F4 traces and index calculus on elliptic curves over extension fields

Vanessa VITSE
Joint work with Antoine Joux
Université de Versailles Saint-Quentin, Laboratoire PRISM

Elliptic Curve Cryptography, October 20, 2010

Part I

Index calculus methods

Hardness of ECDLP

ECDLP

Given $P \in E\left(\mathbb{F}_{q}\right)$ and $Q \in\langle P\rangle$, find x such that $Q=[x] P$

Specific attacks on few families of curves:
Transfer methods

- transfer to $\mathbb{F}_{q^{k}}^{*}$ via pairings: curves with small embedding degree
- lift to characteristic zero fields: anomalous curves
- Weil descent: transfer from $E\left(\mathbb{F}_{q^{n}}\right)$ to $J_{\mathcal{C}}\left(\mathbb{F}_{q}\right)$ where \mathcal{C} is a genus $g \geq n$ curve

Otherwise, only generic attacks

Trying an index calculus approach

- Index calculus usually the best attack of the DLP over finite fields and hyperelliptic curves
- No known equivalent on $E\left(\mathbb{F}_{p}\right), p$ prime
- Feasible on $E\left(\mathbb{F}_{p^{n}}\right)$ and asymptotically better than Weil descent or generic algorithms

Trying an index calculus approach

- Index calculus usually the best attack of the DLP over finite fields and hyperelliptic curves
- No known equivalent on $E\left(\mathbb{F}_{p}\right), p$ prime
- Feasible on $E\left(\mathbb{F}_{p^{n}}\right)$ and asymptotically better than Weil descent or generic algorithms

Basic outline of index calculus method for DLP

(1) define a factor base: $\mathcal{F}=\left\{P_{1}, \ldots, P_{N}\right\}$
(2) relation search: for random $\left(a_{i}, b_{i}\right)$, try to decompose $\left[a_{i}\right] P+\left[b_{i}\right] Q$ as sum of points in \mathcal{F}
(3) linear algebra step: once $k>\# \mathcal{F}$ relations found, deduce with sparse algebra techniques the DLP of Q

Results

Original algorithm (Gaudry, Diem)

Complexity of DLP over $E\left(\mathbb{F}_{q^{n}}\right)$ in $\tilde{O}\left(q^{2-\frac{2}{n}}\right)$ but with hidden constant exponential in n^{2}

- faster than generic methods when $n \geq 3$ and $\log q>C . n$
- sub-exponential complexity when $n=\Theta(\sqrt{\log q})$
- impracticable as soon as $n>4$

Results

Original algorithm (Gaudry, Diem)

Complexity of DLP over $E\left(\mathbb{F}_{q^{n}}\right)$ in $\tilde{O}\left(q^{2-\frac{2}{n}}\right)$ but with hidden constant exponential in n^{2}

- faster than generic methods when $n \geq 3$ and $\log q>C . n$
- sub-exponential complexity when $n=\Theta(\sqrt{\log q})$
- impracticable as soon as $n>4$

Our variant

Complexity in $\tilde{O}\left(q^{2}\right)$ but with a better dependency in n

- faster than generic methods when $n \geq 5$ and $\log q \geq 2 \omega n$
- faster than Gaudry and Diem's method when $\log q \leq \frac{3-\omega}{2} n^{3}$
- works for $n=5$

Comparison of the three attacks of ECDLP over $\mathbb{F}_{q^{n}}$

Comparison of Pollard's rho method, Gaudry and Diem's attack and our attack for ECDLP over $\mathbb{F}_{q^{n}}, n \geq 1$.

Ingredients of index calculus approaches

Goal

Find at least $\# \mathcal{F}$ decompositions of random combinations $R=[a] P+[b] Q$

What kind of "decomposition" over $E(K)$

Semaev (2004): consider decompositions in a fixed number of points of \mathcal{F}

$$
R=[a] P+[b] Q=P_{1}+\ldots+P_{m}
$$

- use the $(m+1)$-th summation polynomial:

$$
\begin{aligned}
& f_{m+1}\left(x_{R}, x_{P_{1}}, \ldots, x_{P_{m}}\right)=0 \\
& \quad \Leftrightarrow \exists \epsilon_{1}, \ldots, \epsilon_{m} \in\{1,-1\}, R=\epsilon_{1} P_{1}+\cdots+\epsilon_{m} P_{m}
\end{aligned}
$$

- Nagao's alternative approach with divisors: work with $f \in \mathcal{L}((m+1)(\infty)-(R))$ instead

Ingredients of index calculus approaches (2)

Convenient factor base on $E\left(\mathbb{F}_{q^{n}}\right)$ - Gaudry (2004)

- Natural factor base: $\mathcal{F}=\left\{(x, y) \in E\left(\mathbb{F}_{q^{n}}\right): x \in \mathbb{F}_{q}\right\}, \# \mathcal{F} \simeq q$
- Weil restriction: decompose along a $\mathbb{F}_{q^{-}}$-linear basis of $\mathbb{F}_{q^{n}}$

$$
f_{m+1}\left(x_{R}, x_{P_{1}}, \ldots, x_{P_{m}}\right)=0 \Leftrightarrow\left\{\begin{array}{l}
\varphi_{1}\left(x_{P_{1}}, \ldots, x_{P_{m}}\right)=0 \\
\vdots \\
\varphi_{n}\left(x_{P_{1}}, \ldots, x_{P_{m}}\right)=0
\end{array} \quad\left(\mathcal{S}_{R}\right)\right.
$$

One decomposition trial \leftrightarrow resolution of \mathcal{S}_{R} over \mathbb{F}_{q}

Ingredients of index calculus approaches (2)

Convenient factor base on $E\left(\mathbb{F}_{q^{n}}\right)$ - Gaudry (2004)

- Natural factor base: $\mathcal{F}=\left\{(x, y) \in E\left(\mathbb{F}_{q^{n}}\right): x \in \mathbb{F}_{q}\right\}, \# \mathcal{F} \simeq q$
- Weil restriction: decompose along a $\mathbb{F}_{q^{-}}$-linear basis of $\mathbb{F}_{q^{n}}$

$$
f_{m+1}\left(x_{R}, x_{P_{1}}, \ldots, x_{P_{m}}\right)=0 \Leftrightarrow\left\{\begin{array}{c}
\varphi \\
\vdots
\end{array}\right.
$$

$$
\left(\varphi_{n}\left(x_{P_{1}}, \ldots, x_{P_{m}}\right)=0\right.
$$

One decomposition trial \leftrightarrow resolution of \mathcal{S}_{R} over \mathbb{F}_{q}

Additional optimizations

- symmetrization of the equations to reduce total degree
- consider a set of representatives of \mathcal{F} / \sim where $P \sim(-P)$ and decompositions of the form $R= \pm P_{1} \pm \cdots \pm P_{m}$
\rightarrow only $\simeq q / 2$ independent relations needed

Polynomial system solving in finite fields

Goal

- Find solutions of \mathcal{S}_{R} in \mathbb{F}_{q}
- More generally: compute $V(\mathrm{I})$ where $\mathrm{I} \subset \mathbb{F}_{q}\left[X_{1}, \ldots, X_{n}\right]$ ideal of dimension 0
univariate case is easy: Cantor-Zassenhaus multivariate case much more complicated

Elimination theory

Two techniques to find in I a univariate polynomial

- resultants
- Gröbner bases

Gröbner bases: a tool for polynomial system solving

The shape lemma
For "most" zero-dimensional ideals $\mathrm{I} \subset \mathbb{F}_{q}\left[X_{1}, \ldots, X_{n}\right]$, a Gröbner basis for the lexicographic order is

$$
G=\left\{X_{1}-f_{1}\left(X_{n}\right), X_{2}-f_{2}\left(X_{n}\right), \cdots, X_{n-1}-f_{n-1}\left(X_{n}\right), f_{n}\left(X_{n}\right)\right\}
$$

where $\operatorname{deg} f_{i}<\operatorname{deg} f_{n}$ and $\operatorname{deg} f_{n}=\operatorname{deg} \mathrm{I}$.

- In any case, the GB always contains a univariate polynomial in X_{n}
- Fast resolution: find roots of univariate polynomial f_{n} and evaluate f_{n-1}, \ldots, f_{1} to compute $V(\mathrm{I})$

Complexity and choice of monomial order

Hardness of GB computations

- complexity of GB computations is difficult to estimate
- worst-case upper bounds:
general case: $2^{2^{0(n)}}$ (Mayr-Meyer)
dimension 0: $d^{O\left(n^{3}\right)}$ for lex order, $d^{O\left(n^{2}\right)}$ for degrevlex (Caniglia,Lazard)
\rightarrow but performances are much better for average cases

Complexity and choice of monomial order

Hardness of GB computations

- complexity of GB computations is difficult to estimate
- worst-case upper bounds:
general case: $2^{2^{0(n)}}$ (Mayr-Meyer)
dimension 0: $d^{O\left(n^{3}\right)}$ for lex order, $d^{O\left(n^{2}\right)}$ for degrevlex (Caniglia,Lazard)
\rightarrow but performances are much better for average cases

Complexity and choice of monomial order

Hardness of GB computations

- complexity of GB computations is difficult to estimate
- worst-case upper bounds:
general case: $2^{2^{0(n)}}$ (Mayr-Meyer)
dimension 0: $d^{O\left(n^{3}\right)}$ for lex order, $d^{O\left(n^{2}\right)}$ for degrevlex (Caniglia,Lazard)
\rightarrow but performances are much better for average cases

Strategy and complexity for lex order GB in dimension 0 instead of direct $G B$ computation for lex order of $\mathrm{I} \subset \mathbb{K}\left[X_{1}, \ldots, X_{n}\right]$, do:
degrevlex order GB computation \& changing order algorithm (FGLM)

$$
\tilde{O}\left(\binom{d_{r e g}+n}{n}^{\omega}\right) \quad+\quad \tilde{O}\left((\operatorname{deg} I)^{3}\right)
$$

Back to index calculus

Gaudry's original attack and Diem's analysis
$m=n \rightarrow$ as many equations as unknowns, \mathcal{S}_{R} has total degree 2^{n-1}

- $\mathrm{I}\left(\mathcal{S}_{R}\right)$ has dimension 0 and degree $2^{n(n-1)}$
- Probability of decomposition is $\simeq 1 / n!\rightarrow$ need to solve $n!q$ systems

Back to index calculus

Gaudry's original attack and Diem's analysis

$m=n \rightarrow$ as many equations as unknowns, \mathcal{S}_{R} has total degree 2^{n-1}

- $\mathrm{I}\left(\mathcal{S}_{R}\right)$ has dimension 0 and degree $2^{n(n-1)}$
- Probability of decomposition is $\simeq 1 / n!\rightarrow$ need to solve $n!q$ systems

Complexity estimates

- Each resolution with Gröbner tools has complexity in $\tilde{O}\left(2^{3 n(n-1)}\right)$
- Sparse linear algebra in $\tilde{O}\left(n q^{2}\right)$
- "Double large prime" variation \rightarrow overall complexity in

$$
\tilde{O}\left((n-2)!2^{3 n(n-1)} q^{2-2 / n}\right)
$$

Back to index calculus

Gaudry's original attack and Diem's analysis

$m=n \rightarrow$ as many equations as unknowns, \mathcal{S}_{R} has total degree 2^{n-1}

- $\mathrm{I}\left(\mathcal{S}_{R}\right)$ has dimension 0 and degree $2^{n(n-1)}$
- Probability of decomposition is $\simeq 1 / n!\rightarrow$ need to solve $n!q$ systems

Complexity estimates

- Each resolution with Gröbner tools has complexity in $\tilde{O}\left(2^{3 n(n-1)}\right)$
- Sparse linear algebra in $\tilde{O}\left(n q^{2}\right)$
- "Double large prime" variation \rightarrow overall complexity in

$$
\tilde{O}\left((n-2)!2^{3 n(n-1)} q^{2-2 / n}\right)
$$

- Bottleneck: $\operatorname{deg}\left(\mathrm{I}\left(\mathcal{S}_{R}\right)\right)=2^{n(n-1)}$. But most solutions not in \mathbb{F}_{q}
- However adding $x^{q}-x=0$ not practical for large q

Example of Gaudry's approach over $\mathbb{F}_{101^{3}}\left(\simeq \mathbb{F}_{101}[t] /\left(t^{3}+t+1\right)\right)$

- $E: y^{2}=x^{3}+\left(44+52 t+60 t^{2}\right) x+\left(58+87 t+74 t^{2}\right), \# E=1029583$
base point: $P \left\lvert\, \begin{aligned} & 25+58 t+23 t^{2} \\ & 96+69 t+37 t^{2}\end{aligned}\right.$
challenge point: $Q \left\lvert\, \begin{gathered}89+78 t+52 t^{2} \\ 14+79 t+71 t^{2}\end{gathered}\right.$

Example of Gaudry's approach over $\mathbb{F}_{101^{3}}\left(\simeq \mathbb{F}_{101}[t] /\left(t^{3}+t+1\right)\right)$

- $E: y^{2}=x^{3}+\left(44+52 t+60 t^{2}\right) x+\left(58+87 t+74 t^{2}\right), \# E=1029583$
base point: $P \left\lvert\, \begin{aligned} & 25+58 t+23 t^{2} \\ & 96+69 t+37 t^{2}\end{aligned} \quad\right.$ challenge point: $Q \left\lvert\, \begin{aligned} & 89+78 t+52 t^{2} \\ & 14+79 t+71 t^{2}\end{aligned}\right.$
- random combination of P and Q :

$$
R=[658403] P+[919894] Q=\left\lvert\, \begin{aligned}
& 44+57 t+55 t^{2} \\
& 8+11 t+73 t^{2}
\end{aligned}\right.
$$

Example of Gaudry's approach over $\mathbb{F}_{101^{3}}\left(\simeq \mathbb{F}_{101}[t] /\left(t^{3}+t+1\right)\right)$

- $E: y^{2}=x^{3}+\left(44+52 t+60 t^{2}\right) x+\left(58+87 t+74 t^{2}\right), \# E=1029583$
base point: $P \left\lvert\, \begin{aligned} & 25+58 t+23 t^{2} \\ & 96+69 t+37 t^{2}\end{aligned}\right.$
challenge point: $Q \left\lvert\, \begin{aligned} & 89+78 t+52 t^{2} \\ & 14+79 t+71 t^{2}\end{aligned}\right.$
- random combination of P and Q :

$$
R=[658403] P+[919894] Q=\left\lvert\, \begin{aligned}
& 44+57 t+55 t^{2} \\
& 8+11 t+73 t^{2}
\end{aligned}\right.
$$

- compute 4-th summation polynomial with resultant: $f_{4}\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=\operatorname{Res}_{X}\left(f_{3}\left(X_{1}, X_{2}, X\right), f_{3}\left(X_{3}, X_{4}, X\right)\right)$ where $f_{3}=\left(X_{1}-X_{2}\right)^{2} X_{3}^{2}-2\left(\left(X_{1}+X_{2}\right)\left(X_{1} X_{2}+a\right)+2 b\right) X_{3}+\left(X_{1} X_{2}-a\right)^{2}-4 b\left(X_{1}+X_{2}\right)$

Example of Gaudry's approach over $\mathbb{F}_{101^{3}}\left(\simeq \mathbb{F}_{101}[t] /\left(t^{3}+t+1\right)\right)$

- $E: y^{2}=x^{3}+\left(44+52 t+60 t^{2}\right) x+\left(58+87 t+74 t^{2}\right), \# E=1029583$
base point: $P \left\lvert\, \begin{aligned} & 25+58 t+23 t^{2} \\ & 96+69 t+37 t^{2}\end{aligned}\right.$

$$
\text { challenge point: } Q \left\lvert\, \begin{aligned}
& 89+78 t+52 t^{2} \\
& 14+79 t+71 t^{2}
\end{aligned}\right.
$$

- random combination of P and Q :

$$
R=[658403] P+[919894] Q=\left\lvert\, \begin{aligned}
& 44+57 t+55 t^{2} \\
& 8+11 t+73 t^{2}
\end{aligned}\right.
$$

- compute 4-th summation polynomial with resultant: $f_{4}\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=\operatorname{Res}_{X}\left(f_{3}\left(X_{1}, X_{2}, X\right), f_{3}\left(X_{3}, X_{4}, X\right)\right)$ where $f_{3}=\left(X_{1}-X_{2}\right)^{2} X_{3}^{2}-2\left(\left(X_{1}+X_{2}\right)\left(X_{1} X_{2}+a\right)+2 b\right) X_{3}+\left(X_{1} X_{2}-a\right)^{2}-4 b\left(X_{1}+X_{2}\right)$
- after partial symmetrization, solve in $s_{1}, s_{2}, s_{3} \in \mathbb{F}_{101}$

$$
\begin{aligned}
& f_{4}\left(s_{1}, s_{2}, s_{3}, x_{R}\right)=x_{R}^{4} s_{2}^{4}+93 x_{R}^{4} s_{1} s_{2}^{2} s_{3} \\
& \quad+16 x_{R}^{4} s_{1}^{2} s_{3}^{2}+\cdots+94 b^{3} s_{3}=0
\end{aligned} \Leftrightarrow\left\{\begin{array}{l}
28 s_{1}^{4}+94 s_{1}^{3} s_{2}+\cdots+4 s_{3}+69=0 \\
49 s_{1}^{4}+72 s_{1}^{3} s_{2}+\cdots+14 s_{3}+100=0 \\
32 s_{1}^{4}+97 s_{1}^{3} s_{2}+\cdots+50 s_{3}+8=0
\end{array}\right.
$$

Example of Gaudry's approach over $\mathbb{F}_{101^{3}}\left(\simeq \mathbb{F}_{101}[t] /\left(t^{3}+t+1\right)\right)$

$$
\begin{array}{r}
\mathrm{I}\left(\mathcal{S}_{R}\right)=\left\langle 28 s_{1}^{4}+94 s_{1}^{3} s_{2}+\cdots+4 s_{3}+69,49 s_{1}^{4}+72 s_{1}^{3} s_{2}+\cdots+14 s_{3}+100\right. \\
\left.32 s_{1}^{4}+97 s_{1}^{3} s_{2}+\cdots+50 s_{3}+8\right\rangle
\end{array}
$$

- Gröbner basis of $\mathrm{I}\left(\mathcal{S}_{R}\right)$ for lex ${s_{1}>s_{2}>s_{3}}$:

$$
\begin{array}{r}
G=\left\{s_{1}+33 s_{3}^{63}+23 s_{3}^{62}+\cdots+95, s_{2}+80 s_{3}^{63}+79 s_{3}^{62}+\cdots+45,\right. \\
\left.s_{3}^{64}+36 s_{3}^{63}+80 s_{3}^{62}+\cdots+56\right\}
\end{array}
$$

Example of Gaudry's approach over $\mathbb{F}_{101^{3}}\left(\simeq \mathbb{F}_{101}[t] /\left(t^{3}+t+1\right)\right)$

$$
\begin{array}{r}
\mathrm{I}\left(\mathcal{S}_{R}\right)=\left\langle 28 s_{1}^{4}+94 s_{1}^{3} s_{2}+\cdots+4 s_{3}+69,49 s_{1}^{4}+72 s_{1}^{3} s_{2}+\cdots+14 s_{3}+100\right. \\
\left.32 s_{1}^{4}+97 s_{1}^{3} s_{2}+\cdots+50 s_{3}+8\right\rangle
\end{array}
$$

- Gröbner basis of $\mathrm{I}\left(\mathcal{S}_{R}\right)$ for lex ${s_{1}>s_{2}>s_{3}}$:

$$
\begin{array}{r}
G=\left\{s_{1}+33 s_{3}^{63}+23 s_{3}^{62}+\cdots+95, s_{2}+80 s_{3}^{63}+79 s_{3}^{62}+\cdots+45,\right. \\
\left.s_{3}^{64}+36 s_{3}^{63}+80 s_{3}^{62}+\cdots+56\right\}
\end{array}
$$

- $V\left(\mathrm{I}\left(\mathcal{S}_{R}\right)\right)_{/ \mathbb{F}_{101}}=\{(30,3,53),(75,25,75)\}$

Roots of $X^{3}-s_{1} X^{2}+s_{2} X-s_{3}=0$ over \mathbb{F}_{101} ?

Example of Gaudry's approach over $\mathbb{F}_{101^{3}}\left(\simeq \mathbb{F}_{101}[t] /\left(t^{3}+t+1\right)\right)$

$$
\begin{array}{r}
\mathrm{I}\left(\mathcal{S}_{R}\right)=\left\langle 28 s_{1}^{4}+94 s_{1}^{3} s_{2}+\cdots+4 s_{3}+69,49 s_{1}^{4}+72 s_{1}^{3} s_{2}+\cdots+14 s_{3}+100\right. \\
\left.32 s_{1}^{4}+97 s_{1}^{3} s_{2}+\cdots+50 s_{3}+8\right\rangle
\end{array}
$$

- Gröbner basis of $\mathrm{I}\left(\mathcal{S}_{R}\right)$ for lex ${s_{1}>s_{2}>s_{3}}$:

$$
\begin{array}{r}
G=\left\{s_{1}+33 s_{3}^{63}+23 s_{3}^{62}+\cdots+95, s_{2}+80 s_{3}^{63}+79 s_{3}^{62}+\cdots+45\right. \\
\left.s_{3}^{64}+36 s_{3}^{63}+80 s_{3}^{62}+\cdots+56\right\}
\end{array}
$$

- $V\left(\mathrm{I}\left(\mathcal{S}_{R}\right)\right)_{/ \mathbb{F}_{101}}=\{(30,3,53),(75,25,75)\}$

Roots of $X^{3}-s_{1} X^{2}+s_{2} X-s_{3}=0$ over \mathbb{F}_{101} ?

* $X^{3}-30 X^{2}+3 X-53$ irreducible over $\mathbb{F}_{101}[X]$

Example of Gaudry's approach over $\mathbb{F}_{101^{3}}\left(\simeq \mathbb{F}_{101}[t] /\left(t^{3}+t+1\right)\right)$

$$
\begin{array}{r}
\mathrm{I}\left(\mathcal{S}_{R}\right)=\left\langle 28 s_{1}^{4}+94 s_{1}^{3} s_{2}+\cdots+4 s_{3}+69,49 s_{1}^{4}+72 s_{1}^{3} s_{2}+\cdots+14 s_{3}+100\right. \\
\left.32 s_{1}^{4}+97 s_{1}^{3} s_{2}+\cdots+50 s_{3}+8\right\rangle
\end{array}
$$

- Gröbner basis of $\mathrm{I}\left(\mathcal{S}_{R}\right)$ for lex ${s_{1}>s_{2}>s_{3}}$:

$$
\begin{array}{r}
G=\left\{s_{1}+33 s_{3}^{63}+23 s_{3}^{62}+\cdots+95, s_{2}+80 s_{3}^{63}+79 s_{3}^{62}+\cdots+45\right. \\
\left.s_{3}^{64}+36 s_{3}^{63}+80 s_{3}^{62}+\cdots+56\right\}
\end{array}
$$

- $V\left(\mathrm{I}\left(\mathcal{S}_{R}\right)\right)_{\mid \mathbb{F}_{101}}=\{(30,3,53),(75,25,75)\}$

Roots of $X^{3}-s_{1} X^{2}+s_{2} X-s_{3}=0$ over \mathbb{F}_{101} ?

* $X^{3}-30 X^{2}+3 X-53$ irreducible over $\mathbb{F}_{101}[X]$
* $X^{3}-75 X^{2}+25 X-75=(X-4)(X-7)(X-64)$
$\left.\Rightarrow P_{1}\left|\begin{array}{l|l|l}4 \\ 27+34 t+91 t^{2}\end{array} ~ P_{2}\right| \begin{aligned} & 7 \\ & 58+95 t+91 t^{2}\end{aligned} \quad P_{3} \right\rvert\, \begin{aligned} & 64 \\ & 76+54 t+18 t^{2}\end{aligned}$ and $P_{1}-P_{2}+P_{3}=R$

Example of Gaudry's approach over $\mathbb{F}_{101^{3}}\left(\simeq \mathbb{F}_{101}[t] /\left(t^{3}+t+1\right)\right)$

$$
\begin{array}{r}
\mathrm{I}\left(\mathcal{S}_{R}\right)=\left\langle 28 s_{1}^{4}+94 s_{1}^{3} s_{2}+\cdots+4 s_{3}+69,49 s_{1}^{4}+72 s_{1}^{3} s_{2}+\cdots+14 s_{3}+100\right. \\
\left.32 s_{1}^{4}+97 s_{1}^{3} s_{2}+\cdots+50 s_{3}+8\right\rangle
\end{array}
$$

- Gröbner basis of $\mathrm{I}\left(\mathcal{S}_{R}\right)$ for lex ${s_{1}>s_{2}>s_{3}}$:

$$
\begin{array}{r}
G=\left\{s_{1}+33 s_{3}^{63}+23 s_{3}^{62}+\cdots+95, s_{2}+80 s_{3}^{63}+79 s_{3}^{62}+\cdots+45\right. \\
\left.s_{3}^{64}+36 s_{3}^{63}+80 s_{3}^{62}+\cdots+56\right\}
\end{array}
$$

- $V\left(\mathrm{I}\left(\mathcal{S}_{R}\right)\right)_{/ \mathbb{F}_{101}}=\{(30,3,53),(75,25,75)\}$

Roots of $X^{3}-s_{1} X^{2}+s_{2} X-s_{3}=0$ over \mathbb{F}_{101} ?

$$
\begin{aligned}
& * X^{3}-30 X^{2}+3 X-53 \text { irreducible over } \mathbb{F}_{101}[X] \\
& * X^{3}-75 X^{2}+25 X-75=(X-4)(X-7)(X-64) \\
& \Rightarrow P_{1}\left|\begin{array}{l|l|l|l}
4 & P_{27+34 t+91 t^{2}} & P_{2} & \begin{array}{l}
78+95 t+91 t^{2}
\end{array} \\
\hline
\end{array}\right| \begin{array}{l}
64 \\
76+54 t+18 t^{2}
\end{array} \\
& \text { and } P_{1}-P_{2}+P_{3}=R
\end{aligned}
$$

- Number of relations needed: $\# \mathcal{F} / \sim=54 \Rightarrow 55$
- Linear algebra $\rightarrow x=771080$

Example of Nagao's approach over $\mathbb{F}_{101^{3}}$

Instead of using Semaev's summation polynomials,

- consider $\mathcal{L}(4(\infty)-(R))$ with basis $\left\langle x-x_{R}, y-y_{R}, x\left(x-x_{R}\right)\right\rangle$

Example of Nagao's approach over $\mathbb{F}_{101^{3}}$

Instead of using Semaev's summation polynomials,

- consider $\mathcal{L}(4(\infty)-(R))$ with basis $\left\langle x-x_{R}, y-y_{R}, x\left(x-x_{R}\right)\right\rangle$
- starting from $f(x, y)=x\left(x-x_{R}\right)+\lambda\left(y-y_{R}\right)+\mu\left(x-x_{R}\right)$
compute $F(x)=f(x, y) f(x,-y) /\left(x-x_{R}\right)$

$$
\begin{aligned}
\rightarrow F(x)=x^{3} & +\left(-\lambda^{2}+2 \mu-x_{R}\right) x^{2}+\left(-x_{R} \lambda^{2}-2 y_{R} \lambda+\mu^{2}-2 x_{R} \mu\right) x \\
& -\left(\left(x_{R}^{2}+a\right) \lambda^{2}+2 y_{R} \lambda \mu+x_{R} \mu^{2}\right)
\end{aligned}
$$

roots of F correspond to x-coord. of the P_{i} in the decomposition of R

Example of Nagao's approach over $\mathbb{F}_{101^{3}}$

 Instead of using Semaev's summation polynomials,- consider $\mathcal{L}(4(\infty)-(R))$ with basis $\left\langle x-x_{R}, y-y_{R}, x\left(x-x_{R}\right)\right\rangle$
- starting from $f(x, y)=x\left(x-x_{R}\right)+\lambda\left(y-y_{R}\right)+\mu\left(x-x_{R}\right)$
compute $F(x)=f(x, y) f(x,-y) /\left(x-x_{R}\right)$

$$
\begin{aligned}
\rightarrow F(x)=x^{3} & +\left(-\lambda^{2}+2 \mu-x_{R}\right) x^{2}+\left(-x_{R} \lambda^{2}-2 y_{R} \lambda+\mu^{2}-2 x_{R} \mu\right) x \\
& -\left(\left(x_{R}^{2}+a\right) \lambda^{2}+2 y_{R} \lambda \mu+x_{R} \mu^{2}\right)
\end{aligned}
$$

roots of F correspond to x-coord. of the P_{i} in the decomposition of R

- $x\left(P_{i}\right) \in \mathbb{F}_{101} \Rightarrow F \in \mathbb{F}_{101}[x]$
find $\lambda, \mu \in \mathbb{F}_{101^{3}}$ such that $\left\{\begin{array}{l}-\lambda^{2}+2 \mu-x_{R} \in \mathbb{F}_{101} \\ -x_{R} \lambda^{2}-2 y_{R} \lambda+\mu^{2}-2 x_{R} \mu \in \mathbb{F}_{101} \\ \left(x_{R}^{2}+a\right) \lambda^{2}+2 y_{R} \lambda \mu+x_{R} \mu^{2} \in \mathbb{F}_{101}\end{array}\right.$

Example of Nagao's approach over $\mathbb{F}_{101^{3}}$

 Instead of using Semaev's summation polynomials,- consider $\mathcal{L}(4(\infty)-(R))$ with basis $\left\langle x-x_{R}, y-y_{R}, x\left(x-x_{R}\right)\right\rangle$
- starting from $f(x, y)=x\left(x-x_{R}\right)+\lambda\left(y-y_{R}\right)+\mu\left(x-x_{R}\right)$
compute $F(x)=f(x, y) f(x,-y) /\left(x-x_{R}\right)$

$$
\begin{aligned}
\rightarrow F(x)=x^{3} & +\left(-\lambda^{2}+2 \mu-x_{R}\right) x^{2}+\left(-x_{R} \lambda^{2}-2 y_{R} \lambda+\mu^{2}-2 x_{R} \mu\right) x \\
& -\left(\left(x_{R}^{2}+a\right) \lambda^{2}+2 y_{R} \lambda \mu+x_{R} \mu^{2}\right)
\end{aligned}
$$

roots of F correspond to x-coord. of the P_{i} in the decomposition of R

- $x\left(P_{i}\right) \in \mathbb{F}_{101} \Rightarrow F \in \mathbb{F}_{101}[x]$

$$
\text { find } \lambda, \mu \in \mathbb{F}_{101^{3}} \text { such that }\left\{\begin{array}{l}
-\lambda^{2}+2 \mu-x_{R} \in \mathbb{F}_{101} \\
-x_{R} \lambda^{2}-2 y_{R} \lambda+\mu^{2}-2 x_{R} \mu \in \mathbb{F}_{101} \\
\left(x_{R}^{2}+a\right) \lambda^{2}+2 y_{R} \lambda \mu+x_{R} \mu^{2} \in \mathbb{F}_{101}
\end{array}\right.
$$

- Weil restriction: solve a quadratic polynomial system with 6 var/eq check if resulting F splits in linear factors

Remarks on Nagao's approach

Analysis

- differs from Gaudry only in the polynomial system to solve
- actual resolution slower
\rightarrow not relevant for the elliptic case

Remarks on Nagao's approach

Analysis

- differs from Gaudry only in the polynomial system to solve
- actual resolution slower
\rightarrow not relevant for the elliptic case

Practical interest

- in the previous example, eliminating λ, μ in

$$
\left\{\begin{array}{l}
s_{1}=\lambda^{2}-2 \mu+x_{R} \\
s_{2}=-x_{R} \lambda^{2}-2 y_{R} \lambda+\mu^{2}-2 x_{R} \mu \\
s_{3}=\left(x_{R}^{2}+a\right) \lambda^{2}+2 y_{R} \lambda \mu+x_{R} \mu^{2}
\end{array}\right.
$$

symmetrized summation polynomial $f_{4}\left(s_{1}, s_{2}, s_{3}, x_{R}\right)$
\rightarrow alternate computation of summation polynomials

- can be easily generalized to hyperelliptic curves whereas Semaev cannot

Joux-V. approach

Decompositions into $m=n-1$ points

- compute the n-th summation polynomial (instead of $n+1$-th) with partially symmetrized resultant
- solve \mathcal{S}_{R} with $n-1$ var, n eq and total degree 2^{n-2}
- $(n-1)!q$ expected numbers of trials to get one relation

Computation speed-up

(1) \mathcal{S}_{R} is overdetermined and $\mathrm{I}\left(\mathcal{S}_{R}\right)$ has very low degree resolution with a degrevlex Gröbner basis no need to change order (FGLM)
(2) Speed up computations with "F4 traces"

A toy example over $\mathbb{F}_{101^{3}}\left(\simeq \mathbb{F}_{101}[t] /\left(t^{3}+t+1\right)\right)$

- E, P and Q as before, random combination of P and Q :

$$
R=[357347] P+[488870] Q=\left\lvert\, \begin{aligned}
& 6+63 t+58 t^{2} \\
& 11+97 t+95 t^{2}
\end{aligned}\right.
$$

A toy example over $\mathbb{F}_{101^{3}}\left(\simeq \mathbb{F}_{101}[t] /\left(t^{3}+t+1\right)\right)$

- E, P and Q as before, random combination of P and Q :

$$
R=[357347] P+[488870] Q=\left\lvert\, \begin{aligned}
& 6+63 t+58 t^{2} \\
& 11+97 t+95 t^{2}
\end{aligned}\right.
$$

- use 3-rd "symmetrized" Semaev polynomial and Weil restriction:

$$
\begin{aligned}
& \left(s_{1}^{2}-4 s_{2}\right) x_{R}^{2}-2\left(s_{1}\left(s_{2}+a\right)+2 b\right) x_{R}+\left(s_{2}-a\right)^{2}-4 b s_{1}=0 \\
\Leftrightarrow \quad & \left(83 t+89 t^{2}\right) s_{1}^{2}+\left(89+76 t+86 t^{2}\right) s_{1} s_{2}+\left(5+98 t+45 t^{2}\right) s_{1} \\
& +s_{2}^{2}+\left(13+69 t+29 t^{2}\right) s_{2}+8+96 t+51 t^{2}=0 \\
\Leftrightarrow & \left\{\begin{array}{l}
89 s_{1} s_{2}+5 s_{1}+s_{2}^{2}+13 s_{2}+8=0 \\
83 s_{1}^{2}+76 s_{1} s_{2}+98 s_{1}+69 s_{2}+96=0 \\
89 s_{1}^{2}+86 s_{1} s_{2}+45 s_{1}+29 s_{2}+51=0
\end{array}\right.
\end{aligned}
$$

A toy example over $\mathbb{F}_{101^{3}}\left(\simeq \mathbb{F}_{101}[t] /\left(t^{3}+t+1\right)\right)$
$\mathrm{I}\left(\mathcal{S}_{R}\right)=\left\langle 89 s_{1} s_{2}+5 s_{1}+s_{2}^{2}+13 s_{2}+8\right.$,

$$
\begin{aligned}
83 s_{1}^{2}+76 s_{1} s_{2}+ & 98 s_{1}+69 s_{2}+96 \\
& \left.89 s_{1}^{2}+86 s_{1} s_{2}+45 s_{1}+29 s_{2}+51\right\rangle
\end{aligned}
$$

- Gröbner basis of $\mathrm{I}\left(\mathcal{S}_{R}\right)$ for degrevlex ${ }_{s_{1}>s_{2}}: G=\left\{s_{1}+89, s_{2}+49\right\}$

A toy example over $\mathbb{F}_{101^{3}}\left(\simeq \mathbb{F}_{101}[t] /\left(t^{3}+t+1\right)\right)$
$\mathrm{I}\left(\mathcal{S}_{R}\right)=\left\langle 89 s_{1} s_{2}+5 s_{1}+s_{2}^{2}+13 s_{2}+8\right.$,

$$
\begin{aligned}
83 s_{1}^{2}+76 s_{1} s_{2}+ & 98 s_{1}+69 s_{2}+96 \\
& \left.89 s_{1}^{2}+86 s_{1} s_{2}+45 s_{1}+29 s_{2}+51\right\rangle
\end{aligned}
$$

- Gröbner basis of $\mathrm{I}\left(\mathcal{S}_{R}\right)$ for degrevlex ${s_{1}>s_{2}}: G=\left\{s_{1}+89, s_{2}+49\right\}$
- $V\left(\mathrm{I}\left(\mathcal{S}_{R}\right)\right)=\{(12,52)\}$

$$
\text { * } X^{2}-12 X+52=(X-46)(X-67)
$$

A toy example over $\mathbb{F}_{101^{3}}\left(\simeq \mathbb{F}_{101}[t] /\left(t^{3}+t+1\right)\right)$
$\mathrm{I}\left(\mathcal{S}_{R}\right)=\left\langle 89 s_{1} s_{2}+5 s_{1}+s_{2}^{2}+13 s_{2}+8\right.$,

$$
\begin{aligned}
83 s_{1}^{2}+76 s_{1} s_{2}+ & 98 s_{1}+69 s_{2}+96 \\
& \left.89 s_{1}^{2}+86 s_{1} s_{2}+45 s_{1}+29 s_{2}+51\right\rangle
\end{aligned}
$$

- Gröbner basis of $\mathrm{I}\left(\mathcal{S}_{R}\right)$ for degrevlex ${s_{1}>s_{2}}: G=\left\{s_{1}+89, s_{2}+49\right\}$
- $V\left(\mathrm{I}\left(\mathcal{S}_{R}\right)\right)=\{(12,52)\}$

$$
\begin{aligned}
& \text { * } X^{2}-12 X+52=(X-46)(X-67) \\
& \quad \Rightarrow P_{1}\left|\begin{array}{l}
46 \\
29+55 t+56 t^{2}
\end{array} \quad P_{2}\right| \begin{array}{l}
67 \\
20+8 t+59 t^{2}
\end{array} \text { and } P_{1}+P_{2}=R
\end{aligned}
$$

A toy example over $\mathbb{F}_{101^{3}}\left(\simeq \mathbb{F}_{101}[t] /\left(t^{3}+t+1\right)\right)$
$\mathrm{I}\left(\mathcal{S}_{R}\right)=\left\langle 89 s_{1} s_{2}+5 s_{1}+s_{2}^{2}+13 s_{2}+8\right.$,

$$
\begin{aligned}
83 s_{1}^{2}+76 s_{1} s_{2}+ & 98 s_{1}+69 s_{2}+96 \\
& \left.89 s_{1}^{2}+86 s_{1} s_{2}+45 s_{1}+29 s_{2}+51\right\rangle
\end{aligned}
$$

- Gröbner basis of $\mathrm{I}\left(\mathcal{S}_{R}\right)$ for degrevlex ${ }_{s_{1}>s_{2}}: G=\left\{s_{1}+89, s_{2}+49\right\}$
- $V\left(\mathrm{I}\left(\mathcal{S}_{R}\right)\right)=\{(12,52)\}$

$$
\begin{aligned}
& \text { * } X^{2}-12 X+52=(X-46)(X-67) \\
& \quad \Rightarrow P_{1}\left|\begin{array}{l}
46 \\
29+55 t+56 t^{2}
\end{array} \quad P_{2}\right| \begin{array}{l}
67 \\
20+8 t+59 t^{2}
\end{array} \text { and } P_{1}+P_{2}=R
\end{aligned}
$$

- Number of relations needed: $\# \mathcal{F} / \sim=54 \Rightarrow 55$
- Linear algebra $\rightarrow x=771080$

Summary

Comparison between the three approaches

	Gaudry-Diem	Nagao	Joux-V.
nb of points	$m=n$	$m=n$	$m=n-1$
decomp. trials	$n!q$	$n!q$	$(n-1)!q^{2}$
features	$\operatorname{deg} 2^{n-1}$	$\operatorname{deg} 2$	$\operatorname{deg} 2^{n-2}$
of \mathcal{S}_{R}	n eq/var	$n(n-1)$ eq/var	n eq, $n-1$ var
$\operatorname{deg}\left(\mathrm{I}\left(\mathcal{S}_{R}\right)\right)$	$2^{n(n-1)}$	$2^{n(n-1)}$	$0(1$ exceptionally $)$
$\operatorname{complexity}$	$n!2^{3 n(n-1)} q^{2-2 / n}$	$n!2^{2 \omega n(n-1)} q^{2-2 / n}$	$n!2^{\omega(n-1)(n-2)} e^{\omega n} q^{2}$

Part II

F4 traces

Gröbner basis

$\mathrm{I}=\left\langle f_{1}, \ldots, f_{r}\right\rangle \subset \mathbb{K}\left[X_{1}, \ldots, X_{n}\right]$ ideal
Gröbner basis
$G=\left\{g_{1}, \ldots, g_{s}\right\} \subset I$ is a Gröbner basis of I if

$$
\left\langle L T\left(g_{1}\right), \ldots, L T\left(g_{s}\right)\right\rangle=L T(\mathrm{I})
$$

Buchberger's algorithm

- S-polynomial: $f_{1}, f_{2} \in \mathbb{K}\left[X_{1}, \ldots, X_{n}\right]$

$$
S\left(f_{1}, f_{2}\right)=\frac{L M\left(f_{1}\right) \vee L M\left(f_{2}\right)}{L T\left(f_{1}\right)} f_{1}-\frac{L M\left(f_{1}\right) \vee L M\left(f_{2}\right)}{L T\left(f_{2}\right)} f_{2}
$$

- Buchberger's theorem:

$$
G=\left\{g_{1}, \ldots, g_{s}\right\} \text { Gröbner basis } \Leftrightarrow{\overline{S\left(g_{i}, g_{j}\right)}}^{G}=0 \text { for all } i, j
$$

- Buchberger's algorithm: compute iteratively the remainder by G of every possible S-polynomials and add it to G

Standard Gröbner basis algorithms

F4: efficient implementation of Buchberger's algorithm

- linear algebra to reduce a large number of critical pairs $\left(I c m, u_{1}, f_{1}, u_{2}, f_{2}\right)$ where $\operatorname{lcm}=L M\left(f_{1}\right) \vee L M\left(f_{2}\right), u_{i}=\frac{I c m}{L M\left(f_{i}\right)}$
- selection strategy (e.g. lowest total degree Icm)
- at each step construct a Macaulay-style matrix containing products $u_{i} f_{i}$ coming from the selected critical pairs polynomials from preprocessing phase
monomial m
\downarrow

Macaulay-style matrix

Standard Gröbner basis algorithms

(1) F4 algorithm ('99)

- fast and complete reductions of critical pairs
- drawback: many reductions to zero
(2) F5 algorithm ('02)
- elaborate criterion \rightarrow skip unnecessary reductions
- drawback: incomplete polynomial reductions
- multipurpose algorithms
- do not take advantage of the common shape of the systems
- knowledge of a prior computation
\rightarrow no more reduction to zero in F4 ?

A specifically devised algorithm

Outline of our F4 variant

(1) F4Precomp: on the first system at each step, store the list of all involved polynomial multiples reduction to zero \rightarrow remove well-chosen multiple from the list
(2) F4Remake: for each subsequent system no queue of untreated pairs at each step, pick directly from the list the relevant multiples

Former works

- Idea originating from CRT computation of GB over \mathbb{Q}
- Traverso 88: precise definition of Gröbner traces for the Buchberger algorithm, but behavior analysis restricted to the rational case

Analysis of F4Remake

"Similar" systems

- parametric family of systems: $\left\{F_{1}(y), \ldots, F_{r}(y)\right\}_{y \in \mathbb{K}^{\ell}}$ where $F_{1}, \ldots, F_{r} \in \mathbb{K}\left[Y_{1}, \ldots, Y_{\ell}\right]\left[X_{1}, \ldots, X_{n}\right]$
- $\left\{f_{1}, \ldots, f_{r}\right\} \subset \mathbb{K}[\underline{X}]$ random instance of this parametric family

Generic behavior

(1) "compute" the GB of $\left\langle F_{1}, \ldots, F_{r}\right\rangle$ in $\mathbb{K}(\underline{Y})[\underline{X}]$ with F 4 algorithm
(2) f_{1}, \ldots, f_{r} behaves generically if during the GB computation with F4 same number of iterations at each step, same new leading monomials \rightarrow similar critical pairs

Analysis of F4Remake

"Similar" systems

- parametric family of systems: $\left\{F_{1}(y), \ldots, F_{r}(y)\right\}_{y \in \mathbb{K}^{\ell}}$ where $F_{1}, \ldots, F_{r} \in \mathbb{K}\left[Y_{1}, \ldots, Y_{\ell}\right]\left[X_{1}, \ldots, X_{n}\right]$
- $\left\{f_{1}, \ldots, f_{r}\right\} \subset \mathbb{K}[\underline{X}]$ random instance of this parametric family

Generic behavior

(1) "compute" the GB of $\left\langle F_{1}, \ldots, F_{r}\right\rangle$ in $\mathbb{K}(\underline{Y})[\underline{X}]$ with F 4 algorithm
(2) f_{1}, \ldots, f_{r} behaves generically if during the GB computation with F4 same number of iterations at each step, same new leading monomials \rightarrow similar critical pairs

F4Remake computes successfully the GB of f_{1}, \ldots, f_{r} if the system behaves generically

Algebraic condition for generic behavior

(1) Assume f_{1}, \ldots, f_{r} behaves generically until the $(i-1)$-th step
(2) At step $i, \mathrm{~F} 4$ constructs

- $M_{g}=$ matrix of polynomial multiples at step i for the parametric system
- $M=$ matrix of polynomial multiples at step i for f_{1}, \ldots, f_{r}

Algebraic condition for generic behavior

(1) Assume f_{1}, \ldots, f_{r} behaves generically until the $(i-1)$-th step
(2) At step i, F4 constructs

- $M_{g}=$ matrix of polynomial multiples at step i for the parametric system
- $M=$ matrix of polynomial multiples at step i for f_{1}, \ldots, f_{r}
(3) Reduced row echelon form of M_{g} and M

$\left(\begin{array}{c|c}A_{0} & A_{1} \\ 0 & A_{2}\end{array}\right)$

Algebraic condition for generic behavior

(1) Assume f_{1}, \ldots, f_{r} behaves generically until the $(i-1)$-th step
(2) At step i, F4 constructs

- $M_{g}=$ matrix of polynomial multiples at step i for the parametric system
- $M=$ matrix of polynomial multiples at step i for f_{1}, \ldots, f_{r}
(3) Reduced row echelon form of M_{g} and M

$$
\left(\begin{array}{c|c}
I_{s} & B_{g, 1} \\
\hline 0 & B_{g, 2}
\end{array}\right) \quad\left(\begin{array}{c|c}
I_{s} & B_{1} \\
\hline 0 & B_{2}
\end{array}\right)
$$

Algebraic condition for generic behavior

(1) Assume f_{1}, \ldots, f_{r} behaves generically until the ($i-1$)-th step
(2) At step i, F4 constructs

- $M_{g}=$ matrix of polynomial multiples at step i for the parametric system
- $M=$ matrix of polynomial multiples at step i for f_{1}, \ldots, f_{r}
(3) Reduced row echelon form of M_{g} and M

Algebraic condition for generic behavior

(1) Assume f_{1}, \ldots, f_{r} behaves generically until the ($i-1$)-th step
(2) At step i, F4 constructs

- $M_{g}=$ matrix of polynomial multiples at step i for the parametric system
- $M=$ matrix of polynomial multiples at step i for f_{1}, \ldots, f_{r}
(3) Reduced row echelon form of M_{g} and M
$\left(\begin{array}{c|c|c}I_{s} & 0 & C_{g, 1} \\ \hline 0 & I_{\ell} & C_{g, 2} \\ \hline 0 & 0 & 0\end{array}\right)$
$\left(\begin{array}{c|c|c}I_{s} & & B_{1}^{\prime} \\ \hline 0 & B & B_{2}^{\prime}\end{array}\right) ?$

Algebraic condition for generic behavior

(1) Assume f_{1}, \ldots, f_{r} behaves generically until the ($i-1$)-th step
(2) At step i, F4 constructs

- $M_{g}=$ matrix of polynomial multiples at step i for the parametric system
- $M=$ matrix of polynomial multiples at step i for f_{1}, \ldots, f_{r}
(3) Reduced row echelon form of M_{g} and M
\(\left(\begin{array}{c|c|c}I_{s} \& 0 \& C_{g, 1}

\hline 0 \& I_{\ell} \& C_{g, 2}

\hline 0 \& 0 \& 0\end{array}\right) \quad\left(\right.\)| I_{s} | |
| :---: | :---: |
| B_{1}^{\prime} | |
| 0 | B |
| I_{2}^{\prime} | |$)$

f_{1}, \ldots, f_{r} behaves generically at step $i \Leftrightarrow B$ has full rank

Probability of success

Heuristic assumption

B matrices are uniformly random over $\mathcal{M}_{n, \ell}\left(\mathbb{F}_{q}\right)$

- makes sense for \mathcal{S}_{R} arising from index calculus
- not always valid, but generic behavior can often be deduced for the first stages of F4

Probability estimates over \mathbb{F}_{q}

Under heuristic assumption:

$$
\operatorname{Proba}\left(\left\{f_{1}, \ldots, f_{r}\right\} \text { behaves generically }\right) \geq c(q)^{n_{\text {step }}}
$$

- $n_{\text {step }}=\mathrm{nb}$ of steps during F4 computation for the parametric system
- $c(q)=\prod_{i=1}^{\infty}\left(1-q^{-i}\right) \underset{q \rightarrow \infty}{\longrightarrow} 1$

Experimental results: index calculus on $E\left(\mathbb{F}_{p^{5}}\right)$

$\|p\|_{2}$	est. failure proba.	F4Remake	F4 (Joux-V.)	F4 (Magma)
8 bits	0.11	2.844	5.903	9.660
16 bits	4.4×10^{-4}	3.990	9.758	9.870
25 bits	2.4×10^{-6}	4.942	16.77	118.8
32 bits	5.8×10^{-9}	8.444	24.56	1046

Times in seconds, using a 2.6 GHz Intel Core 2 Duo processor.
Precomputation done in 8.963 s on an 8 -bit field.

Experimental results: index calculus on $E\left(\mathbb{F}_{p^{5}}\right)$

$\|p\|_{2}$	est. failure proba.	F4Remake	F4 (Joux-V.)	F4 (Magma)
8 bits	0.11	2.844	5.903	9.660
16 bits	4.4×10^{-4}	3.990	9.758	9.870
25 bits	2.4×10^{-6}	4.942	16.77	118.8
32 bits	5.8×10^{-9}	8.444	24.56	1046

Times in seconds, using a 2.6 GHz Intel Core 2 Duo processor. Precomputation done in 8.963 s on an 8 -bit field.

Comparison with F5

- both algorithms eliminate all reductions to zero, but
- F5 computes a much larger GB:

17249 labeled polynomials against 2789 with F4

- signature condition in F5 \rightarrow redundant polynomials

Part III

Application to the Static Diffie-Hellman Problem

Oracle-assisted Static Diffie-Hellman Problem

Observation

Semaev's decomposition into a factor base leads to an oracle-assisted solution of the static Diffie-Hellman problem

Oracle-assisted SDHP: G finite group and d secret integer

- Initial learning phase: the attacker has access to an oracle which outputs [d] Y for any Y in G
- After a number of oracle queries, the attacker has to compute $[d] X$ for a previously unseen challenge X

Solving SDHP over $G=E\left(\mathbb{F}_{q^{n}}\right)$

$\mathcal{F}=\left\{P \in E\left(\mathbb{F}_{q^{n}}\right): P=\left(x_{p}, y_{p}\right), x_{p} \in \mathbb{F}_{q}\right\}$

- Learning phase: ask the oracle to compute $Q=[d] P$ for each $P \in \mathcal{F}$
- Given a challenge X,
(1) pick a random integer r coprime with $\# G$ and compute $[r] X$
(2) check if $[r] X$ can be written as a sum of m points of \mathcal{F} :
$[r] X= \pm P_{1} \pm P_{2} \pm \cdots \pm P_{m}$
(3) if $[r] X$ is not decomposable, go back to step 1 ; else output $Y=[s]\left(\sum_{i=1}^{m}[d] P_{i}\right)$ where $s=r^{-1} \bmod (\# G)$.

Remarks

- only one decomposition is needed \rightarrow no linear algebra step but the $q / 2$ oracle queries are the bottleneck
- Granger: balance the two stages by reducing the factor base à la Harley

An interesting target - joint work with R. Granger Announcement on the NMBRTHRY list (Jul, 2010)

IPSEC Oakley key determination protocol 'well known group' 3 curve $\mathbb{F}_{2^{155}}=\mathbb{F}_{2}[u] /\left(u^{155}+u^{62}+1\right) \quad G=E\left(\mathbb{F}_{2^{155}}\right)$ where $E: y^{2}+x y=x^{3}+\left(u^{18}+u^{17}+u^{16}+u^{13}+u^{12}+u^{9}+u^{8}+u^{7}+u^{3}+u^{2}+u+1\right)$ $\# G=12 * 3805993847215893016155463826195386266397436443$

Remarks

- $\mathbb{F}_{2^{155}}=\mathbb{F}_{\left(2^{31}\right)^{5}} \rightarrow$ curve known to be theoretically weaker than curves over comparable size prime fields
- decomposition as sum of 5 points not realizable
\rightarrow Gaudry's approach doesn't work on this curve
- we show that an actual attack with our approach is feasible

Results for the 'Well Known Group' 3 Oakley curve

The attack (Granger-Joux-V.)
To decompose a challenge X, try about $4!2^{31} \simeq 5.10^{10}$ decompositions:

- choose random r and construct the overdetermined symmetrized system $\mathcal{S}_{[r] X}=\left\{\varphi_{1}, \ldots, \varphi_{5}\right\} \subset \mathbb{F}_{2^{31}}\left[s_{1}, \ldots, s_{4}\right]$ of total degree 8
- solve $\mathcal{S}_{[r] X}$ in $\mathbb{F}_{2^{31}}$ with degrevlex Gröbner basis computation

Results for the 'Well Known Group' 3 Oakley curve

The attack (Granger-Joux-V.)
To decompose a challenge X, try about $4!2^{31} \simeq 5.10^{10}$ decompositions:

- choose random r and construct the overdetermined symmetrized system $\mathcal{S}_{[r] X}=\left\{\varphi_{1}, \ldots, \varphi_{5}\right\} \subset \mathbb{F}_{2^{31}}\left[s_{1}, \ldots, s_{4}\right]$ of total degree 8
- solve $\mathcal{S}_{[r] X}$ in $\mathbb{F}_{2^{31}}$ with degrevlex Gröbner basis computation

Timings

- Magma (V2.15-15): each decomposition trial takes about 1 sec

Results for the 'Well Known Group' 3 Oakley curve

The attack (Granger-Joux-V.)
To decompose a challenge X, try about $4!2^{31} \simeq 5.10^{10}$ decompositions:

- choose random r and construct the overdetermined symmetrized system $\mathcal{S}_{[r] X}=\left\{\varphi_{1}, \ldots, \varphi_{5}\right\} \subset \mathbb{F}_{2^{31}}\left[s_{1}, \ldots, s_{4}\right]$ of total degree 8
- solve $\mathcal{S}_{[r] X}$ in $\mathbb{F}_{2^{31}}$ with degrevlex Gröbner basis computation

Timings

- Magma (V2.15-15): each decomposition trial takes about 1 sec
- F4Variant + dedicated optimizations of arithmetic and linear algebra \rightarrow only 22.95 ms per test on a 2.93 GHz Intel Xeon processor ($\simeq 400 \times$ faster than results in odd characteristic)

Results for the 'Well Known Group' 3 Oakley curve

The attack (Granger-Joux-V.)
To decompose a challenge X, try about $4!2^{31} \simeq 5.10^{10}$ decompositions:

- choose random r and construct the overdetermined symmetrized system $\mathcal{S}_{[r] X}=\left\{\varphi_{1}, \ldots, \varphi_{5}\right\} \subset \mathbb{F}_{2^{31}}\left[s_{1}, \ldots, s_{4}\right]$ of total degree 8
- solve $\mathcal{S}_{[r] X}$ in $\mathbb{F}_{2^{31}}$ with degrevlex Gröbner basis computation

Timings

- Magma (V2.15-15): each decomposition trial takes about 1 sec
- F4Variant + dedicated optimizations of arithmetic and linear algebra \rightarrow only 22.95 ms per test on a 2.93 GHz Intel Xeon processor ($\simeq 400 \times$ faster than results in odd characteristic)

Feasible attack : oracle-assisted SDHP solvable in ≤ 2 weeks with 1000 processors after a learning phase of 2^{30} oracle queries

F4 traces and index calculus on elliptic curves over extension fields

Vanessa VITSE
Joint work with Antoine Joux
Université de Versailles Saint-Quentin, Laboratoire PRISM

Elliptic Curve Cryptography, October 20, 2010

