Cover and Decomposition Attacks on Elliptic Curves

Vanessa VITSE
Joint work with Antoine JOUX

Université de Versailles Saint-Quentin, Laboratoire PRiSM

Elliptic Curve Cryptography - ECC 2011

Section 1

Background

Hardness of ECDLP

ECDLP

Given $P \in E\left(\mathbb{F}_{q}\right)$ and $Q \in\langle P\rangle$, find x such that $Q=[x] P$

Attacks on special curves

- Curves defined over prime fields
- small embedding degree (transfer via pairings)
- anomalous curves (p-adic lifts)
- Curves defined over extension fields
- Weil descent [Frey]:
transfer from $E\left(\mathbb{F}_{p^{n}}\right)$ to $\operatorname{Jac}_{\mathcal{C}}\left(\mathbb{F}_{p}\right)$ where \mathcal{C} is a genus $g \geq n$ curve
- Decomposition index calculus on $E\left(\mathbb{F}_{p^{n}}\right)$

Hardness of ECDLP

ECDLP

Given $P \in E\left(\mathbb{F}_{q}\right)$ and $Q \in\langle P\rangle$, find x such that $Q=[x] P$

Attacks on special curves

- Curves defined over prime fields
- small embedding degree (transfer via pairings)
- anomalous curves (p-adic lifts)
- Curves defined over extension fields
- Weil descent [Frey]:
transfer from $E\left(\mathbb{F}_{p^{n}}\right)$ to $\operatorname{Jac}_{\mathcal{C}}\left(\mathbb{F}_{p}\right)$ where \mathcal{C} is a genus $g \geq n$ curve
- Decomposition index calculus on $E\left(\mathbb{F}_{p^{n}}\right)$

Objective of this talk

Present a combined attack for curves over extension fields

Transfer of the ECDLP via cover maps

Let $\mathcal{W}=W_{\mathbb{F}_{q^{n}} / \mathbb{F}_{q}}(E)$ be the Weil restriction of $E_{\mid \mathbb{F}_{q^{n}}}$ elliptic curve. Inclusion of a curve $\mathcal{C}_{\mid \mathbb{F}_{q}} \hookrightarrow \mathcal{W}$ induces a cover map $\pi: \mathcal{C}\left(\mathbb{F}_{q^{n}}\right) \rightarrow E\left(\mathbb{F}_{q^{n}}\right)$.

Transfer of the ECDLP via cover maps

Let $\mathcal{W}=W_{\mathbb{F}_{q^{n}} / \mathbb{F}_{q}}(E)$ be the Weil restriction of $E_{\mid \mathbb{F}_{q^{n}}}$ elliptic curve. Inclusion of a curve $\mathcal{C}_{\mid \mathbb{F}_{q}} \hookrightarrow \mathcal{W}$ induces a cover map $\pi: \mathcal{C}\left(\mathbb{F}_{q^{n}}\right) \rightarrow E\left(\mathbb{F}_{q^{n}}\right)$.
(1) transfer the DLP from $\langle P\rangle \subset E\left(\mathbb{F}_{q^{n}}\right)$ to $\operatorname{Jac}_{\mathcal{C}}\left(\mathbb{F}_{q}\right)$

$\operatorname{Jac}_{\mathcal{C}}\left(\mathbb{F}_{q^{n}}\right) \xrightarrow{\operatorname{Tr}} \operatorname{Jac}_{\mathcal{C}}\left(\mathbb{F}_{q}\right)$
g genus of \mathcal{C}
s.t. $g \geq n$

Transfer of the ECDLP via cover maps

Let $\mathcal{W}=W_{\mathbb{F}_{q^{n}} / \mathbb{F}_{q}}(E)$ be the Weil restriction of $E_{\mid \mathbb{F}_{q^{n}}}$ elliptic curve. Inclusion of a curve $\mathcal{C}_{\mid \mathbb{F}_{q}} \hookrightarrow \mathcal{W}$ induces a cover map $\pi: \mathcal{C}\left(\mathbb{F}_{q^{n}}\right) \rightarrow E\left(\mathbb{F}_{q^{n}}\right)$.
(1) transfer the DLP from $\langle P\rangle \subset E\left(\mathbb{F}_{q^{n}}\right)$ to $\operatorname{Jac}_{\mathcal{C}}\left(\mathbb{F}_{q}\right)$

g genus of \mathcal{C}
s.t. $g \geq n$
(2) use index calculus on $\operatorname{Jac}_{\mathcal{C}}\left(\mathbb{F}_{q}\right)$:
\rightarrow efficient if \mathcal{C} is hyperelliptic with small genus g [Gaudry] or has a small degree plane model [Diem]

Transfer of the ECDLP via cover maps

Let $\mathcal{W}=W_{\mathbb{F}_{q^{n}} / \mathbb{F}_{q}}(E)$ be the Weil restriction of $E_{\mid \mathbb{F}_{q^{n}}}$ elliptic curve. Inclusion of a curve $\mathcal{C}_{\mid \mathbb{F}_{q}} \hookrightarrow \mathcal{W}$ induces a cover map $\pi: \mathcal{C}\left(\mathbb{F}_{q^{n}}\right) \rightarrow E\left(\mathbb{F}_{q^{n}}\right)$.
(1) transfer the DLP from $\langle P\rangle \subset E\left(\mathbb{F}_{q^{n}}\right)$ to $\operatorname{Jac}_{\mathcal{C}}\left(\mathbb{F}_{q}\right)$

g genus of \mathcal{C}
s.t. $g \geq n$
(2) use index calculus on $\operatorname{Jac}_{\mathcal{C}}\left(\mathbb{F}_{q}\right)$:
\rightarrow efficient if \mathcal{C} is hyperelliptic with small genus g [Gaudry] or has a small degree plane model [Diem]

Find a convenient curve \mathcal{C} with a genus small enough?
\rightarrow GHS technique and isogeny walk

Index calculus on small dimension abelian varieties

Decomposition attack on DLP over $\mathcal{A}_{\mid \mathbb{F}_{q}}, n$-dimensional abelian variety

Gaudry's method

(1) Choose $U \subset \mathcal{A}$ dense affine subset and coord. $\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)$ on U s.t. $\mathbb{F}_{q}(\mathcal{A})$ algebraic extension of $\mathbb{F}_{q}\left(x_{1}, \ldots, x_{n}\right)$
(2) Define factor base $\mathcal{F}=\left\{P \in U: x_{2}(P)=\ldots=x_{n}(P)=0\right\}$
(3) Decompose enough points of \mathcal{A} as sum of n points of \mathcal{F} using group law over $\mathcal{A} \leftrightarrow$ solve a multivariate polynomial system (and check rationality of solutions)
(9) Extract the logarithms with sparse linear algebra

Index calculus on small dimension abelian varieties

Decomposition attack on DLP over $\mathcal{A}_{\mathbb{F}_{q}}, n$-dimensional abelian variety

Gaudry's method

(1) Choose $U \subset \mathcal{A}$ dense affine subset and coord. ($x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}$) on U s.t. $\mathbb{F}_{q}(\mathcal{A})$ algebraic extension of $\mathbb{F}_{q}\left(x_{1}, \ldots, x_{n}\right)$
(2) Define factor base $\mathcal{F}=\left\{P \in U: x_{2}(P)=\ldots=x_{n}(P)=0\right\}$
(0) Decompose enough points of \mathcal{A} as sum of n points of \mathcal{F} using group law over $\mathcal{A} \leftrightarrow$ solve a multivariate polynomial system (and check rationality of solutions)
(0. Extract the logarithms with sparse linear algebra
\mathcal{F} should have $\simeq q$ points
\rightarrow need $O(q)$ relations
\rightarrow linear algebra in $\tilde{O}\left(n q^{2}\right)$

Index calculus on small dimension abelian varieties

Decomposition attack on DLP over $\mathcal{A}_{\mid \mathbb{F} q}, n$-dimensional abelian variety

Gaudry's method

(1) Choose $U \subset \mathcal{A}$ dense affine subset and coord. $\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)$ on U s.t. $\mathbb{F}_{q}(\mathcal{A})$ algebraic extension of $\mathbb{F}_{q}\left(x_{1}, \ldots, x_{n}\right)$
(2) Define factor base $\mathcal{F}=\left\{P \in U: x_{2}(P)=\ldots=x_{n}(P)=0\right\}$
(3) Decompose enough points of \mathcal{A} as sum of n points of \mathcal{F} using group law over $\mathcal{A} \leftrightarrow$ solve a multivariate polynomial system (and check rationality of solutions)
(9) Extract the logarithms with sparse linear algebra

For fixed n, one relation costs $\tilde{O}(1)$
\Rightarrow relation search in $\tilde{O}(q)$ vs linear algebra in $\tilde{O}\left(q^{2}\right)$

Index calculus on small dimension abelian varieties

Decomposition attack on DLP over $\mathcal{A}_{\mid \mathbb{F} q}, n$-dimensional abelian variety

Gaudry's method

(1) Choose $U \subset \mathcal{A}$ dense affine subset and coord. $\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)$ on U s.t. $\mathbb{F}_{q}(\mathcal{A})$ algebraic extension of $\mathbb{F}_{q}\left(x_{1}, \ldots, x_{n}\right)$
(2) Define factor base $\mathcal{F}=\left\{P \in U: x_{2}(P)=\ldots=x_{n}(P)=0\right\}$
(3) Decompose enough points of \mathcal{A} as sum of n points of \mathcal{F} using group law over $\mathcal{A} \leftrightarrow$ solve a multivariate polynomial system (and check rationality of solutions)
(9) Extract the logarithms with sparse linear algebra

Rebalance with double large prime variation: (heuristic) asymptotic complexity in $\tilde{O}\left(q^{2-2 / n}\right)$ as $q \rightarrow \infty, n$ fixed

Index calculus on small dimension abelian varieties

- Generalizes the classical index calculus on $\mathcal{A}=\operatorname{Jac}_{\mathcal{H}}\left(\mathbb{F}_{q}\right)$ where \mathcal{H} is hyperelliptic with small genus g
- Main application so far: $\mathcal{A}=W_{\mathbb{F}_{q^{n}} / \mathbb{F}_{q}}(E)$ where E elliptic curve defined over $\mathbb{F}_{q^{n}}$ [Gaudry-Diem]

Index calculus on small dimension abelian varieties

- Generalizes the classical index calculus on $\mathcal{A}=\operatorname{Jac}_{\mathcal{H}}\left(\mathbb{F}_{q}\right)$ where \mathcal{H} is hyperelliptic with small genus g
- Main application so far: $\mathcal{A}=W_{\mathbb{F}_{q^{n}} / \mathbb{F}_{q}}(E)$ where E elliptic curve defined over $\mathbb{F}_{q^{n}}$ [Gaudry-Diem]

Practical difficulty

In general, polynomial systems arising from decompositions are huge
\rightsquigarrow find nice representations of \mathcal{A} and clever reformulation of the decompositions

- For elliptic curves, use Semaev's summation polynomials
- For $\mathcal{A}=W_{\mathbb{F}_{q^{n}} / \mathbb{F}_{q}}\left(\operatorname{Jac} \mathcal{H}\left(\mathbb{F}_{q^{n}}\right)\right)$: no equivalent of Semaev's polynomials, use reformulation by Nagao instead

Section 2

Decomposition attack on hyperelliptic curves defined over extension fields

Decomposition for Jacobians over extension fields

\mathcal{C} curve defined over $\mathbb{F}_{q^{n}}$ of genus g with a unique point \mathcal{O} at infinity $\rightarrow \mathcal{A}=W_{\mathbb{F}_{q^{n}} / \mathbb{F}_{q}}\left(\operatorname{Jac}_{\mathcal{C}}\left(\mathbb{F}_{q^{n}}\right)\right)$ has dim. $n g$

Framework

- Factor base:
$\mathcal{F}=\left\{D_{Q} \in \operatorname{Jac}_{\mathcal{C}}\left(\mathbb{F}_{q^{n}}\right): D_{Q} \sim(Q)-(\mathcal{O}), Q \in \mathcal{C}\left(\mathbb{F}_{q^{n}}\right), x(Q) \in \mathbb{F}_{q}\right\}$ about q elements in \mathcal{F}
- Decomposition of an arbitrary divisor $D \in \operatorname{Jac}_{\mathcal{C}}\left(\mathbb{F}_{q^{n}}\right)$ into $n g$ divisors of the factor base $D \sim \sum_{i=1}^{n g}\left(\left(Q_{i}\right)-(\mathcal{O})\right)$
- Sparse linear algebra + double large prime variation

The Riemann-Roch based approach of Nagao

How to check if D can be decomposed ?

$$
D+\sum_{i=1}^{n g}\left(\left(Q_{i}\right)-(\mathcal{O})\right) \sim 0 \Leftrightarrow D+\sum_{i=1}^{n g}\left(\left(Q_{i}\right)-(\mathcal{O})\right)=\operatorname{div}(f)
$$

where $f \in \mathcal{L}_{D}=\mathcal{L}(n g(\mathcal{O})-D), \mathbb{F}_{q^{n} \text {-vector space of } \operatorname{dim} .(n-1) g+1}$

The Riemann-Roch based approach of Nagao

How to check if D can be decomposed ?

$$
D+\sum_{i=1}^{n g}\left(\left(Q_{i}\right)-(\mathcal{O})\right) \sim 0 \Leftrightarrow D+\sum_{i=1}^{n g}\left(\left(Q_{i}\right)-(\mathcal{O})\right)=\operatorname{div}(f)
$$

where $f \in \mathcal{L}_{D}=\mathcal{L}(n g(\mathcal{O})-D), \mathbb{F}_{q^{n}}$-vector space of $\operatorname{dim} .(n-1) g+1$

- Set of decomp. of D parametrized by $\mathbb{P}\left(\mathcal{L}_{D}\right) \simeq \mathbb{P}^{\ell}, \ell=(n-1) g$
- $\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)$ affine chart of $\mathbb{P}\left(\mathcal{L}_{D}\right)$ s.t. $Q_{i} \neq \mathcal{O}$ for all $i=1, \ldots, n g$

The Riemann-Roch based approach of Nagao

How to check if D can be decomposed ?

$$
D+\sum_{i=1}^{n g}\left(\left(Q_{i}\right)-(\mathcal{O})\right) \sim 0 \Leftrightarrow D+\sum_{i=1}^{n g}\left(\left(Q_{i}\right)-(\mathcal{O})\right)=\operatorname{div}(f)
$$

where $f \in \mathcal{L}_{D}=\mathcal{L}(n g(\mathcal{O})-D), \mathbb{F}_{q^{n}}$-vector space of $\operatorname{dim} .(n-1) g+1$

- Set of decomp. of D parametrized by $\mathbb{P}\left(\mathcal{L}_{D}\right) \simeq \mathbb{P}^{\ell}, \ell=(n-1) g$
- $\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)$ affine chart of $\mathbb{P}\left(\mathcal{L}_{D}\right)$ s.t. $Q_{i} \neq \mathcal{O}$ for all $i=1, \ldots, n g$

Goal: determine $\lambda_{1}, \ldots, \lambda_{\ell}$ such that $x\left(Q_{i}\right) \in \mathbb{F}_{q}$

Nagao's approach for hyperelliptic curves

Given the Mumford representation of $D=(u, v) \in \operatorname{Jac}_{\mathcal{H}}\left(\mathbb{F}_{q^{n}}\right)$

- $\mathcal{L}\left(n g\left(\mathcal{O}_{\mathcal{H}}\right)-D\right)=\left\langle u, x u, \ldots, x^{m_{1}} u, y-v, x(y-v), \ldots, x^{m_{2}}(y-v)\right\rangle$

$$
f_{\lambda_{1}, \ldots, \lambda_{\ell+1}}(x, y)=u \sum_{i=0}^{m_{1}} \lambda_{2 i+1} x^{i}+(y-v) \sum_{i=0}^{m_{2}} \lambda_{2 i+2} x^{i}
$$

Affine chart of $\mathbb{P}\left(\mathcal{L}_{D}\right) \leftrightarrow \lambda_{\ell+1}=1$

Nagao's approach for hyperelliptic curves

Given the Mumford representation of $D=(u, v) \in \operatorname{Jac}_{\mathcal{H}}\left(\mathbb{F}_{q^{n}}\right)$

- $\mathcal{L}\left(n g\left(\mathcal{O}_{\mathcal{H}}\right)-D\right)=\left\langle u, x u, \ldots, x^{m_{1}} u, y-v, x(y-v), \ldots, x^{m_{2}}(y-v)\right\rangle$

$$
f_{\lambda_{1}, \ldots, \lambda_{\ell+1}}(x, y)=u \sum_{i=0}^{m_{1}} \lambda_{2 i+1} x^{i}+(y-v) \sum_{i=0}^{m_{2}} \lambda_{2 i+2} x^{i}
$$

Affine chart of $\mathbb{P}\left(\mathcal{L}_{D}\right) \leftrightarrow \lambda_{\ell+1}=1$

- Using equation of \mathcal{H}, compute $f_{\lambda_{1}, \ldots, \lambda_{\ell}, 1}(x, y) \cdot f_{\lambda_{1}, \ldots, \lambda_{\ell}, 1}(x,-y) / u$ to get a new polynomial with roots $x\left(Q_{1}\right), \ldots, x\left(Q_{n g}\right)$:

$$
F_{\lambda_{1}, \ldots, \lambda_{\ell}}(x)=x^{n g}+\sum_{i=0}^{n g-1} c_{i}\left(\lambda_{1}, \ldots, \lambda_{\ell}\right) x^{i}
$$

Nagao's approach for hyperelliptic curves

Given the Mumford representation of $D=(u, v) \in \operatorname{Jac}_{\mathcal{H}}\left(\mathbb{F}_{q^{n}}\right)$

- $\mathcal{L}\left(n g\left(\mathcal{O}_{\mathcal{H}}\right)-D\right)=\left\langle u, x u, \ldots, x^{m_{1}} u, y-v, x(y-v), \ldots, x^{m_{2}}(y-v)\right\rangle$

$$
f_{\lambda_{1}, \ldots, \lambda_{\ell+1}}(x, y)=u \sum_{i=0}^{m_{1}} \lambda_{2 i+1} x^{i}+(y-v) \sum_{i=0}^{m_{2}} \lambda_{2 i+2} x^{i}
$$

Affine chart of $\mathbb{P}\left(\mathcal{L}_{D}\right) \leftrightarrow \lambda_{\ell+1}=1$

- Using equation of \mathcal{H}, compute $f_{\lambda_{1}, \ldots, \lambda_{\ell}, 1}(x, y) \cdot f_{\lambda_{1}, \ldots, \lambda_{\ell}, 1}(x,-y) / u$ to get a new polynomial with roots $x\left(Q_{1}\right), \ldots, x\left(Q_{n g}\right)$:

$$
F_{\lambda_{1}, \ldots, \lambda_{\ell}}(x)=x^{n g}+\sum_{i=0}^{n g-1} c_{i}\left(\lambda_{1}, \ldots, \lambda_{\ell}\right) x^{i}
$$

\rightarrow coefficient c_{i} of x^{i} is quadratic in the $\lambda_{i} \in \mathbb{F}_{q^{n}}$

Nagao's approach for hyperelliptic curves

$F_{\lambda_{1}, \ldots, \lambda_{\ell}}(x)=x^{n g}+\sum_{i=0}^{n g-1} c_{i}\left(\lambda_{1}, \ldots, \lambda_{\ell}\right) x^{i}$ with roots $x\left(Q_{1}\right), \ldots, x\left(Q_{n g}\right)$
\rightarrow Weil restriction of scalars: let $\mathbb{F}_{q^{n}}=\mathbb{F}_{q}(t)$ and write

$$
\left\{\begin{array}{l}
\lambda_{i}=\lambda_{i, 0}+\lambda_{i, 1} t+\cdots+\lambda_{i, n-1} t^{n-1} \\
c_{i}\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)=\sum_{j=0}^{n-1} c_{i, j}\left(\lambda_{1,0}, \ldots, \lambda_{\ell, n-1}\right) t^{j}
\end{array}\right.
$$

Nagao's approach for hyperelliptic curves

$F_{\lambda_{1}, \ldots, \lambda_{\ell}}(x)=x^{n g}+\sum_{i=0}^{n g-1} c_{i}\left(\lambda_{1}, \ldots, \lambda_{\ell}\right) x^{i}$ with roots $x\left(Q_{1}\right), \ldots, x\left(Q_{n g}\right)$
\rightarrow Weil restriction of scalars: let $\mathbb{F}_{q^{n}}=\mathbb{F}_{q}(t)$ and write

$$
\left\{\begin{array}{l}
\lambda_{i}=\lambda_{i, 0}+\lambda_{i, 1} t+\cdots+\lambda_{i, n-1} t^{n-1} \\
c_{i}\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)=\sum_{j=0}^{n-1} c_{i, j}\left(\lambda_{1,0}, \ldots, \lambda_{\ell, n-1}\right) t^{j}
\end{array}\right.
$$

Then
$F_{\lambda_{1}, \ldots, \lambda_{\ell}} \in \mathbb{F}_{q}[x] \Leftrightarrow \forall i \in\{0, \ldots, n g-1\}, \forall j \in\{1, \ldots, n-1\}, c_{i, j}=0$

Nagao's approach for hyperelliptic curves

$F_{\lambda_{1}, \ldots, \lambda_{\ell}}(x)=x^{n g}+\sum_{i=0}^{n g-1} c_{i}\left(\lambda_{1}, \ldots, \lambda_{\ell}\right) x^{i}$ with roots $x\left(Q_{1}\right), \ldots, x\left(Q_{n g}\right)$
\rightarrow Weil restriction of scalars: let $\mathbb{F}_{q^{n}}=\mathbb{F}_{q}(t)$ and write

$$
\left\{\begin{array}{l}
\lambda_{i}=\lambda_{i, 0}+\lambda_{i, 1} t+\cdots+\lambda_{i, n-1} t^{n-1} \\
c_{i}\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)=\sum_{j=0}^{n-1} c_{i, j}\left(\lambda_{1,0}, \ldots, \lambda_{\ell, n-1}\right) t^{j}
\end{array}\right.
$$

Then
$F_{\lambda_{1}, \ldots, \lambda_{\ell}} \in \mathbb{F}_{q}[x] \Leftrightarrow \forall i \in\{0, \ldots, n g-1\}, \forall j \in\{1, \ldots, n-1\}, c_{i, j}=0$

Decomposition of D

- solve a quadratic polynomial system of $(n-1) n g$ eq./var.
- test if $F_{\lambda_{1}, \ldots, \lambda_{\ell}}$ is split in $\mathbb{F}_{q}[x]$
- recover decomposition from roots of $F_{\lambda_{1}, \ldots, \lambda_{\ell}}$

Example for a genus 2 curve over $\mathbb{F}_{67^{2}}=\mathbb{F}_{67}[t] /\left(t^{2}-2\right)$

$$
\mathcal{H}: y^{2}=x^{5}+(50 t+66) x^{4}+(40 t+22) x^{3}+(65 t+23) x^{2}+(61 t+3) x+43 t+6
$$

Decomposition of
$D=\left[x^{2}+(52 t+3) x+21 t+2,(22 t+41) x+25 t+42\right] \in \operatorname{Jac}_{\mathcal{H}}\left(\mathbb{F}_{67^{2}}\right)$

Example for a genus 2 curve over $\mathbb{F}_{67^{2}}=\mathbb{F}_{67}[t] /\left(t^{2}-2\right)$

$\mathcal{H}: y^{2}=x^{5}+(50 t+66) x^{4}+(40 t+22) x^{3}+(65 t+23) x^{2}+(61 t+3) x+43 t+6$
Decomposition of
$D=\left[x^{2}+(52 t+3) x+21 t+2,(22 t+41) x+25 t+42\right] \in \operatorname{Jac}_{\mathcal{H}}\left(\mathbb{F}_{67^{2}}\right)$

- consider $\mathcal{L}\left(4\left(\mathcal{O}_{\mathcal{H}}\right)-D\right)=\langle u(x), y-v(x), x u(x)\rangle$
- from $f_{\lambda_{1}, \lambda_{2}, 1}(x, y)=x u(x)+\lambda_{1}(y-v(x))+\lambda_{2} u(x)$ and $h(x)$ $\rightarrow F_{\lambda_{1}, \lambda_{2}}(x)=x^{4}+\left(-\lambda_{1}^{2}+2 \lambda_{2}+52 t+3\right) x^{3}+\ldots \in \mathbb{F}_{67}[x]$ with roots $x\left(Q_{i}\right)$
- find $\lambda_{1}, \lambda_{2} \in \mathbb{F}_{67^{2}}$ s.t. $F_{\lambda_{1}, \lambda_{2}}$ is in $\mathbb{F}_{67}[x]$
$\Rightarrow \lambda_{1}, \lambda_{2}$ such that $\left\{\begin{array}{c}-\lambda_{1}^{2}+2 \lambda_{2}+52 t+3 \in \mathbb{F}_{67} \\ \vdots\end{array}\right.$

Example for a genus 2 curve over $\mathbb{F}_{67^{2}}=\mathbb{F}_{67}[t] /\left(t^{2}-2\right)$

Weil restriction: let $\lambda_{1}=\lambda_{1,0}+t \lambda_{1,1}$ and $\lambda_{2}=\lambda_{2,0}+t \lambda_{2,1}$
$F_{\lambda_{1}, \lambda_{2}}(x) \in \mathbb{F}_{67}[x] \Rightarrow\left\{\begin{array}{c}-2 \lambda_{1,0} \lambda_{1,1}+2 \lambda_{2,1}+52=0 \\ \vdots\end{array} \quad\right.$ with 2 solutions:

- $\lambda_{1}=7+40 t, \lambda_{2}=8+53 t: F_{\lambda_{1}, \lambda_{2}}(x)=x^{4}+53 x^{3}+26 x^{2}+44 x+12$
- $\lambda_{1}=55+37 t, \lambda_{2}=52-t: F_{\lambda_{1}, \lambda_{2}}(x)=(x-23)(x-34)(x-51)(x-54)$

From $f_{\lambda_{1}, \lambda_{2}, 1}(x, y)=x u(x)+\lambda_{1}(y-v(x))+\lambda_{2} u(x)=0$ recover $y\left(Q_{i}\right)$
$\rightsquigarrow D=\left(Q_{1}\right)+\left(Q_{2}\right)+\left(Q_{3}\right)+\left(Q_{4}\right)-4\left(O_{\mathcal{H}}\right)$ where
$Q_{1}=\left|\begin{array}{c}23 \\ 23 t+12\end{array}, Q_{2}=\left|\begin{array}{c}34 \\ 10 t+43\end{array}, Q_{3}=\left|\begin{array}{c}51 \\ 17 t+3\end{array}, Q_{4}=\right| \begin{array}{c}54 \\ 23 t+15\end{array}\right.\right.$

Complexity on hyperelliptic curves

Double large prime variation
Asymptotic complexity in $\tilde{O}\left(q^{2-2 / n g}\right)$ as $q \rightarrow \infty, n$ fixed

Complexity on hyperelliptic curves

Double large prime variation
Asymptotic complexity in $\tilde{O}\left(q^{2-2 / n g}\right)$ as $q \rightarrow \infty, n$ fixed

What about hidden constants?

1 decomp. test \leftrightarrow solve a quadratic system of $(n-1) n g$ eq/var

- Zero-dimensional ideal of degree $d=2^{(n-1) n g}$
- Resolution with a lexicographic Gröbner basis computation Tools: grevlex basis with F4Remake + ordering change with FGLM
- Complexity: at least in $d^{3}=2^{3(n-1) n g}$
\rightarrow relevant only for n and g small enough

Complexity on hyperelliptic curves

Double large prime variation

Asymptotic complexity in $\tilde{O}\left(q^{2-2 / n g}\right)$ as $q \rightarrow \infty, n$ fixed

What about hidden constants?

1 decomp. test \leftrightarrow solve a quadratic system of ($n-1$) ng eq/var

- Zero-dimensional ideal of degree $d=2^{(n-1) n g}$
- Resolution with a lexicographic Gröbner basis computation Tools: grevlex basis with F4Remake + ordering change with FGLM
- Complexity: at least in $d^{3}=2^{3(n-1) n g}$ \rightarrow relevant only for n and g small enough

Huge cost of decompositions \rightarrow need for rebalance not so clear in practice

Remark on the non-hyperelliptic case

\mathcal{C} non-hyperelliptic curve defined over $\mathbb{F}_{q^{n}}$ of genus g, with a unique point $\mathcal{O} \in \mathcal{C}\left(\mathbb{F}_{q^{n}}\right)$ at infinity

- Compute a basis of $\mathcal{L}(n g(\mathcal{O})-D))$ [Heß] and express $f_{\lambda_{1}, \ldots, \lambda_{\ell+1}}$ wrt this basis
- Use (multi-)resultant to compute $F_{\lambda_{1}, \ldots, \lambda_{\ell}}(x)$ from $f_{\lambda_{1}, \ldots, \lambda_{\ell}, 1}$ and equations of \mathcal{C}

Remark on the non-hyperelliptic case

\mathcal{C} non-hyperelliptic curve defined over $\mathbb{F}_{q^{n}}$ of genus g, with a unique point $\mathcal{O} \in \mathcal{C}\left(\mathbb{F}_{q^{n}}\right)$ at infinity

- Compute a basis of $\mathcal{L}(n g(\mathcal{O})-D))$ [Heß] and express $f_{\lambda_{1}, \ldots, \lambda_{\ell+1}}$ wrt this basis
- Use (multi-)resultant to compute $F_{\lambda_{1}, \ldots, \lambda_{\ell}}(x)$ from $f_{\lambda_{1}, \ldots, \lambda_{\ell}, 1}$ and equations of \mathcal{C}

Decomposition of D

Need to solve a polynomial system of $(n-1) n g$ equations and variables with degree >2
\Rightarrow Resolution of the polynomial system (much) more complicated than in the hyperelliptic case

Remark on the elliptic curve case

Gaudry and Diem's original approach

Decomposition of a random point into sum of n points $Q_{1}, \ldots, Q_{n} \in \mathcal{F}$ using Semaev summation's polynomials

Nagao versus Semaev for decomposition:

- $n(n-1)$ var/eq of deg. $2 \longleftrightarrow n$ var/eq of deg. 2^{n-1}

Nagao's decomposition is actually slower than Semaev's approach

- Alternative method to compute symmetrized summation polynomials:
(1) Compute $F_{\lambda_{1}, \ldots, \lambda_{\ell}}(x)$, identify its coefficients with elementary symmetric polynomials of $x\left(Q_{1}\right), \ldots, x\left(Q_{n}\right)$
(2) Eliminate the variables $\lambda_{1}, \ldots, \lambda_{\ell}$

Modification of the relation search [Joux-V.]

\mathcal{H} hyperelliptic curve of genus g with a unique point $\mathcal{O}_{\mathcal{H}}$ at infinity In practice, decompositions as $D \sim \sum_{i=1}^{n g}\left(\left(Q_{i}\right)-\left(\mathcal{O}_{\mathcal{H}}\right)\right)$ are too slow to compute

Another type of relations

Compute relations involving only elements of \mathcal{F} :

$$
\sum_{i=1}^{m}\left(\left(Q_{i}\right)-\left(\mathcal{O}_{\mathcal{H}}\right)\right) \sim 0
$$

Heuristically, expected number of such relations is $\simeq q^{m-n g} / m$!
\rightarrow as $\simeq q$ relations are needed, consider $m=n g+2$

Modification of the relation search [Joux-V.]

\mathcal{H} hyperelliptic curve of genus g defined over $\mathbb{F}_{q^{n}}, n \geq 2$ Find relations of the form $\sum_{i=1}^{n g+2}\left(\left(Q_{i}\right)-\left(\mathcal{O}_{\mathcal{H}}\right)\right) \sim 0$

- Riemann-Roch based approach: work in $\mathcal{L}\left((n g+2)\left(\mathcal{O}_{\mathcal{H}}\right)\right)=\left\langle 1, x, x^{2}, \ldots, x^{m_{1}}, y, y x, \ldots, y x^{m_{2}}\right\rangle$ of dimension $\ell+1=(n-1) g+3$
- Derive $F_{\lambda_{1}, \ldots, \lambda_{\ell}}(x)$ whose roots are $x\left(Q_{1}\right), \ldots, x\left(Q_{n g+2}\right)$
- $F_{\lambda_{1}, \ldots, \lambda_{\ell}}(x) \in \mathbb{F}_{q}[x] \Rightarrow$ under-determined quadratic polynomial system of $n(n-1) g+2 n-2$ equations in $n(n-1) g+2 n$ variables.
- After initial lex Gröbner basis precomputation, each specialization of the last two variables yields an easy to solve system.

Modified index calculus algorithm

\mathcal{H} hyperelliptic curve defined over $\mathbb{F}_{q^{n}}$ of genus g
Precomputation on $\operatorname{Jac}_{\mathcal{H}}\left(\mathbb{F}_{q^{n}}\right)$

- Find enough relations between factor base elements
- Do linear algebra to get logs of factor base elements (up to a multiplicative constant)

Modified index calculus algorithm

\mathcal{H} hyperelliptic curve defined over $\mathbb{F}_{q^{n}}$ of genus g

Precomputation on $\operatorname{Jac}_{\mathcal{H}}\left(\mathbb{F}_{q^{n}}\right)$

- Find enough relations between factor base elements
- Do linear algebra to get logs of factor base elements (up to a multiplicative constant)

Individual logarithms on $\operatorname{Jac}_{\mathcal{H}}\left(\mathbb{F}_{q^{n}}\right)$

How to find x such that $D_{2}=[x] D_{1}$?

- Use some Nagao's style decompositions into ng divisors to obtain a representation of a multiple $[r] D_{1}$ as sum of factor base elements
- Recover discrete logarithms in base D_{1} of all factor base elements
- Decompose a multiple of D_{2} and deduce its logarithm

A special case: quadratic extensions

\mathcal{H} hyperelliptic curve of genus g defined over $\mathbb{F}_{q^{2}}=\mathbb{F}_{q}(t) /(P(t))$ with imaginary model $y^{2}=h(x)$ where $\operatorname{deg} h=2 g+1$.

- Riemann-Roch: $f(x, y)=\left(x^{g+1}+\lambda_{g} x^{g}+\ldots+\lambda_{0}\right)+\mu y$

$$
\Rightarrow F_{\lambda_{0}, \ldots, \lambda_{g}, \mu}(x)=\left(x^{g+1}+\lambda_{g} x^{g}+\ldots+\lambda_{0}\right)^{2}-\mu^{2} h(x)
$$

A special case: quadratic extensions

\mathcal{H} hyperelliptic curve of genus g defined over $\mathbb{F}_{q^{2}}=\mathbb{F}_{q}(t) /(P(t))$ with imaginary model $y^{2}=h(x)$ where $\operatorname{deg} h=2 g+1$.

- Riemann-Roch: $f(x, y)=\left(x^{g+1}+\lambda_{g} x^{g}+\ldots+\lambda_{0}\right)+\mu y$

$$
\Rightarrow F_{\lambda_{0}, \ldots, \lambda_{g}, \mu}(x)=\left(x^{g+1}+\lambda_{g} x^{g}+\ldots+\lambda_{0}\right)^{2}-\mu^{2} h(x)
$$

- $\mu=0 \rightsquigarrow$ trivial relation of the form
$\left(P_{1}\right)+\left(\iota\left(P_{1}\right)\right)+\ldots+\left(P_{g+1}\right)+\left(\iota\left(P_{g+1}\right)\right)-(2 g+2) \mathcal{O}_{\mathcal{H}} \sim 0$

A special case: quadratic extensions

\mathcal{H} hyperelliptic curve of genus g defined over $\mathbb{F}_{q^{2}}=\mathbb{F}_{q}(t) /(P(t))$ with imaginary model $y^{2}=h(x)$ where $\operatorname{deg} h=2 g+1$.

- Riemann-Roch: $f(x, y)=\left(x^{g+1}+\lambda_{g} x^{g}+\ldots+\lambda_{0}\right)+\mu y$

$$
\Rightarrow F_{\lambda_{0}, \ldots, \lambda_{g}, \mu}(x)=\left(x^{g+1}+\lambda_{g} x^{g}+\ldots+\lambda_{0}\right)^{2}-\mu^{2} h(x)
$$

- $\mu=0 \rightsquigarrow$ trivial relation of the form
$\left(P_{1}\right)+\left(\iota\left(P_{1}\right)\right)+\ldots+\left(P_{g+1}\right)+\left(\iota\left(P_{g+1}\right)\right)-(2 g+2) \mathcal{O}_{\mathcal{H}} \sim 0$
- Weil restriction: $\lambda_{i}=\lambda_{i, 0}+t \lambda_{i, 1}$ and $\mu^{2}=\mu_{0}+t \mu_{1}$

$$
\begin{aligned}
& F_{\lambda_{0}, \ldots, \lambda_{g}, \mu}(x) \in \mathbb{F}_{q}[x] \text { and } \mu \neq 0 \\
& \quad \Leftrightarrow\left(\lambda_{0,0}, \ldots, \lambda_{g, 0}, \lambda_{0,1}, \ldots, \lambda_{g, 1}, \mu_{0}, \mu_{1}\right) \in \mathbb{V}_{\mathbb{F}_{q}}\left(\mathrm{I}:\left(\mu_{0}, \mu_{1}\right)\right)
\end{aligned}
$$

where I is the ideal corresponding to the quadratic polynomial system of $2 g+2$ equations in $2 g+4$ variables.

A special case: quadratic extensions

Key point

Define $\mathbb{F}_{q^{2}}$ as $\mathbb{F}_{q}(t) /\left(t^{2}-\omega\right) \rightsquigarrow$ additional structure on the equations

$$
\begin{gathered}
F_{\lambda_{0}, \ldots, \lambda_{g}, \mu}(x)=\left(1 \cdot x^{g+1}+\lambda_{g} x^{g}+\ldots+\lambda_{0}\right)^{2}-\mu^{2} h(x) \in \mathbb{F}_{q}[x] \Leftrightarrow \\
2\left(1 \cdot x^{g+1}+\lambda_{g, 0} x^{g}+\cdots+\lambda_{0,0}\right)\left(\lambda_{g, 1} x^{g}+\cdots+\lambda_{0,1}\right)-\mu_{0} h_{1}(x)-\mu_{1} h_{0}(x)=0
\end{gathered}
$$

A special case: quadratic extensions

Key point

Define $\mathbb{F}_{q^{2}}$ as $\mathbb{F}_{q}(t) /\left(t^{2}-\omega\right) \rightsquigarrow$ additional structure on the equations

$$
\begin{gathered}
F_{\lambda_{0}, \ldots, \lambda_{g}, \mu}(x)=\left(1 \cdot x^{g+1}+\lambda_{g} x^{g}+\ldots+\lambda_{0}\right)^{2}-\mu^{2} h(x) \in \mathbb{F}_{q}[x] \Leftrightarrow \\
2\left(1 \cdot x^{g+1}+\lambda_{g, 0} x^{g}+\cdots+\lambda_{0,0}\right)\left(\lambda_{g, 1} x^{g}+\cdots+\lambda_{0,1}\right)-\mu_{0} h_{1}(x)-\mu_{1} h_{0}(x)=0
\end{gathered}
$$

The polynomials generating I are multi-homogeneous of deg (1,1) in $\left(1, \lambda_{0,0}, \ldots, \lambda_{g, 0}\right),\left(\lambda_{0,1}, \ldots, \lambda_{g, 1}, \mu_{0}, \mu_{1}\right)$
\rightarrow speeds up the computation of the lex Gröbner basis:

genus	2	3	4
nb eq. $/$ var.	$6 / 8$	$8 / 10$	$10 / 12$
approx. timing	$<1 \mathrm{sec}$	2 sec	1 h

$\left(g \log _{2} q \simeq 70\right)$

A special case: quadratic extensions

The polynomials generating I are multi-homogeneous of deg $(1,1)$ in $\left(1, \lambda_{0,0}, \ldots, \lambda_{g, 0}\right),\left(\lambda_{0,1}, \ldots, \lambda_{g, 1}, \mu_{0}, \mu_{1}\right)$
$\rightarrow \pi_{1}\left(\mathbb{V}\left(\mathrm{I}:\left(\mu_{0}, \mu_{1}\right)\right)\right)=\pi_{1}\left(\mathbb{V}\left(\mathrm{I}:\left(\lambda_{0,1}, \ldots, \lambda_{g, 1}, \mu_{0}, \mu_{1}\right)\right)\right)$ has dim. 1 where $\pi_{1}:\left(\lambda_{0,0}, \ldots, \lambda_{g, 0}, \lambda_{0,1}, \ldots, \lambda_{g, 1}, \mu_{0}, \mu_{1}\right) \mapsto\left(\lambda_{0,0}, \ldots, \lambda_{g, 0}\right)$

A special case: quadratic extensions

The polynomials generating I are multi-homogeneous of $\operatorname{deg}(1,1)$ in $\left(1, \lambda_{0,0}, \ldots, \lambda_{g, 0}\right),\left(\lambda_{0,1}, \ldots, \lambda_{g, 1}, \mu_{0}, \mu_{1}\right)$
$\rightarrow \pi_{1}\left(\mathbb{V}\left(\mathrm{I}:\left(\mu_{0}, \mu_{1}\right)\right)\right)=\pi_{1}\left(\mathbb{V}\left(\mathrm{I}:\left(\lambda_{0,1}, \ldots, \lambda_{g, 1}, \mu_{0}, \mu_{1}\right)\right)\right)$ has dim. 1 where $\pi_{1}:\left(\lambda_{0,0}, \ldots, \lambda_{g, 0}, \lambda_{0,1}, \ldots, \lambda_{g, 1}, \mu_{0}, \mu_{1}\right) \mapsto\left(\lambda_{0,0}, \ldots, \lambda_{g, 0}\right)$

Decomposition method

(1) Outer loop:
"specialization": instead of evaluating e.g. $\lambda_{0,0}$, choose of a point $\left(\lambda_{0,0}, \ldots, \lambda_{g, 0}\right) \in \pi_{1}\left(\mathbb{V}\left(\mathrm{I}:\left(\mu_{0}, \mu_{1}\right)\right)\right)$ remaining variables lie in a one-dimensional vector space
(2) Inner loop:
specialization of a second variable $\lambda_{0,1} \rightsquigarrow$ easy to solve system factorization of $F_{\lambda_{0}, \ldots, \lambda_{g}, \mu}(x) \in \mathbb{F}_{q}[x] \rightsquigarrow$ potential relation

A second improvement: sieving

Idea: combine the modified relation search with a sieving technique \rightarrow avoid the factorization of $F_{\lambda_{0}, \ldots, \lambda_{g}, \mu}$ in $\mathbb{F}_{q}[x]$

A second improvement: sieving

Idea: combine the modified relation search with a sieving technique \rightarrow avoid the factorization of $F_{\lambda_{0}, \ldots, \lambda_{g}, \mu}$ in $\mathbb{F}_{q}[x]$

Sieving method

(1) Specialize $\lambda_{0,0}, \ldots, \lambda_{g, 0}$ and express all remaining var. in terms of $\lambda_{0,1}$ $\rightarrow F$ becomes a polynomial in $\mathbb{F}_{q}\left[x, \lambda_{0,1}\right]$ of degree 2 in $\lambda_{0,1}$
(2) Enumeration in $x \in \mathbb{F}_{q}$ instead of $\lambda_{0,1}$
\rightarrow corresponding values of $\lambda_{0,1}$ are easier to compute
(3) Possible to recover the values of $\lambda_{0,1}$ for which there were $\operatorname{deg}_{x} F$ associated values of x

Time-memory trade-off:

$\lambda_{0,1}$	0	1	2	\cdots	i	\cdots	$p-1$
$\# x$	x_{0}	x_{1}	x_{2}	\cdots	x_{i}	\cdots	x_{p-1}

Complexity with the modified relation search

On the asymptotic side...

Decomposition in $n g+2$ instead of $n g$ points seems worse:

- Double large prime variation less efficient:
$\rightarrow O\left(q^{2-2 /(n g+2)}\right)$ instead of $O\left(q^{2-2 / n g}\right)$ with Gaudry/Nagao
- Speed-up by sieving only on x-coordinates of "small primes" $\rightarrow O\left(q^{2-2 /(n g+1)}\right)$

Complexity with the modified relation search

On the asymptotic side...
Decomposition in $n g+2$ instead of $n g$ points seems worse:

- Double large prime variation less efficient:
$\rightarrow O\left(q^{2-2 /(n g+2)}\right)$ instead of $O\left(q^{2-2 / n g}\right)$ with Gaudry/Nagao
- Speed-up by sieving only on x-coordinates of "small primes" $\rightarrow O\left(q^{2-2 /(n g+1)}\right)$

But in practice...

- much faster to compute decompositions with our variant
\rightarrow about 800 times faster for $(n, g)=(2,3)$ on a 150-bit curve
- better actual complexity for all accessible values of q

Section 3

Cover and decomposition attacks

A combined attack

Let $E\left(\mathbb{F}_{q^{n}}\right)$ elliptic curve such that

- GHS provides covering curves \mathcal{C} with too large genus
- n is too large for a practical decomposition attack

A combined attack

Let $E\left(\mathbb{F}_{q^{n}}\right)$ elliptic curve such that

- GHS provides covering curves \mathcal{C} with too large genus
- n is too large for a practical decomposition attack

Cover and decomposition attack [Joux-V.]

If n composite, combine both approaches:
(1) use GHS on the subextension $\mathbb{F}_{q^{n}} / \mathbb{F}_{q^{d}}$ to transfer the DL to $\mathrm{Jac}_{\mathcal{C}}\left(\mathbb{F}_{q^{d}}\right)$
(2) then use decomposition attack on $\operatorname{Jac}_{\mathcal{C}}\left(\mathbb{F}_{q^{d}}\right)$ with base field \mathbb{F}_{q} to solve the DLP

Attacks on elliptic curves defined over $\mathbb{F}_{q^{6}}$

Extension degree $n=6$ recommended for some Optimal Extension Fields

Potential existing attacks on $E\left(\mathbb{F}_{q^{6}}\right)$:
(1) With the extension $\mathbb{F}_{q^{6}} / \mathbb{F}_{q}$

- Decomposition attack fails to compute any relation
- GHS: cover $\mathcal{C}_{\mid \mathbb{F}_{q}}$ with genus $g \geq 9$ (genus 9 very rare: less than q^{3} curves) \rightsquigarrow index calculus on $\operatorname{Jac}_{\mathcal{C}}\left(\mathbb{F}_{q}\right)$ is usually slower than generic attacks

Attacks on elliptic curves defined over $\mathbb{F}_{q^{6}}$

Extension degree $n=6$ recommended for some Optimal Extension Fields

Potential existing attacks on $E\left(\mathbb{F}_{q^{6}}\right)$:
(1) With the extension $\mathbb{F}_{q^{6}} / \mathbb{F}_{q}$

- Decomposition attack fails to compute any relation
- GHS: cover $\mathcal{C}_{\mid \mathbb{F}_{q}}$ with genus $g \geq 9$ (genus 9 very rare: less than q^{3} curves) \rightsquigarrow index calculus on $\operatorname{Jac}_{\mathcal{C}}\left(\mathbb{F}_{q}\right)$ is usually slower than generic attacks
(2) With the extension $\mathbb{F}_{q^{6}} / \mathbb{F}_{q^{2}}$
- decomposition attack or GHS with hyperelliptic genus 3 cover asymptotically in $\tilde{O}\left(q^{8 / 3}\right)$, only slightly better than generic attacks in $\tilde{O}\left(q^{3}\right)$
- GHS with non-hyperelliptic genus 3 cover asymptotically in $\tilde{O}\left(q^{2}\right)$

Attacks on elliptic curves defined over $\mathbb{F}_{q^{6}}$

Extension degree $n=6$ recommended for some Optimal Extension Fields

Potential existing attacks on $E\left(\mathbb{F}_{q^{6}}\right)$:
(1) With the extension $\mathbb{F}_{q^{6}} / \mathbb{F}_{q}$

- Decomposition attack fails to compute any relation
- GHS: cover $\mathcal{C}_{\mid \mathbb{F}_{q}}$ with genus $g \geq 9$ (genus 9 very rare: less than q^{3} curves) \rightsquigarrow index calculus on $\operatorname{Jac}_{\mathcal{C}}\left(\mathbb{F}_{q}\right)$ is usually slower than generic attacks
(2) With the extension $\mathbb{F}_{q^{6}} / \mathbb{F}_{q^{2}}$
- decomposition attack or GHS with hyperelliptic genus 3 cover asymptotically in $\tilde{O}\left(q^{8 / 3}\right)$, only slightly better than generic attacks in $\tilde{O}\left(q^{3}\right)$
- GHS with non-hyperelliptic genus 3 cover asymptotically in $\tilde{O}\left(q^{2}\right)$
(3) With the extension $\mathbb{F}_{q^{6}} / \mathbb{F}_{q^{3}}$: no improvement over generic attacks

Cover and decomposition attack on $E\left(\mathbb{F}_{q^{6}}\right)$

Most interesting tower of extensions: $\mathbb{F}_{q^{6}}-\mathbb{F}_{q^{2}}-\mathbb{F}_{q}$
\rightarrow favorable case for the decomposition step $\left(\mathbb{F}_{q^{2}} / \mathbb{F}_{q}\right.$ extension)

Cover and decomposition attack on $E\left(\mathbb{F}_{q^{6}}\right)$

Most interesting tower of extensions: $\mathbb{F}_{q^{6}}-\mathbb{F}_{q^{2}}-\mathbb{F}_{q}$
\rightarrow favorable case for the decomposition step ($\mathbb{F}_{q^{2}} / \mathbb{F}_{q}$ extension)

- Most curves admit a non-hyperelliptic genus 3 cover defined over $\mathbb{F}_{q^{2}}$ [Momose-Chao], they are of the form

$$
E: y^{2}=(x-\alpha)\left(x-\alpha^{q^{2}}\right)(x-\beta)\left(x-\beta^{q^{2}}\right)
$$

where $\alpha, \beta \in \mathbb{F}_{q^{6}} \backslash \mathbb{F}_{q^{2}}$ or $\alpha \in \mathbb{F}_{q^{12}} \backslash\left(\mathbb{F}_{q^{4}} \cup \mathbb{F}_{q^{6}}\right)$ and $\beta=\alpha^{q^{6}}$

Cover and decomposition attack on $E\left(\mathbb{F}_{q^{6}}\right)$

Most interesting tower of extensions: $\mathbb{F}_{q^{6}}-\mathbb{F}_{q^{2}}-\mathbb{F}_{q}$
\rightarrow favorable case for the decomposition step ($\mathbb{F}_{q^{2}} / \mathbb{F}_{q}$ extension)

- Most curves admit a non-hyperelliptic genus 3 cover defined over $\mathbb{F}_{q^{2}}$ [Momose-Chao], they are of the form

$$
E: y^{2}=(x-\alpha)\left(x-\alpha^{q^{2}}\right)(x-\beta)\left(x-\beta^{q^{2}}\right)
$$

where $\alpha, \beta \in \mathbb{F}_{q^{6}} \backslash \mathbb{F}_{q^{2}}$ or $\alpha \in \mathbb{F}_{q^{12}} \backslash\left(\mathbb{F}_{q^{4}} \cup \mathbb{F}_{q^{6}}\right)$ and $\beta=\alpha^{q^{6}}$

- Curves admitting a hyperelliptic genus 3 cover defined over $\mathbb{F}_{q^{2}}$:
$E: y^{2}=h(x)(x-\alpha)\left(x-\alpha^{q^{2}}\right)$, where $\alpha \in \mathbb{F}_{q^{6}} \backslash \mathbb{F}_{q^{2}}, h \in \mathbb{F}_{q^{2}}[x]$
- occurs for $\Theta\left(q^{4}\right)$ curves directly [Thériault]
- occurs for most curves with cardinality divisible by 4, after an isogeny walk of length $O\left(q^{2}\right)$

Complexity and comparison with other attacks

Estimations for E elliptic curve defined over $\mathbb{F}_{p^{6}}$ with $|p| \simeq 27$ bits and $\# E\left(\mathbb{F}_{p^{6}}\right)=4 \ell$ with ℓ a 160 -bit prime

Attack	Asymptotic complexity	Memory complexity	Computation time estimate (years)
Pollard on $E\left(\mathbb{F}_{p^{6}}\right)$	$\tilde{O}\left(p^{3}\right)$	$\tilde{O}(1)$	5.0×10^{13}

Complexity and comparison with other attacks

Estimations for E elliptic curve defined over $\mathbb{F}_{p^{6}}$ with $|p| \simeq 27$ bits and $\# E\left(\mathbb{F}_{p^{6}}\right)=4 \ell$ with ℓ a 160 -bit prime

Attack	Asymptotic complexity	Memory complexity	Computation time estimate (years)
Pollard on $E\left(\mathbb{F}_{p^{6}}\right)$	$\tilde{O}\left(p^{3}\right)$	$\tilde{O}(1)$	5.0×10^{13}
Ind. calc. on $\operatorname{Jac}_{\mathcal{H}}\left(\mathbb{F}_{p^{2}}\right), g=3^{(*)}$	$\tilde{O}\left(p^{8 / 3}\right)$	$\tilde{O}\left(p^{2}\right)$	7.2×10^{10}
Ind. calc. on $\operatorname{Jac}_{\mathcal{C}}\left(\mathbb{F}_{p^{2}}\right), d=4$	$\tilde{O}\left(p^{2}\right)$	$\tilde{O}\left(p^{2}\right)$	670000
Decompositions on $E\left(\left(\mathbb{F}_{p^{2}}\right)^{3}\right)$	$\tilde{O}\left(p^{8 / 3}\right)$	$\tilde{O}\left(p^{2}\right)$	1.3×10^{12}

$(*)$: only for $\Theta\left(p^{4}\right)$ curves

Complexity and comparison with other attacks

Estimations for E elliptic curve defined over $\mathbb{F}_{p^{6}}$ with $|p| \simeq 27$ bits and $\# E\left(\mathbb{F}_{p^{6}}\right)=4 \ell$ with ℓ a 160 -bit prime

Attack	Asymptotic complexity	Memory complexity	Computation time estimate (years)
Pollard on $E\left(\mathbb{F}_{p^{6}}\right)$	$\tilde{O}\left(p^{3}\right)$	$\tilde{O}(1)$	5.0×10^{13}
Ind. calc. on $\operatorname{Jac}_{\mathcal{H}}\left(\mathbb{F}_{p^{2}}\right), g=3^{(*)}$	$\tilde{O}\left(p^{8 / 3}\right)$	$\tilde{O}\left(p^{2}\right)$	7.2×10^{10}
Ind. calc. on $\operatorname{Jac}_{\mathcal{C}}\left(\mathbb{F}_{p^{2}}\right), d=4$	$\tilde{O}\left(p^{2}\right)$	$\tilde{O}\left(p^{2}\right)$	670000
Decompositions on $E\left(\left(\mathbb{F}_{p^{2}}\right)^{3}\right)$	$\tilde{O}\left(p^{8 / 3}\right)$	$\tilde{O}\left(p^{2}\right)$	1.3×10^{12}
Ind. calc. on $\operatorname{Jac}_{\mathcal{C}}\left(\mathbb{F}_{p}\right), d=10^{(* *)}$	$\tilde{O}\left(p^{7 / 4}\right)$	$\tilde{O}(p)$	1370

$(*)$: only for $\Theta\left(p^{4}\right)$ curves ($\left.* *\right)$: only for $O\left(p^{3}\right)$ curves

Complexity and comparison with other attacks

Estimations for E elliptic curve defined over $\mathbb{F}_{p^{6}}$ with $|p| \simeq 27$ bits and $\# E\left(\mathbb{F}_{p^{6}}\right)=4 \ell$ with ℓ a 160 -bit prime

Attack	Asymptotic complexity	Memory complexity	Computation time estimate (years)
Pollard on $E\left(\mathbb{F}_{p^{6}}\right)$	$\tilde{O}\left(p^{3}\right)$	$\tilde{O}(1)$	5.0×10^{13}
Ind. calc. on $\operatorname{Jac}_{\mathcal{H}}\left(\mathbb{F}_{p^{2}}\right), g=3^{(*)}$	$\tilde{O}\left(p^{8 / 3}\right)$	$\tilde{O}\left(p^{2}\right)$	7.2×10^{10}
Ind. calc. on $\operatorname{Jac}_{\mathcal{C}}\left(\mathbb{F}_{p^{2}}\right), d=4$	$\tilde{O}\left(p^{2}\right)$	$\tilde{O}\left(p^{2}\right)$	670000
Decompositions on $E\left(\left(\mathbb{F}_{p^{2}}\right)^{3}\right)$	$\tilde{O}\left(p^{8 / 3}\right)$	$\tilde{O}\left(p^{2}\right)$	1.3×10^{12}
Ind. calc. on $\operatorname{Jac}_{\mathcal{C}}\left(\mathbb{F}_{p}\right), d=10^{(* *)}$	$\tilde{O}\left(p^{7 / 4}\right)$	$\tilde{O}(p)$	1370
Decomp. on $\operatorname{Jac}_{\mathcal{H}}\left(\mathbb{F}_{p^{3}}\right), g=2$	$\tilde{O}\left(p^{5 / 3}\right)$	$\tilde{O}(p)$	4.5×10^{6}
Decomp. on $\operatorname{Jac}_{\mathcal{H}}\left(\mathbb{F}_{p^{2}}\right), g=3^{(*)}$	$\tilde{O}\left(p^{5 / 3}\right)$	$\tilde{O}(p)$	730
Sieving on $\operatorname{Jac}_{\mathcal{H}}\left(\mathbb{F}_{p^{2}}\right), g=3^{(*)}$	$\tilde{O}\left(p^{12 / 7}\right)$	$\tilde{O}(p)$	430

$(*)$: only for $\Theta\left(p^{4}\right)$ curves ($\left.* *\right)$: only for $O\left(p^{3}\right)$ curves

A 150-bit example

A seemingly secure curve
$E: y^{2}=x(x-\alpha)(x-\sigma(\alpha))$ defined over $\mathbb{F}_{p^{6}}$ where $p=2^{25}+35$, such that $\# E=4 \cdot 356814156285346166966901450449051336101786213$.

GHS $\rightsquigarrow \mathbb{F}_{p}$-defined cover of genus 33 , too large for efficient index calculus

Decomposition on the genus 3 hyperelliptic cover $\mathcal{H}_{\mid \mathbb{F}_{p^{2}}}$: using structured Gaussian elimination instead of the 2LP variation
(1) Relation search

- lex GB of a system of 8 eq. and 10 var. in 2.7 sec with one core (Magma on a 2.6 GHz Intel Core 2 Duo proc)
- sieving phase: $1.4 \times 10^{10} \simeq p^{2} /(2 \cdot 8$!) relations in about 15 h 30 with 4096 cores (2.93 GHz quadri-core Intel Xeon 5550 proc)
$\rightsquigarrow 800$ times faster than Nagao's

A 150-bit example

Decomposition on the genus 3 hyperelliptic cover $\mathcal{H}_{\mathbb{F}_{p^{2}}}$:
(2) Linear algebra on the very sparse matrix of relations:

- Structured Gaussian elimination: 24h30 with 32 cores \rightsquigarrow reduces by a factor 5.4 the number of unknowns
- Lanczos algorithm: 28.5 days with 64 cores (MPI communications) (2.93 GHz quadri-core Intel Xeon 5550 proc)
(3) Descent phase: $\simeq 14 \mathrm{sec}$ for one point with one core (2.6 GHz Intel Core 2 Duo proc)

A 150-bit example

Decomposition on the genus 3 hyperelliptic cover $\mathcal{H}_{\mathbb{F}_{p^{2}}}$:
(2) Linear algebra on the very sparse matrix of relations:

- Structured Gaussian elimination: 24h30 with 32 cores \rightsquigarrow reduces by a factor 5.4 the number of unknowns
- Lanczos algorithm: 28.5 days with 64 cores (MPI communications) (2.93 GHz quadri-core Intel Xeon 5550 proc)
(3) Descent phase: $\simeq 14 \mathrm{sec}$ for one point with one core (2.6 GHz Intel Core 2 Duo proc)
- Complete resolution in about 1 month
- Linear algebra by far the slowest phase (parallelization issue: 200 MB of data broadcast at each round)
- No further balance possible due to relation exhaustion

Cover and Decomposition Attacks on Elliptic Curves

Vanessa VITSE
Joint work with Antoine JOUX

Université de Versailles Saint-Quentin, Laboratoire PRiSM

Elliptic Curve Cryptography - ECC 2011

