of F using group

law over A <> solve a multivariate polynomial system (and check
rationality of solutions)

@ Extract the logarithms with sparse linear algebra
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Index calculus on small dimension abelian varieties

Decomposition attack on DLP over A, n-dimensional abelian variety

Gaudry's method
© Choose U C A dense affine subset and coord. (x1,...,Xn, Y1, ¥Ym)
on U s.t. Fg(.A) algebraic extension of Fg(x1,. .., Xn)
@ Define factor base F = {P € U : x2(P) = ... = xo(P) =0}
© Decompose enough points of A as sum of n points of F using group

law over A <> solve a multivariate polynomial system (and check
rationality of solutions)

@ Extract the logarithms with sparse linear algebra

F should have ~ g points
— need O(q) relations
— linear algebra in O(ng?)
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Index calculus on small dimension abelian varieties

Decomposition attack on DLP over Ay, n-dimensional abelian variety

Gaudry's method
@ Choose U C A dense affine subset and coord. (x1,...,Xn, Y1, Ym)
on U s.t. Fg(.A) algebraic extension of Fg(x1,...,Xn)
@ Define factor base F = {P € U : x(P) = ... = x,(P) = 0}
© Decompose enough points of A as sum of n points of F using group

law over A < solve a multivariate polynomial system (and check
rationality of solutions)

@ Extract the logarithms with sparse linear algebra

For fixed n, one relation costs O(1) )
= relation search in O(q) vs linear algebra in O(q?)
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Index calculus on small dimension abelian varieties

Decomposition attack on DLP over Ay, n-dimensional abelian variety

Gaudry's method
@ Choose U C A dense affine subset and coord. (x1,...,Xn, Y1, Ym)
on U s.t. Fg(.A) algebraic extension of Fg(x1,...,Xn)
@ Define factor base F = {P € U : x(P) = ... = x,(P) = 0}
© Decompose enough points of A as sum of n points of F using group

law over A < solve a multivariate polynomial system (and check
rationality of solutions)

@ Extract the logarithms with sparse linear algebra

Rebalance with double large prime variation:

(heuristic) asymptotic complexity in O(g®> /") as g — oo, n fixed
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EELNICITGIN  Decomposition attack

Index calculus on small dimension abelian varieties

@ Generalizes the classical index calculus on A = Jacy (Fg) where H is
hyperelliptic with small genus g

@ Main application so far: A = W]Fqn/]Fq(E) where E elliptic curve
defined over Fgn [Gaudry-Diem]
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Background Decomposition attack

Index calculus on small dimension abelian varieties

o Generalizes the classical index calculus on A = Jacy (Fq) where H is
hyperelliptic with small genus g

@ Main application so far: A = WFqn/Fq(E) where E elliptic curve
defined over Fgn [Gaudry-Diem]

Practical difficulty

In general, polynomial systems arising from decompositions are huge
~~ find nice representations of A and clever reformulation of the
decompositions

@ For elliptic curves, use Semaev's summation polynomials

o For A= Wk, /r,(Jacy(Fgn)): no equivalent of Semaev's
polynomials, use reformulation by Nagao instead

Vanessa VITSE (UVSQ) Cover and decomposition attacks 20 September 2011 6 /32



Decomposition attack on hyperelliptic curves

Section 2

over extension fields

= = = E nae
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Decomposition attack on hyperelliptic curves BEIEEHES

Decomposition for Jacobians over extension fields

C curve defined over Fg» of genus g with a unique point O at infinity
— A= Ws,,/r,(Jacc(Fqn)) has dim. ng

Framework

@ Factor base:
F ={Dq € Jacc(Fq) : Dg ~ (Q) —(0),Q € C(Fqr), x(Q) € Fq}

about g elements in F

@ Decomposition of an arbitrary divisor D € Jacg(Fgn) into ng divisors
of the factor base D ~ >, ((Q) — (O))

@ Sparse linear algebra + double large prime variation

Vanessa VITSE (UVSQ) Cover and decomposition attacks 20 September 2011 8 /32



Decomposition attack on hyperelliptic curves BEIEEHES

The Riemann-Roch based approach of Nagao

How to check if D can be decomposed ?

D+ ((Q) = (0) ~ 0 D+ ((Q) - (0)) = div(f)
i=1 i=1

where f € Lp = L(ng(O) — D), Fgn-vector space of dim. (n—1)g + 1
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Decomposition attack on hyperelliptic curves BEIEEHES

The Riemann-Roch based approach of Nagao

How to check if D can be decomposed ?

D+ ((Q) = (0) ~ 0 D+ ((Q) - (0)) = div(f)
i=1 i=1

where f € Lp = L(ng(O) — D), Fgn-vector space of dim. (n—1)g + 1

o Set of decomp. of D parametrized by P(Lp) ~ P!, ¢/ = (n—1)g

@ (A1,...,Ar) affine chart of P(Lp) s.t. Qi #Oforalli=1,...,ng
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Decomposition attack on hyperelliptic curves BEIEEHES

The Riemann-Roch based approach of Nagao

How to check if D can be decomposed ?

D+ ((Q) = (0) ~ 0 D+ ((Q) - (0)) = div(f)
i=1 i=1

where f € Lp = L(ng(O) — D), Fgn-vector space of dim. (n—1)g + 1

o Set of decomp. of D parametrized by P(Lp) ~ P!, ¢/ = (n—1)g

@ (A1,...,Ar) affine chart of P(Lp) s.t. Qi #Oforalli=1,...,ng

Goal: determine Ay, ..., A, such that x(Q;) € Fq J
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Decomposition attack on hyperelliptic curves BEIEEHES

Nagao's approach for hyperelliptic curves

Given the Mumford representation of D = (u, v) € Jacy (Fgn)
o L(ng(Oy)— D)= (u,xu,....xMu,y —v,x(y —v),....x™(y —v))

my my
Fraoden (6 ¥) = 0 doipax! 4+ (y = v) D Aajgax’
i=0 i=0

Affine chart of P(Lp) <> A\py1 =1
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Decomposition attack on hyperelliptic curves BEIEEHES

Nagao's approach for hyperelliptic curves

Given the Mumford representation of D = (u, v) € Jacy (Fgn)
o L(ng(Oy)— D)= (u,xu,....xMu,y —v,x(y —v),....x™(y —v))

my my
Fraoden (6 ¥) = 0 doipax! 4+ (y = v) D Aajgax’
i=0 i=0

Affine chart of P(Lp) <> A\py1 =1

@ Using equation of #, compute fy, _»,1(x,¥) - fu,.. a1(x,—y)/u
to get a new polynomial with roots x(Q1), ..., x(Qng):

ng—1

Fapone () = x84+ ) (A, .o, A)x!
i=0
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Decomposition attack on hyperelliptic curves BEIEEHES

Nagao's approach for hyperelliptic curves

Given the Mumford representation of D = (u, v) € Jacy (Fgn)
o L(ng(Oy)— D)= (u,xu,....xMu,y —v,x(y —v),....x™(y —v))

my my
Fraoden (6 ¥) = 0 doipax! 4+ (y = v) D Aajgax’
i=0 i=0

Affine chart of P(Lp) <> A\py1 =1

@ Using equation of #, compute fy, _»,1(x,¥) - fu,.. a1(x,—y)/u
to get a new polynomial with roots x(Q1), ..., x(Qng):

ng—1

Fapone () = x84+ ) (A, .o, A)x!
i=0

— coefficient ¢; of x' is quadratic in the \; € Fgn
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Decomposition attack on hyperelliptic curves BEIEEHES
Nagao's approach for hyperelliptic curves
-1 -
Fa,x(x) =x"6 + 37807 ci(A1, ..., Ag)x" with roots x(Q1), ..., x(Qng)

— Weil restriction of scalars: let Fgn = Fq(t) and write

Ai=Xio+At+--+ /\i,n—ltn_1
C;(>\1, ey )\g) = Zjnz_ol Ci,j(>\1,07 ceey Aﬁ,n—l)tj
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Decomposition attack on hyperelliptic curves BEIEEHES

Nagao's approach for hyperelliptic curves

Fai,..on(x) = x"8 + ano 1 ci(Ai, .., )\g)xi with roots x(Q1), ...

— Weil restriction of scalars: let Fgn = Fq(t) and write

Ai=Xio+At+--+ /\i,n—ltn_1
C;(>\1, RN )\g) = Zjnz_ol CiJ()\l,Oa ceey Aﬁ,n—l)tj

Then

FAl,n-,)\z EFq[X] S Vie {0,...,ng—1},Vj€ {1,...,n—1}, C,'JZO
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Decomposition attack on hyperelliptic curves BEIEEHES

Nagao's approach for hyperelliptic curves

Fagoong(x) = X" + 3800 (O, o, Ae)x! with roots x(Q1), - - -, x(Qng)

— Weil restriction of scalars: let Fgn = Fq(t) and write

Ai=Xio+At+--+ )\i,n—ltn_1
C,'(>\1, RN )\g) = Zjn:_()l Ci,j(>\1,07 ceey Aﬂ,n—l)tj

Then
FAM--Q\@ S Fq[x] S Vie {0,...,ng — 1},Vj € {1,...,” — 1}, Cij= 0

Decomposition of D
@ solve a quadratic polynomial system of (n — 1)ng eq./var.
o test if £y, , is split in Fg[x]

@ recover decomposition from roots of Fy,
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Decomposition attack on hyperelliptic curves BEIEEHES

Example for a genus 2 curve over Fgr2 = Fe7[t]/(t* — 2)

H : y? = x5+ (50t + 66)x* + (40t + 22)x3 + (65t + 23)x2 + (61t + 3)x + 43t + 6
Decomposition of
D = [x® + (52t + 3)x + 21t + 2, (22t + 41)x + 25t + 42] € Jacy(Fe72)
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Decomposition attack on hyperelliptic curves BEIEEHES

Example for a genus 2 curve over Fgr2 = Fe7[t]/(t* — 2)

H : y? = x5+ (50t + 66)x* + (40t + 22)x3 + (65t + 23)x2 + (61t + 3)x + 43t + 6
Decomposition of

D = [x® + (52t + 3)x + 21t + 2, (22t + 41)x + 25t + 42] € Jacy(Fe72)

e consider L(4(Oy) — D) = (u(x),y — v(x), x u(x))

e from fy, x,1(x,y) = x u(x) + A1(y — v(x)) + A2u(x) and h(x)
= Fao(X) =x* + (A2 +2X0 +52t +3)x> + ... € Fgr[x] with
roots x(Q;)

o find A1, A2 € Fgz2 s.t. Fy, , is in Fer[x]

—A2 +2X\ + 52t + 3 € Fegr
= A1, A2 such that ]
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Decomposition attack on hyperelliptic curves BEIEEHES

Example for a genus 2 curve over Fgr2 = Fe7[t]/(t* — 2)

Weil restriction: let Ay = A1 0+ tA11 and Ao = oo+ tAo1

FA1,>\2(X) S IF67[X] =

—2A10A11 +2X21 +52=0 _ ‘
. with 2 solutions:

@ A\ =7+40t, Ay =8+ 53t Fy, 0, (x) = x* +53x3 + 26x2 + 44x + 12
@ N\ =55437t, A\p =52 —t: Fy 5 (Xx) = (x —23)(x — 34)(x — 51)(x — 54)
From £, x,1(x,y) = xu(x) + A1(y — v(x)) + Xau(x) = 0 recover y(Q;)

~ D= (Q1) + (Q2) + (Q3) + (Q4) — 4(O3) where
o=l 2 -] * o= " o=

23t+12 10t+-43 17t43

54
23t+15
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Complexity on hyperelliptic curves
Double large prime variation

Asymptotic complexity in @(qz_z/"g) as g — 0o, n fixed
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Decomposition attack on hyperelliptic curves BEIEEHES

Complexity on hyperelliptic curves

Double large prime variation

Asymptotic complexity in b(qz_z/”g) as g — 0o, n fixed

What about hidden constants?
1 decomp. test < solve a quadratic system of (n — 1)ng eq/var
o Zero-dimensional ideal of degree d = 2(n—1)ng
@ Resolution with a lexicographic Grobner basis computation
Tools: grevlex basis with FARemake + ordering change with FGLM
o Complexity: at least in g3 = 23(n—1)ng
— relevant only for n and g small enough
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Decomposition attack on hyperelliptic curves BRENE|[EES

Complexity on hyperelliptic curves

Double large prime variation

Asymptotic complexity in b(qz_z/”g) as g — 0o, n fixed

What about hidden constants?
1 decomp. test < solve a quadratic system of (n — 1)ng eq/var
o Zero-dimensional ideal of degree d = 2(n—1)ng
@ Resolution with a lexicographic Grobner basis computation
Tools: grevlex basis with FARemake + ordering change with FGLM
o Complexity: at least in g3 = 23(n—1)ng
— relevant only for n and g small enough

Huge cost of decompositions — need for rebalance not so clear in practice
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Decomposition attack on hyperelliptic curves BEIEEHES

Remark on the non-hyperelliptic case

C non-hyperelliptic curve defined over Fgn of genus g, with a unique point
O € C(F4n) at infinity

e Compute a basis of L(ng(O) — D)) [HeB]
and express fy, . A,,, Wrt this basis

@ Use (multi-)resultant to compute Fy,  »,(x) from £y, ,1 and
equations of C
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Decomposition attack on hyperelliptic curves BEIEEHES

Remark on the non-hyperelliptic case

C non-hyperelliptic curve defined over Fgn of genus g, with a unique point
O € C(Fgn) at infinity

e Compute a basis of £(ng(O) — D)) [HeB]
and express fy, . A,,, Wrt this basis

@ Use (multi-)resultant to compute Fy,  »,(x) from £y, ,1 and
equations of C

Decomposition of D

Need to solve a polynomial system of (n — 1)ng equations and variables
with degree > 2

= Resolution of the polynomial system (much) more complicated than in
the hyperelliptic case

Vanessa VITSE (UVSQ) Cover and decomposition attacks 20 September 2011 15 / 32



Decomposition attack on hyperelliptic curves BEIEEHES

Remark on the elliptic curve case

Gaudry and Diem's original approach

Decomposition of a random point into sum of n points @1, ..., Q, € F
using Semaev summation’s polynomials

Nagao versus Semaev for decomposition:

o n(n—1) var/eq of deg. 2 +— nvar/eq of deg. 2"}
Nagao's decomposition is actually slower than Semaev's approach

@ Alternative method to compute symmetrized summation polynomials:

@ Compute Fy, . »,(x), identify its coefficients with elementary
symmetric polynomials of x(Q1),...,x(Q,)

@ Eliminate the variables A1,..., Ay
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Decomposition attack on hyperelliptic curves New results

Modification of the relation search [Joux-V.]

‘H hyperelliptic curve of genus g with a unique point Oy at infinity

In practice, decompositions as D ~ Y%, ((Q;) — (O)) are too slow to
compute

Another type of relations

Compute relations involving only elements of F:

m

D> (@) —(Ow)) ~0

i=1

Heuristically, expected number of such relations is ~ g™~ "¢ /m!
— as ~ q relations are needed, consider m = ng + 2
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Decomposition attack on hyperelliptic curves New results

Modification of the relation search [Joux-V.]

H hyperelliptic curve of genus g defined over Fgn, n > 2
Find relations of the form 3782 (@) — (Ox)) ~ 0 J

@ Riemann-Roch based approach:
work in £((ng +2)(Ox)) = (1, x,x%,...,x™ y,yx, ..., yx™) of
dimension / +1=(n—1)g +3

@ Derive Fy, . ,(x) whose roots are x(Q1), ..., x(Qng+2)

o Fy,..,(x)€Fq[x] = under-determined quadratic polynomial system
of n(n—1)g + 2n — 2 equations in n(n — 1)g + 2n variables.

@ After initial lex Grobner basis precomputation, each specialization of
the last two variables yields an easy to solve system.
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Decomposition attack on hyperelliptic curves New results

Modified index calculus algorithm
H hyperelliptic curve defined over Fgn of genus g

Precomputation on Jacy (Fg)
@ Find enough relations between factor base elements

@ Do linear algebra to get logs of factor base elements (up to a
multiplicative constant)

Vanessa VITSE (UVSQ) Cover and decomposition attacks 20 September 2011

19 / 32



Decomposition attack on hyperelliptic curves New results

Modified index calculus algorithm
H hyperelliptic curve defined over Fgn of genus g

Precomputation on Jacy (Fg)
@ Find enough relations between factor base elements

@ Do linear algebra to get logs of factor base elements (up to a
multiplicative constant)

Individual logarithms on Jacy (F )
How to find x such that D, = [x]D; ?

@ Use some Nagao's style decompositions into ng divisors to obtain a
representation of a multiple [r]D; as sum of factor base elements
@ Recover discrete logarithms in base D; of all factor base elements

@ Decompose a multiple of D, and deduce its logarithm
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Decomposition attack on hyperelliptic curves New results

A special case: quadratic extensions

H hyperelliptic curve of genus g defined over F2 = Fy(t)/(P(t)) with
imaginary model y? = h(x) where deg h = 2g + 1.

e Riemann-Roch: f(x,y) = (x611 + A\gx& + ...+ Xo) + py

= F)\Ow")\gM(X) = (xg+1 +Agx8+ .+ )\0)2 — ,uzh(x)

Vanessa VITSE (UVSQ) Cover and decomposition attacks 20 September 2011 20 / 32



Decomposition attack on hyperelliptic curves New results

A special case: quadratic extensions

H hyperelliptic curve of genus g defined over F2 = Fy(t)/(P(t)) with
imaginary model y? = h(x) where deg h = 2g + 1.

e Riemann-Roch: f(x,y) = (x611 + A\gx& + ...+ Xo) + py

= F>\O7-~-y>\g7M(X) = (xg+1 +Agx8+ .+ )\0)2 — ,uzh(x)

@ 1 = 0 ~ trivial relation of the form
(P1) 4+ (e(P1)) + ... + (Pg+1) + (((Pg+1)) — (28 +2)On ~ 0

Vanessa VITSE (UVSQ) Cover and decomposition attacks 20 September 2011

20/ 32



Decomposition attack on hyperelliptic curves New results

A special case: quadratic extensions

H hyperelliptic curve of genus g defined over F2 = Fy(t)/(P(t)) with
imaginary model y? = h(x) where deg h = 2g + 1.

e Riemann-Roch: f(x,y) = (x611 + A\gx& + ...+ Xo) + py
_ g+1 g 2 2
= F)\O7m7)\g7u(X) = (x + Agx8 + ...+ X)) — poh(x)
@ 1 = 0 ~ trivial relation of the form
(P1) + («(P1)) + .- + (Pgt1) + (U(Pg+1)) — (28 +2)Ox ~ 0

o Weil restriction: \; = \jg + tA;1 and ©2 = po + thy

Fxo,ngn(x) € Fqlx] and 1 # 0
= ()\070, ey >\g70, )\071, Ce )\g,la 1o, Nl) c VFq(I: (MO? ,ul))

where I is the ideal corresponding to the quadratic polynomial system
of 2g + 2 equations in 2g + 4 variables.
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Decomposition attack on hyperelliptic curves New results

A special case: quadratic extensions

Key point J

Define F 2 as Fq(t)/(t> — w) ~ additional structure on the equations

Froengn(%) = (1 X8+ XgxE + .+ Xo)? — p?h(x) € Fqlx] &
2(1_Xg+1+Ag70Xg+, —4+X0,0)(Ag,1xE+- - -4+ Ao,1)—poh1(x)—p1ho(x) =0

Vanessa VITSE (UVSQ) Cover and decomposition attacks 20 September 2011 21 /32



Decomposition attack on hyperelliptic curves

New results

A special case: quadratic extensions

Key point

Define F 2 as Fq(t)/(t> — w) ~ additional structure on the equations }

Frovenen(6) = (1 XE™ £ 0gx L+ Do) — 12h(x) € Fylx] <
2(1-Xg+1+Ag70Xg+' . '+)\o,o)()\g,1xg+' : -+)\o71)—uoh1(x)—,u1h0(x) =0

The polynomials generating I are multi-homogeneous of deg (1,1) in

(1, /\070, ey )\g,O)a ()\0,1, ce

) >\g,17 Ho, Ml)

— speeds up the computation of the lex Grobner basis:

genus 2 3 4
nb eq./var. 6/8 | 8/10 | 10/12
approx. timing | <lsec | 2sec 1h

Vanessa VITSE (UVSQ)
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(glogy g ~ 70)
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Decomposition attack on hyperelliptic curves New results

A special case: quadratic extensions

The polynomials generating I are multi-homogeneous of deg (1,1) in
(1, )\0’0, ey )‘g,O)a ()\071, ey Ag,ly Mo, Ml)

— 1 (V(L: (o, p1))) = m1(V(I: (o1, - - -, Ag,1, fto, 1)) has dim. 1
where 71 1 (X0,0, s Ag,0s A0,1, s Ag,15 10, H1) — (X005 -+, Ag,0)
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Decomposition attack on hyperelliptic curves New results

A special case: quadratic extensions

The polynomials generating I are multi-homogeneous of deg (1,1) in
(]-7 )‘0,07 B )\g,O)a ()\0,17 C) Ag,17 Ho, Ml)

— 1 (V(L: (o, p1))) = m1(V(I: (o1, - - -, Ag,1, fto, 1)) has dim. 1
where T - ()\070, . >‘g707 )\071, ceny )\g,la 1o, ,U,l) — ()\070, ceny )\gy())
Decomposition method

@ Outer loop:

“specialization”: instead of evaluating e.g. Ao, choose of a
point ()\070, cees )\g70) € 7T1(V(IZ ([1,0, ,ul)))
remaining variables lie in a one-dimensional vector space

@ Inner loop:
specialization of a second variable Ag ;1 ~ easy to solve system
factorization of Fy, . x, u(x) € Fg[x] ~ potential relation
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A second improvement: sieving

Idea: combine the modified relation search with a sieving technique
— avoid the factorization of Fy, .. x,.u in Fg[x]

o =3 = £ DA
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Decomposition attack on hyperelliptic curves New results

A second improvement: sieving

Idea: combine the modified relation search with a sieving technique
— avoid the factorization of Fy, .. x,.u in Fg[x]

Sieving method

© Specialize Agp, ..., Ag,0 and express all remaining var. in terms of Ag
— F becomes a polynomial in Fq[x, Ag 1] of degree 2 in Ao 1

@ Enumeration in x € Fg instead of A1
— corresponding values of A\ 1 are easier to compute

© Possible to recover the values of A\g 1 for which there were deg, F
associated values of x

i[O 1]2]--[Ti]---]p-1

#X Xo X]. X2 o e XI PR prl

Time-memory trade-off:
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Decomposition attack on hyperelliptic curves New results

Complexity with the modified relation search

On the asymptotic side...
Decomposition in ng + 2 instead of ng points seems worse:

@ Double large prime variation less efficient:
— O(q*>2/(ne+2)) instead of O(g?> 2/"8) with Gaudry/Nagao

@ Speed-up by sieving only on x-coordinates of “small primes”
N O(q2—2/(ng+1))
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Decomposition attack on hyperelliptic curves New results

Complexity with the modified relation search

On the asymptotic side...
Decomposition in ng + 2 instead of ng points seems worse:

@ Double large prime variation less efficient:
— O(q*>2/(ne+2)) instead of O(g?> 2/"8) with Gaudry/Nagao

@ Speed-up by sieving only on x-coordinates of “small primes”
N O(q2—2/(ng+1))

But in practice...

@ much faster to compute decompositions with our variant
— about 800 times faster for (n, g) = (2,3) on a 150-bit curve

@ better actual complexity for all accessible values of g
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Cover and decomposition attacks

Section 3

Cover and decomposition attacks

= = = E nae
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A combined attack

Let E(IFqn) elliptic curve such that

@ GHS provides covering curves C with too large genus

@ n is too large for a practical decomposition attack
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A combined attack

Let E(IFqn) elliptic curve such that
@ GHS provides covering curves C with too large genus

@ nis too large for a practical decomposition attack

Cover and decomposition attack [Joux-V.]

If n composite, combine both approaches:

@ use GHS on the subextension IFgn /I ,a to transfer the DL to Jace([F q)

@ then use decomposition attack on Jace(IFq) with base field Fy to
solve the DLP
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Cover and decomposition attacks

Attacks on elliptic curves defined over Fg

Extension degree n = 6 recommended for some Optimal Extension Fields )

Potential existing attacks on E(F):

@ With the extension F /I
» Decomposition attack fails to compute any relation
» GHS: cover Cp, with genus g > 9 (genus 9 very rare: less than q°
curves) ~~ index calculus on Jace(Fg) is usually slower than generic
attacks
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Cover and decomposition attacks

Attacks on elliptic curves defined over [y

Extension degree n = 6 recommended for some Optimal Extension Fields )

Potential existing attacks on E(F):

@ With the extension F /I
» Decomposition attack fails to compute any relation
» GHS: cover Cp, with genus g > 9 (genus 9 very rare: less than q°
curves) ~~ index calculus on Jace(Fg) is usually slower than generic
attacks

© With the extension g /IF 2

» decomposition attack or GHS with hyperelliptic genus 3 cover
asymptotically in é(q8/3), only slightly better than generic attacks
in O(¢*)

» GHS with non-hyperelliptic genus 3 cover asymptotically in O(g?)
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Cover and decomposition attacks

Attacks on elliptic curves defined over [y

Extension degree n = 6 recommended for some Optimal Extension Fields )

Potential existing attacks on E(F):

@ With the extension F /I

» Decomposition attack fails to compute any relation

» GHS: cover Cp, with genus g > 9 (genus 9 very rare: less than q°
curves) ~~ index calculus on Jace(Fg) is usually slower than generic
attacks

© With the extension g /IF 2

» decomposition attack or GHS with hyperelliptic genus 3 cover
asymptotically in é(q8/3), only slightly better than generic attacks
in O(¢*)

» GHS with non-hyperelliptic genus 3 cover asymptotically in O(g?)

© With the extension IE‘qs/IFqsz no improvement over generic attacks
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Cover and decomposition attack on E(F)
Most interesting tower of extensions: g6

—F,.—F
q q
— favorable case for the decomposition step (IF,2/IF4 extension)

o =3 = £ DA
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Cover and decomposition attack on E(F)

q

Most interesting tower of extensions: Fge —F . —TFg
— favorable case for the decomposition step (F,2/IF, extension)

@ Most curves admit a non-hyperelliptic genus 3 cover defined over F.
[Momose-Chao], they are of the form

E:y?=(x—a)(x—a®)(x = B)(x = 57),
where o, 8 € Fgs \F2 or a € Fpi2 \ (Fgs UF6) and 3 = ad’
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Cover and decomposition attack on E(IFy)

Most interesting tower of extensions: Fge —F . —TFg
— favorable case for the decomposition step (F,2/IF, extension)

@ Most curves admit a non-hyperelliptic genus 3 cover defined over F.
[Momose-Chao], they are of the form

E: y?=(x—a)(x—a®)(x - B)(x - 57),
where o, 3 € Fpe \F2 or @ € Fpaz \ (Fge UFgs) and 3 = a9’
e Curves admitting a hyperelliptic genus 3 cover defined over [F.:
E: y? = h(x)(x — a)(x — an), where o € Fpo \ 2, h € F2[x]

» occurs for ©(q*) curves directly [Thériault]
» occurs for most curves with cardinality divisible by 4, after an
isogeny walk of length O(g?)

Vanessa VITSE (UVSQ) Cover and decomposition attacks 20 September 2011 28 / 32



Cover and decomposition attacks

Complexity and comparison with other attacks

Estimations for E elliptic curve defined over IF 6 with |p| ~ 27 bits and
#E(F6) = 40 with £ a 160-bit prime

Attack Asymptotic Memory Computation time
ac

complexity complexity estimate (years)
Pollard on E(F ) O(p?) 0(1) 5.0 x 103
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Cover and decomposition attacks

Complexity and comparison with other attacks

Estimations for E elliptic curve defined over IF 6 with |p| ~ 27 bits and
#E(F6) = 40 with £ a 160-bit prime

Asymptotic Memory Computation time
Attack . . .
complexity complexity estimate (years)
Pollard on E(F,s) O(p?) 0(1) 5.0 x 1013
Ind. calc. on Jacy(F,2), g =3 O(p?/3) O(p?) 7.2 x 1010
Ind. calc. on Jacc(F,2), d =4 é(pz) é(p2) 670000
Decompositions on E((F,2)*) O(p%/?) O(p?) 1.3 x 10'2

(*): only for ©(p*) curves
Vanessa VITSE (UVSQ)
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Cover and decomposition attacks

Complexity and comparison with other attacks
Estimations for E elliptic curve defined over IF 6 with |p| ~ 27 bits and
E(Fys) = 4¢ with £ a 160-bit prime

Computation time

Asymptotic Memory
Attack . . .
complexity complexity estimate (years)
Pollard on E(F ) O(p%) 0(1) 5.0 x 103
Ind. calc. on Jacy(F,2), g = 3™ O(p?/3) O(p?) 7.2 x 10%0
Ind. calc. on Jace(F,2), d = 4 O(p?) O(p?) 670000
Decompositions on E((F,2)*) O(p?/3) O(p?) 1.3 x 10!2
Ind. calc. on Jace(F,), d = 1009 | O(p’/*) O(p) 1370

(%*): only for O(p®) curves

Cover and decomposition attacks

(*): only for ©(p*) curves
Vanessa VITSE (UVSQ)
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Cover and decomposition attacks

Complexity and comparison with other attacks
Estimations for E elliptic curve defined over IF 6 with |p| ~ 27 bits and

#E(F ) = 4( with £ a 160-bit prime

Attack Asymptotic Memory Computation time
complexity complexity estimate (years)
Pollard on E(F ) O(p%) O(1) 5.0 x 103
Ind. calc. on Jacy(F,2), g = 3™ O(p?/3) O(p?) 7.2 x 1010
Ind. calc. on Jace(F,2), d =4 O(p?) O(p?) 670000
Decompositions on E((F,2)*) O(p?/?) O(p?) 1.3 x 10*?
Ind. calc. on Jace(F,), d = 100%) O(p™'*) O(p) 1370
Decomp. on Jacy(F,3), g =2 é(p5/3) b(p) 4.5 x 10°
Decomp. on Jacy(F,2), g = 3™ O(p°/3) O(p) 730
Sieving on Jacy(F,2), g = 3**) O(p2/7) O(p) 430
(*): only for ©(p*) curves (%*): only for O(p®) curves
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A 150-bit example

A seemingly secure curve

E: y? = x(x — a)(x — o(«)) defined over F s where p = 2% + 35, such
that #E = 4 - 356814156285346166966901450449051336101786213.

GHS ~+ Fp-defined cover of genus 33, too large for efficient index calculus

Decomposition on the genus 3 hyperelliptic cover H ,:
P
using structured Gaussian elimination instead of the 2LP variation

@ Relation search

» lex GB of a system of 8eq. and 10var. in 2.7 sec with one core

(Magma on a 2.6 GHz Intel Core 2 Duo proc)
» sieving phase: 1.4 x 1010 ~ p?/(2 - 8!) relations in about 15h30
with 4096 cores (2.93 GHz quadri-core Intel Xeon 5550 proc)

~> 800 times faster than Nagao's
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A 150-bit example

Decomposition on the genus 3 hyperelliptic cover H‘F;ﬂ:

@ Linear algebra on the very sparse matrix of relations:
» Structured Gaussian elimination: 24h30 with 32 cores
~> reduces by a factor 5.4 the number of unknowns
» Lanczos algorithm: 28.5days with 64 cores (MPI communications)
(2.93 GHz quadri-core Intel Xeon 5550 proc)

© Descent phase: ~ 14 sec for one point with one core
(2.6 GHz Intel Core 2 Duo proc)
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A 150-bit example

Decomposition on the genus 3 hyperelliptic cover H‘F;ﬂ:

@ Linear algebra on the very sparse matrix of relations:

» Structured Gaussian elimination: 24h30 with 32 cores
~> reduces by a factor 5.4 the number of unknowns

» Lanczos algorithm: 28.5days with 64 cores (MPI communications)
(2.93 GHz quadri-core Intel Xeon 5550 proc)

© Descent phase: ~ 14 sec for one point with one core
(2.6 GHz Intel Core 2 Duo proc)

@ Complete resolution in about 1 month

o Linear algebra by far the slowest phase (parallelization issue: 200 MB
of data broadcast at each round)

@ No further balance possible due to relation exhaustion
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