Elliptic Curve Discrete Logarithm Problem

Vanessa VITSE

Université de Versailles Saint-Quentin, Laboratoire PRISM

October 19, 2009

Vanessa VITSE (UVSQ)

Elliptic Curve Discrete Logarithm Problem

October 19, 2009 1 / 30

3

A D A D A D A

Motivations

Discrete logarithm problem (DLP)

Given G group and $g, h \in G$, find – when it exists – an integer x s.t.

$$h = g^{x}$$

Many cryptosystems rely on the hardness of this problem:

- Diffie-Hellman key exchange protocol
- Elgamal encryption and signature scheme, DSA
- pairing-based cryptography : IBE, BLS short signature scheme...

Hardness of DLP

It depends of the choice of G:

- G subgroup of (Z/nZ, +): polynomial complexity with extended Euclid algorithm
- G subgroup of (F^{*}_q, ×) (q = pⁿ):
 subexponential complexity with index calculus
 - ► O(L_q(1/3)) complexity with FFS (resp. NFS) for small (resp. larger) characteristic, where L_q(ν, c) = e^{c(log q)^ν(log log q)^{1-ν}}
 - \blacktriangleright key sizes needed: \simeq 1900 bits
- S g subgroup of $(E(\mathbb{F}_{p^n}), +)$: exponential complexity (in most cases) for known algorithms
 - ► $E(\mathbb{F}_p)$ (*p* prime) or $E(\mathbb{F}_{2^n})$ are now standards (FIPS 186-3), and $E(\mathbb{F}_{p^n})$ used in many protocols
 - $\blacktriangleright\,$ key sizes needed: $\simeq 160$ bits

- 4 回 ト 4 ヨ ト - ヨ - シック

Generic attacks

Vanessa VITSE (UVSQ)

Definition

Generic algorithm: only makes use of the group law but not the specific description of G

 $\hookrightarrow \text{ formal definition: oracle calls}$

Generic attacks

Definition

Generic algorithm: only makes use of the group law but not the specific description of \boldsymbol{G}

 $\hookrightarrow \text{ formal definition: oracle calls}$

Lower bound (Shoup)

A generic algorithm that solves the DLP has a complexity of at least

$\Omega(\max(\alpha_i \sqrt{p_i}))$

where $\#G = \prod_i p_i^{\alpha_i}$, p_i primes.

How to achieve the lower bound ?

- Pohlig-Hellman reduction
- **②** Shanks's "Baby Step Giant Step" or "Pollard- ρ " algorithm

イロト イヨト イヨト イヨト

ECDLP

DLP on elliptic curves over finite fields (ECDLP)

Question

Are there known algorithms faster than generic methods for solving the ECDLP ?

3

一日、

ECDLP

DLP on elliptic curves over finite fields (ECDLP)

Question

Are there known algorithms faster than generic methods for solving the ECDLP ?

Some answers...

- No in general
- Specific methods work in some cases:
 - supersingular curves: transfer to $\mathbb{F}_{a^k}^*$ via pairings
 - anomalous curves: lift to $E(\mathbb{Q}_p)$
 - some curves over \mathbb{F}_{q^n} : transfer to $J_C(\mathbb{F}_q)$ where C is a genus g>1 curve via Weil descent

・ 同 ト ・ ヨ ト ・ ヨ ト

An index calculus method over $E(\mathbb{F}_{q^n})$

Original algorithm (Gaudry, Diem)

Complexity of DLP over $E(\mathbb{F}_{q^n})$ in $\tilde{O}(q^{2-\frac{2}{n}})$ but with hidden constant exponential in n^2

- faster than generic methods when $n \ge 3$ and $\log q > C.n$
- subexponential complexity when $n = \Theta(\sqrt{\log q})$

An index calculus method over $E(\mathbb{F}_{q^n})$

Original algorithm (Gaudry, Diem)

Complexity of DLP over $E(\mathbb{F}_{q^n})$ in $\tilde{O}(q^{2-\frac{2}{n}})$ but with hidden constant exponential in n^2

- faster than generic methods when $n \ge 3$ and $\log q > C.n$
- subexponential complexity when $n = \Theta(\sqrt{\log q})$

Our variant

Complexity in $\tilde{O}(q^2)$ but with a better dependency in n

- better than generic methods when $n \ge 5$ and $\log q > c.n$
- better than Gaudry and Diem's method when $\log q < c'.n^2 \log n$

< 回 ト < 三 ト < 三 ト

An index calculus method over $E(\mathbb{F}_{q^n})$

Original algorithm (Gaudry, Diem)

Complexity of DLP over $E(\mathbb{F}_{q^n})$ in $\tilde{O}(q^{2-\frac{2}{n}})$ but with hidden constant exponential in n^2

- faster than generic methods when $n \ge 3$ and $\log q > C.n$
- subexponential complexity when $n = \Theta(\sqrt{\log q})$

Our variant

Complexity in $\tilde{O}(q^2)$ but with a better dependency in n

- better than generic methods when $n \ge 5$ and $\log q > c.n$
- better than Gaudry and Diem's method when $\log q < c'.n^2 \log n$

In practice...

The original algorithm can realistically be implemented only for $n \le 4$, whereas our variant is working for n = 5.

Basic form of the index calculus method

Discrete logarithm problem (DLP)

G finite group, given $h,g \in G$ such that h = [x]g, recover the secret x.

Basic outline

- $\bullet \ \ \text{choice of a factor base:} \ \ \mathcal{F}=\{g_1,\ldots,g_N\}\subset G$
- **2** relation search: decompose $[a_i]g + [b_i]h(a_i, b_i \text{ random})$ into \mathcal{F}

$$[a_i]g + [b_i]h = \sum_{j=1}^N [c_{i,j}]g_j$$

Inter algebra: once k relations found (k > N)

- construct the matrices $A = \begin{pmatrix} a_i & b_i \end{pmatrix}_{1 \le i \le k}$ and $M = (c_{i,j})_{1 \le i \le k}$
- find $v = (v_1, \ldots, v_k) \in ker({}^tM)$ s.t. $vA \neq 0 \mod r$.

Discrete logarithm over \mathbb{F}_{101}^*

Let $h \in \mathbb{F}_{101}^* = \langle g \rangle$ where g = 11 and h = 82Find $x \in [0; 100]$ such that $h = g^x \mod 101$

向下 イヨト イヨト ニヨ

Discrete logarithm over \mathbb{F}_{101}^{*}

Let $h \in \mathbb{F}_{101}^* = \langle g \rangle$ where g = 11 and h = 82Find $x \in [0; 100]$ such that $h = g^x \mod 101$

• Factor base : $\mathcal{F} = \{2; 3\}$

Vanessa VITSE (UVSQ)

向下 イヨト イヨト ニヨ

Discrete logarithm over \mathbb{F}_{101}^*

Let $h \in \mathbb{F}_{101}^* = \langle g \rangle$ where g = 11 and h = 82Find $x \in [0; 100]$ such that $h = g^x \mod 101$

• Factor base : $\mathcal{F} = \{2; 3\}$ Relation search : $hg^2 = 24 = 2^3 \times 3$ $h^2g = 32 = 2^5$ $h^3 = 9 = 3^2$

向下 イヨト イヨト 二日

Discrete logarithm over \mathbb{F}_{101}^{*}

Let $h \in \mathbb{F}_{101}^* = \langle g \rangle$ where g = 11 and h = 82Find $x \in [0; 100]$ such that $h = g^x \mod 101$

Factor base : $\mathcal{F} = \{2; 3\}$ Linear algebra : $\begin{pmatrix} 2 & 1 \\ 1 & 2 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ x \end{pmatrix} = \overbrace{\begin{pmatrix} 3 & 1 \\ 5 & 0 \\ 0 & 2 \end{pmatrix}}^{M} \begin{pmatrix} \log_g 2 \\ \log_g 3 \end{pmatrix}$ and $(10 - 6 - 5) \in \ker^t M$

周 と くき とくき とうき

Discrete logarithm over \mathbb{F}_{101}^{*}

Let $h \in \mathbb{F}_{101}^* = \langle g \rangle$ where g = 11 and h = 82Find $x \in [0; 100]$ such that $h = g^x \mod 101$

Factor base : $\mathcal{F} = \{2; 3\}$ Linear algebra : $\begin{pmatrix} 2 & 1 \\ 1 & 2 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ x \end{pmatrix} = \overbrace{\begin{pmatrix} 3 & 1 \\ 5 & 0 \\ 0 & 2 \end{pmatrix}}^{M} \begin{pmatrix} \log_g 2 \\ \log_g 3 \end{pmatrix}$ and $(10 - 6 - 5) \in \ker^{t} M$

Solution :

 $17x = 14 \mod 100 \Rightarrow x = 42$

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Basic outlines

How to find relations ?

G ⊂ F^{*}_p, p prime: use the prime factor decomposition of a representant in]-p/2; p/2[

 $\mathcal{F} = \{ \text{prime numbers smaller than } B \}$

G ⊂ $\mathbb{F}_{p^n}^*$: consider \mathbb{F}_{p^n} as $\mathbb{F}_p[X]/(f(X))$ and use the irreducible factor decomposition of a representant in $\mathbb{F}_p[X]$

 $\mathcal{F} = \{$ irreducible polynomials of degree smaller than $B\}$

• $G \subset J_{\mathcal{C}}(\mathbb{F}_q), \mathcal{C}$ hyperelliptic curve of genus g > 1

 $\mathcal{F} = \{ \text{prime reduced divisors of weight smaller than } B \}$

• $G \subset E(\mathbb{F}_q)$??

- 4 回 ト 4 ヨ ト - ヨ - シック

Remarks on the index calculus

Trade-off for the smoothness bound B

- if B too small, very few elements are decomposable
- if B too large, many relations needed and expensive linear algebra step

Linear algebra

- the matrix *M* usually has a specific shape (very sparse, coefficients located mainly in some parts of *M*...)
- use of adequate linear algebra tools: structured Gaussian elimination, Lanczos, Wiedemann...

Complexity

- for an optimal value of B, the outlined techniques yield a O(L(1/2)) complexity
- more sophisticated methods (NFS/FFS) use a more elaborate relation search and have a O(L(1/3)) complexity

ECDLP

Given $P \in E(\mathbb{F}_{q^n})$ and $Q \in \langle P
angle$, find x such that Q = [x]P

Looking for specific relations

Check whether a given random combination R = [a]P + [b]Q can be decomposed as $R = P_1 + \ldots + P_m$, for a fixed number m

イロト 不得 トイヨト イヨト 二日

ECDLP

Given $P \in E(\mathbb{F}_{q^n})$ and $Q \in \langle P \rangle$, find x such that Q = [x]P

Looking for specific relations

Check whether a given random combination R = [a]P + [b]Q can be decomposed as $R = P_1 + \ldots + P_m$, for a fixed number m

Main idea: Weil restriction

- write \mathbb{F}_{q^n} as $\mathbb{F}_q[t]/(f(t))$ where f irreducible of degree n
- convenient choice of $\mathcal{F} = \{P = (x, y) \in E(\mathbb{F}_{q^n}) : x \in \mathbb{F}_q, y \in \mathbb{F}_{q^n}\}$
- want to find *m* points $P_i = (x_{P_i}, y_{P_i})$ s.t. $x_{P_i} = x_{0,P_i}, y_{P_i} = y_{0,P_i} + y_{1,P_i}t + \dots + y_{n-1,P_i}t^{n-1}$ and $R = P_1 + \dots + P_m$

 \rightsquigarrow solve a huge system of 2n equations in m(n+1) variables over \mathbb{F}_q

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ─ 圖

Second idea

Get rid of the variables y_{P_i} by using Semaev's summation polynomials \rightsquigarrow system of *n* equations in *m* variables over \mathbb{F}_q

3

A 🖓 h

Second idea

Get rid of the variables y_{P_i} by using Semaev's summation polynomials \rightsquigarrow system of *n* equations in *m* variables over \mathbb{F}_q

Semaev's summation polynomials

Let *E* be an elliptic curve over *K*, with reduced Weierstrass equation $y^2 = x^3 + ax + b$. The *m*-th summation polynomial is an irreducible symmetric polynomial $f_m \in K[X_1, ..., X_m]$ such that given $P_1 = (x_{P_1}, y_{P_1}), ..., P_m = (x_{P_m}, y_{P_m}) \in E(\overline{K}) \setminus \{O\}$, we have

$$f_m(x_{P_1},\ldots,x_{P_m})=0 \Leftrightarrow \exists \epsilon_1,\ldots,\epsilon_m \in \{1,-1\}, \epsilon_1 P_1+\ldots+\epsilon_m P_m=0$$

Computation of Semaev's summation polynomials

• f_m are uniquely determined by induction:

$$f_2(X_1, X_2) = X_1 - X_2$$

$$egin{aligned} f_3(X_1,X_2,X_3) &= (X_1-X_2)^2 X_3^2 - 2 \left((X_1+X_2) (X_1X_2+a) + 2b
ight) X_3 \ &+ (X_1X_2-a)^2 - 4b (X_1+X_2) \end{aligned}$$

and for $m \ge 4$ and $1 \le j \le m-3$ by

$$f_m(X_1, X_2, \dots, X_m) = \operatorname{Res}_X (f_{m-j}(X_1, X_2, \dots, X_{m-j-1}, X), f_{j+2}(X_{m-j}, \dots, X_m, X))$$

② deg_{X_i} $f_m = 2^{m-2}$ ⇒ only computable for small values of m

医静脉 医静脉 医静脉 医胆管

Back to decomposition computation

- **9 goal:** solve the equation $f_{m+1}(x_{P_1}, \ldots, x_{P_m}, x_R) = 0$, where unknowns are $x_{P_1}, \ldots, x_{P_m} \in \mathbb{F}_q$
- express the equation in terms of the elementary symmetric polynomials e₁,..., e_m of the variables x_{P1},..., x_{Pm}:

$$e_k = \sum_{1 \leq i_1 \leq \ldots \leq i_k \leq m} x_{P_{i_1}} \ldots x_{P_{i_k}}$$

③ Weil restriction: sort according to the powers of t

$$f_{m+1}(x_{P_1},\ldots,x_{P_m},x_R)=0\Leftrightarrow \sum_{i=0}^{n-1}\varphi_i(e_1,\ldots,e_m)t^i=0$$

 \rightsquigarrow system of n polynomial equations of total degree 2^{m-1} in m unknowns

Vanessa VITSE (UVSQ) Elliptic Curve Discrete Logarithm Problem

Choice of *m*

m = n where *n* is the degree of the extension field

A 🖓

Choice of m

m = n where n is the degree of the extension field

Relation step

• system of *n* polynomial equations in *n* variables, total degree 2^{n-1}

- generically of dimension 0
- standard techniques: Gröbner basis for lexicographic order
- complexity is polynomial in $\log q$ but over-exponential in n
- Probability of decomposition as a sum of *n* points:

$$rac{\#(\mathcal{F}^n/\mathfrak{S}_n)}{\#\mathcal{E}(\mathbb{F}_{q^n})}\simeq rac{q^n}{n!}rac{1}{q^n}=rac{1}{n!}$$

 \Rightarrow expected numbers of trials to get one relation is n!

• for a fixed *n*, complexity of the relation search step: $\tilde{O}(q)$

Linear algebra step

- sparse matrix : n non-zero entries per row
- complexity in $\tilde{O}(q^2)$ using Lanczos algorithm

 \Rightarrow total complexity of Gaudry's method in $ilde{O}(q^2)$

Linear algebra step

- sparse matrix : n non-zero entries per row
- complexity in $\tilde{O}(q^2)$ using Lanczos algorithm

 \Rightarrow total complexity of Gaudry's method in $ilde{O}(q^2)$

Improvement

- Thériault's "double large prime" technique: rebalance the complexity of the two steps
- final complexity in $\tilde{O}(q^{2-2/n})$
 - \rightarrow better than generic methods for large q as soon as $n\geq 3$
- the hidden constant is huge and grows very fast with n
 → not practically efficient

< 回 > < 三 > < 三 >

•
$$E: y^2 = x^3 + (1+16t)x + (23+43t)$$
 s.t. $\#E = 10273$

random points:

$$P = (71 + 85t, 82 + 47t), Q = (81 + 77t, 61 + 71t)$$

 \rightarrow find x s.t. Q = [x]P

•
$$E: y^2 = x^3 + (1+16t)x + (23+43t)$$
 s.t. $\#E = 10273$

random points:

$$P = (71 + 85t, 82 + 47t), Q = (81 + 77t, 61 + 71t)$$

 $\rightarrow \text{ find } x \text{ s.t. } Q = [x]P$

• random combination of P and Q: R = [5962]P + [537]Q = (58 + 68t, 68 + 17t)

•
$$E: y^2 = x^3 + (1+16t)x + (23+43t)$$
 s.t. $\#E = 10273$

random points:

$$P = (71 + 85t, 82 + 47t), Q = (81 + 77t, 61 + 71t)$$

 $\rightarrow \text{ find } x \text{ s.t. } Q = [x]P$

• random combination of P and Q: R = [5962]P + [537]Q = (58 + 68t, 68 + 17t)

• use 3-rd "symmetrized" Semaev polynomial and Weil restriction:

$$(e_1^2 - 4e_2)x_R^2 - 2(e_1(e_2 + a) + 2b)x_R + (e_2 - a)^2 - 4be_1 = 0$$

$$\Leftrightarrow \quad (32t+53)e_1^2 + (66t+86)e_1e_2 + (12t+49)e_1 + e_2^2 \\ + (42t+89)e_2 + 88t+45 = 0$$

$$\Leftrightarrow \quad \begin{cases} 53e_1^2 + 86e_1e_2 + 49e_1 + e_2^2 + 89e_2 + 45 = 0\\ 32e_1^2 + 66e_1e_2 + 12e_1 + 42e_2 + 88 = 0 \end{cases}$$

$$\begin{split} \textit{I} = \langle 53e_1^2 + 86e_1e_2 + 49e_1 + e_2^2 + 89e_2 + 45, \\ & 32e_1^2 + 66e_1e_2 + 12e_1 + 42e_2 + 88 \rangle \end{split}$$

• Gröbner basis of I for $lex_{e_1 > e_2}$: $G = \{e_1 + 86e_2^3 + 88e_2^2 + 58e_2 + 99, e_2^4 + 50e_2^3 + 85e_2^2 + 73e_2 + 17\}$

18 / 30

$$\begin{split} \textit{I} = \langle 53e_1^2 + 86e_1e_2 + 49e_1 + e_2^2 + 89e_2 + 45, \\ & 32e_1^2 + 66e_1e_2 + 12e_1 + 42e_2 + 88 \rangle \end{split}$$

• Gröbner basis of I for $lex_{e_1 > e_2}$: $G = \{e_1 + 86e_2^3 + 88e_2^2 + 58e_2 + 99, e_2^4 + 50e_2^3 + 85e_2^2 + 73e_2 + 17\}$

•
$$V(G) = \{(80, 72), (97, 68)\}$$

• solution 1: $(e_1, e_2) = (80, 72) \Rightarrow (x_{P_1}, x_{P_2}) = (5, 75)$
 $\Rightarrow P_1 = (5, 89 + 71t); P_2 = (75, 57 + 74t) \text{ and } P_1 + P_2 = R$
• solution 2: $(e_1, e_2) = (97, 68) \Rightarrow (x_{P_1}, x_{P_2}) = (19, 78)$
 $\Rightarrow P_1 = (19, 35 + 9t); P_2 = (78, 75 + 4t) \text{ and } -P_1 + P_2 = R$

$$\begin{split} \textit{I} = \langle 53e_1^2 + 86e_1e_2 + 49e_1 + e_2^2 + 89e_2 + 45, \\ & 32e_1^2 + 66e_1e_2 + 12e_1 + 42e_2 + 88 \rangle \end{split}$$

• Gröbner basis of I for $lex_{e_1 > e_2}$: $G = \{e_1 + 86e_2^3 + 88e_2^2 + 58e_2 + 99, e_2^4 + 50e_2^3 + 85e_2^2 + 73e_2 + 17\}$

•
$$V(G) = \{(80, 72), (97, 68)\}$$

• solution 1: $(e_1, e_2) = (80, 72) \Rightarrow (x_{P_1}, x_{P_2}) = (5, 75)$
 $\Rightarrow P_1 = (5, 89 + 71t); P_2 = (75, 57 + 74t) \text{ and } P_1 + P_2 = R$
• solution 2: $(e_1, e_2) = (97, 68) \Rightarrow (x_{P_1}, x_{P_2}) = (19, 78)$
 $\Rightarrow P_1 = (19, 35 + 9t); P_2 = (78, 75 + 4t) \text{ and } -P_1 + P_2 = R$

• How many relations ?
$$\# \mathcal{F} = 104 \Rightarrow 105 \text{ relations needed}$$

$$\begin{split} \textit{I} = \langle 53e_1^2 + 86e_1e_2 + 49e_1 + e_2^2 + 89e_2 + 45, \\ & 32e_1^2 + 66e_1e_2 + 12e_1 + 42e_2 + 88 \rangle \end{split}$$

• Gröbner basis of I for $lex_{e_1 > e_2}$: $G = \{e_1 + 86e_2^3 + 88e_2^2 + 58e_2 + 99, e_2^4 + 50e_2^3 + 85e_2^2 + 73e_2 + 17\}$

•
$$V(G) = \{(80, 72), (97, 68)\}$$

• solution 1: $(e_1, e_2) = (80, 72) \Rightarrow (x_{P_1}, x_{P_2}) = (5, 75)$
 $\Rightarrow P_1 = (5, 89 + 71t); P_2 = (75, 57 + 74t) \text{ and } P_1 + P_2 = R$
• solution 2: $(e_1, e_2) = (97, 68) \Rightarrow (x_{P_1}, x_{P_2}) = (19, 78)$
 $\Rightarrow P_1 = (19, 35 + 9t); P_2 = (78, 75 + 4t) \text{ and } -P_1 + P_2 = R$

• How many relations ?
$$\# \mathcal{F} = 104 \Rightarrow 105 \text{ relations needed}$$

• Linear algebra $\rightarrow x = 85$

Drawbacks of the original algorithm

Complexity of the system resolution

c(n,q) = cost of the resolution of a multivariate polynomial system of n equations of total degree 2^{n-1} in n variables over \mathbb{F}_q

- Diem's analysis: ideal generically of dimension 0 and of degree $2^{n(n-1)}$
- 2 Resolution of with resultants:

$$c(n,q) \leq Poly(n!2^{n(n-1)}\log q)$$

- Sesolution with Gröbner basis and Faugère's algorithms (F4, F5):
 - can only marginally improve this upper-bound because of the degree of the ideal (cf FGLM complexity)
 - \rightarrow for $n=5, \deg I=2^{20}$ meaning we need to compute the roots of an univariate polynomial of degree 1048576
 - adding the field equations $x^q x = 0$ is not practical for large q.

\rightarrow huge constant because of the resolution of the polynomial system

Vanessa VITSE (UVSQ)

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Our variant

Choose m = n - 1

- compute the *n*-th summation polynomial instead of the (n + 1)-th
- solve system of n equations in (n-1) unknowns
- (n-1)!q expected numbers of trials to get one relation

Computation speed-up

• The system to be solved is generically overdetermined:

- \succ in general there is no solution over $\overline{\mathbb{F}_q}$: $I=\langle 1
 angle$
- ► exceptionally: very few solutions (almost always one) → the Gröbner basis of the ideal is composed of univariate polynomials of degree 1
- Adapted techniques to solve the system:
 - once the Gröbner basis is computed for *degrevlex* the resolution of the system is immediate (FGLM not needed)
 - "F4-like" algorithm more convenient than F5

3

・ロン ・四 ・ ・ ヨン ・ ヨン

•
$$E: y^2 = x^3 + (44 + 52t + 60t^2)x + (58 + 87t + 74t^2), \ \#E = 1029583$$

• random points:

$$P = (75+24t+84t^2, 61+18t+92t^2), Q = (28+97t+35t^2, 48+64t+7t^2)$$

$$\rightarrow \text{ find } x \text{ s.t. } Q = [x]P$$

3

(日) (周) (三) (三)

- $E: y^2 = x^3 + (44 + 52t + 60t^2)x + (58 + 87t + 74t^2), \ \#E = 1029583$
- random points:

$$P = (75+24t+84t^2, 61+18t+92t^2), Q = (28+97t+35t^2, 48+64t+7t^2)$$

 $\rightarrow \text{ find } x \text{ s.t. } Q = [x]P$

• random combination of P and Q: $R = [236141]P + [381053]Q = (21 + 94t + 16t^2, 41 + 34t + 80t^2)$

• $E: y^2 = x^3 + (44 + 52t + 60t^2)x + (58 + 87t + 74t^2), \ \#E = 1029583$

• random points:

- $P = (75+24t+84t^2, 61+18t+92t^2), Q = (28+97t+35t^2, 48+64t+7t^2)$ $\rightarrow \text{ find } x \text{ s.t. } Q = [x]P$
- random combination of P and Q: $R = [236141]P + [381053]Q = (21 + 94t + 16t^2, 41 + 34t + 80t^2)$
- use 3-rd "symmetrized" Semaev polynomial and Weil restriction:

$$(e_1^2 - 4e_2)x_R^2 - 2(e_1(e_2 + a) + 2b)x_R + (e_2 - a)^2 - 4be_1 = 0$$

$$\Leftrightarrow \quad (61t^2 + 78t + 59)e_1^2 + (69t^2 + 14t + 59)e_1e_2 + (40t^2 + 20t + 57)e_1 + e_2^2 + (40t^2 + 89t + 80)e_2 + 12t^2 + 11t + 77 = 0$$

$$\Leftrightarrow \quad \begin{cases} 59e_1^2 + 59e_1e_2 + 57e_1 + e_2^2 + 80e_2 + 77 = 0 \\ 78e_1^2 + 14e_1e_2 + 20e_1 + 89e_2 + 11 = 0 \\ 61e_1^2 + 69e_1e_2 + 40e_1 + 40e_2 + 12 = 0 \end{cases}$$

$$\begin{split} \textit{I} = \langle 59e_1^2 + 59e_1e_2 + 57e_1 + e_2^2 + 80e_2 + 77, \\ & 78e_1^2 + 14e_1e_2 + 20e_1 + 89e_2 + 11, \\ & 61e_1^2 + 69e_1e_2 + 40e_1 + 40e_2 + 12 \rangle \end{split}$$

• Gröbner basis of I for
$$degrevlex_{e_1 > e_2}$$
:
 $G = \{e_1 + 32, e_2 + 26\}$

- 3

22 / 30

$$\begin{split} \textit{I} = \langle 59e_1^2 + 59e_1e_2 + 57e_1 + e_2^2 + 80e_2 + 77, \\ & 78e_1^2 + 14e_1e_2 + 20e_1 + 89e_2 + 11, \\ & 61e_1^2 + 69e_1e_2 + 40e_1 + 40e_2 + 12 \rangle \end{split}$$

• Gröbner basis of I for
$$degrevlex_{e_1 > e_2}$$
:
 $G = \{e_1 + 32, e_2 + 26\}$

•
$$V(G) = \{(69, 75)\}$$

 $(e_1, e_2) = (69, 75) \Rightarrow (x_{P_1}, x_{P_2}) = (6, 63)$
 $\Rightarrow P_1 = (6, 35 + 93t + 77t^2); P_2 = (63, 2 + 66t + t^2) \text{ and}$
 $P_1 + P_2 = R$

- 3

$$\begin{split} \textit{I} = \langle 59e_1^2 + 59e_1e_2 + 57e_1 + e_2^2 + 80e_2 + 77, \\ & 78e_1^2 + 14e_1e_2 + 20e_1 + 89e_2 + 11, \\ & 61e_1^2 + 69e_1e_2 + 40e_1 + 40e_2 + 12 \rangle \end{split}$$

• Gröbner basis of I for
$$degrevlex_{e_1 > e_2}$$
:
 $G = \{e_1 + 32, e_2 + 26\}$

•
$$V(G) = \{(69, 75)\}$$

 $(e_1, e_2) = (69, 75) \Rightarrow (x_{P_1}, x_{P_2}) = (6, 63)$
 $\Rightarrow P_1 = (6, 35 + 93t + 77t^2); P_2 = (63, 2 + 66t + t^2) \text{ and}$
 $P_1 + P_2 = R$

• How many relations ?
$$\#\mathcal{F} = 108 \Rightarrow 109$$
 relations needed

- 3

$$\begin{split} \textit{I} = \langle 59e_1^2 + 59e_1e_2 + 57e_1 + e_2^2 + 80e_2 + 77, \\ & 78e_1^2 + 14e_1e_2 + 20e_1 + 89e_2 + 11, \\ & 61e_1^2 + 69e_1e_2 + 40e_1 + 40e_2 + 12 \rangle \end{split}$$

• Gröbner basis of I for
$$degrevlex_{e_1 > e_2}$$
:
 $G = \{e_1 + 32, e_2 + 26\}$

•
$$V(G) = \{(69, 75)\}$$

 $(e_1, e_2) = (69, 75) \Rightarrow (x_{P_1}, x_{P_2}) = (6, 63)$
 $\Rightarrow P_1 = (6, 35 + 93t + 77t^2); P_2 = (63, 2 + 66t + t^2) \text{ and}$
 $P_1 + P_2 = R$

• How many relations ?
$$\#\mathcal{F} = 108 \Rightarrow 109$$
 relations needed

• Linear algebra $\rightarrow x = 370556$

イロト 不得 トイヨト イヨト 二日

Complexity of Gröbner basis computation

An available estimate of the complexity (Bardet, Faugère, Salvy) Let $I = \langle f_1, \dots, f_m \rangle \subset K[X_1, \dots, X_n]$ be a zero-dimensional and

semi-regular ideal, with $\mathbf{m} > \mathbf{n}$. Then the total number of field arithmetic operations performed by F5 is bounded by

$$O\left(\binom{n+d_{reg}}{n}^{\omega}\right)$$

where

- $\omega < 2.4$ (exponent in the complexity of matrix multiplication)
- degree of regularity d_{reg} smaller than the Macaulay bound $\sum_{i=1}^{m} (\deg f_i 1) + 1.$

- 4 週 ト - 4 三 ト - 4 三 ト

Analysis of the variant

Complexity of our variant

• Cost of the resolution with Bardet et al. estimate:

$$\tilde{O}\left(\binom{n2^{n-2}}{n-1}^{\omega}\right) = \tilde{O}\left(\left(2^{(n-1)(n-2)}e^nn^{-1/2}\right)^{\omega}\right)$$

• (n-1)!q trials to get one relation and q relations needed

$$\Rightarrow \tilde{O}\left((n-1)!q^2\left(2^{(n-1)(n-2)}e^nn^{-1/2}\right)^{\omega}\right)$$

通 ト イヨ ト イヨト

24 / 30

• Linear algebra step: n-1 non-zero entries per row $\Rightarrow \tilde{O}(nq^2)$ complexity \rightsquigarrow negligible compared to the relation search

Complexity of our variant

Main result

Let *E* be an elliptic curve defined over \mathbb{F}_{q^n} , there exists an algorithm to solve the DLP in *E* with asymptotic complexity

$$\tilde{O}\left((n-1)!\left(2^{(n-1)(n-2)}e^n n^{-1/2}\right)^{\omega}q^2\right)$$

where $\omega \leq 2.4$ is the exponent in the complexity of matrix multiplication.

Improvements

Main improvement

Reminder of Faugère's algorithms

- F4: complete reduction of the polynomials but many critical pairs reduced to zero ⇒ computational waste
- F5: no reduction to zero (semi-regular system) but tails of polynomials not reduced ⇒ number of critical pairs still not optimal

An "F4-like" algorithm without reduction to zero

- incremental nature of F5 less relevant for overdetermined systems
- key observation: all systems considered during the relation step have the same shape
- possible to remove all reductions to zero in latter F4 computations by observing the course of the first execution
- this approach gives better results than F5

3

イロト イポト イヨト イヨト

Main improvement

Quick outline of the "F4-like" algorithm

- **1** Run a standard F4 algorithm on the first system, but:
 - at each iteration, store the list of selected critical pairs.
 - if there is a reduction to zero, remove the corresponding critical pair from the list
- **②** For each subsequent system, run a F4 computation but:
 - do not maintain nor update a queue of untreated pairs.
 - at each iteration, pick directly from the previously stored list the relevant pairs.

Second improvement

Symmetrized summation polynomials

- Semaev's summation polynomials are huge: $\deg_{X_i} f_m = 2^{m-2} \rightsquigarrow$ difficult to compute (even for m = 5, f_5 has 54777 monomials)
- rewriting $f_m(x_1, ..., x_m)$ in terms of the elementary symmetric polynomials is time-consuming
- faster and less memory-consuming to symmetrize between each resultant computation

Static Diffie Hellman problem

SDHP

G finite group, $P, Q \in G$ s.t. Q = [d]P where d secret.

 SDHP-solving algorithm A: given P, Q and a challenge X ∈ G → outputs [d]X

3

A 🖓 h

Static Diffie Hellman problem

SDHP

G finite group, $P, Q \in G$ s.t. Q = [d]P where d secret.

- SDHP-solving algorithm A: given P, Q and a challenge X ∈ G → outputs [d]X
- (2) "oracle-assisted" SDHP-solving algorithm \mathcal{A} :
 - learning phase:
 - any number of queries X_1, \ldots, X_l to an oracle $\rightarrow [d]X_1, \ldots, [d]X_l$
 - given a previously unseen challenge $X \rightarrow$ outputs [d]X

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Static Diffie Hellman problem

SDHP

G finite group, $P,Q \in G$ s.t. Q = [d]P where d secret.

- SDHP-solving algorithm A: given P, Q and a challenge X ∈ G → outputs [d]X
- (2) "oracle-assisted" SDHP-solving algorithm \mathcal{A} :
 - learning phase:
 - any number of queries X_1, \ldots, X_l to an oracle $\rightarrow [d]X_1, \ldots, [d]X_l$
 - given a previously unseen challenge $X \rightarrow$ outputs [d]X

From decomposition into \mathcal{F} to oracle-assisted SDHP-solving algorithm $\mathcal{F} = \{P_1, \dots, P_l\}$

• learning phase: ask $Q_i = [d]P_i$ for i = 1, ..., l

- decompose the challenge X into the factor base: $X = \sum_{i} [c_i] P_i$
- answer $Y = \sum_i [c_i] Q_i$

Solving SDHP over $G = E(\mathbb{F}_{q^n})$ $\mathcal{F} = \{P \in E(\mathbb{F}_{q^n}) : P = (x_p, y_p), x_p \in \mathbb{F}_q\}$

Vanessa VITSE (UVSQ)

An oracle-assisted SDHP-solving algorithm

- **(**) learning phase: ask the oracle to compute Q = [d]P for each $P \in \mathcal{F}$
- **2** self-randomization: given a challenge X, pick a random integer r coprime to the order of G and compute $X_r = [r]X$
- **③** check if X_r can be written as a sum of *m* points of \mathcal{F} : $X_r = \sum_{i=1}^m P_i$
- if X_r is not decomposable, go back to step 2; else output $Y = [s] (\sum_{i=1}^{m} Q_i)$ where $s = r^{-1} \mod |G|$.

< 回 ト < 三 ト < 三 ト

Solving SDHP over $G = E(\mathbb{F}_{q^n})$ $\mathcal{F} = \{P \in E(\mathbb{F}_{q^n}) : P = (x_p, y_p), x_p \in \mathbb{F}_q\}$

An oracle-assisted SDHP-solving algorithm

- **(**) learning phase: ask the oracle to compute Q = [d]P for each $P \in \mathcal{F}$
- **2** self-randomization: given a challenge X, pick a random integer r coprime to the order of G and compute $X_r = [r]X$
- **③** check if X_r can be written as a sum of *m* points of \mathcal{F} : $X_r = \sum_{i=1}^m P_i$
- if X_r is not decomposable, go back to step 2; else output $Y = [s] (\sum_{i=1}^{m} Q_i)$ where $s = r^{-1} \mod |G|$.

Some complexities over \mathbb{F}_{q^n}

Degree of the extension field \mathbb{F}_{q^n}	4 <i>n</i>	5 <i>n</i>
Oracle calls	$O(q^{n/4})$	$O(q^{n/5})$
Decomposition cost	$Poly(\log q)$	$ ilde{O}(q^{n/5})$
Overall complexity	$O(q^{n/4})$	$ ilde{O}(q^{n/5})$