F4 traces and index calculus on elliptic curves over extension fields

Vanessa VITSE Joint work with Antoine Joux

Université de Versailles Saint-Quentin, Laboratoire PRISM

Elliptic Curve Cryptography, October 20, 2010

Part I

Index calculus methods

Hardness of ECDLP

ECDLP

Given $P \in E(\mathbb{F}_q)$ and $Q \in \langle P \rangle$, find x such that Q = [x]P

Specific attacks on few families of curves:

Transfer methods

- ullet transfer to $\mathbb{F}_{a^k}^*$ via pairings: curves with small embedding degree
- lift to characteristic zero fields: anomalous curves
- Weil descent: transfer from $E(\mathbb{F}_{q^n})$ to $J_{\mathcal{C}}(\mathbb{F}_q)$ where \mathcal{C} is a genus $g \geq n$ curve

Otherwise, only generic attacks

Trying an index calculus approach

- Index calculus usually the best attack of the DLP over finite fields and hyperelliptic curves
- No known equivalent on $E(\mathbb{F}_p)$, p prime
- Feasible on $E(\mathbb{F}_{p^n})$ and asymptotically better than Weil descent or generic algorithms

Trying an index calculus approach

- Index calculus usually the best attack of the DLP over finite fields and hyperelliptic curves
- No known equivalent on $E(\mathbb{F}_p)$, p prime
- Feasible on $E(\mathbb{F}_{p^n})$ and asymptotically better than Weil descent or generic algorithms

Basic outline of index calculus method for DLP

- **①** define a factor base: $\mathcal{F} = \{P_1, \dots, P_N\}$
- ② relation search: for random (a_i, b_i) , try to decompose $[a_i]P + [b_i]Q$ as sum of points in \mathcal{F}
- **3** linear algebra step: once $k > \#\mathcal{F}$ relations found, deduce with sparse algebra techniques the DLP of Q

Results

Original algorithm (Gaudry, Diem)

Complexity of DLP over $E(\mathbb{F}_{q^n})$ in $\tilde{O}(q^{2-\frac{2}{n}})$ but with hidden constant exponential in n^2

- faster than generic methods when $n \ge 3$ and $\log q > C.n$
- sub-exponential complexity when $n = \Theta(\sqrt{\log q})$
- impracticable as soon as n > 4

Results

Original algorithm (Gaudry, Diem)

Complexity of DLP over $E(\mathbb{F}_{q^n})$ in $\tilde{O}(q^{2-\frac{2}{n}})$ but with hidden constant exponential in n^2

- faster than generic methods when $n \ge 3$ and $\log q > C.n$
- sub-exponential complexity when $n = \Theta(\sqrt{\log q})$
- impracticable as soon as n > 4

Our variant

Complexity in $\tilde{O}(q^2)$ but with a better dependency in n

- ullet faster than generic methods when $n \geq 5$ and $\log q \geq 2\omega n$
- ullet faster than Gaudry and Diem's method when $\log q \leq rac{3-\omega}{2} n^3$
- works for n = 5

Comparison of the three attacks of ECDLP over \mathbb{F}_{q^n}

Comparison of Pollard's rho method, Gaudry and Diem's attack and our attack for ECDLP over \mathbb{F}_{σ^n} , $n \geq 1$.

Ingredients of index calculus approaches

Goal

Find at least $\#\mathcal{F}$ decompositions of random combinations R=[a]P+[b]Q

What kind of "decomposition" over E(K)

Semaev (2004): consider decompositions in a fixed number of points of ${\cal F}$

$$R = [a]P + [b]Q = P_1 + \ldots + P_m$$

• use the (m+1)-th summation polynomial:

$$f_{m+1}(x_R, x_{P_1}, \dots, x_{P_m}) = 0$$

$$\Leftrightarrow \exists \epsilon_1, \dots, \epsilon_m \in \{1, -1\}, R = \epsilon_1 P_1 + \dots + \epsilon_m P_m$$

• Nagao's alternative approach with divisors: work with $f \in \mathcal{L}((m+1)(\infty) - (R))$ instead

Ingredients of index calculus approaches (2)

Convenient factor base on $E(\mathbb{F}_{q^n})$ – Gaudry (2004)

- Natural factor base: $\mathcal{F} = \{(x,y) \in E(\mathbb{F}_{q^n}) : x \in \mathbb{F}_q\}, \ \#\mathcal{F} \simeq q$
- Weil restriction: decompose along a \mathbb{F}_q -linear basis of \mathbb{F}_{q^n}

$$f_{m+1}(x_R, x_{P_1}, \dots, x_{P_m}) = 0 \Leftrightarrow \begin{cases} \varphi_1(x_{P_1}, \dots, x_{P_m}) = 0 \\ \vdots \\ \varphi_n(x_{P_1}, \dots, x_{P_m}) = 0 \end{cases}$$

One decomposition trial \leftrightarrow resolution of \mathcal{S}_R over \mathbb{F}_q

Ingredients of index calculus approaches (2)

Convenient factor base on $E(\mathbb{F}_{q^n})$ – Gaudry (2004)

- Natural factor base: $\mathcal{F} = \{(x,y) \in E(\mathbb{F}_{q^n}) : x \in \mathbb{F}_q\}, \ \#\mathcal{F} \simeq q$
- ullet Weil restriction: decompose along a \mathbb{F}_q -linear basis of \mathbb{F}_{q^n}

$$f_{m+1}(x_R, x_{P_1}, \dots, x_{P_m}) = 0 \Leftrightarrow \begin{cases} \varphi_1(x_{P_1}, \dots, x_{P_m}) = 0 \\ \vdots \\ \varphi_n(x_{P_1}, \dots, x_{P_m}) = 0 \end{cases}$$
 (S_R)

One decomposition trial \leftrightarrow resolution of \mathcal{S}_R over \mathbb{F}_q

Additional optimizations

- symmetrization of the equations to reduce total degree
- consider a set of representatives of $\mathcal{F}_{/\sim}$ where $P\sim (-P)$ and decompositions of the form $R=\pm P_1\pm\cdots\pm P_m$ \rightarrow only $\simeq q/2$ independent relations needed

Polynomial system solving in finite fields

Goal

- Find solutions of \mathcal{S}_R in \mathbb{F}_q
- More generally: compute V(I) where $I \subset \mathbb{F}_q[X_1, \dots, X_n]$ ideal of dimension 0
 - univariate case is easy: Cantor-Zassenhaus
 - multivariate case much more complicated

Elimination theory

Two techniques to find in I a univariate polynomial

- resultants
- Gröbner bases

Gröbner bases: a tool for polynomial system solving

The shape lemma

For "most" zero-dimensional ideals $I \subset \mathbb{F}_q[X_1, \dots, X_n]$, a Gröbner basis for the lexicographic order is

$$G = \{X_1 - f_1(X_n), X_2 - f_2(X_n), \cdots, X_{n-1} - f_{n-1}(X_n), f_n(X_n)\}\$$

where deg $f_i < \deg f_n$ and deg $f_n = \deg I$.

- ullet In any case, the GB always contains a univariate polynomial in X_n
- Fast resolution: find roots of univariate polynomial f_n and evaluate f_{n-1}, \ldots, f_1 to compute V(I)

Complexity and choice of monomial order

Hardness of GB computations

- complexity of GB computations is difficult to estimate
- worst-case upper bounds:
 - general case: 2^{2^{O(n)}} (Mayr-Meyer)
 - dimension 0: $d^{O(n^3)}$ for lex order, $d^{O(n^2)}$ for degrevlex (Caniglia,Lazard)
 - ightarrow but performances are much better for average cases

Complexity and choice of monomial order

Hardness of GB computations

- complexity of GB computations is difficult to estimate
- worst-case upper bounds:
 - general case: $2^{2^{O(n)}}$ (Mayr-Meyer)
 - ▶ dimension 0: $d^{O(n^3)}$ for lex order, $d^{O(n^2)}$ for degrevlex (Caniglia,Lazard)
 - \rightarrow but performances are much better for average cases

Complexity and choice of monomial order

Hardness of GB computations

- complexity of GB computations is difficult to estimate
- worst-case upper bounds:
 - ightharpoonup general case: $2^{2^{O(n)}}$ (Mayr-Meyer)
 - by dimension 0: $d^{O(n^3)}$ for lex order, $d^{O(n^2)}$ for degrevlex (Caniglia, Lazard)
 - ightarrow but performances are much better for average cases

Strategy and complexity for lex order GB in dimension 0

instead of direct GB computation for lex order of $\mathrm{I}\subset \mathbb{K}[X_1,\ldots,X_n]$, do:

degrevlex order GB computation & changing order algorithm (FGLM)

$$\tilde{O}\left(\begin{pmatrix} d_{reg}+n \end{pmatrix}^{\omega}\right)$$
 + $\tilde{O}\left((\deg I)^3\right)$

◆ロト ◆回ト ◆注ト ◆注ト 注 りくで

Back to index calculus

Gaudry's original attack and Diem's analysis

 $m = n \rightarrow$ as many equations as unknowns, S_R has total degree 2^{n-1}

- $I(S_R)$ has dimension 0 and degree $2^{n(n-1)}$
- Probability of decomposition is $\simeq 1/n! \to \text{need to solve } n!q$ systems

Back to index calculus

Gaudry's original attack and Diem's analysis

 $m = n \rightarrow$ as many equations as unknowns, S_R has total degree 2^{n-1}

- $I(S_R)$ has dimension 0 and degree $2^{n(n-1)}$
- Probability of decomposition is $\simeq 1/n! \to \text{need to solve } n!q$ systems

Complexity estimates

- ullet Each resolution with Gröbner tools has complexity in $\tilde{O}(2^{3n(n-1)})$
- ullet Sparse linear algebra in $\tilde{O}(nq^2)$
- ullet "Double large prime" variation o overall complexity in

$$\tilde{O}((n-2)!2^{3n(n-1)}q^{2-2/n})$$

Back to index calculus

Gaudry's original attack and Diem's analysis

 $m = n \rightarrow$ as many equations as unknowns, S_R has total degree 2^{n-1}

- $I(S_R)$ has dimension 0 and degree $2^{n(n-1)}$
- ullet Probability of decomposition is $\simeq 1/n! o$ need to solve n!q systems

Complexity estimates

- Each resolution with Gröbner tools has complexity in $\tilde{O}(2^{3n(n-1)})$
- Sparse linear algebra in $\tilde{O}(nq^2)$
- ullet "Double large prime" variation o overall complexity in

$$\tilde{O}((n-2)!2^{3n(n-1)}q^{2-2/n})$$

- Bottleneck: $\deg \left(\mathrm{I}(\mathcal{S}_R) \right) = 2^{n(n-1)}$. But most solutions not in \mathbb{F}_q
- However adding $x^q x = 0$ not practical for large q

10148111111111111

• $E: y^2 = x^3 + (44 + 52t + 60t^2)x + (58 + 87t + 74t^2), \#E = 1029583$

base point:
$$P \begin{vmatrix} 25+58t+23t^2 \\ 96+69t+37t^2 \end{vmatrix}$$

challenge point:
$$Q \begin{vmatrix} 89+78t+52t^2 \\ 14+79t+71t^2 \end{vmatrix}$$

• $E: y^2 = x^3 + (44 + 52t + 60t^2)x + (58 + 87t + 74t^2), \#E = 1029583$

base point:
$$P \begin{vmatrix} 25+58t+23t^2 \\ 96+69t+37t^2 \end{vmatrix}$$
 challenge point: $Q \begin{vmatrix} 89+78t+52t^2 \\ 14+79t+71t^2 \end{vmatrix}$

• random combination of P and Q:

$$R = [658403]P + [919894]Q = \begin{vmatrix} 44+57t+55t^2 \\ 8+11t+73t^2 \end{vmatrix}$$

• $E: y^2 = x^3 + (44 + 52t + 60t^2)x + (58 + 87t + 74t^2), \#E = 1029583$

base point: $P \begin{vmatrix} 25+58t+23t^2 \\ 96+69t+37t^2 \end{vmatrix}$ challenge point: $Q \begin{vmatrix} 89+78t+52t^2 \\ 14+79t+71t^2 \end{vmatrix}$

random combination of P and Q:

$$R = [658403]P + [919894]Q = \begin{vmatrix} 44+57t+55t^2\\8+11t+73t^2\end{vmatrix}$$

compute 4-th summation polynomial with resultant:

$$f_4(X_1, X_2, X_3, X_4) = Res_X(f_3(X_1, X_2, X), f_3(X_3, X_4, X))$$

where $f_3=(X_1-X_2)^2X_3^2-2((X_1+X_2)(X_1X_2+a)+2b)X_3+(X_1X_2-a)^2-4b(X_1+X_2)$

• $E: y^2 = x^3 + (44 + 52t + 60t^2)x + (58 + 87t + 74t^2), \#E = 1029583$

challenge point: $Q \begin{vmatrix} 89+78t+52t^2 \\ 14+79t+71t^2 \end{vmatrix}$ base point: $P \begin{vmatrix} 25+58t+23t^2 \\ 96+69t+37t^2 \end{vmatrix}$

random combination of P and Q:

$$R = [658403]P + [919894]Q = \begin{vmatrix} 44+57t+55t^2\\8+11t+73t^2\end{vmatrix}$$

compute 4-th summation polynomial with resultant: $f_4(X_1, X_2, X_3, X_4) = Res_X(f_3(X_1, X_2, X), f_3(X_3, X_4, X))$ where $f_3 = (X_1 - X_2)^2 X_3^2 - 2((X_1 + X_2)(X_1 X_2 + a) + 2b)X_3 + (X_1 X_2 - a)^2 - 4b(X_1 + X_2)$

• after partial symmetrization, solve in $s_1, s_2, s_3 \in \mathbb{F}_{101}$

$$f_4(s_1, s_2, s_3, x_R) = x_R^4 s_2^4 + 93x_R^4 s_1 s_2^2 s_3 \\ +16x_R^4 s_1^2 s_3^2 + \dots + 94b^3 s_3 = 0 \Leftrightarrow \begin{cases} 28s_1^4 + 94s_1^3 s_2 + \dots + 4s_3 + 69 = 0 \\ 49s_1^4 + 72s_1^3 s_2 + \dots + 14s_3 + 100 = 0 \\ 32s_1^4 + 97s_1^3 s_2 + \dots + 50s_3 + 8 = 0 \end{cases}$$

$$I(\mathcal{S}_R) = \langle 28s_1^4 + 94s_1^3s_2 + \dots + 4s_3 + 69, 49s_1^4 + 72s_1^3s_2 + \dots + 14s_3 + 100, 32s_1^4 + 97s_1^3s_2 + \dots + 50s_3 + 8 \rangle$$

• Gröbner basis of $I(S_R)$ for $lex_{s_1>s_2>s_3}$:

$$G = \{s_1 + 33s_3^{63} + 23s_3^{62} + \dots + 95, s_2 + 80s_3^{63} + 79s_3^{62} + \dots + 45, s_3^{64} + 36s_3^{63} + 80s_3^{62} + \dots + 56\}$$

$$\begin{split} I(\mathcal{S}_R) = \langle 28s_1^4 + 94s_1^3s_2 + \dots + 4s_3 + 69, 49s_1^4 + 72s_1^3s_2 + \dots + 14s_3 + 100, \\ 32s_1^4 + 97s_1^3s_2 + \dots + 50s_3 + 8 \rangle \end{split}$$

• Gröbner basis of $I(S_R)$ for $lex_{s_1>s_2>s_3}$:

$$G = \{s_1 + 33s_3^{63} + 23s_3^{62} + \dots + 95, s_2 + 80s_3^{63} + 79s_3^{62} + \dots + 45, s_3^{64} + 36s_3^{63} + 80s_3^{62} + \dots + 56\}$$

• $V(I(S_R))_{/\mathbb{F}_{101}} = \{(30, 3, 53), (75, 25, 75)\}$ Roots of $X^3 - s_1 X^2 + s_2 X - s_3 = 0$ over \mathbb{F}_{101} ?

$$\begin{split} I(\mathcal{S}_{\mathcal{R}}) = \langle 28s_1^4 + 94s_1^3s_2 + \dots + 4s_3 + 69, 49s_1^4 + 72s_1^3s_2 + \dots + 14s_3 + 100, \\ 32s_1^4 + 97s_1^3s_2 + \dots + 50s_3 + 8 \rangle \end{split}$$

• Gröbner basis of $I(S_R)$ for $lex_{s_1>s_2>s_3}$:

$$G = \{s_1 + 33s_3^{63} + 23s_3^{62} + \dots + 95, s_2 + 80s_3^{63} + 79s_3^{62} + \dots + 45, s_3^{64} + 36s_3^{63} + 80s_3^{62} + \dots + 56\}$$

• $V(I(S_R))_{/\mathbb{F}_{101}} = \{(30, 3, 53), (75, 25, 75)\}$ Roots of $X^3 - s_1X^2 + s_2X - s_3 = 0$ over \mathbb{F}_{101} ? * $X^3 - 30X^2 + 3X - 53$ irreducible over $\mathbb{F}_{101}[X]$

$$\begin{split} I(\mathcal{S}_R) = \langle 28s_1^4 + 94s_1^3s_2 + \dots + 4s_3 + 69, 49s_1^4 + 72s_1^3s_2 + \dots + 14s_3 + 100, \\ 32s_1^4 + 97s_1^3s_2 + \dots + 50s_3 + 8 \rangle \end{split}$$

• Gröbner basis of $I(S_R)$ for $lex_{s_1>s_2>s_3}$:

$$G = \{s_1 + 33s_3^{63} + 23s_3^{62} + \dots + 95, s_2 + 80s_3^{63} + 79s_3^{62} + \dots + 45, s_3^{64} + 36s_3^{63} + 80s_3^{62} + \dots + 56\}$$

•
$$V(I(S_R))_{/\mathbb{F}_{101}} = \{(30, 3, 53), (75, 25, 75)\}$$

Roots of $X^3 - s_1 X^2 + s_2 X - s_3 = 0$ over \mathbb{F}_{101} ?
* $X^3 - 30X^2 + 3X - 53$ irreducible over $\mathbb{F}_{101}[X]$
* $X^3 - 75X^2 + 25X - 75 = (X - 4)(X - 7)(X - 64)$
 $\Rightarrow P_1 \begin{vmatrix} 4 \\ 27 + 34t + 91t^2 \end{vmatrix} P_2 \begin{vmatrix} 7 \\ 58 + 95t + 91t^2 \end{vmatrix} P_3 \begin{vmatrix} 64 \\ 76 + 54t + 18t^2 \end{vmatrix}$ and $P_1 - P_2 + P_3 = R$

$$\begin{split} I(\mathcal{S}_R) = \langle 28s_1^4 + 94s_1^3s_2 + \dots + 4s_3 + 69, 49s_1^4 + 72s_1^3s_2 + \dots + 14s_3 + 100, \\ 32s_1^4 + 97s_1^3s_2 + \dots + 50s_3 + 8 \rangle \end{split}$$

• Gröbner basis of $I(S_R)$ for $lex_{s_1>s_2>s_3}$:

$$G = \{s_1 + 33s_3^{63} + 23s_3^{62} + \dots + 95, s_2 + 80s_3^{63} + 79s_3^{62} + \dots + 45, s_3^{64} + 36s_3^{63} + 80s_3^{62} + \dots + 56\}$$

- $V(I(S_R))_{/\mathbb{F}_{101}} = \{(30, 3, 53), (75, 25, 75)\}$ Roots of $X^3 - s_1 X^2 + s_2 X - s_3 = 0$ over \mathbb{F}_{101} ? * $X^3 - 30X^2 + 3X - 53$ irreducible over $\mathbb{F}_{101}[X]$ * $X^3 - 75X^2 + 25X - 75 = (X - 4)(X - 7)(X - 64)$ $\Rightarrow P_1 \begin{vmatrix} 4 & 7 & 64 \\ 27 + 34t + 91t^2 & P_2 \end{vmatrix} \begin{vmatrix} 7 & 64 \\ 58 + 95t + 91t^2 & P_3 \end{vmatrix} \begin{vmatrix} 64 & 76 + 54t + 18t^2 \\ 76 + 54t + 18t^2 & P_3 \end{vmatrix} = R$
- Number of relations needed: $\#\mathcal{F}_{/\sim}=54\Rightarrow55$
- Linear algebra $\rightarrow x = 771080$

Instead of using Semaev's summation polynomials,

• consider $\mathcal{L}(4(\infty)-(R))$ with basis $\langle x-x_R,y-y_R,x(x-x_R)\rangle$

Instead of using Semaev's summation polynomials,

- consider $\mathcal{L}(4(\infty)-(R))$ with basis $\langle x-x_R,y-y_R,x(x-x_R)\rangle$
- starting from $f(x, y) = x(x x_R) + \lambda(y y_R) + \mu(x x_R)$ compute $F(x) = f(x, y)f(x, -y)/(x - x_R)$ $\rightarrow F(x) = x^3 + (-\lambda^2 + 2\mu - x_R)x^2 + (-x_R\lambda^2 - 2y_R\lambda + \mu^2 - 2x_R\mu)x$ $-((x_R^2 + a)\lambda^2 + 2y_R\lambda\mu + x_R\mu^2)$

roots of F correspond to x-coord. of the P_i in the decomposition of R

Instead of using Semaev's summation polynomials,

- consider $\mathcal{L}(4(\infty)-(R))$ with basis $\langle x-x_R,y-y_R,x(x-x_R)\rangle$
- starting from $f(x, y) = x(x x_R) + \lambda(y y_R) + \mu(x x_R)$ compute $F(x) = f(x, y)f(x, -y)/(x - x_R)$ $\rightarrow F(x) = x^3 + (-\lambda^2 + 2\mu - x_R)x^2 + (-x_R\lambda^2 - 2y_R\lambda + \mu^2 - 2x_R\mu)x$ $-((x_R^2 + a)\lambda^2 + 2y_R\lambda\mu + x_R\mu^2)$

roots of F correspond to x-coord. of the P_i in the decomposition of R

$$\begin{array}{l} \bullet \ \ x(P_i) \in \mathbb{F}_{101} \Rightarrow F \in \mathbb{F}_{101}[x] \\ \\ \text{find } \lambda, \mu \in \mathbb{F}_{101^3} \text{ such that } \begin{cases} -\lambda^2 + 2\mu - x_R \in \mathbb{F}_{101} \\ -x_R\lambda^2 - 2y_R\lambda + \mu^2 - 2x_R\mu \in \mathbb{F}_{101} \\ (x_R^2 + a)\lambda^2 + 2y_R\lambda\mu + x_R\mu^2 \in \mathbb{F}_{101} \end{cases}$$

Instead of using Semaev's summation polynomials,

- consider $\mathcal{L}(4(\infty)-(R))$ with basis $\langle x-x_R,y-y_R,x(x-x_R)\rangle$
- starting from $f(x, y) = x(x x_R) + \lambda(y y_R) + \mu(x x_R)$ compute $F(x) = f(x, y)f(x, -y)/(x - x_R)$ $\rightarrow F(x) = x^3 + (-\lambda^2 + 2\mu - x_R)x^2 + (-x_R\lambda^2 - 2y_R\lambda + \mu^2 - 2x_R\mu)x$ $-((x_R^2 + a)\lambda^2 + 2y_R\lambda\mu + x_R\mu^2)$

roots of F correspond to x-coord. of the P_i in the decomposition of R

- $\begin{array}{l} \bullet \ x(P_i) \in \mathbb{F}_{101} \Rightarrow F \in \mathbb{F}_{101}[x] \\ \\ \text{find } \lambda, \mu \in \mathbb{F}_{101^3} \text{ such that } \begin{cases} -\lambda^2 + 2\mu x_R \in \mathbb{F}_{101} \\ -x_R\lambda^2 2y_R\lambda + \mu^2 2x_R\mu \in \mathbb{F}_{101} \\ (x_R^2 + a)\lambda^2 + 2y_R\lambda\mu + x_R\mu^2 \in \mathbb{F}_{101} \end{cases}$
- Weil restriction: solve a quadratic polynomial system with 6 var/eq check if resulting F splits in linear factors

Remarks on Nagao's approach

Analysis

- differs from Gaudry only in the polynomial system to solve
- actual resolution slower
- \rightarrow not relevant for the elliptic case

Remarks on Nagao's approach

Analysis

- differs from Gaudry only in the polynomial system to solve
- actual resolution slower
- ightarrow not relevant for the elliptic case

Practical interest

 \bullet in the previous example, eliminating λ, μ in

$$\begin{cases} s_1 = \lambda^2 - 2\mu + x_R \\ s_2 = -x_R \lambda^2 - 2y_R \lambda + \mu^2 - 2x_R \mu \\ s_3 = (x_R^2 + a)\lambda^2 + 2y_R \lambda \mu + x_R \mu^2 \end{cases}$$
 yields the partially

symmetrized summation polynomial $f_4(s_1, s_2, s_3, x_R)$

- ightarrow alternate computation of summation polynomials
- can be easily generalized to hyperelliptic curves whereas Semaev cannot

Joux-V. approach

Decompositions into m = n - 1 points

- compute the n-th summation polynomial (instead of n+1-th) with partially symmetrized resultant
- solve S_R with n-1 var, n eq and total degree 2^{n-2}
- (n-1)!q expected numbers of trials to get one relation

Computation speed-up

- **1** S_R is overdetermined and $I(S_R)$ has very low degree
 - resolution with a degrevlex Gröbner basis
 - no need to change order (FGLM)
- Speed up computations with "F4 traces"

A toy example over $\mathbb{F}_{101^3}\left(\simeq \mathbb{F}_{101}[t]/(t^3+t+1)\right)$

• E, P and Q as before, random combination of P and Q:

$$R = [357347]P + [488870]Q = \begin{vmatrix} 6+63t+58t^2\\11+97t+95t^2\end{vmatrix}$$

• E, P and Q as before, random combination of P and Q:

$$R = [357347]P + [488870]Q = \begin{vmatrix} 6+63t+58t^2\\11+97t+95t^2 \end{vmatrix}$$

use 3-rd "symmetrized" Semaev polynomial and Weil restriction:

$$(s_1^2 - 4s_2)x_R^2 - 2(s_1(s_2 + a) + 2b)x_R + (s_2 - a)^2 - 4bs_1 = 0$$

$$\Leftrightarrow (83t + 89t^2)s_1^2 + (89 + 76t + 86t^2)s_1s_2 + (5 + 98t + 45t^2)s_1$$

$$+s_2^2 + (13 + 69t + 29t^2)s_2 + 8 + 96t + 51t^2 = 0$$

$$\Leftrightarrow \begin{cases} 89s_1s_2 + 5s_1 + s_2^2 + 13s_2 + 8 = 0 \\ 83s_1^2 + 76s_1s_2 + 98s_1 + 69s_2 + 96 = 0 \\ 89s_1^2 + 86s_1s_2 + 45s_1 + 29s_2 + 51 = 0 \end{cases}$$

$$I(S_R) = \langle 89s_1s_2 + 5s_1 + s_2^2 + 13s_2 + 8,$$

$$83s_1^2 + 76s_1s_2 + 98s_1 + 69s_2 + 96,$$

$$89s_1^2 + 86s_1s_2 + 45s_1 + 29s_2 + 51 \rangle$$

• Gröbner basis of $I(\mathcal{S}_R)$ for $degrevlex_{s_1>s_2}$: $G=\{s_1+89,s_2+49\}$

$$I(S_R) = \langle 89s_1s_2 + 5s_1 + s_2^2 + 13s_2 + 8,$$

$$83s_1^2 + 76s_1s_2 + 98s_1 + 69s_2 + 96,$$

$$89s_1^2 + 86s_1s_2 + 45s_1 + 29s_2 + 51 \rangle$$

- ullet Gröbner basis of $\mathrm{I}(\mathcal{S}_R)$ for $\mathit{degrevlex}_{s_1>s_2}$: $G=\{s_1+89,s_2+49\}$
- $V(I(S_R)) = \{(12, 52)\}$ * $X^2 - 12X + 52 = (X - 46)(X - 67)$

$$I(S_R) = \langle 89s_1s_2 + 5s_1 + s_2^2 + 13s_2 + 8,$$

$$83s_1^2 + 76s_1s_2 + 98s_1 + 69s_2 + 96,$$

$$89s_1^2 + 86s_1s_2 + 45s_1 + 29s_2 + 51 \rangle$$

ullet Gröbner basis of $\mathrm{I}(\mathcal{S}_R)$ for $\mathit{degrevlex}_{s_1>s_2}$: $G=\{s_1+89,s_2+49\}$

•
$$V(I(S_R)) = \{(12, 52)\}$$

* $X^2 - 12X + 52 = (X - 46)(X - 67)$
 $\Rightarrow P_1 \begin{vmatrix} 46 \\ 29 + 55t + 56t^2 \end{vmatrix} P_2 \begin{vmatrix} 67 \\ 20 + 8t + 59t^2 \end{vmatrix}$ and $P_1 + P_2 = R$

$$I(S_R) = \langle 89s_1s_2 + 5s_1 + s_2^2 + 13s_2 + 8,$$

$$83s_1^2 + 76s_1s_2 + 98s_1 + 69s_2 + 96,$$

$$89s_1^2 + 86s_1s_2 + 45s_1 + 29s_2 + 51 \rangle$$

- ullet Gröbner basis of $\mathrm{I}(\mathcal{S}_R)$ for $\mathit{degrevlex}_{s_1>s_2}$: $G=\{s_1+89,s_2+49\}$
- $V(I(S_R)) = \{(12, 52)\}$ * $X^2 - 12X + 52 = (X - 46)(X - 67)$ $\Rightarrow P_1 \begin{vmatrix} 46 \\ 29 + 55t + 56t^2 \end{vmatrix} P_2 \begin{vmatrix} 67 \\ 20 + 8t + 59t^2 \end{vmatrix}$ and $P_1 + P_2 = R$
- Number of relations needed: $\#\mathcal{F}_{/\sim}=54\Rightarrow55$
- Linear algebra $\rightarrow x = 771080$

Summary

Comparison between the three approaches

	Gaudry-Diem	Nagao	Joux-V.
nb of points	m = n	m = n	m = n - 1
decomp. trials	n!q	n!q	$(n-1)!q^2$
features	$deg 2^{n-1}$	deg 2	deg 2 ⁿ⁻²
of \mathcal{S}_R	n eq/var	n(n-1) eq/var	n eq, $n-1$ var
$deg(\mathrm{I}(\mathcal{S}_R))$	$2^{n(n-1)}$	$2^{n(n-1)}$	0 (1 exceptionally)
complexity	$n!2^{3n(n-1)}q^{2-2/n}$	$n!2^{2\omega n(n-1)}q^{2-2/n}$	$n!2^{\omega(n-1)(n-2)}e^{\omega n}q^2$

Part II

F4 traces

Gröbner basis

$$\mathrm{I} = \langle \mathit{f}_1, \ldots, \mathit{f}_r
angle \subset \mathbb{K}[\mathit{X}_1, \ldots, \mathit{X}_n]$$
 ideal

Gröbner basis

$$G = \{g_1, \dots, g_s\} \subset I$$
 is a Gröbner basis of I if

$$\langle LT(g_1), \ldots, LT(g_s) \rangle = LT(I)$$

Buchberger's algorithm

• S-polynomial: $f_1, f_2 \in \mathbb{K}[X_1, \dots, X_n]$

$$S(f_1, f_2) = \frac{LM(f_1) \vee LM(f_2)}{LT(f_1)} f_1 - \frac{LM(f_1) \vee LM(f_2)}{LT(f_2)} f_2$$

- Buchberger's theorem:
 - $G = \{g_1, \dots, g_s\}$ Gröbner basis $\Leftrightarrow \overline{S(g_i, g_j)}^G = 0$ for all i, j
- Buchberger's algorithm: compute iteratively the remainder by G of every possible S-polynomials and add it to G

Standard Gröbner basis algorithms

F4: efficient implementation of Buchberger's algorithm

- linear algebra to reduce a large number of critical pairs $(lcm, u_1, f_1, u_2, f_2)$ where $lcm = LM(f_1) \vee LM(f_2)$, $u_i = \frac{lcm}{LM(f_i)}$
- selection strategy (e.g. lowest total degree lcm)
- at each step construct a Macaulay-style matrix containing
 - \triangleright products $u_i f_i$ coming from the selected critical pairs
 - polynomials from preprocessing phase

Macaulay-style matrix

Standard Gröbner basis algorithms

- F4 algorithm ('99)
 - fast and complete reductions of critical pairs
 - drawback: many reductions to zero
- F5 algorithm ('02)
 - ▶ elaborate criterion → skip unnecessary reductions
 - drawback: incomplete polynomial reductions

- multipurpose algorithms
- do not take advantage of the common shape of the systems
- knowledge of a prior computation
 - \rightarrow no more reduction to zero in F4 ?

A specifically devised algorithm

Outline of our F4 variant

- F4Precomp: on the first system
 - at each step, store the list of all involved polynomial multiples
 - ightharpoonup reduction to zero ightharpoonup remove well-chosen multiple from the list
- 2 F4Remake: for each subsequent system
 - no queue of untreated pairs
 - at each step, pick directly from the list the relevant multiples

Former works

- ullet Idea originating from CRT computation of GB over ${\mathbb Q}$
- Traverso 88: precise definition of *Gröbner traces* for the Buchberger algorithm, but behavior analysis restricted to the rational case

Analysis of F4Remake

"Similar" systems

- parametric family of systems: $\{F_1(y), \dots, F_r(y)\}_{y \in \mathbb{K}^{\ell}}$ where $F_1, \dots, F_r \in \mathbb{K}[Y_1, \dots, Y_{\ell}][X_1, \dots, X_n]$
- $\{f_1, \ldots, f_r\} \subset \mathbb{K}[\underline{X}]$ random instance of this parametric family

Generic behavior

- "compute" the GB of $\langle F_1, \dots, F_r \rangle$ in $\mathbb{K}(\underline{Y})[\underline{X}]$ with F4 algorithm
- $\mathbf{Q} \ f_1, \dots, f_r$ behaves generically if during the GB computation with F4
 - same number of iterations
 - $ilde{}$ at each step, same new leading monomials o similar critical pairs

Analysis of F4Remake

"Similar" systems

- parametric family of systems: $\{F_1(y), \dots, F_r(y)\}_{y \in \mathbb{K}^{\ell}}$ where $F_1, \dots, F_r \in \mathbb{K}[Y_1, \dots, Y_{\ell}][X_1, \dots, X_n]$
- $\{f_1, \ldots, f_r\} \subset \mathbb{K}[\underline{X}]$ random instance of this parametric family

Generic behavior

- lacktriangledown "compute" the GB of $\langle F_1,\ldots,F_r \rangle$ in $\mathbb{K}(\underline{Y})[\underline{X}]$ with F4 algorithm
- **2** f_1, \ldots, f_r behaves generically if during the GB computation with F4
 - same number of iterations
 - $\,\,{}^{}_{}^{}_{}$ at each step, same new leading monomials \rightarrow similar critical pairs

F4Remake computes successfully the GB of f_1, \ldots, f_r if the system behaves generically

- **①** Assume f_1, \ldots, f_r behaves generically until the (i-1)-th step
- 2 At step *i*, F4 constructs
 - $ightharpoonup M_g =$ matrix of polynomial multiples at step i for the parametric system
 - ▶ $M = \text{matrix of polynomial multiples at step } i \text{ for } f_1, \dots, f_r$

- **1** Assume f_1, \ldots, f_r behaves generically until the (i-1)-th step
- 2 At step i, F4 constructs
 - $ightharpoonup M_g = \text{matrix of polynomial multiples at step } i \text{ for the parametric system}$
 - $M = \text{matrix of polynomial multiples at step } i \text{ for } f_1, \dots, f_r$
- \odot Reduced row echelon form of M_g and M

- **①** Assume f_1, \ldots, f_r behaves generically until the (i-1)-th step
- 2 At step i, F4 constructs
 - $ightharpoonup M_g =$ matrix of polynomial multiples at step i for the parametric system
 - ▶ $M = \text{matrix of polynomial multiples at step } i \text{ for } f_1, \dots, f_r$
- \odot Reduced row echelon form of M_g and M

$$\begin{pmatrix}
I_s & B_{g,1} \\
\hline
0 & B_{g,2}
\end{pmatrix}$$

, I _s	B_1
0	B_2

- **①** Assume f_1, \ldots, f_r behaves generically until the (i-1)-th step
- 2 At step i, F4 constructs
 - $ightharpoonup M_g =$ matrix of polynomial multiples at step i for the parametric system
 - ▶ $M = \text{matrix of polynomial multiples at step } i \text{ for } f_1, \dots, f_r$
- 3 Reduced row echelon form of M_g and M

- **①** Assume f_1, \ldots, f_r behaves generically until the (i-1)-th step
- 2 At step *i*, F4 constructs
 - $ightharpoonup M_g =$ matrix of polynomial multiples at step i for the parametric system
 - ▶ $M = \text{matrix of polynomial multiples at step } i \text{ for } f_1, \dots, f_r$
- 3 Reduced row echelon form of M_g and M

	l _s	0	$C_{g,1}$
	0	I_{ℓ}	$C_{g,2}$
1	0	0	0

I_s		B_1'	
0	В	B_2'	

- **①** Assume f_1, \ldots, f_r behaves generically until the (i-1)-th step
- 2 At step *i*, F4 constructs
 - $ightharpoonup M_g =$ matrix of polynomial multiples at step i for the parametric system
 - ▶ $M = \text{matrix of polynomial multiples at step } i \text{ for } f_1, \dots, f_r$
- 3 Reduced row echelon form of M_g and M

	l _s	0	$C_{g,1}$
	0	I_{ℓ}	$C_{g,2}$
1	0	0	0

l _s		B_1'	
0	В	B_2'	

 f_1, \ldots, f_r behaves generically at step $i \Leftrightarrow B$ has full rank

Probability of success

Heuristic assumption

B matrices are uniformly random over $\mathcal{M}_{n,\ell}(\mathbb{F}_q)$

- ullet makes sense for \mathcal{S}_R arising from index calculus
- not always valid, but generic behavior can often be deduced for the first stages of F4

Probability estimates over \mathbb{F}_q

Under heuristic assumption:

$$\mathsf{Proba}(\{f_1,\ldots,f_r\} \ \mathsf{behaves} \ \mathsf{generically}) \geq c(q)^{n_{\mathit{step}}}$$

- \bullet $n_{step} =$ nb of steps during F4 computation for the parametric system
- $ullet c(q) = \prod_{i=1}^{\infty} (1-q^{-i}) \mathop{\longrightarrow}_{q o \infty} 1$

Experimental results: index calculus on $E(\mathbb{F}_{p^5})$

$ p _2$	est. failure proba.	F4Remake	F4 (Joux-V.)	F4 (Magma)
8 bits	0.11	2.844	5.903	9.660
16 bits	4.4×10^{-4}	3.990	9.758	9.870
25 bits	2.4×10^{-6}	4.942	16.77	118.8
32 bits	5.8×10^{-9}	8.444	24.56	1046

Times in seconds, using a 2.6 GHz Intel Core 2 Duo processor.

Precomputation done in 8.963s on an 8-bit field.

Experimental results: index calculus on $E(\mathbb{F}_{p^5})$

$ p _2$	est. failure proba.	F4Remake	F4 (Joux-V.)	F4 (Magma)
8 bits	0.11	2.844	5.903	9.660
16 bits	4.4×10^{-4}	3.990	9.758	9.870
25 bits	2.4×10^{-6}	4.942	16.77	118.8
32 bits	5.8×10^{-9}	8.444	24.56	1046

Times in seconds, using a 2.6 GHz Intel Core 2 Duo processor. Precomputation done in 8.963s on an 8-bit field.

Comparison with F5

- both algorithms eliminate all reductions to zero, but
- F5 computes a much larger GB:
 17249 labeled polynomials against 2789 with F4
- \bullet signature condition in F5 \rightarrow redundant polynomials

Part III

Application to the Static Diffie-Hellman Problem

Oracle-assisted Static Diffie-Hellman Problem

Observation

Semaev's decomposition into a factor base leads to an oracle-assisted solution of the static Diffie-Hellman problem

Oracle-assisted SDHP: G finite group and d secret integer

- Initial learning phase: the attacker has access to an oracle which outputs [d]Y for any Y in G
- After a number of oracle queries, the attacker has to compute [d]X for a previously unseen challenge X

Solving SDHP over $G = E(\mathbb{F}_{q^n})$

$$\mathcal{F} = \{ P \in E(\mathbb{F}_{q^n}) : P = (x_p, y_p), x_p \in \mathbb{F}_q \}$$

- ullet Learning phase: ask the oracle to compute Q=[d]P for each $P\in\mathcal{F}$
- Given a challenge X,
 - **1** pick a random integer r coprime with #G and compute [r]X
 - ② check if [r]X can be written as a sum of m points of \mathcal{F} : $[r]X = \pm P_1 \pm P_2 \pm \cdots \pm P_m$
 - **3** if [r]X is not decomposable, go back to step 1; else output $Y = [s] (\sum_{i=1}^{m} [d]P_i)$ where $s = r^{-1} \mod (\#G)$.

Remarks

- only one decomposition is needed \rightarrow no linear algebra step but the q/2 oracle queries are the bottleneck
- Granger: balance the two stages by reducing the factor base à la Harley

An interesting target – joint work with R. Granger

Announcement on the NMBRTHRY list (Jul, 2010)

IPSEC Oakley key determination protocol 'well known group' 3 curve

$$\begin{split} \mathbb{F}_{2^{155}} &= \mathbb{F}_2[u]/(u^{155} + u^{62} + 1) \qquad G = E(\mathbb{F}_{2^{155}}) \text{ where} \\ E &: y^2 + xy = x^3 + (u^{18} + u^{17} + u^{16} + u^{13} + u^{12} + u^9 + u^8 + u^7 + u^3 + u^2 + u + 1) \\ \#G &= 12 * 3805993847215893016155463826195386266397436443 \end{split}$$

Remarks

- $\mathbb{F}_{2^{155}}=\mathbb{F}_{(2^{31})^5} o$ curve known to be theoretically weaker than curves over comparable size prime fields
- decomposition as sum of 5 points not realizable
 → Gaudry's approach doesn't work on this curve
- we show that an actual attack with our approach is feasible

The attack (Granger-Joux-V.)

To decompose a challenge X, try about $4!2^{31} \simeq 5.10^{10}$ decompositions:

- choose random r and construct the overdetermined symmetrized system $\mathcal{S}_{[r]X} = \{\varphi_1, \dots, \varphi_5\} \subset \mathbb{F}_{2^{31}}[s_1, \dots, s_4]$ of total degree 8
- ullet solve $\mathcal{S}_{\lceil r \rceil X}$ in $\mathbb{F}_{2^{31}}$ with degrevlex Gröbner basis computation

The attack (Granger-Joux-V.)

To decompose a challenge X, try about $4!2^{31} \simeq 5.10^{10}$ decompositions:

- choose random r and construct the overdetermined symmetrized system $\mathcal{S}_{[r]X} = \{\varphi_1, \dots, \varphi_5\} \subset \mathbb{F}_{2^{31}}[s_1, \dots, s_4]$ of total degree 8
- ullet solve $\mathcal{S}_{[r]X}$ in $\mathbb{F}_{2^{31}}$ with degrevlex Gröbner basis computation

Timings

Magma (V2.15-15): each decomposition trial takes about 1 sec

The attack (Granger-Joux-V.)

To decompose a challenge X, try about $4!2^{31} \simeq 5.10^{10}$ decompositions:

- choose random r and construct the overdetermined symmetrized system $\mathcal{S}_{[r]X} = \{\varphi_1, \dots, \varphi_5\} \subset \mathbb{F}_{2^{31}}[s_1, \dots, s_4]$ of total degree 8
- ullet solve $\mathcal{S}_{[r]X}$ in $\mathbb{F}_{2^{31}}$ with degrevlex Gröbner basis computation

Timings

- Magma (V2.15-15): each decomposition trial takes about 1 sec
- F4Variant + dedicated optimizations of arithmetic and linear algebra \rightarrow only 22.95 ms per test on a 2.93 GHz Intel Xeon processor ($\simeq 400 \times$ faster than results in odd characteristic)

The attack (Granger-Joux-V.)

To decompose a challenge X, try about $4!2^{31} \simeq 5.10^{10}$ decompositions:

- choose random r and construct the overdetermined symmetrized system $\mathcal{S}_{[r]X} = \{\varphi_1, \dots, \varphi_5\} \subset \mathbb{F}_{2^{31}}[s_1, \dots, s_4]$ of total degree 8
- ullet solve $\mathcal{S}_{\lceil r \rceil X}$ in $\mathbb{F}_{2^{31}}$ with degrevlex Gröbner basis computation

Timings

- Magma (V2.15-15): each decomposition trial takes about 1 sec
- F4Variant + dedicated optimizations of arithmetic and linear algebra \rightarrow only 22.95 ms per test on a 2.93 GHz Intel Xeon processor ($\simeq 400 \times$ faster than results in odd characteristic)

Feasible attack : oracle-assisted SDHP solvable in \leq 2 weeks with 1000 processors after a learning phase of 2³⁰ oracle queries

ECC 2010

F4 traces and index calculus on elliptic curves over extension fields

Vanessa VITSE Joint work with Antoine Joux

Université de Versailles Saint-Quentin, Laboratoire PRISM

Elliptic Curve Cryptography, October 20, 2010