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Introduction Discrete logarithm problem

Motivations

Discrete logarithm problem (DLP)

Given G group and g , h ∈ G , find – when it exists – an integer x s.t.

h = g x

Many cryptosystems rely on the hardness of this problem:

Diffie-Hellman key exchange protocol

Elgamal encryption and signature scheme, DSA

pairing-based cryptography : IBE, BLS short signature scheme...
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Introduction Discrete logarithm problem

Hardness of DLP

It depends of the choice of G :

1 G subgroup of (Z/nZ,+):
polynomial complexity with extended Euclid algorithm

2 G subgroup of (F∗q,×) (q = pn):
subexponential complexity with index calculus

I O(Lq(1/3)) complexity with FFS (resp. NFS) for small (resp. larger)

characteristic, where Lq(ν, c) = ec(log q)ν(log log q)1−ν

I key sizes needed: ' 1900 bits

3 G subgroup of (E (Fpn),+):
exponential complexity (in most cases) for known algorithms

I E (Fp) (p prime) or E (F2n ) are now standards (FIPS 186-3), and
E (Fpn ) used in many protocols

I key sizes needed: ' 160 bits
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Introduction Discrete logarithm problem

Generic attacks

Definition

Generic algorithm: only makes use of the group law but not the specific
description of G
↪→ formal definition: oracle calls

Lower bound (Shoup)

A generic algorithm that solves the DLP has a complexity of at least

Ω(max(αi
√

pi ))

where #G =
∏

i p
αi
i , pi primes.

How to achieve the lower bound ?

1 Pohlig-Hellman reduction

2 Shanks’s “Baby Step Giant Step” or “Pollard-ρ” algorithm
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Introduction ECDLP

DLP on elliptic curves over finite fields (ECDLP)

Question

Are there known algorithms faster than generic methods for solving the
ECDLP ?

Some answers...

No in general

Specific methods work in some cases:
I supersingular curves: transfer to F∗qk via pairings
I anomalous curves: lift to E (Qp)
I some curves over Fqn : transfer to JC(Fq) where C is a genus g > 1

curve via Weil descent
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Index calculus Goals

An index calculus method over E (Fqn)

Original algorithm (Gaudry, Diem)

Complexity of DLP over E (Fqn) in Õ(q2− 2
n ) but with hidden constant

exponential in n2

faster than generic methods when n ≥ 3 and log q > C .n

subexponential complexity when n = Θ(
√

log q)

Our variant

Complexity in Õ(q2) but with a better dependency in n

better than generic methods when n ≥ 5 and log q > c .n

better than Gaudry and Diem’s method when log q < c ′.n2 log n

In practice...

The original algorithm can realistically be implemented only for n ≤ 4,
whereas our variant is working for n = 5.
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Index calculus Basic outlines

Basic form of the index calculus method

Discrete logarithm problem (DLP)

G finite group, given h, g ∈ G such that h = [x ]g , recover the secret x .

Basic outline
1 choice of a factor base: F = {g1, . . . , gN} ⊂ G

2 relation search: decompose [ai ]g + [bi ]h (ai , bi random) into F

[ai ]g + [bi ]h =
N∑

j=1

[ci ,j ]gj

3 linear algebra: once k relations found (k > N)
I construct the matrices A =

(
ai bi

)
1≤i≤k

and M = (ci,j) 1≤i≤k
1≤j≤N

I find v = (v1, . . . , vk) ∈ ker(tM) s.t. vA 6= 0 mod r .

4 solution of DLP : x = − (
∑

i aivi ) / (
∑

i bivi ) mod r .
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Index calculus Basic outlines

Basic example in F∗p (p prime)

Discrete logarithm over F∗101

Let h ∈ F∗101 = 〈g〉 where g = 11 and h = 82
Find x ∈ [0; 100] such that h = g x mod 101

1 Factor base :
F = {2; 3}

2 Relation search :
hg2 = 24 = 23 × 3
h2g = 32 = 25

h3 = 9 = 323 Linear algebra :2 1
1 2
0 3

(1
x

)
=

M︷ ︸︸ ︷3 1
5 0
0 2

(logg 2
logg 3

)
and

(
10 −6 −5

)
∈ ker tM

4 Solution :
17x = 14 mod 100⇒ x = 42
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Index calculus Basic outlines

How to find relations ?

1 G ⊂ F∗p, p prime: use the prime factor decomposition of a
representant in ]−p/2; p/2[

F = {prime numbers smaller than B}

2 G ⊂ F∗pn : consider Fpn as Fp[X ]/(f (X )) and use the irreducible factor
decomposition of a representant in Fp[X ]

F = {irreducible polynomials of degree smaller than B}

3 G ⊂ JC(Fq), C hyperelliptic curve of genus g > 1

F = {prime reduced divisors of weight smaller than B}

4 G ⊂ E (Fq) ??
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Index calculus Basic outlines

Remarks on the index calculus

Trade-off for the smoothness bound B

if B too small, very few elements are decomposable

if B too large, many relations needed and expensive linear algebra step

Linear algebra

the matrix M usually has a specific shape (very sparse, coefficients
located mainly in some parts of M...)

use of adequate linear algebra tools: structured Gaussian elimination,
Lanczos, Wiedemann...

Complexity

for an optimal value of B, the outlined techniques yield a O(L(1/2))
complexity

more sophisticated methods (NFS/FFS) use a more elaborate relation
search and have a O(L(1/3)) complexity
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Index calculus Ingredients

Index calculus on E (Fqn)

ECDLP

Given P ∈ E (Fqn) and Q ∈ 〈P〉, find x such that Q = [x ]P

Looking for specific relations

Check whether a given random combination R = [a]P + [b]Q can be
decomposed as R = P1 + . . .+ Pm, for a fixed number m

Main idea: Weil restriction

write Fqn as Fq[t]/(f (t)) where f irreducible of degree n

convenient choice of F = {P = (x , y) ∈ E (Fqn) : x ∈ Fq, y ∈ Fqn}
want to find m points Pi = (xPi

, yPi
) s.t. xPi

= x0,Pi
,

yPi
= y0,Pi

+ y1,Pi
t + . . .+ yn−1,Pi

tn−1 and R = P1 + . . .+ Pm

 solve a huge system of 2n equations in m(n + 1) variables over Fq
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Index calculus Ingredients

Index calculus on E (Fqn)

Second idea

Get rid of the variables yPi
by using Semaev’s summation polynomials

 system of n equations in m variables over Fq

Semaev’s summation polynomials

Let E be an elliptic curve over K , with reduced Weierstrass equation
y2 = x3 + ax + b.
The m-th summation polynomial is an irreducible symmetric polynomial
fm ∈ K [X1, . . . ,Xm] such that given
P1 = (xP1 , yP1), . . . ,Pm = (xPm , yPm) ∈ E (K ) \ {O}, we have

fm(xP1 , . . . , xPm) = 0⇔ ∃ε1, . . . , εm ∈ {1,−1}, ε1P1 + . . .+ εmPm = O
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Index calculus Ingredients

Computation of Semaev’s summation polynomials

1 fm are uniquely determined by induction:

f2(X1,X2) = X1 − X2

f3(X1,X2,X3) = (X1 − X2)2X 2
3 − 2 ((X1 + X2)(X1X2 + a) + 2b) X3

+ (X1X2 − a)2 − 4b(X1 + X2)

and for m ≥ 4 and 1 ≤ j ≤ m − 3 by

fm(X1,X2, . . . ,Xm) = ResX (fm−j(X1,X2, . . . ,Xm−j−1,X ),

fj+2(Xm−j , . . . ,Xm,X ))

2 degXi
fm = 2m−2 ⇒ only computable for small values of m
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Index calculus Ingredients

Index calculus on E (Fqn)

Back to decomposition computation

1 goal: solve the equation
fm+1(xP1 , . . . , xPm , xR) = 0, where unknowns are xP1 , . . . , xPm ∈ Fq

2 express the equation in terms of the elementary symmetric
polynomials e1, . . . , em of the variables xP1 , . . . , xPm :

ek =
∑

1≤i1≤...≤ik≤m

xPi1
. . . xPik

3 Weil restriction: sort according to the powers of t

fm+1(xP1 , . . . , xPm , xR) = 0⇔
n−1∑
i=0

ϕi (e1, . . . , em)t i = 0

 system of n polynomial equations of total degree 2m−1 in m
unknowns
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Index calculus Analysis of Gaudry and Diem’s algorithm

Gaudry’s original algorithm

Choice of m

m = n where n is the degree of the extension field

Relation step

system of n polynomial equations in n variables, total degree 2n−1

I generically of dimension 0
I standard techniques: Gröbner basis for lexicographic order
I complexity is polynomial in log q but over-exponential in n

Probability of decomposition as a sum of n points:

#(Fn/Sn)

#E (Fqn)
' qn

n!

1

qn
=

1

n!

⇒ expected numbers of trials to get one relation is n!

for a fixed n, complexity of the relation search step: Õ(q)
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Index calculus Analysis of Gaudry and Diem’s algorithm

Gaudry’s original algorithm

Linear algebra step

sparse matrix : n non-zero entries per row

complexity in Õ(q2) using Lanczos algorithm

⇒ total complexity of Gaudry’s method in Õ(q2)

Improvement

Thériault’s “double large prime” technique: rebalance the complexity
of the two steps

final complexity in Õ(q2−2/n)
→ better than generic methods for large q as soon as n ≥ 3

the hidden constant is huge and grows very fast with n
→ not practically efficient
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Index calculus Analysis of Gaudry and Diem’s algorithm

A toy example over F1012 ' F101[t]/(t2 + t + 1)

E : y2 = x3 + (1 + 16t)x + (23 + 43t) s.t. #E = 10273

random points:
P = (71 + 85t, 82 + 47t), Q = (81 + 77t, 61 + 71t)
→ find x s.t. Q = [x ]P

random combination of P and Q:
R = [5962]P + [537]Q = (58 + 68t, 68 + 17t)

use 3-rd “symmetrized” Semaev polynomial and Weil restriction:

(e2
1 − 4e2)x2

R − 2(e1(e2 + a) + 2b)xR + (e2 − a)2 − 4be1 = 0

⇔ (32t + 53)e2
1 + (66t + 86)e1e2 + (12t + 49)e1 + e2

2

+(42t + 89)e2 + 88t + 45 = 0

⇔

{
53e2

1 + 86e1e2 + 49e1 + e2
2 + 89e2 + 45 = 0

32e2
1 + 66e1e2 + 12e1 + 42e2 + 88 = 0
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Index calculus Analysis of Gaudry and Diem’s algorithm

A toy example over F1012 ' F101[t]/(t2 + t + 1)

I = 〈53e2
1 + 86e1e2 + 49e1 + e2

2 + 89e2 + 45,

32e2
1 + 66e1e2 + 12e1 + 42e2 + 88〉

Gröbner basis of I for lexe1>e2 :
G = {e1 + 86e3

2 + 88e2
2 + 58e2 + 99, e4

2 + 50e3
2 + 85e2

2 + 73e2 + 17}

V (G ) = {(80, 72), (97, 68)}
1 solution 1: (e1, e2) = (80, 72)⇒ (xP1 , xP2 ) = (5, 75)
⇒ P1 = (5, 89 + 71t); P2 = (75, 57 + 74t) and P1 + P2 = R

2 solution 2: (e1, e2) = (97, 68)⇒ (xP1 , xP2 ) = (19, 78)
⇒ P1 = (19, 35 + 9t); P2 = (78, 75 + 4t) and −P1 + P2 = R

How many relations ?
#F = 104⇒ 105 relations needed

Linear algebra → x = 85
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2 + 88e2
2 + 58e2 + 99, e4

2 + 50e3
2 + 85e2

2 + 73e2 + 17}

V (G ) = {(80, 72), (97, 68)}
1 solution 1: (e1, e2) = (80, 72)⇒ (xP1 , xP2 ) = (5, 75)
⇒ P1 = (5, 89 + 71t); P2 = (75, 57 + 74t) and P1 + P2 = R

2 solution 2: (e1, e2) = (97, 68)⇒ (xP1 , xP2 ) = (19, 78)
⇒ P1 = (19, 35 + 9t); P2 = (78, 75 + 4t) and −P1 + P2 = R

How many relations ?
#F = 104⇒ 105 relations needed

Linear algebra → x = 85
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Index calculus Analysis of Gaudry and Diem’s algorithm

Drawbacks of the original algorithm

Complexity of the system resolution

c(n, q) = cost of the resolution of a multivariate polynomial system of n
equations of total degree 2n−1 in n variables over Fq

1 Diem’s analysis: ideal generically of dimension 0 and of degree 2n(n−1)

2 Resolution of with resultants:

c(n, q) ≤ Poly(n!2n(n−1) log q)

3 Resolution with Gröbner basis and Faugère’s algorithms (F4, F5):
I can only marginally improve this upper-bound because of the degree of

the ideal (cf FGLM complexity)
→ for n = 5, deg I = 220 meaning we need to compute the roots of an
univariate polynomial of degree 1048576

I adding the field equations xq − x = 0 is not practical for large q.

→ huge constant because of the resolution of the polynomial system
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Index calculus Analysis of Gaudry and Diem’s algorithm

Our variant

Choose m = n − 1

compute the n-th summation polynomial instead of the (n + 1)-th

solve system of n equations in (n − 1) unknowns

(n − 1)!q expected numbers of trials to get one relation

Computation speed-up

1 The system to be solved is generically overdetermined:
I in general there is no solution over Fq: I = 〈1〉
I exceptionally: very few solutions (almost always one) → the Gröbner

basis of the ideal is composed of univariate polynomials of degree 1

2 Adapted techniques to solve the system:
I once the Gröbner basis is computed for degrevlex the resolution of the

system is immediate (FGLM not needed)
I “F4-like” algorithm more convenient than F5
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Index calculus Analysis of Gaudry and Diem’s algorithm

A toy example over F1013 ' F101[t]/(t3 + t + 1)

E : y2 = x3 + (44 + 52t + 60t2)x + (58 + 87t + 74t2), #E = 1029583

random points:
P = (75+24t+84t2, 61+18t+92t2),Q = (28+97t+35t2, 48+64t+7t2)
→ find x s.t. Q = [x ]P

random combination of P and Q:
R = [236141]P + [381053]Q = (21 + 94t + 16t2, 41 + 34t + 80t2)

use 3-rd “symmetrized” Semaev polynomial and Weil restriction:

(e2
1 − 4e2)x2

R − 2(e1(e2 + a) + 2b)xR + (e2 − a)2 − 4be1 = 0

⇔ (61t2 + 78t + 59)e2
1 + (69t2 + 14t + 59)e1e2 + (40t2 + 20t + 57)e1

+e2
2 + (40t2 + 89t + 80)e2 + 12t2 + 11t + 77 = 0

⇔


59e2

1 + 59e1e2 + 57e1 + e2
2 + 80e2 + 77 = 0

78e2
1 + 14e1e2 + 20e1 + 89e2 + 11 = 0

61e2
1 + 69e1e2 + 40e1 + 40e2 + 12 = 0
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Index calculus Analysis of Gaudry and Diem’s algorithm

A toy example over F1013 ' F101[t]/(t3 + t + 1)

I = 〈59e2
1 + 59e1e2 + 57e1 + e2

2 + 80e2 + 77,

78e2
1 + 14e1e2 + 20e1 + 89e2 + 11,

61e2
1 + 69e1e2 + 40e1 + 40e2 + 12〉

Gröbner basis of I for degrevlexe1>e2
:

G = {e1 + 32, e2 + 26}

V (G ) = {(69, 75)}
(e1, e2) = (69, 75)⇒ (xP1 , xP2) = (6, 63)
⇒ P1 = (6, 35 + 93t + 77t2); P2 = (63, 2 + 66t + t2) and
P1 + P2 = R

How many relations ?
#F = 108⇒ 109 relations needed

Linear algebra → x = 370556
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Index calculus Analysis of Gaudry and Diem’s algorithm

Complexity of Gröbner basis computation

An available estimate of the complexity (Bardet, Faugère, Salvy)

Let I = 〈f1, . . . , fm〉 ⊂ K [X1, . . . ,Xn] be a zero-dimensional and
semi-regular ideal, with m > n. Then the total number of field arithmetic
operations performed by F5 is bounded by

O

((
n + dreg

n

)ω)
where

ω < 2.4 (exponent in the complexity of matrix multiplication)

degree of regularity dreg smaller than the Macaulay bound
m∑

i=1

(deg fi − 1) + 1.
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Index calculus Analysis of Gaudry and Diem’s algorithm

Analysis of the variant

Complexity of our variant

Cost of the resolution with Bardet et al. estimate:

Õ

((
n2n−2

n − 1

)ω)
= Õ

((
2(n−1)(n−2)enn−1/2

)ω)
(n − 1)!q trials to get one relation and q relations needed

⇒ Õ
(

(n − 1)!q2
(

2(n−1)(n−2)enn−1/2
)ω)

Linear algebra step: n − 1 non-zero entries per row ⇒ Õ(nq2)
complexity  negligible compared to the relation search
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Index calculus Analysis of Gaudry and Diem’s algorithm

Complexity of our variant

Main result

Let E be an elliptic curve defined over Fqn , there exists an algorithm to
solve the DLP in E with asymptotic complexity

Õ
(

(n − 1)!
(

2(n−1)(n−2)en n−1/2
)ω

q2
)

where ω ≤ 2.4 is the exponent in the complexity of matrix multiplication.

log q

n

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16 O(log q)

O(
√

log q)

[Pollard] [this work]

[Gaudry-Diem]

Vanessa VITSE (UVSQ) Elliptic Curve Discrete Logarithm Problem October 19, 2009 25 / 30



Index calculus Improvements

Main improvement

Reminder of Faugère’s algorithms

F4: complete reduction of the polynomials but many critical pairs
reduced to zero ⇒ computational waste

F5: no reduction to zero (semi-regular system) but tails of
polynomials not reduced ⇒ number of critical pairs still not optimal

An “F4-like” algorithm without reduction to zero

incremental nature of F5 less relevant for overdetermined systems

key observation: all systems considered during the relation step have
the same shape

possible to remove all reductions to zero in latter F4 computations by
observing the course of the first execution

this approach gives better results than F5
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Index calculus Improvements

Main improvement

Quick outline of the “F4-like” algorithm

1 Run a standard F4 algorithm on the first system, but:

I at each iteration, store the list of selected critical pairs.

I if there is a reduction to zero, remove the corresponding critical
pair from the list

2 For each subsequent system, run a F4 computation but:

I do not maintain nor update a queue of untreated pairs.

I at each iteration, pick directly from the previously stored list the
relevant pairs.

Vanessa VITSE (UVSQ) Elliptic Curve Discrete Logarithm Problem October 19, 2009 27 / 30



Index calculus Improvements

Second improvement

Symmetrized summation polynomials

Semaev’s summation polynomials are huge: degXi
fm = 2m−2  

difficult to compute (even for m = 5, f5 has 54777 monomials)

rewriting fm(x1, . . . , xm) in terms of the elementary symmetric
polynomials is time-consuming

faster and less memory-consuming to symmetrize between each
resultant computation
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Oracle-assisted static Diffie-Hellman algorithm

Static Diffie Hellman problem

SDHP

G finite group, P,Q ∈ G s.t. Q = [d ]P where d secret.

1 SDHP-solving algorithm A:
given P,Q and a challenge X ∈ G → outputs [d ]X

2 “oracle-assisted” SDHP-solving algorithm A:
I learning phase:

any number of queries X1, . . . ,Xl to an oracle → [d ]X1, . . . , [d ]Xl

I given a previously unseen challenge X → outputs [d ]X

From decomposition into F to oracle-assisted SDHP-solving algorithm

F = {P1, . . . ,Pl}
learning phase: ask Qi = [d ]Pi for i = 1, . . . , l

decompose the challenge X into the factor base: X =
∑

i [ci ]Pi

answer Y =
∑

i [ci ]Qi
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Oracle-assisted static Diffie-Hellman algorithm

Solving SDHP over G = E (Fqn)
F = {P ∈ E (Fqn) : P = (xp, yp), xp ∈ Fq}

An oracle-assisted SDHP-solving algorithm

1 learning phase: ask the oracle to compute Q = [d ]P for each P ∈ F
2 self-randomization: given a challenge X , pick a random integer r

coprime to the order of G and compute Xr = [r ]X

3 check if Xr can be written as a sum of m points of F : Xr =
∑m

i=1 Pi

4 if Xr is not decomposable, go back to step 2; else output
Y = [s] (

∑m
i=1 Qi ) where s = r−1 mod |G |.

Some complexities over Fqn

Degree of the extension field Fqn 4|n 5|n
Oracle calls O(qn/4) O(qn/5)

Decomposition cost Poly(log q) Õ(qn/5)

Overall complexity O(qn/4) Õ(qn/5)
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