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Background
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Background Motivation

Hardness of ECDLP

ECDLP

Given P ∈ E (Fq) and Q ∈ 〈P〉, find x such that Q = [x ]P

Attacks on special curves

Curves defined over prime fields
I small embedding degree (transfer via pairings)
I anomalous curves (p-adic lifts)

Curves defined over extension fields
I Weil descent [Frey]:

transfer from E (Fpn) to JacC(Fp) where C is a genus g ≥ n curve
I Decomposition index calculus on E (Fpn)

Objective of this talk

Present a combined attack for curves over extension fields
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Background Weil descent

Transfer of the ECDLP via cover maps

Let W = WFqn/Fq
(E ) be the Weil restriction of E|Fqn

elliptic curve.
Inclusion of a curve C|Fq

↪→W induces a cover map π : C(Fqn)→ E (Fqn).

1 transfer the DLP from 〈P〉 ⊂ E (Fqn) to JacC(Fq)

C(Fqn)

π

��

JacC(Fqn)
Tr // JacC(Fq)

E (Fqn) JacE (Fqn) ' E (Fqn)

π∗

OO 66

g genus of C
s.t. g ≥ n

2 use index calculus on JacC(Fq):
→ efficient if C is hyperelliptic with small genus g [Gaudry] or has a
small degree plane model [Diem]

Find a convenient curve C with a genus small enough?
→ GHS technique and isogeny walk
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Background Decomposition attack

Index calculus on small dimension abelian varieties

Decomposition attack on DLP over A|Fq
, n-dimensional abelian variety

Gaudry’s method

1 Choose U ⊂ A dense affine subset and coord. (x1, . . . , xn, y1, . . . , ym)
on U s.t. Fq(A) algebraic extension of Fq(x1, . . . , xn)

2 Define factor base F = {P ∈ U : x2(P) = . . . = xn(P) = 0}
3 Decompose enough points of A as sum of n points of F using group

law over A ↔ solve a multivariate polynomial system (and check
rationality of solutions)

4 Extract the logarithms with sparse linear algebra

F should have ' q points

→ need O(q) relations

→ linear algebra in Õ(nq2)
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3 Decompose enough points of A as sum of n points of F using group

law over A ↔ solve a multivariate polynomial system (and check
rationality of solutions)

4 Extract the logarithms with sparse linear algebra

For fixed n, one relation costs Õ(1)
⇒ relation search in Õ(q) vs linear algebra in Õ(q2)
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Background Decomposition attack

Index calculus on small dimension abelian varieties

Decomposition attack on DLP over A|Fq
, n-dimensional abelian variety

Gaudry’s method

1 Choose U ⊂ A dense affine subset and coord. (x1, . . . , xn, y1, . . . , ym)
on U s.t. Fq(A) algebraic extension of Fq(x1, . . . , xn)

2 Define factor base F = {P ∈ U : x2(P) = . . . = xn(P) = 0}
3 Decompose enough points of A as sum of n points of F using group

law over A ↔ solve a multivariate polynomial system (and check
rationality of solutions)

4 Extract the logarithms with sparse linear algebra

Rebalance with double large prime variation:
(heuristic) asymptotic complexity in Õ(q2−2/n) as q →∞, n fixed
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Background Decomposition attack

Index calculus on small dimension abelian varieties

Generalizes the classical index calculus on A = JacH(Fq) where H is
hyperelliptic with small genus g

Main application so far: A = WFqn/Fq
(E ) where E elliptic curve

defined over Fqn [Gaudry-Diem]

Practical difficulty

In general, polynomial systems arising from decompositions are huge
 find nice representations of A and clever reformulation of the
decompositions

For elliptic curves, use Semaev’s summation polynomials

For A = WFqn/Fq
(JacH(Fqn)): no equivalent of Semaev’s

polynomials, use reformulation by Nagao instead
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Decomposition attack on hyperelliptic curves

Section 2

Decomposition attack on hyperelliptic curves defined
over extension fields
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Decomposition attack on hyperelliptic curves Generalities

Decomposition for Jacobians over extension fields

C curve defined over Fqn of genus g with a unique point O at infinity
→ A = WFqn/Fq

(JacC(Fqn)) has dim. ng

Framework

Factor base:
F = {DQ ∈ JacC(Fqn) : DQ ∼ (Q)− (O),Q ∈ C(Fqn), x(Q) ∈ Fq}

I about q elements in F

Decomposition of an arbitrary divisor D ∈ JacC(Fqn) into ng divisors
of the factor base D ∼

∑ng
i=1 ((Qi )− (O))

Sparse linear algebra + double large prime variation
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Decomposition attack on hyperelliptic curves Generalities

The Riemann-Roch based approach of Nagao

How to check if D can be decomposed ?

D +

ng∑
i=1

((Qi )− (O)) ∼ 0⇔ D +

ng∑
i=1

((Qi )− (O)) = div(f )

where f ∈ LD = L (ng(O)− D), Fqn -vector space of dim. (n − 1)g + 1

Set of decomp. of D parametrized by P(LD) ' P`, ` = (n − 1)g

(λ1, . . . , λ`) affine chart of P(LD) s.t. Qi 6= O for all i = 1, . . . , ng

Goal: determine λ1, . . . , λ` such that x(Qi ) ∈ Fq
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Decomposition attack on hyperelliptic curves Generalities

Nagao’s approach for hyperelliptic curves

Given the Mumford representation of D = (u, v) ∈ JacH(Fqn)

L (ng(OH)− D) = 〈u, xu, . . . , xm1u, y − v , x(y − v), . . . , xm2(y − v)〉

fλ1,...,λ`+1
(x , y) = u

m1∑
i=0

λ2i+1x
i + (y − v)

m2∑
i=0

λ2i+2x
i

Affine chart of P(LD)↔ λ`+1 = 1

Using equation of H, compute fλ1,...,λ`,1(x , y) · fλ1,...,λ`,1(x ,−y)/u
to get a new polynomial with roots x(Q1), . . . , x(Qng ):

Fλ1,...,λ`(x) = xng +

ng−1∑
i=0

ci (λ1, . . . , λ`)x
i

→ coefficient ci of x i is quadratic in the λi ∈ Fqn
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Decomposition attack on hyperelliptic curves Generalities

Nagao’s approach for hyperelliptic curves

Fλ1,...,λ`(x) = xng +
∑ng−1

i=0 ci (λ1, . . . , λ`)x
i with roots x(Q1), . . . , x(Qng )

→ Weil restriction of scalars: let Fqn = Fq(t) and write{
λi = λi ,0 + λi ,1t + · · ·+ λi ,n−1t

n−1

ci (λ1, . . . , λ`) =
∑n−1

j=0 ci ,j(λ1,0, . . . , λ`,n−1)t j

Then
Fλ1,...,λ` ∈ Fq[x ]⇔ ∀i ∈ {0, . . . , ng − 1},∀j ∈ {1, . . . , n − 1}, ci ,j = 0

Decomposition of D

solve a quadratic polynomial system of (n − 1)ng eq./var.

test if Fλ1,...,λ` is split in Fq[x ]

recover decomposition from roots of Fλ1,...,λ`
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Decomposition attack on hyperelliptic curves Generalities

Example for a genus 2 curve over F672 = F67[t]/(t2 − 2)

H : y2 = x5 + (50t + 66)x4 + (40t + 22)x3 + (65t + 23)x2 + (61t + 3)x + 43t + 6

Decomposition of
D = [x2 + (52t + 3)x + 21t + 2, (22t + 41)x + 25t + 42] ∈ JacH(F672 )

consider L(4(OH)− D) = 〈u(x), y − v(x), x u(x)〉

from fλ1,λ2,1(x , y) = x u(x) + λ1(y − v(x)) + λ2u(x) and h(x)
→ Fλ1,λ2(x) = x4 + (−λ2

1 + 2λ2 + 52t + 3) x3 + . . . ∈ F67[x ] with
roots x(Qi )

find λ1, λ2 ∈ F672 s.t. Fλ1,λ2 is in F67[x ]

⇒ λ1, λ2 such that

{
−λ2

1 + 2λ2 + 52t + 3 ∈ F67

...
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Decomposition attack on hyperelliptic curves Generalities

Example for a genus 2 curve over F672 = F67[t]/(t2 − 2)

Weil restriction: let λ1 = λ1,0 + tλ1,1 and λ2 = λ2,0 + tλ2,1

Fλ1,λ2(x) ∈ F67[x ]⇒

−2λ1,0λ1,1 + 2λ2,1 + 52 = 0
...

with 2 solutions:

λ1 = 7 + 40t, λ2 = 8 + 53t: Fλ1,λ2 (x) = x4 + 53x3 + 26x2 + 44x + 12

λ1 = 55 + 37t, λ2 = 52− t: Fλ1,λ2 (x) = (x − 23)(x − 34)(x − 51)(x − 54)

From fλ1,λ2,1(x , y) = x u(x) + λ1(y − v(x)) + λ2u(x) = 0 recover y(Qi )

 D = (Q1) + (Q2) + (Q3) + (Q4)− 4(OH) where

Q1 =
23

23t+12
,Q2 =

34

10t+43
,Q3 =

51

17t+3
,Q4 =

54

23t+15
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Decomposition attack on hyperelliptic curves Generalities

Complexity on hyperelliptic curves

Double large prime variation

Asymptotic complexity in Õ(q2−2/ng ) as q →∞, n fixed

What about hidden constants?

1 decomp. test ↔ solve a quadratic system of (n − 1)ng eq/var

Zero-dimensional ideal of degree d = 2(n−1)ng

Resolution with a lexicographic Gröbner basis computation
Tools: grevlex basis with F4Remake + ordering change with FGLM

Complexity: at least in d3 = 23(n−1)ng

→ relevant only for n and g small enough

Huge cost of decompositions → need for rebalance not so clear in practice
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Decomposition attack on hyperelliptic curves Generalities

Remark on the non-hyperelliptic case

C non-hyperelliptic curve defined over Fqn of genus g , with a unique point
O ∈ C(Fqn) at infinity

Compute a basis of L(ng(O)− D)) [Heß]
and express fλ1,...,λ`+1

wrt this basis

Use (multi-)resultant to compute Fλ1,...,λ`(x) from fλ1,...,λ`,1 and
equations of C

Decomposition of D

Need to solve a polynomial system of (n − 1)ng equations and variables
with degree > 2

⇒ Resolution of the polynomial system (much) more complicated than in
the hyperelliptic case
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Decomposition attack on hyperelliptic curves Generalities

Remark on the elliptic curve case

Gaudry and Diem’s original approach

Decomposition of a random point into sum of n points Q1, ...,Qn ∈ F
using Semaev summation’s polynomials

Nagao versus Semaev for decomposition:

n(n − 1) var/eq of deg. 2 ←→ n var/eq of deg. 2n−1

Nagao’s decomposition is actually slower than Semaev’s approach

Alternative method to compute symmetrized summation polynomials:

1 Compute Fλ1,...,λ`
(x), identify its coefficients with elementary

symmetric polynomials of x(Q1), . . . , x(Qn)

2 Eliminate the variables λ1, . . . , λ`
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Decomposition attack on hyperelliptic curves New results

Modification of the relation search [Joux-V.]

H hyperelliptic curve of genus g with a unique point OH at infinity

In practice, decompositions as D ∼
∑ng

i=1 ((Qi )− (OH)) are too slow to
compute

Another type of relations

Compute relations involving only elements of F :

m∑
i=1

((Qi )− (OH)) ∼ 0

Heuristically, expected number of such relations is ' qm−ng/m!
→ as ' q relations are needed, consider m = ng + 2
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Decomposition attack on hyperelliptic curves New results

Modification of the relation search [Joux-V.]

H hyperelliptic curve of genus g defined over Fqn , n ≥ 2

Find relations of the form
∑ng+2

i=1 ((Qi )− (OH)) ∼ 0

Riemann-Roch based approach:
work in L((ng + 2)(OH)) = 〈1, x , x2, . . . , xm1 , y , yx , . . . , yxm2〉 of
dimension `+ 1 = (n − 1)g + 3

Derive Fλ1,...,λ`(x) whose roots are x(Q1), . . . , x(Qng+2)

Fλ1,...,λ`(x) ∈ Fq[x ]⇒ under-determined quadratic polynomial system
of n(n − 1)g + 2n − 2 equations in n(n − 1)g + 2n variables.

After initial lex Gröbner basis precomputation, each specialization of
the last two variables yields an easy to solve system.
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Decomposition attack on hyperelliptic curves New results

Modified index calculus algorithm

H hyperelliptic curve defined over Fqn of genus g

Precomputation on JacH(Fqn)

Find enough relations between factor base elements

Do linear algebra to get logs of factor base elements (up to a
multiplicative constant)

Individual logarithms on JacH(Fqn)

How to find x such that D2 = [x ]D1 ?

Use some Nagao’s style decompositions into ng divisors to obtain a
representation of a multiple [r ]D1 as sum of factor base elements

Recover discrete logarithms in base D1 of all factor base elements

Decompose a multiple of D2 and deduce its logarithm

Vanessa VITSE (UVSQ) Cover and decomposition attacks 20 September 2011 19 / 32



Decomposition attack on hyperelliptic curves New results

Modified index calculus algorithm

H hyperelliptic curve defined over Fqn of genus g

Precomputation on JacH(Fqn)

Find enough relations between factor base elements

Do linear algebra to get logs of factor base elements (up to a
multiplicative constant)

Individual logarithms on JacH(Fqn)

How to find x such that D2 = [x ]D1 ?

Use some Nagao’s style decompositions into ng divisors to obtain a
representation of a multiple [r ]D1 as sum of factor base elements

Recover discrete logarithms in base D1 of all factor base elements

Decompose a multiple of D2 and deduce its logarithm

Vanessa VITSE (UVSQ) Cover and decomposition attacks 20 September 2011 19 / 32



Decomposition attack on hyperelliptic curves New results

A special case: quadratic extensions
H hyperelliptic curve of genus g defined over Fq2 = Fq(t)/(P(t)) with
imaginary model y2 = h(x) where deg h = 2g + 1.

Riemann-Roch: f (x , y) = (xg+1 + λgx
g + . . .+ λ0) + µy

⇒ Fλ0,...,λg ,µ(x) = (xg+1 + λgx
g + . . .+ λ0)2 − µ2h(x)

µ = 0  trivial relation of the form
(P1) + (ι(P1)) + . . .+ (Pg+1) + (ι(Pg+1))− (2g + 2)OH ∼ 0

Weil restriction: λi = λi ,0 + tλi ,1 and µ2 = µ0 + tµ1

Fλ0,...,λg ,µ(x) ∈ Fq[x ] and µ 6= 0

⇔ (λ0,0, . . . , λg ,0, λ0,1, . . . , λg ,1, µ0, µ1) ∈ VFq(I : (µ0, µ1))

where I is the ideal corresponding to the quadratic polynomial system
of 2g + 2 equations in 2g + 4 variables.
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Decomposition attack on hyperelliptic curves New results

A special case: quadratic extensions

Key point

Define Fq2 as Fq(t)/(t2 − ω)  additional structure on the equations

Fλ0,...,λg ,µ(x) = (1 · xg+1 + λgx
g + . . .+ λ0)2 − µ2h(x) ∈ Fq[x ]⇔

2(1·xg+1+λg ,0x
g +· · ·+λ0,0)(λg ,1x

g +· · ·+λ0,1)−µ0h1(x)−µ1h0(x) = 0

The polynomials generating I are multi-homogeneous of deg (1, 1) in
(1, λ0,0, . . . , λg ,0), (λ0,1, . . . , λg ,1, µ0, µ1)

→ speeds up the computation of the lex Gröbner basis:

genus 2 3 4

nb eq./var. 6/8 8/10 10/12

approx. timing <1 sec 2 sec 1 h

(g log2 q ' 70)
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Decomposition attack on hyperelliptic curves New results

A special case: quadratic extensions

The polynomials generating I are multi-homogeneous of deg (1, 1) in
(1, λ0,0, . . . , λg ,0), (λ0,1, . . . , λg ,1, µ0, µ1)

→ π1(V(I : (µ0, µ1))) = π1(V(I : (λ0,1, . . . , λg ,1, µ0, µ1))) has dim. 1
where π1 : (λ0,0, ..., λg ,0, λ0,1, ..., λg ,1, µ0, µ1) 7→ (λ0,0, ..., λg ,0)

Decomposition method

1 Outer loop:

I “specialization”: instead of evaluating e.g. λ0,0, choose of a
point (λ0,0, ..., λg ,0) ∈ π1(V(I : (µ0, µ1)))

I remaining variables lie in a one-dimensional vector space
2 Inner loop:

I specialization of a second variable λ0,1  easy to solve system
I factorization of Fλ0,...,λg ,µ(x) ∈ Fq[x ]  potential relation
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Decomposition attack on hyperelliptic curves New results

A second improvement: sieving

Idea: combine the modified relation search with a sieving technique
→ avoid the factorization of Fλ0,...,λg ,µ in Fq[x ]

Sieving method

1 Specialize λ0,0, ..., λg ,0 and express all remaining var. in terms of λ0,1

→ F becomes a polynomial in Fq[x , λ0,1] of degree 2 in λ0,1

2 Enumeration in x ∈ Fq instead of λ0,1

→ corresponding values of λ0,1 are easier to compute

3 Possible to recover the values of λ0,1 for which there were degx F
associated values of x

Time-memory trade-off:
λ0,1 0 1 2 · · · i · · · p − 1

#x x0 x1 x2 · · · xi · · · xp−1
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Decomposition attack on hyperelliptic curves New results

Complexity with the modified relation search

On the asymptotic side...

Decomposition in ng + 2 instead of ng points seems worse:

Double large prime variation less efficient:
→ O(q2−2/(ng+2)) instead of O(q2−2/ng ) with Gaudry/Nagao

Speed-up by sieving only on x-coordinates of “small primes”
→ O(q2−2/(ng+1))

But in practice...

much faster to compute decompositions with our variant
→ about 800 times faster for (n, g) = (2, 3) on a 150-bit curve

better actual complexity for all accessible values of q
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Cover and decomposition attacks

Section 3

Cover and decomposition attacks
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Cover and decomposition attacks

A combined attack

Let E (Fqn) elliptic curve such that

GHS provides covering curves C with too large genus

n is too large for a practical decomposition attack

Cover and decomposition attack [Joux-V.]

If n composite, combine both approaches:

1 use GHS on the subextension Fqn/Fqd to transfer the DL to JacC(Fqd )

2 then use decomposition attack on JacC(Fqd ) with base field Fq to
solve the DLP
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Cover and decomposition attacks

Attacks on elliptic curves defined over Fq6

Extension degree n = 6 recommended for some Optimal Extension Fields

Potential existing attacks on E (Fq6):

1 With the extension Fq6/Fq

I Decomposition attack fails to compute any relation
I GHS: cover C|Fq

with genus g ≥ 9 (genus 9 very rare: less than q3

curves)  index calculus on JacC(Fq) is usually slower than generic
attacks

2 With the extension Fq6/Fq2

I decomposition attack or GHS with hyperelliptic genus 3 cover
asymptotically in Õ(q8/3), only slightly better than generic attacks
in Õ(q3)

I GHS with non-hyperelliptic genus 3 cover asymptotically in Õ(q2)

3 With the extension Fq6/Fq3 : no improvement over generic attacks
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in Õ(q3)

I GHS with non-hyperelliptic genus 3 cover asymptotically in Õ(q2)
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Cover and decomposition attacks

Cover and decomposition attack on E (Fq6)

Most interesting tower of extensions: Fq6 —Fq2 —Fq

→ favorable case for the decomposition step (Fq2/Fq extension)

Most curves admit a non-hyperelliptic genus 3 cover defined over Fq2

[Momose-Chao], they are of the form

E : y2 = (x − α)(x − αq2
)(x − β)(x − βq2

),

where α, β ∈ Fq6 \ Fq2 or α ∈ Fq12 \ (Fq4 ∪ Fq6) and β = αq6

Curves admitting a hyperelliptic genus 3 cover defined over Fq2 :

E : y2 = h(x)(x − α)(x − αq2
), where α ∈ Fq6 \ Fq2 , h ∈ Fq2 [x ]

I occurs for Θ(q4) curves directly [Thériault]
I occurs for most curves with cardinality divisible by 4, after an

isogeny walk of length O(q2)
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Cover and decomposition attacks

Complexity and comparison with other attacks
Estimations for E elliptic curve defined over Fp6 with |p| ' 27 bits and
#E (Fp6) = 4` with ` a 160-bit prime

Attack
Asymptotic

complexity

Memory

complexity

Computation time

estimate (years)

Pollard on E(Fp6 ) Õ(p3) Õ(1) 5.0× 1013

:(∗) only for Θ(p4) curves : only for O(p3) curves
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Attack
Asymptotic

complexity

Memory

complexity

Computation time

estimate (years)

Pollard on E(Fp6 ) Õ(p3) Õ(1) 5.0× 1013

Ind. calc. on JacH(Fp2 ), g = 3(∗) Õ(p8/3) Õ(p2) 7.2× 1010

Ind. calc. on JacC(Fp2 ), d = 4 Õ(p2) Õ(p2) 670 000

Decompositions on E((Fp2 )3) Õ(p8/3) Õ(p2) 1.3× 1012

(∗): only for Θ(p4) curves
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Decompositions on E((Fp2 )3) Õ(p8/3) Õ(p2) 1.3× 1012

Ind. calc. on JacC(Fp), d = 10(∗∗) Õ(p7/4) Õ(p) 1 370

Decomp. on JacH(Fp3 ), g = 2 Õ(p5/3) Õ(p) 4.5× 106

Decomp. on JacH(Fp2 ), g = 3(∗) Õ(p5/3) Õ(p) 730

Sieving on JacH(Fp2 ), g = 3(∗) Õ(p12/7) Õ(p) 430

(∗): only for Θ(p4) curves (∗∗): only for O(p3) curves
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Cover and decomposition attacks

A 150-bit example

A seemingly secure curve

E : y2 = x(x − α)(x − σ(α)) defined over Fp6 where p = 225 + 35, such
that #E = 4 · 356814156285346166966901450449051336101786213.

GHS  Fp-defined cover of genus 33, too large for efficient index calculus

Decomposition on the genus 3 hyperelliptic cover H|Fp2
:

using structured Gaussian elimination instead of the 2LP variation

1 Relation search

I lex GB of a system of 8 eq. and 10 var. in 2.7 sec with one core
(Magma on a 2.6 GHz Intel Core 2 Duo proc)

I sieving phase: 1.4× 1010 ' p2/(2 · 8!) relations in about 15h30
with 4 096 cores (2.93 GHz quadri-core Intel Xeon 5550 proc)

 800 times faster than Nagao’s
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Cover and decomposition attacks

A 150-bit example

Decomposition on the genus 3 hyperelliptic cover H|Fp2
:

2 Linear algebra on the very sparse matrix of relations:

I Structured Gaussian elimination: 24h30 with 32 cores
 reduces by a factor 5.4 the number of unknowns

I Lanczos algorithm: 28.5 days with 64 cores (MPI communications)
(2.93 GHz quadri-core Intel Xeon 5550 proc)

3 Descent phase: ' 14 sec for one point with one core
(2.6 GHz Intel Core 2 Duo proc)

Complete resolution in about 1 month

Linear algebra by far the slowest phase (parallelization issue: 200 MB
of data broadcast at each round)

No further balance possible due to relation exhaustion
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