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Hardness of ECDLP

ECDLP
Given P € E(F,) and Q € (P), find x such that Q = [x]P J

Specific attacks on few families of curves:

Transfer methods
o transfer to ]sz via pairings: curves with small embedding degree
@ lift to characteristic zero fields: anomalous curves

@ Weil descent: transfer from E(Fgn) to Je(IFq) where C is a genus
g = n curve

Otherwise, only generic attacks
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Trying an index calculus approach

@ Index calculus usually the best attack of the DLP over finite fields
and hyperelliptic curves

e No known equivalent on E(FF,), p prime

o Feasible on E(F,n) and asymptotically better than Weil descent or
generic algorithms
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Trying an index calculus approach

@ Index calculus usually the best attack of the DLP over finite fields
and hyperelliptic curves

e No known equivalent on E(FF,), p prime

o Feasible on E(F,n) and asymptotically better than Weil descent or
generic algorithms

Basic outline of index calculus method for DLP
© define a factor base: F = {P1,...,Pn}
@ relation search: for random (a;, b;), try to decompose [a;]P + [b;]Q as
sum of points in F

© linear algebra step: once k > #.F relations found, deduce with sparse
algebra techniques the DLP of @
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Results

Original algorithm (Gaudry, Diem)
Complexity of DLP over E(Fgn) in é(q2_%) but with hidden constant

exponential in n?

o faster than generic methods when n > 3 and logg > C.n

@ sub-exponential complexity when n = ©(+/log q)
@ impracticable as soon as n > 4
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Results

Original algorithm (Gaudry, Diem)
Complexity of DLP over E(Fgn) in é(qz_%) but with hidden constant
exponential in n?

o faster than generic methods when n > 3 and logg > C.n

@ sub-exponential complexity when n = ©(+/log q)
@ impracticable as soon as n > 4

Our variant

Complexity in b(q2) but with a better dependency in n
o faster than generic methods when n > 5 and log g > 2wn
o faster than Gaudry and Diem’s method when log g < 3_Twn3
@ works for n=5
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Comparison of the three attacks of ECDLP over F»

Comparison of Pollard’s rho method, Gaudry and Diem’s attack and our attack

for ECDLP over Fgn, n > 1.
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Ingredients

Ingredients of index calculus approaches
Goal
Find at least #F decompositions of random combinations R = [a]P + [b]Q

What kind of “decomposition” over E(K)

Semaev (2004): consider decompositions in a fixed number of points of F

R=[a]P+[b]Q=P1+ ...+ Pnp
@ use the (m + 1)-th summation polynomial:

fm—i—l(XRaXPla 000 7XP,,,) =0

< Jep, . em€{l, -1}, R=€1P1+ -+ €mPm

@ Nagao's alternative approach with divisors:
work with f € £((m + 1)(c0) — (R)) instead

v
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Ingredients of index calculus approaches (2)

Convenient factor base on E(F ;) — Gaudry (2004)
o Natural factor base: F = {(x,y) € E(Fgn) : x € Fg}, #F ~ g
@ Weil restriction: decompose along a [Fy-linear basis of Fn
@1(xpys - Xp,) =0
fm+1(XR, Xpy, ., Xxp,) =0& < (Sr)

on(xpyy ..., xp,) =0

One decomposition trial <+ resolution of Sg over Iy
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Ingredients of index calculus approaches (2)

Convenient factor base on E(F ;) — Gaudry (2004)
o Natural factor base: F = {(x,y) € E(Fgn) : x € Fg}, #F ~ g
@ Weil restriction: decompose along a [Fg-linear basis of Fgn
@1(xpys - Xp,) =0
fmt1(XR, Xp,, .., xp,,) =0 < < : (Sr)

QOH(XPp tee 7XPm) =0

One decomposition trial <+ resolution of Sg over I,

Additional optimizations
@ symmetrization of the equations to reduce total degree

o consider a set of representatives of 7. where P ~ (—P) and
decompositions of the form R = +P; +--- £+ P,
— only ~ q/2 independent relations needed
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Ingredients

Polynomial system solving in finite fields

Goal

@ Find solutions of Sg in [Fy
@ More generally: compute V/(I) where I C Fg[Xi,
dimension 0

univariate case is easy: Cantor-Zassenhaus
multivariate case much more complicated

..., Xp] ideal of

Elimination theory
Two techniques to find in I a univariate polynomial
@ resultants

@ Grobner bases
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Ingredients

Grobner bases: a tool for polynomial system solving

The shape lemma

For “most” zero-dimensional ideals I C Fg[X1,

.., Xn], @ Grobner basis for
the lexicographic order is

G = {Xl - fl(Xn)a X2 - f2(Xn)7 oty Xn—l - fn—l(Xn)7 fn(Xn)}

where deg f; < deg f, and deg f, = deg1.

@ In any case, the GB always contains a univariate polynomial in X,

@ Fast resolution: find roots of univariate polynomial f,, and evaluate
fo—1,...,f to compute V(I)

Vanessa VITSE (UVSQ) F4 traces and index calculus ECC 2010 10 / 35




Ingredients

Complexity and choice of monomial order

Hardness of GB computations
@ complexity of GB computations is difficult to estimate
@ worst-case upper bounds:
general case: 227" (Mayr-Meyer)
dimension 0: d°(") for lex order, d°(") for degrevlex (Caniglia,Lazard)

— but performances are much better for average cases
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Ingredients

Complexity and choice of monomial order

Hardness of GB computations
@ complexity of GB computations is difficult to estimate
@ worst-case upper bounds:
general case: 22°" (Mayr-Meyer)
dimension 0: d°("") for lex order, d°(") for degrevlex (Caniglia,Lazard)

— but performances are much better for average cases

Strategy and complexity for lex order GB in dimension 0
instead of direct GB computation for lex order of I C K[Xi,..., X,], do:

degrevlex order GB computation & changing order algorithm (FGLM)

o(*< 7))+ o
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Back to index calculus

Gaudry's original attack and Diem’s analysis

m = n — as many equations as unknowns, Sg has total degree 271
@ I(Sg) has dimension 0 and degree 2"("~1)

@ Probability of decomposition is ~ 1/n! — need to solve nlg systems
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Three different approaches

Back to index calculus

Gaudry's original attack and Diem’s analysis

m = n — as many equations as unknowns, Sg has total degree 271
@ I(Sg) has dimension 0 and degree 2"("~1)

@ Probability of decomposition is ~ 1/n! — need to solve n!q systems

Complexity estimates
o Each resolution with Grébner tools has complexity in O (237("—1))
e Sparse linear algebra in O(ng?)

@ “Double large prime” variation — overall complexity in
é((n _ 2)!23n(n—1)q2—2/n)

Vanessa VITSE (UVSQ) F4 traces and index calculus ECC 2010 12 /35




Three different approaches

Back to index calculus

Gaudry's original attack and Diem’s analysis

m = n — as many equations as unknowns, Sg has total degree 271
@ I(Sg) has dimension 0 and degree 2"("~1)

@ Probability of decomposition is ~ 1/n! — need to solve n!q systems

Complexity estimates
o Each resolution with Grébner tools has complexity in O (237("—1))
e Sparse linear algebra in O(ng?)

@ “Double large prime” variation — overall complexity in
é((n _ 2)!23n(n—1)q2—2/n)

o Bottleneck: deg (I(Sg)) = 2"("~1). But most solutions not in F,
@ However adding x9 — x = 0 not practical for large g
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Example of Gaudry's approach over g3 (:]Flol[t]/(t3+t+1))

o E:y?=x3+(44+52t+60t?)x + (58 + 87t + 74t2), #E = 1029583

89-+78t+52t2
144-79t4+71¢2

25458t+23t2

06601 1 372 challenge point: @

base point: P
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Three different approaches

Example of Gaudry's approach over g3 (:le[t]/(t3+t+1))
o E:y?=x3+4 (44 +52t+60t?)x + (58 + 87t + 74t?), #E = 1029583

_ 25+58t+23t2 - 80+478t+52t2
base point: P 06601 1 372 challenge point: @ L4470t T1e?
@ random combination of P and Q:
44457t+55¢t2
R = [658403]P + [910894]Q = | “* 2712
8+11t473t
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Example of Gaudry's approach over g3 (:]Flol[t]/(t3+t+1)>
o E:y?=x3+4 (44 +52t+60t?)x + (58 + 87t + 74t?), #E = 1029583

_ 25+58t+23t2 - 80+478t+52t2
base point: P 06601 1 372 challenge point: @ L4470t T1e?
@ random combination of P and Q:
44457t+55¢t2
R = [658403]P + [910894]Q = | “* 2712
8+11t473t

@ compute 4-th summation polynomial with resultant:
fa(X1, X2, X3, Xa) = Resx (f3(X1, X2, X), (X3, Xa, X))
where f,=(X1—X2)2X2—2((X1+X2) (X1 Xa4-a)+2b) X3 +(X1 X2 —a)? —4b(X14+X2)
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Three different approaches

Example of Gaudry’s approach over g3 (1F101[t]/(t3+t+1))
o E:y?=x3+4 (44 +52t+60t?)x + (58 + 87t + 74t?), #E = 1029583

_— 25+58t+23t2 _— 89+78t+52t>
base point: P 06601 1 372 challenge point: @ L4470t T1e?
@ random combination of P and Q:
444 57t+55t2
R = [658403]P + [910894]Q = | “* 2712
8411473t

@ compute 4-th summation polynomial with resultant:
fa(X1, X2, X3, Xa) = Resx (3(X1, X2, X), (X3, Xa, X))
where f,=(X1—X2)2X2—2((X1+X2) (X1 Xa4-a)+2b) X3 +(X1 X2 —a)? —4b(X14+X2)

@ after partial symmetrization, solve in s1, s, s3 € F1o1

fa(s1, 52, 53, XR) = Xp S5 + 93x351535 53 28s{ +94sis, + -+ + 4534+ 69 =10
& 49sf + 72535y + - + 14s3 +100 = 0
32st +97sisp + - +50s3+8 =0

+16xps7s; + -+ 94b%s; = 0
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Three different approaches

Example of Gaudry's approach over g3 (:le[t]/(t3+t+1))
I(Sg) = (28s; + 94sisy + - -+ + 4s3 + 69,49s] + 72578 + - - - + L4s3 + 100,
32s{ + 97sPs, + - + 50s3 + 8)
@ Grobner basis of I(Sg) for lexs;>s,>s; :
G = {51+ 33553 + 23582 + - + 95 5, + 80553 + 79552 4 - - - + 45,
s9* 436553 + 80552 + - - - + 56}
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Three different approaches

Example of Gaudry's approach over g3 (:le[t]/(t3+t+1))
I(Sg) = (28s; + 94sisy + - -+ + 4s3 + 69,49s] + 72578 + - - - + L4s3 + 100,
325} + 97s7sp + - - - + 50s3 + 8)
@ Grobner basis of I(Sg) for lexs;>s,>s; :
G = {51+ 33553 + 23582 + - + 95 5, + 80553 + 79552 4 - - - + 45,
s9* 436553 + 80552 + - - - + 56}
° V(I(SR))/Fm ={(30,3,53),(75,25,75)}
Roots of X3 — s;.X? + 5,X — s3 = 0 over Fyp; ?
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Three different approaches

Example of Gaudry's approach over g3 (:le[t]/(t3+t+1))
I(Sg) = (28s; + 94sisy + - -+ + 4s3 + 69,49s] + 72578 + - - - + L4s3 + 100,
32s{ + 97sPs, + - + 50s3 + 8)
@ Grobner basis of I(Sg) for lexs;>s,>s; :
G = {51+ 33553 + 23582 + - + 95 5, + 80553 + 79552 4 - - - + 45,
s9* 436553 + 80552 + - - - + 56}
° V(I(SR))/Fm ={(30,3,53),(75,25,75)}

Roots of X3 — 51 X2 + 55X — s3 = 0 over Fyg; ?
x X3 —30X2 + 3X — 53 irreducible over Fyg;[X]
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Three different approaches

Example of Gaudry's approach over g3 (:]Flol[t]/(t3+t+1)>
I(Sg) = (28s; + 94sisy + - -+ + 4s3 + 69,49s] + 72578 + - - - + L4s3 + 100,
325} + 97s7sp + - - - + 50s3 + 8)

@ Grobner basis of I(Sg) for lexs;>s,>s; :
G = {51+ 33553 + 23582 + - + 95 5, + 80553 + 79552 4 - - - + 45,
9% 436553 + 80552 + - - - + 56}

° V(I(SR))/Fm = {(30,3,53),(75,25,75)}
Roots of X3 — 51 X2 + 55X — s3 = 0 over Fyg; ?
% X3 —30X2 + 3X — 53 irreducible over Fig; [X]
% X3 —75X% + 25X —75= (X —4)(X —7)(X — 64)

! 64 andPl—P2+P3:R

= P1 P2 ) )
58+95t+91t 76-+54t+18t

27+34t+91¢2 3
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Three different approaches

Example of Gaudry’s approach over g3 (z]le[t]/(t3+t+1))
I(Sr) = (28s] + 94575y + - - - + 4s3 + 69, 49s] + 725755 + - - - + 14s3 + 100,
325} + 97s7sp + - - - + 50s3 + 8)
@ Grobner basis of I(Sg) for lexs;>s,>s; :
G = {s1 +33s° + 23552 + .- + 95,5 + 80553 + 79552 + - - + 45,
9% 436553 + 80552 + - - - + 56}
V(I(SR))/]Fm = {(30,3,53),(75,25,75)}
Roots of X3 — 51 X2 + 55X — s3 = 0 over Fyg; ?

* X3 —30X2 + 3X — 53 irreducible over Fig;[X]
% X3 —75X% + 25X —75= (X —4)(X —7)(X — 64)

7 64
5 5 andPl—P2+P3:R
58+95t+91t 76-+54t+18t

= P P, 3

27+34t+91¢2

e Number of relations needed: #F,_ = 54 = 55
@ Linear algebra — x = 771080
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Three different approaches

Example of Nagao's approach over Fqg;3

Instead of using Semaev's summation polynomials,

o consider £(4(o0) — (R)) with basis (x — xg, ¥ — yr, x(x — xg))

Vanessa VITSE (UVSQ) F4 traces and index calculus ECC 2010 15 / 35



Three different approaches

Example of Nagao's approach over Fqg;3
Instead of using Semaev's summation polynomials,
o consider £(4(o0) — (R)) with basis (x — xg, ¥ — yr, x(x — xg))
e starting from f(x,y) = x(x — xg) + Ay — yr) + u(x — xgr)
compute F(x) = f(x,y)f(x,—y)/(x — xr)
— F(x) = 53 4+ (=22 + 2 — xg)x% + (—xpA%Z — 2yrA + p? — 2xgu)x
—((x3 + a)A\? + 2yrAp + xgp?)
roots of F correspond to x-coord. of the P; in the decomposition of R

Vanessa VITSE (UVSQ) F4 traces and index calculus ECC 2010 15 / 35



Three different approaches

Example of Nagao's approach over Fqg;3
Instead of using Semaev's summation polynomials,
o consider £(4(o0) — (R)) with basis (x — xg, ¥ — yr, x(x — xg))
e starting from f(x,y) = x(x — xg) + Ay — yr) + u(x — xgr)
compute F(x) = f(x,y)f(x,—y)/(x — xr)
— F(x) = x>+ (=A% 4+ 21 — xg)x? 4+ (—xgA? — 2yr\ + p? — 2xpp)x
—((x3 + a)A\? + 2yrAp + xgp?)
roots of F correspond to x-coord. of the P; in the decomposition of R
) X(P,') S ]F101 = Fc ]F101[X]
—\2 +2u—xg € Fi01
(x3 + a)A? + 2yrAu + xgrp? € Fio1
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Three different approaches

Example of Nagao's approach over Fqg;3

Instead of using Semaev's summation polynomials,
o consider £(4(o0) — (R)) with basis (x — xg, ¥ — yr, x(x — xg))
e starting from f(x,y) = x(x — xg) + Ay — yr) + u(x — xgr)
compute F(x) = f(x,y)f(x,—y)/(x — xr)
— F(x) = x>+ (=A% 4+ 21 — xg)x? 4+ (—xgA? — 2yr\ + p? — 2xpp)x
—((x3 + a)A\? + 2yrAp + xgp?)
roots of F correspond to x-coord. of the P; in the decomposition of R
) X(P,') S ]F101 = F e ]F101[X]
—\2 +2u—xg € Fi01
(x3 + a)A? + 2yrAu + xgrp? € Fio1
@ Weil restriction: solve a quadratic polynomial system with 6 var/eq

check if resulting F splits in linear factors
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Remarks on Nagao's approach

Analysis
o differs from Gaudry only in the polynomial system to solve

@ actual resolution slower

— not relevant for the elliptic case
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Remarks on Nagao's approach

Analysis
o differs from Gaudry only in the polynomial system to solve

@ actual resolution slower

— not relevant for the elliptic case

Practical interest
@ in the previous example, eliminating A, v in
S1 = - 2+ XR
s = —xpA%2 — 2yr\ + u? — 2xgp  yields the partially
s3 = (x3 + a)A? + 2yrAu + xgu?
symmetrized summation polynomial fa(si, 2, s3, XR)
— alternate computation of summation polynomials

@ can be easily generalized to hyperelliptic curves whereas Semaev
cannot

v
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Joux-V. approach

Decompositions into m = n — 1 points

@ compute the n-th summation polynomial (instead of n + 1-th) with

partially symmetrized resultant
e solve Sg with n — 1 var, n eq and total degree 2"

@ (n—1)!q expected numbers of trials to get one relation

Computation speed-up

© Sk is overdetermined and I(Sg) has very low degree

resolution with a degrevlex Grobner basis
no need to change order (FGLM)

@ Speed up computations with “F4 traces”

Vanessa VITSE (UVSQ) F4 traces and index calculus ECC 2010

17 / 35



A toy example over g3 (:Flol[t]/(t3+t+1))

@ E,P and Q as before, random combination of P and Q:

2
R = [357347]P + [488870]Q = | °°3 "o

114-97t495¢2

o =3 £ DA
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Three different approaches

A toy example over Fygs (zFlOl[t]/(t3+t+1))

@ E,P and Q as before, random combination of P and Q:

6-+63t+58t2

R = [357347]P + [488870]Q = 11497¢4+95¢2

@ use 3-rd “symmetrized” Semaev polynomial and Weil restriction:

(s? — 452)x,2? —2(s1(s2 + a) + 2b)xg + (5o — a)?> — 4bs; =0
& (83t +89t2)s? + (89 + 76t + 86t2)sysp + (5 + 98t + 45t%)s;
+57 + (13 4 69t + 29t2)s, + 8 + 96t + 51t =0
89s15; + 551 + 55 + 135, +8=10
=3 83512 + 76s15) +98s1 + 69s, +96 =0
89s? + 86515 + 4551 + 295, + 51 =0
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Three different approaches

A toy example over Fygs (:Flol[t]/(t3+t+1))

I(Sr) = (89515, + 55y + 53 + 135, + 8,
83s? 4 76515, + 9853 + 695, + 96,
8957 + 86515, + 4551 + 295, + 51)

@ Grobner basis of I(Sg) for degreviexy ., : G = {s1 + 89, 52 + 49}
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Three different approaches

A toy example over Fygs (:Flol[t]/(t3+t+1))

I(Sr) = (89515, + 55y + 53 + 135, + 8,
83s? 4 76515, + 9853 + 695, + 96,
8957 + 86515, + 4551 + 295, + 51)

@ Grobner basis of I(Sg) for degreviexy ., : G = {s1 + 89, 52 + 49}

o V(I(Sk)) = {(12,52)}

% X2 12X 452 = (X — 46)(X — 67)
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Three different approaches

A toy example over Fygs (:F101[t]/(t3+t+1))

I(Sr) = (89515, + 55y + 53 + 135, + 8,
83s? 4 76515, + 9853 + 695, + 96,
8957 + 86515, + 4551 + 295, + 51)

@ Grobner basis of I(Sg) for degreviexy ., : G = {s1 + 89, 52 + 49}

o V(I(Sk)) = {(12,52)}

% X2 12X 452 = (X — 46)(X — 67)

46 67 and P+ P, =R

= P , M )
29+4-55t+56t 20+8t+59t
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Three different approaches

A toy example over Fygs (:F101[t]/(t3+t+1))

I(Sg) = (89515, + 551 + 53 + 135, + 8,
835% + 76515, + 98s; + 69s, + 96,

8957 + 86515, + 4551 + 295, + 51)

@ Grobner basis of I(Sg) for degreviex

o V(I(Sk)) = {(12,52)}

% X2 12X 452 = (X — 46)(X — 67)

46 67 and P+ P, =R

= P , M )
29+4-55t+56t 20+8t+59t

@ Number of relations needed: #.F,. =54 = 55

@ Linear algebra — x = 771080
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Three different approaches

Summary

Comparison between the three approaches

Gaudry-Diem Nagao Joux-V.
nb of points m=n m=n m=n-—1
decomp. trials nlq nlq (n—1)q?
features deg 271 deg 2 deg 272
of Sg n eq/var n(n—1)eq/var | neq, n—1var
deg(I(SRr)) 2n(n—1) 2n(n—1) 0 (1 exceptionally)
complexity n123n(m1) g2-2/n | pio2wn(m1) g2=2/n | pipw(n1)(n2) gewn g2
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F4 traces
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Grobner basics

Grobner basis
I1={(f,....f) CK[Xy,...,X,] ideal
Grobner basis

G ={g1,...,8s} Clis a Grobner basis of I if

(LT(g1),---,LT(gs)) = LT(T)

Buchberger's algorithm
e S-polynomial: fi,f € K[Xq,..., X))

LM(f)VLM(F LM(f)VLM(F
S(h,h) = (Ll')l'(fl) (f2) fi— (Ll%(fz) (f2) f

@ Buchberger’'s theorem:
G ={gi1,...,8s} Grobner basis < S(g,-,gj)G =0 for all i,

@ Buchberger's algorithm: compute iteratively the remainder by G of
every possible S-polynomials and add it to G

v
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Grobner basics

Standard Grobner basis algorithms

F4. efficient implementation of Buchberger's algorithm

@ linear algebra to reduce a large number of critical pairs

(fem, u1, fi, un, f5) where fem = LM(f1) V LM(f), uj = 157

o selection strategy (e.g. lowest total degree Icm)
@ at each step construct a Macaulay-style matrix containing

products u;f; coming from the selected critical pairs
polynomials from preprocessing phase

monomial m

!

Macaulay-style
polynomial P — coeff(P, m) matrix
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Grobner basics

Standard Grobner basis algorithms

© F4 algorithm ('99)
» fast and complete reductions of critical pairs
» drawback: many reductions to zero

@ F5 algorithm ('02)

> elaborate criterion — skip unnecessary reductions
» drawback: incomplete polynomial reductions

@ multipurpose algorithms
@ do not take advantage of the common shape of the systems

@ knowledge of a prior computation
— no more reduction to zero in F4 7
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A specifically devised algorithm

Outline of our F4 variant
@ F4Precomp: on the first system
at each step, store the list of all involved polynomial multiples
reduction to zero — remove well-chosen multiple from the list
@ F4Remake: for each subsequent system
no queue of untreated pairs
at each step, pick directly from the list the relevant multiples

Former works
@ ldea originating from CRT computation of GB over Q

@ Traverso 88: precise definition of Grobner traces for the Buchberger
algorithm, but behavior analysis restricted to the rational case
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Analysis of F4ARemake

“Similar”" systems

o parametric family of systems: {Fi(y),..., Fr(y)},exe
where Fi,..., F € K[Ya, ..., Y[ X1, ..., X4l

e {f,...,f,} C K[X] random instance of this parametric family

Generic behavior
@ ‘“compute” the GB of (Fi,...,F,) in K(Y)[X] with F4 algorithm
Q fi,...,f. behaves generically if during the GB computation with F4

same number of iterations
at each step, same new leading monomials — similar critical pairs
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Analysis of F4ARemake

“Similar”" systems

@ parametric family of systems: {Fi(y),...,Fr(y)}
where Fy,...,F € K[Y1,..., Yo|[X1,..., Xq]

e {f,...,f,} C K[X] random instance of this parametric family

yeK¢

Generic behavior
@ ‘“compute” the GB of (Fi,...,F,) in K(Y)[X] with F4 algorithm
Q fi,...,f. behaves generically if during the GB computation with F4

same number of iterations
at each step, same new leading monomials — similar critical pairs

F4Remake computes successfully the GB of fi,..., f,
if the system behaves generically

v
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Algebraic condition for generic behavior
© Assume fi,...,f, behaves generically until the (i — 1)-th step

© At step i, F4 constructs

» M, =matrix of polynomial multiples at step i for the parametric system
» M =matrix of polynomial multiples at step i for fi,...,f,
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F4Remake

Algebraic condition for generic behavior

© Assume fi,...,f, behaves generically until the (i — 1)-th step
© At step i, F4 constructs

» M, =matrix of polynomial multiples at step i for the parametric system
» M =matrix of polynomial multiples at step i for f1,...,f,

© Reduced row echelon form of M, and M

LT(M)
Ay A
S{ 0 €0 Ag7]_ O 0 A]_
Ag3 Ag2 A3 Az
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F4Remake

Algebraic condition for generic behavior

© Assume fi,...,f, behaves generically until the (i — 1)-th step
© At step i, F4 constructs

» M, =matrix of polynomial multiples at step i for the parametric system
» M =matrix of polynomial multiples at step i for f1,...,f,

© Reduced row echelon form of M, and M

/5 Bg,l ls Bl
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F4Remake

Algebraic condition for generic behavior

Q@ Assume fy,..

., fr behaves generically until the (i — 1)-th step

© At step i, F4 constructs

» M, =matrix of polynomial multiples at step i for the parametric system
» M =matrix of polynomial multiples at step i for f1,...,f,

© Reduced row echelon form of M, and M

Bgal /S Bl

RTZ{
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F4Remake

Algebraic condition for generic behavior

© Assume fi,...,f, behaves generically until the (i — 1)-th step
© At step i, F4 constructs

» M, =matrix of polynomial multiples at step i for the parametric system
» M =matrix of polynomial multiples at step i for f1,...,f,

© Reduced row echelon form of M, and M

Is 0 Cg,l /5 Bi

?
0 |l Ce 0 | B B}
0 0 0
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F4Remake

Algebraic condition for generic behavior

© Assume fi,...,f, behaves generically until the (i — 1)-th step
© At step i, F4 constructs

» M, =matrix of polynomial multiples at step i for the parametric system
» M =matrix of polynomial multiples at step i for f1,...,f,

© Reduced row echelon form of M, and M

Is |0 Ce1 ls B;

0 |l Ceo 0 | B B}

0 0 0
fi,...,f, behaves generically at step / < B has full rank J
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Probability of success

Heuristic assumption
B matrices are uniformly random over M, ,(Fy)
@ makes sense for Sg arising from index calculus

@ not always valid, but generic behavior can often be deduced for the
first stages of F4

Probability estimates over [,

Under heuristic assumption:

Proba({fi,...,f;} behaves generically) > c(q)"sr

@ nstep = nb of steps during F4 computation for the parametric system
(oo}

o c(q)=JJt-¢) —1

. q—00
i=1

v
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F4Remake

Experimental results: index calculus on E(IFs)

|pl2 | est. failure proba. | F4ARemake | F4 (Joux-V.) | F4 (Magma)
8 bits 0.11 2.844 5.903 9.660
16 bits 4.4 x 1074 3.990 9.758 9.870
25 bits 2.4 x10°° 4.942 16.77 118.8
32 bits 5.8 x 1079 8.444 24.56 1046

Times in seconds, using a 2.6 GHz Intel Core 2 Duo processor.

Precomputation done in 8.963s on an 8-bit field.

Vanessa VITSE (UVSQ)

F4 traces and index calculus

ECC 2010 29 / 35



F4Remake

Experimental results: index calculus on E(IFs)

|pl2 | est. failure proba. | FARemake | F4 (Joux-V.) | F4 (Magma)
8 bits 0.11 2.844 5.903 9.660
16 bits 4.4 x 1074 3.990 9.758 9.870
25 bits 2.4 x10°° 4.942 16.77 118.8
32 bits 5.8 x 1077 8.444 24.56 1046

Times in seconds, using a 2.6 GHz Intel Core 2 Duo processor.

Precomputation done in 8.963s on an 8-bit field.

Comparison with F5

@ both algorithms eliminate all reductions to zero, but

@ F5 computes a much larger GB:
17249 labeled polynomials against 2789 with F4

@ signature condition in F5 — redundant polynomials
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Static Diffie-Hellman Problem

Oracle-assisted Static Diffie-Hellman Problem

Observation

Semaev's decomposition into a factor base leads to an oracle-assisted
solution of the static Diffie-Hellman problem

Oracle-assisted SDHP: G finite group and d secret integer

@ Initial learning phase: the attacker has access to an oracle which
outputs [d]Y for any Y in G

@ After a number of oracle queries, the attacker has to compute [d]X
for a previously unseen challenge X
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Solving SDHP over G = E(IFyn)

F={PeEFq):P=(x,yp) % € Fq}
o Learning phase: ask the oracle to compute Q = [d]|P for each P € F
@ Given a challenge X,
@ pick a random integer r coprime with #G and compute [r]X
@ check if [r]X can be written as a sum of m points of F:
[[X =+P £ P+ £ P,
@ if [r]X is not decomposable, go back to step 1;
else output Y = [s] (3.7, [d]P;) where s = r~1 mod (#G).

Remarks
@ only one decomposition is needed — no linear algebra step
but the g/2 oracle queries are the bottleneck
@ Granger: balance the two stages by reducing the factor base a la
Harley
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Static Diffie-Hellman Problem

An interesting target — joint work with R. Granger
Announcement on the NMBRTHRY list (Jul, 2010)

IPSEC Oakley key determination protocol 'well known group’ 3 curve
Foiss = Fo[u]/(u®® + u®? + 1) G = E(Fpss) where

E:y?4xy =x3+(w+ul"+ul+ v+ v 2+ P+ B+ u" + 3+ uP u 1)
#G = 12 % 3805993847215893016155463826195386266397436443

Remarks
© [Fpiss = o315 — curve known to be theoretically weaker than curves
over comparable size prime fields
@ decomposition as sum of 5 points not realizable
— Gaudry's approach doesn't work on this curve

@ we show that an actual attack with our approach is feasible
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Results for the "Well Known Group' 3 Oakley curve

The attack (Granger-Joux-V.)

To decompose a challenge X, try about 41231 ~ 5101 decompositions:

@ choose random r and construct the overdetermined symmetrized
system Sjx = {¢1,..., 5} C Fosnlst, ..., s4] of total degree 8

@ solve S x in Fps with degrevlex Grobner basis computation
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Results for the "Well Known Group' 3 Oakley curve

The attack (Granger-Joux-V.)

To decompose a challenge X, try about 41231 ~ 5101 decompositions:

@ choose random r and construct the overdetermined symmetrized
system Sjx = {¢1,..., 5} C Fosnlst, ..., s4] of total degree 8
@ solve S x in Fps with degrevlex Grobner basis computation

Timings

e Magma (V2.15-15): each decomposition trial takes about 1 sec
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The attack (Granger-Joux-V.)

To decompose a challenge X, try about 41231 ~ 5101 decompositions:

@ choose random r and construct the overdetermined symmetrized
system Sjx = {¢1,..., 5} C Fosnlst, ..., s4] of total degree 8
@ solve S x in Fps with degrevlex Grobner basis computation

Timings
e Magma (V2.15-15): each decomposition trial takes about 1 sec

@ F4Variant + dedicated optimizations of arithmetic and linear algebra
— only 22.95 ms per test on a 2.93 GHz Intel Xeon processor
(=~ 400x faster than results in odd characteristic)
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Static Diffie-Hellman Problem

Results for the "Well Known Group' 3 Oakley curve

The attack (Granger-Joux-V.)

To decompose a challenge X, try about 41231 ~ 5101 decompositions:

@ choose random r and construct the overdetermined symmetrized
system Sjx = {¢1,..., 5} C Fosnlst, ..., s4] of total degree 8
@ solve S x in Fps with degrevlex Grobner basis computation

Timings
e Magma (V2.15-15): each decomposition trial takes about 1 sec

@ F4Variant + dedicated optimizations of arithmetic and linear algebra
— only 22.95 ms per test on a 2.93 GHz Intel Xeon processor
(=~ 400x faster than results in odd characteristic)

Feasible attack : oracle-assisted SDHP solvable in < 2 weeks with 1000
processors after a learning phase of 23 oracle queries
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F4 traces and index calculus on elliptic curves over
extension fields

Vanessa VITSE

Joint work with Antoine Joux

Université de Versailles Saint-Quentin, Laboratoire PRISM

Elliptic Curve Cryptography, October 20, 2010
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