Elliptic Curve Discrete Logarithm Problem

Vanessa VITSE

Université de Versailles Saint-Quentin, Laboratoire PRISM

October 19, 2009

Motivations

Discrete logarithm problem (DLP)

Given G group and $g, h \in G$, find - when it exists - an integer x s.t.

$$
h=g^{x}
$$

Many cryptosystems rely on the hardness of this problem:

- Diffie-Hellman key exchange protocol
- Elgamal encryption and signature scheme, DSA
- pairing-based cryptography: IBE, BLS short signature scheme...

Hardness of DLP

It depends of the choice of G :
(1) G subgroup of $(\mathbb{Z} / n \mathbb{Z},+)$: polynomial complexity with extended Euclid algorithm
(2) G subgroup of $\left(\mathbb{F}_{q}^{*}, \times\right)\left(q=p^{n}\right)$: subexponential complexity with index calculus

- $O\left(L_{q}(1 / 3)\right)$ complexity with FFS (resp. NFS) for small (resp. larger) characteristic, where $L_{q}(\nu, c)=e^{c(\log q)^{\nu}(\log \log q)^{1-\nu}}$
- key sizes needed: $\simeq 1900$ bits
(3) G subgroup of $\left(E\left(\mathbb{F}_{p^{n}}\right),+\right)$:
exponential complexity (in most cases) for known algorithms
- $E\left(\mathbb{F}_{p}\right)$ (p prime) or $E\left(\mathbb{F}_{2^{n}}\right)$ are now standards (FIPS 186-3), and $E\left(\mathbb{F}_{p^{n}}\right)$ used in many protocols
- key sizes needed: $\simeq 160$ bits

Generic attacks

Definition

Generic algorithm: only makes use of the group law but not the specific description of G
\hookrightarrow formal definition: oracle calls

Generic attacks

Definition

Generic algorithm: only makes use of the group law but not the specific description of G
\hookrightarrow formal definition: oracle calls

Lower bound (Shoup)

A generic algorithm that solves the DLP has a complexity of at least

$$
\Omega\left(\max \left(\alpha_{i} \sqrt{p_{i}}\right)\right)
$$

where $\# G=\prod_{i} p_{i}^{\alpha_{i}}, p_{i}$ primes.
How to achieve the lower bound?
(1) Pohlig-Hellman reduction
(2) Shanks's "Baby Step Giant Step" or "Pollard- ρ " algorithm

DLP on elliptic curves over finite fields (ECDLP)

Question

Are there known algorithms faster than generic methods for solving the ECDLP?

DLP on elliptic curves over finite fields (ECDLP)

Question

Are there known algorithms faster than generic methods for solving the ECDLP?

Some answers...

- No in general
- Specific methods work in some cases:
supersingular curves: transfer to $\mathbb{F}_{q^{k}}^{*}$ via pairings anomalous curves: lift to $E\left(\mathbb{Q}_{p}\right)$
some curves over $\mathbb{F}_{q^{n}}$: transfer to $J_{\mathcal{C}}\left(\mathbb{F}_{q}\right)$ where \mathcal{C} is a genus $g>1$ curve via Weil descent

An index calculus method over $E\left(\mathbb{F}_{q^{n}}\right)$

Original algorithm (Gaudry, Diem)

Complexity of DLP over $E\left(\mathbb{F}_{q^{n}}\right)$ in $\tilde{O}\left(q^{2-\frac{2}{n}}\right)$ but with hidden constant exponential in n^{2}

- faster than generic methods when $n \geq 3$ and $\log q>C . n$
- subexponential complexity when $n=\Theta(\sqrt{\log q})$

An index calculus method over $E\left(\mathbb{F}_{q^{n}}\right)$

Original algorithm (Gaudry, Diem)

Complexity of DLP over $E\left(\mathbb{F}_{q^{n}}\right)$ in $\tilde{O}\left(q^{2-\frac{2}{n}}\right)$ but with hidden constant exponential in n^{2}

- faster than generic methods when $n \geq 3$ and $\log q>C . n$
- subexponential complexity when $n=\Theta(\sqrt{\log q})$

Our variant

Complexity in $\tilde{O}\left(q^{2}\right)$ but with a better dependency in n

- better than generic methods when $n \geq 5$ and $\log q>c . n$
- better than Gaudry and Diem's method when $\log q<c^{\prime} \cdot n^{2} \log n$

An index calculus method over $E\left(\mathbb{F}_{q^{n}}\right)$

Original algorithm (Gaudry, Diem)

Complexity of DLP over $E\left(\mathbb{F}_{q^{n}}\right)$ in $\tilde{O}\left(q^{2-\frac{2}{n}}\right)$ but with hidden constant exponential in n^{2}

- faster than generic methods when $n \geq 3$ and $\log q>C . n$
- subexponential complexity when $n=\Theta(\sqrt{\log q})$

Our variant

Complexity in $\tilde{O}\left(q^{2}\right)$ but with a better dependency in n

- better than generic methods when $n \geq 5$ and $\log q>c . n$
- better than Gaudry and Diem's method when $\log q<c^{\prime} \cdot n^{2} \log n$

In practice...

The original algorithm can realistically be implemented only for $n \leq 4$, whereas our variant is working for $n=5$.

Basic form of the index calculus method

Discrete logarithm problem (DLP)

G finite group, given $h, g \in G$ such that $h=[x] g$, recover the secret x.

Basic outline

(1) choice of a factor base: $\mathcal{F}=\left\{g_{1}, \ldots, g_{N}\right\} \subset G$

O relation search: decompose $\left[a_{i}\right] g+\left[b_{i}\right] h\left(a_{i}, b_{i}\right.$ random) into \mathcal{F}

$$
\left[a_{i}\right] g+\left[b_{i}\right] h=\sum_{j=1}^{N}\left[c_{i, j}\right] g_{j}
$$

- linear algebra: once k relations found $(k>N)$ construct the matrices $A=\left(\begin{array}{ll}a_{i} & b_{i}\end{array}\right)_{1 \leq i \leq k}$ and $M=\left(c_{i, j}\right)_{1 \leq i \leq k} 1 \leq N$ find $v=\left(v_{1}, \ldots, v_{k}\right) \in \operatorname{ker}\left({ }^{t} M\right)$ s.t. $v A \neq 0 \bmod r$.
- solution of DLP : $x=-\left(\sum_{i} a_{i} v_{i}\right) /\left(\sum_{i} b_{i} v_{i}\right) \bmod r$.

Basic example in \mathbb{F}_{p}^{*} (p prime)

Discrete logarithm over \mathbb{F}_{101}^{*}
Let $h \in \mathbb{F}_{101}^{*}=\langle g\rangle$ where $g=11$ and $h=82$ Find $x \in[0 ; 100]$ such that $h=g^{x} \bmod 101$

Basic example in \mathbb{F}_{p}^{*} (p prime)

Discrete logarithm over \mathbb{F}_{101}^{*}
Let $h \in \mathbb{F}_{101}^{*}=\langle g\rangle$ where $g=11$ and $h=82$ Find $x \in[0 ; 100]$ such that $h=g^{x} \bmod 101$
(1) Factor base :

$$
\mathcal{F}=\{2 ; 3\}
$$

Basic example in \mathbb{F}_{p}^{*} (p prime)

Discrete logarithm over \mathbb{F}_{101}^{*}
Let $h \in \mathbb{F}_{101}^{*}=\langle g\rangle$ where $g=11$ and $h=82$ Find $x \in[0 ; 100]$ such that $h=g^{x} \bmod 101$
(1) Factor base :
$\mathcal{F}=\{2 ; 3\}$
(2) Relation search :

$$
\begin{aligned}
& h g^{2}=24=2^{3} \times 3 \\
& h^{2} g=32=2^{5} \\
& h^{3}=9=3^{2}
\end{aligned}
$$

Basic example in \mathbb{F}_{p}^{*} (p prime)

Discrete logarithm over \mathbb{F}_{101}^{*}

Let $h \in \mathbb{F}_{101}^{*}=\langle g\rangle$ where $g=11$ and $h=82$ Find $x \in[0 ; 100]$ such that $h=g^{x} \bmod 101$
(1) Factor base :

$$
\mathcal{F}=\{2 ; 3\}
$$

$$
\text { (3) Linear algebra: } \quad M
$$

$$
\left(\begin{array}{ll}
2 & 1 \\
1 & 2 \\
0 & 3
\end{array}\right)\binom{1}{x}=\overbrace{\left(\begin{array}{ll}
3 & 1 \\
5 & 0 \\
0 & 2
\end{array}\right)}^{\binom{\log _{g} 2}{\log _{g} 3} \text { and }\left(\begin{array}{lll}
10 & -6 & -5
\end{array}\right) \in \operatorname{ker}^{t} M}
$$

Basic example in \mathbb{F}_{p}^{*} (p prime)

Discrete logarithm over \mathbb{F}_{101}^{*}

Let $h \in \mathbb{F}_{101}^{*}=\langle g\rangle$ where $g=11$ and $h=82$
Find $x \in[0 ; 100]$ such that $h=g^{x} \bmod 101$
(1) Factor base :

$$
\mathcal{F}=\{2 ; 3\}
$$

$$
\text { (3) Linear algebra: } \quad M
$$

$$
\left(\begin{array}{ll}
2 & 1 \\
1 & 2 \\
0 & 3
\end{array}\right)\binom{1}{x}=\overbrace{\left(\begin{array}{ll}
3 & 1 \\
5 & 0 \\
0 & 2
\end{array}\right)}^{\binom{\log _{g} 2}{\log _{g} 3} \text { and }\left(\begin{array}{lll}
10 & -6 & -5
\end{array}\right) \in \operatorname{ker}^{t} M}
$$

(9) Solution:

$$
17 x=14 \bmod 100 \Rightarrow x=42
$$

How to find relations ?

(1) $G \subset \mathbb{F}_{p}^{*}, p$ prime: use the prime factor decomposition of a representant in]-p/2; $p / 2[$

$$
\mathcal{F}=\{\text { prime numbers smaller than } B\}
$$

(2) $G \subset \mathbb{F}_{p^{n}}^{*}$: consider $\mathbb{F}_{p^{n}}$ as $\mathbb{F}_{p}[X] /(f(X))$ and use the irreducible factor decomposition of a representant in $\mathbb{F}_{p}[X]$
$\mathcal{F}=\{$ irreducible polynomials of degree smaller than $B\}$
(3) $G \subset J_{\mathcal{C}}\left(\mathbb{F}_{q}\right), \mathcal{C}$ hyperelliptic curve of genus $g>1$
$\mathcal{F}=\{$ prime reduced divisors of weight smaller than $B\}$
(c) $G \subset E\left(\mathbb{F}_{q}\right)$??

Remarks on the index calculus

Trade-off for the smoothness bound B

- if B too small, very few elements are decomposable
- if B too large, many relations needed and expensive linear algebra step

Linear algebra

- the matrix M usually has a specific shape (very sparse, coefficients located mainly in some parts of M...)
- use of adequate linear algebra tools: structured Gaussian elimination, Lanczos, Wiedemann...

Complexity

- for an optimal value of B, the outlined techniques yield a $O(L(1 / 2))$ complexity
- more sophisticated methods (NFS/FFS) use a more elaborate relation search and have a $O(L(1 / 3))$ complexity

Index calculus on $E\left(\mathbb{F}_{q^{n}}\right)$

ECDLP

Given $P \in E\left(\mathbb{F}_{q^{n}}\right)$ and $Q \in\langle P\rangle$, find x such that $Q=[x] P$

Looking for specific relations

Check whether a given random combination $R=[a] P+[b] Q$ can be decomposed as $R=P_{1}+\ldots+P_{m}$, for a fixed number m

Index calculus on $E\left(\mathbb{F}_{q^{n}}\right)$

ECDLP

Given $P \in E\left(\mathbb{F}_{q^{n}}\right)$ and $Q \in\langle P\rangle$, find x such that $Q=[x] P$

Looking for specific relations

Check whether a given random combination $R=[a] P+[b] Q$ can be decomposed as $R=P_{1}+\ldots+P_{m}$, for a fixed number m

Main idea: Weil restriction

- write $\mathbb{F}_{q^{n}}$ as $\mathbb{F}_{q}[t] /(f(t))$ where f irreducible of degree n
- convenient choice of $\mathcal{F}=\left\{P=(x, y) \in E\left(\mathbb{F}_{q^{n}}\right): x \in \mathbb{F}_{q}, y \in \mathbb{F}_{q^{n}}\right\}$
- want to find m points $P_{i}=\left(x_{P_{i}}, y_{P_{i}}\right)$ s.t. $x_{P_{i}}=x_{0, P_{i}}$, $y_{P_{i}}=y_{0, P_{i}}+y_{1, P_{i}} t+\ldots+y_{n-1, P_{i}} t^{n-1}$ and $R=P_{1}+\ldots+P_{m}$ \rightsquigarrow solve a huge system of $2 n$ equations in $m(n+1)$ variables over \mathbb{F}_{q}

Index calculus on $E\left(\mathbb{F}_{q^{n}}\right)$

Second idea

Get rid of the variables $y p_{i}$ by using Semaev's summation polynomials \leadsto system of n equations in m variables over \mathbb{F}_{q}

Index calculus on $E\left(\mathbb{F}_{q^{n}}\right)$

Second idea

Get rid of the variables $y p_{i}$ by using Semaev's summation polynomials \leadsto system of n equations in m variables over \mathbb{F}_{q}

Semaev's summation polynomials

Let E be an elliptic curve over K, with reduced Weierstrass equation $y^{2}=x^{3}+a x+b$.
The m-th summation polynomial is an irreducible symmetric polynomial $f_{m} \in K\left[X_{1}, \ldots, X_{m}\right]$ such that given
$P_{1}=\left(x_{P_{1}}, y_{P_{1}}\right), \ldots, P_{m}=\left(x_{P_{m}}, y_{P_{m}}\right) \in E(\bar{K}) \backslash\{O\}$, we have

$$
f_{m}\left(x_{P_{1}}, \ldots, x_{P_{m}}\right)=0 \Leftrightarrow \exists \epsilon_{1}, \ldots, \epsilon_{m} \in\{1,-1\}, \epsilon_{1} P_{1}+\ldots+\epsilon_{m} P_{m}=O
$$

Computation of Semaev's summation polynomials

(1) f_{m} are uniquely determined by induction:

$$
\begin{aligned}
& f_{2}\left(X_{1}, X_{2}\right)=X_{1}-X_{2} \\
& f_{3}\left(X_{1}, X_{2}, X_{3}\right)=\left(X_{1}-X_{2}\right)^{2} X_{3}^{2}-2\left(\left(X_{1}+X_{2}\right)\left(X_{1} X_{2}+a\right)+2 b\right) X_{3} \\
& \\
& +\left(X_{1} X_{2}-a\right)^{2}-4 b\left(X_{1}+X_{2}\right)
\end{aligned}
$$

and for $m \geq 4$ and $1 \leq j \leq m-3$ by

$$
\begin{aligned}
f_{m}\left(X_{1}, X_{2}, \ldots, X_{m}\right)=\operatorname{Res}_{X}\left(f _ { m - j } \left(X_{1}, X_{2}, \ldots,\right.\right. & \left.X_{m-j-1}, X\right) \\
& \left.f_{j+2}\left(X_{m-j}, \ldots, X_{m}, X\right)\right)
\end{aligned}
$$

(2) $\operatorname{deg}_{X_{i}} f_{m}=2^{m-2} \Rightarrow$ only computable for small values of m

Index calculus on $E\left(\mathbb{F}_{q^{n}}\right)$

Back to decomposition computation

(1) goal: solve the equation
$f_{m+1}\left(x_{P_{1}}, \ldots, x_{P_{m}}, x_{R}\right)=0$, where unknowns are $x_{P_{1}}, \ldots, x_{P_{m}} \in \mathbb{F}_{q}$
(2) express the equation in terms of the elementary symmetric polynomials e_{1}, \ldots, e_{m} of the variables $x_{P_{1}}, \ldots, x_{P_{m}}$:

$$
e_{k}=\sum_{1 \leq i_{1} \leq \ldots \leq i_{k} \leq m} x_{P_{i_{1}}} \ldots x_{P_{i_{k}}}
$$

(3) Weil restriction: sort according to the powers of t

$$
f_{m+1}\left(x_{P_{1}}, \ldots, x_{P_{m}}, x_{R}\right)=0 \Leftrightarrow \sum_{i=0}^{n-1} \varphi_{i}\left(e_{1}, \ldots, e_{m}\right) t^{i}=0
$$

\rightsquigarrow system of n polynomial equations of total degree 2^{m-1} in m unknowns

Gaudry's original algorithm

Choice of m

$m=n$ where n is the degree of the extension field

Gaudry's original algorithm

Choice of m

$m=n$ where n is the degree of the extension field

Relation step

- system of n polynomial equations in n variables, total degree 2^{n-1} generically of dimension 0 standard techniques: Gröbner basis for lexicographic order complexity is polynomial in $\log q$ but over-exponential in n
- Probability of decomposition as a sum of n points:

$$
\frac{\#\left(\mathcal{F}^{n} / \mathfrak{S}_{n}\right)}{\# E\left(\mathbb{F}_{q^{n}}\right)} \simeq \frac{q^{n}}{n!} \frac{1}{q^{n}}=\frac{1}{n!}
$$

\Rightarrow expected numbers of trials to get one relation is $n!$

- for a fixed n, complexity of the relation search step: $\tilde{O}(q)$

Gaudry's original algorithm

Linear algebra step

- sparse matrix : n non-zero entries per row
- complexity in $\tilde{O}\left(q^{2}\right)$ using Lanczos algorithm
\Rightarrow total complexity of Gaudry's method in $\tilde{O}\left(q^{2}\right)$

Gaudry's original algorithm

Linear algebra step

- sparse matrix : n non-zero entries per row
- complexity in $\tilde{O}\left(q^{2}\right)$ using Lanczos algorithm
\Rightarrow total complexity of Gaudry's method in $\tilde{O}\left(q^{2}\right)$

Improvement

- Thériault's "double large prime" technique: rebalance the complexity of the two steps
- final complexity in $\tilde{O}\left(q^{2-2 / n}\right)$
\rightarrow better than generic methods for large q as soon as $n \geq 3$
- the hidden constant is huge and grows very fast with n
\rightarrow not practically efficient

A toy example over $\mathbb{F}_{101^{2}} \simeq \mathbb{F}_{101}[t] /\left(t^{2}+t+1\right)$

- $E: y^{2}=x^{3}+(1+16 t) x+(23+43 t)$ s.t. $\# E=10273$
- random points:
$P=(71+85 t, 82+47 t), Q=(81+77 t, 61+71 t)$ \rightarrow find x s.t. $Q=[x] P$

A toy example over $\mathbb{F}_{101^{2}} \simeq \mathbb{F}_{101}[t] /\left(t^{2}+t+1\right)$

- $E: y^{2}=x^{3}+(1+16 t) x+(23+43 t)$ s.t. $\# E=10273$
- random points:
$P=(71+85 t, 82+47 t), Q=(81+77 t, 61+71 t)$
\rightarrow find x s.t. $Q=[x] P$
- random combination of P and Q :

$$
R=[5962] P+[537] Q=(58+68 t, 68+17 t)
$$

A toy example over $\mathbb{F}_{101^{2}} \simeq \mathbb{F}_{101}[t] /\left(t^{2}+t+1\right)$

- $E: y^{2}=x^{3}+(1+16 t) x+(23+43 t)$ s.t. $\# E=10273$
- random points:

$$
P=(71+85 t, 82+47 t), Q=(81+77 t, 61+71 t)
$$

\rightarrow find x s.t. $Q=[x] P$

- random combination of P and Q :

$$
R=[5962] P+[537] Q=(58+68 t, 68+17 t)
$$

- use 3-rd "symmetrized" Semaev polynomial and Weil restriction:

$$
\left.\begin{array}{rl}
& \left(e_{1}^{2}-4 e_{2}\right) x_{R}^{2}-2\left(e_{1}\left(e_{2}+a\right)+2 b\right) x_{R}+\left(e_{2}-a\right)^{2}-4 b e_{1}=0 \\
\Leftrightarrow & (32 t+53) e_{1}^{2}+(66 t+86) e_{1} e_{2}+(12 t+49) e_{1}+e_{2}^{2} \\
+(42 t+89) e_{2}+88 t+45=0
\end{array}\right\} \begin{aligned}
& \left(\begin{array}{l}
53 e_{1}^{2}+86 e_{1} e_{2}+49 e_{1}+e_{2}^{2}+89 e_{2}+45=0 \\
32 e_{1}^{2}+66 e_{1} e_{2}+12 e_{1}+42 e_{2}+88=0
\end{array}\right.
\end{aligned}
$$

A toy example over $\mathbb{F}_{101^{2}} \simeq \mathbb{F}_{101}[t] /\left(t^{2}+t+1\right)$

$$
\begin{aligned}
& I=\left\langle 53 e_{1}^{2}+86 e_{1} e_{2}+49 e_{1}+e_{2}^{2}+89 e_{2}+45,\right. \\
&\left.32 e_{1}^{2}+66 e_{1} e_{2}+12 e_{1}+42 e_{2}+88\right\rangle
\end{aligned}
$$

- Gröbner basis of $/$ for lex $_{e_{1}>e_{2}}$: $G=\left\{e_{1}+86 e_{2}^{3}+88 e_{2}^{2}+58 e_{2}+99, e_{2}^{4}+50 e_{2}^{3}+85 e_{2}^{2}+73 e_{2}+17\right\}$

A toy example over $\mathbb{F}_{101^{2}} \simeq \mathbb{F}_{101}[t] /\left(t^{2}+t+1\right)$

$$
I=\left\langle 53 e_{1}^{2}+86 e_{1} e_{2}+49 e_{1}+e_{2}^{2}+89 e_{2}+45,\right.
$$

$$
\left.32 e_{1}^{2}+66 e_{1} e_{2}+12 e_{1}+42 e_{2}+88\right\rangle
$$

- Gröbner basis of $/$ for lex $_{e_{1}>e_{2}}$: $G=\left\{e_{1}+86 e_{2}^{3}+88 e_{2}^{2}+58 e_{2}+99, e_{2}^{4}+50 e_{2}^{3}+85 e_{2}^{2}+73 e_{2}+17\right\}$
- $V(G)=\{(80,72),(97,68)\}$
(1) solution 1: $\left(e_{1}, e_{2}\right)=(80,72) \Rightarrow\left(x_{P_{1}}, x_{P_{2}}\right)=(5,75)$

$$
\Rightarrow P_{1}=(5,89+71 t) ; P_{2}=(75,57+74 t) \text { and } P_{1}+P_{2}=R
$$

(2) solution 2: $\left(e_{1}, e_{2}\right)=(97,68) \Rightarrow\left(x_{P_{1}}, x_{P_{2}}\right)=(19,78)$

$$
\Rightarrow P_{1}=(19,35+9 t) ; P_{2}=(78,75+4 t) \text { and }-P_{1}+P_{2}=R
$$

A toy example over $\mathbb{F}_{101^{2}} \simeq \mathbb{F}_{101}[t] /\left(t^{2}+t+1\right)$

$I=\left\langle 53 e_{1}^{2}+86 e_{1} e_{2}+49 e_{1}+e_{2}^{2}+89 e_{2}+45\right.$,

$$
\left.32 e_{1}^{2}+66 e_{1} e_{2}+12 e_{1}+42 e_{2}+88\right\rangle
$$

- Gröbner basis of $/$ for lex $_{e_{1}>e_{2}}$: $G=\left\{e_{1}+86 e_{2}^{3}+88 e_{2}^{2}+58 e_{2}+99, e_{2}^{4}+50 e_{2}^{3}+85 e_{2}^{2}+73 e_{2}+17\right\}$
- $V(G)=\{(80,72),(97,68)\}$
(1) solution 1: $\left(e_{1}, e_{2}\right)=(80,72) \Rightarrow\left(x_{P_{1}}, x_{P_{2}}\right)=(5,75)$

$$
\Rightarrow P_{1}=(5,89+71 t) ; P_{2}=(75,57+74 t) \text { and } P_{1}+P_{2}=R
$$

(2) solution 2: $\left(e_{1}, e_{2}\right)=(97,68) \Rightarrow\left(x_{P_{1}}, x_{P_{2}}\right)=(19,78)$

$$
\Rightarrow P_{1}=(19,35+9 t) ; P_{2}=(78,75+4 t) \text { and }-P_{1}+P_{2}=R
$$

- How many relations ?
$\# \mathcal{F}=104 \Rightarrow 105$ relations needed

A toy example over $\mathbb{F}_{101^{2}} \simeq \mathbb{F}_{101}[t] /\left(t^{2}+t+1\right)$

$I=\left\langle 53 e_{1}^{2}+86 e_{1} e_{2}+49 e_{1}+e_{2}^{2}+89 e_{2}+45\right.$,

$$
\left.32 e_{1}^{2}+66 e_{1} e_{2}+12 e_{1}+42 e_{2}+88\right\rangle
$$

- Gröbner basis of $/$ for lex $_{e_{1}>e_{2}}$: $G=\left\{e_{1}+86 e_{2}^{3}+88 e_{2}^{2}+58 e_{2}+99, e_{2}^{4}+50 e_{2}^{3}+85 e_{2}^{2}+73 e_{2}+17\right\}$
- $V(G)=\{(80,72),(97,68)\}$
(1) solution 1: $\left(e_{1}, e_{2}\right)=(80,72) \Rightarrow\left(x_{P_{1}}, x_{P_{2}}\right)=(5,75)$

$$
\Rightarrow P_{1}=(5,89+71 t) ; P_{2}=(75,57+74 t) \text { and } P_{1}+P_{2}=R
$$

(2) solution 2: $\left(e_{1}, e_{2}\right)=(97,68) \Rightarrow\left(x_{P_{1}}, x_{P_{2}}\right)=(19,78)$

$$
\Rightarrow P_{1}=(19,35+9 t) ; P_{2}=(78,75+4 t) \text { and }-P_{1}+P_{2}=R
$$

- How many relations ?
$\# \mathcal{F}=104 \Rightarrow 105$ relations needed
- Linear algebra $\rightarrow x=85$

Drawbacks of the original algorithm

Complexity of the system resolution

$c(n, q)=$ cost of the resolution of a multivariate polynomial system of n equations of total degree 2^{n-1} in n variables over \mathbb{F}_{q}
(1) Diem's analysis: ideal generically of dimension 0 and of degree $2^{n(n-1)}$
(2) Resolution of with resultants:

$$
c(n, q) \leq \operatorname{Poly}\left(n!2^{n(n-1)} \log q\right)
$$

(3) Resolution with Gröbner basis and Faugère's algorithms (F4, F5):
can only marginally improve this upper-bound because of the degree of the ideal (cf FGLM complexity)
\rightarrow for $n=5, \operatorname{deg} I=2^{20}$ meaning we need to compute the roots of an univariate polynomial of degree 1048576
adding the field equations $x^{q}-x=0$ is not practical for large q.
\rightarrow huge constant because of the resolution of the polynomial system

Our variant

Choose $m=n-1$

- compute the n-th summation polynomial instead of the $(n+1)$-th
- solve system of n equations in $(n-1)$ unknowns
- $(n-1)!q$ expected numbers of trials to get one relation

Computation speed-up

(1) The system to be solved is generically overdetermined:
in general there is no solution over $\overline{\mathbb{F}_{q}}: I=\langle 1\rangle$ exceptionally: very few solutions (almost always one) \rightarrow the Gröbner basis of the ideal is composed of univariate polynomials of degree 1
(2) Adapted techniques to solve the system:
once the Gröbner basis is computed for degrevlex the resolution of the system is immediate (FGLM not needed)
"F4-like" algorithm more convenient than F5

A toy example over $\mathbb{F}_{101^{3}} \simeq \mathbb{F}_{101}[t] /\left(t^{3}+t+1\right)$

- $E: y^{2}=x^{3}+\left(44+52 t+60 t^{2}\right) x+\left(58+87 t+74 t^{2}\right), \# E=1029583$
- random points:
$P=\left(75+24 t+84 t^{2}, 61+18 t+92 t^{2}\right), Q=\left(28+97 t+35 t^{2}, 48+64 t+7 t^{2}\right)$
\rightarrow find x s.t. $Q=[x] P$

A toy example over $\mathbb{F}_{101^{3}} \simeq \mathbb{F}_{101}[t] /\left(t^{3}+t+1\right)$

- $E: y^{2}=x^{3}+\left(44+52 t+60 t^{2}\right) x+\left(58+87 t+74 t^{2}\right), \# E=1029583$
- random points:
$P=\left(75+24 t+84 t^{2}, 61+18 t+92 t^{2}\right), Q=\left(28+97 t+35 t^{2}, 48+64 t+7 t^{2}\right)$
\rightarrow find x s.t. $Q=[x] P$
- random combination of P and Q :

$$
R=[236141] P+[381053] Q=\left(21+94 t+16 t^{2}, 41+34 t+80 t^{2}\right)
$$

A toy example over $\mathbb{F}_{101^{3}} \simeq \mathbb{F}_{101}[t] /\left(t^{3}+t+1\right)$

- $E: y^{2}=x^{3}+\left(44+52 t+60 t^{2}\right) x+\left(58+87 t+74 t^{2}\right), \# E=1029583$
- random points:
$P=\left(75+24 t+84 t^{2}, 61+18 t+92 t^{2}\right), Q=\left(28+97 t+35 t^{2}, 48+64 t+7 t^{2}\right)$
\rightarrow find x s.t. $Q=[x] P$
- random combination of P and Q :

$$
R=[236141] P+[381053] Q=\left(21+94 t+16 t^{2}, 41+34 t+80 t^{2}\right)
$$

- use 3-rd "symmetrized" Semaev polynomial and Weil restriction:

$$
\begin{aligned}
& \left(e_{1}^{2}-4 e_{2}\right) x_{R}^{2}-2\left(e_{1}\left(e_{2}+a\right)+2 b\right) x_{R}+\left(e_{2}-a\right)^{2}-4 b e_{1}=0 \\
\Leftrightarrow & \left(61 t^{2}+78 t+59\right) e_{1}^{2}+\left(69 t^{2}+14 t+59\right) e_{1} e_{2}+\left(40 t^{2}+20 t+57\right) e_{1} \\
& +e_{2}^{2}+\left(40 t^{2}+89 t+80\right) e_{2}+12 t^{2}+11 t+77=0 \\
\Leftrightarrow & \left\{\begin{array}{l}
59 e_{1}^{2}+59 e_{1} e_{2}+57 e_{1}+e_{2}^{2}+80 e_{2}+77=0 \\
78 e_{1}^{2}+14 e_{1} e_{2}+20 e_{1}+89 e_{2}+11=0 \\
61 e_{1}^{2}+69 e_{1} e_{2}+40 e_{1}+40 e_{2}+12=0
\end{array}\right.
\end{aligned}
$$

A toy example over $\mathbb{F}_{101^{3}} \simeq \mathbb{F}_{101}[t] /\left(t^{3}+t+1\right)$

$$
I=\left\langle 59 e_{1}^{2}+59 e_{1} e_{2}+57 e_{1}+e_{2}^{2}+80 e_{2}+77,\right.
$$

$$
\begin{aligned}
& 78 e_{1}^{2}+14 e_{1} e_{2}+ 20 e_{1}+89 e_{2}+11, \\
&\left.61 e_{1}^{2}+69 e_{1} e_{2}+40 e_{1}+40 e_{2}+12\right\rangle
\end{aligned}
$$

- Gröbner basis of I for degrevlex $e_{e_{1}>e_{2}}$:

$$
G=\left\{e_{1}+32, e_{2}+26\right\}
$$

A toy example over $\mathbb{F}_{101^{3}} \simeq \mathbb{F}_{101}[t] /\left(t^{3}+t+1\right)$

$$
\begin{aligned}
& I=\left\langle 59 e_{1}^{2}+59 e_{1} e_{2}+57 e_{1}+e_{2}^{2}+80 e_{2}+77,\right. \\
& 78 e_{1}^{2}+14 e_{1} e_{2}+20 e_{1}+89 e_{2}+11, \\
& \left.61 e_{1}^{2}+69 e_{1} e_{2}+40 e_{1}+40 e_{2}+12\right\rangle
\end{aligned}
$$

- Gröbner basis of I for degrevlex $e_{e_{1}>e_{2}}$: $G=\left\{e_{1}+32, e_{2}+26\right\}$
- $V(G)=\{(69,75)\}$
$\left(e_{1}, e_{2}\right)=(69,75) \Rightarrow\left(x_{P_{1}}, x_{P_{2}}\right)=(6,63)$
$\Rightarrow P_{1}=\left(6,35+93 t+77 t^{2}\right) ; P_{2}=\left(63,2+66 t+t^{2}\right)$ and $P_{1}+P_{2}=R$

A toy example over $\mathbb{F}_{101^{3}} \simeq \mathbb{F}_{101}[t] /\left(t^{3}+t+1\right)$

$I=\left\langle 59 e_{1}^{2}+59 e_{1} e_{2}+57 e_{1}+e_{2}^{2}+80 e_{2}+77\right.$,

$$
\begin{aligned}
& 78 e_{1}^{2}+14 e_{1} e_{2}+ 20 e_{1}+89 e_{2}+11, \\
&\left.61 e_{1}^{2}+69 e_{1} e_{2}+40 e_{1}+40 e_{2}+12\right\rangle
\end{aligned}
$$

- Gröbner basis of I for degrevlex $e_{e_{1}>e_{2}}$: $G=\left\{e_{1}+32, e_{2}+26\right\}$
- $V(G)=\{(69,75)\}$
$\left(e_{1}, e_{2}\right)=(69,75) \Rightarrow\left(x_{P_{1}}, x_{P_{2}}\right)=(6,63)$
$\Rightarrow P_{1}=\left(6,35+93 t+77 t^{2}\right) ; P_{2}=\left(63,2+66 t+t^{2}\right)$ and $P_{1}+P_{2}=R$
- How many relations ?
$\# \mathcal{F}=108 \Rightarrow 109$ relations needed

A toy example over $\mathbb{F}_{101^{3}} \simeq \mathbb{F}_{101}[t] /\left(t^{3}+t+1\right)$

$I=\left\langle 59 e_{1}^{2}+59 e_{1} e_{2}+57 e_{1}+e_{2}^{2}+80 e_{2}+77\right.$,

$$
\begin{aligned}
& 78 e_{1}^{2}+14 e_{1} e_{2}+ 20 e_{1}+89 e_{2}+11, \\
&\left.61 e_{1}^{2}+69 e_{1} e_{2}+40 e_{1}+40 e_{2}+12\right\rangle
\end{aligned}
$$

- Gröbner basis of I for degrevlex $e_{e_{1}>e_{2}}$: $G=\left\{e_{1}+32, e_{2}+26\right\}$
- $V(G)=\{(69,75)\}$
$\left(e_{1}, e_{2}\right)=(69,75) \Rightarrow\left(x_{P_{1}}, x_{P_{2}}\right)=(6,63)$
$\Rightarrow P_{1}=\left(6,35+93 t+77 t^{2}\right) ; P_{2}=\left(63,2+66 t+t^{2}\right)$ and $P_{1}+P_{2}=R$
- How many relations ?
$\# \mathcal{F}=108 \Rightarrow 109$ relations needed
- Linear algebra $\rightarrow x=370556$

Complexity of Gröbner basis computation

An available estimate of the complexity (Bardet, Faugère, Salvy)
Let $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle \subset K\left[X_{1}, \ldots, X_{n}\right]$ be a zero-dimensional and semi-regular ideal, with $\mathbf{m}>\mathbf{n}$. Then the total number of field arithmetic operations performed by F5 is bounded by

$$
O\left(\binom{n+d_{\text {reg }}}{n}^{\omega}\right)
$$

where

- $\omega<2.4$ (exponent in the complexity of matrix multiplication)
- degree of regularity $d_{\text {reg }}$ smaller than the Macaulay bound

$$
\sum_{i=1}^{m}\left(\operatorname{deg} f_{i}-1\right)+1
$$

Analysis of the variant

Complexity of our variant

- Cost of the resolution with Bardet et al. estimate:

$$
\tilde{O}\left(\binom{n 2^{n-2}}{n-1}^{\omega}\right)=\tilde{O}\left(\left(2^{(n-1)(n-2)} e^{n} n^{-1 / 2}\right)^{\omega}\right)
$$

- $(n-1)!q$ trials to get one relation and q relations needed

$$
\Rightarrow \tilde{O}\left((n-1)!q^{2}\left(2^{(n-1)(n-2)} e^{n} n^{-1 / 2}\right)^{\omega}\right)
$$

- Linear algebra step: $n-1$ non-zero entries per row $\Rightarrow \tilde{O}\left(n q^{2}\right)$ complexity \rightsquigarrow negligible compared to the relation search

Complexity of our variant

Main result

Let E be an elliptic curve defined over $\mathbb{F}_{q^{n}}$, there exists an algorithm to solve the DLP in E with asymptotic complexity

$$
\tilde{O}\left((n-1)!\left(2^{(n-1)(n-2)} e^{n} n^{-1 / 2}\right)^{\omega} q^{2}\right)
$$

where $\omega \leq 2.4$ is the exponent in the complexity of matrix multiplication.

Main improvement

Reminder of Faugère's algorithms

- F4: complete reduction of the polynomials but many critical pairs reduced to zero \Rightarrow computational waste
- F5: no reduction to zero (semi-regular system) but tails of polynomials not reduced \Rightarrow number of critical pairs still not optimal

An "F4-like" algorithm without reduction to zero

- incremental nature of F5 less relevant for overdetermined systems
- key observation: all systems considered during the relation step have the same shape
- possible to remove all reductions to zero in latter F4 computations by observing the course of the first execution
- this approach gives better results than F5

Main improvement

Quick outline of the "F4-like" algorithm

(1) Run a standard F4 algorithm on the first system, but: at each iteration, store the list of selected critical pairs.
if there is a reduction to zero, remove the corresponding critical pair from the list
(2) For each subsequent system, run a F4 computation but: do not maintain nor update a queue of untreated pairs. at each iteration, pick directly from the previously stored list the relevant pairs.

Second improvement

Symmetrized summation polynomials

- Semaev's summation polynomials are huge: $\operatorname{deg}_{X_{i}} f_{m}=2^{m-2} \rightsquigarrow$ difficult to compute (even for $m=5, f_{5}$ has 54777 monomials)
- rewriting $f_{m}\left(x_{1}, \ldots, x_{m}\right)$ in terms of the elementary symmetric polynomials is time-consuming
- faster and less memory-consuming to symmetrize between each resultant computation

Static Diffie Hellman problem

SDHP

G finite group, $P, Q \in G$ s.t. $Q=[d] P$ where d secret.
(1) SDHP-solving algorithm \mathcal{A} : given P, Q and a challenge $X \in G \rightarrow$ outputs [d]X

Static Diffie Hellman problem

SDHP

G finite group, $P, Q \in G$ s.t. $Q=[d] P$ where d secret.
(1) SDHP-solving algorithm \mathcal{A} : given P, Q and a challenge $X \in G \rightarrow$ outputs [d] X
(2) "oracle-assisted" SDHP-solving algorithm \mathcal{A} :

- learning phase:
any number of queries X_{1}, \ldots, X_{I} to an oracle $\rightarrow[d] X_{1}, \ldots,[d] X_{1}$ given a previously unseen challenge $X \rightarrow$ outputs [$d] X$

Static Diffie Hellman problem

SDHP

G finite group, $P, Q \in G$ s.t. $Q=[d] P$ where d secret.
(1) SDHP-solving algorithm \mathcal{A} : given P, Q and a challenge $X \in G \rightarrow$ outputs [d]X
(2) "oracle-assisted" SDHP-solving algorithm \mathcal{A} :

- learning phase:
any number of queries X_{1}, \ldots, X_{I} to an oracle $\rightarrow[d] X_{1}, \ldots,[d] X_{I}$ given a previously unseen challenge $X \rightarrow$ outputs $[d] X$

From decomposition into \mathcal{F} to oracle-assisted SDHP-solving algorithm $\mathcal{F}=\left\{P_{1}, \ldots, P_{l}\right\}$

- learning phase: ask $Q_{i}=[d] P_{i}$ for $i=1, \ldots, l$
- decompose the challenge X into the factor base: $X=\sum_{i}\left[c_{i}\right] P_{i}$
- answer $Y=\sum_{i}\left[c_{i}\right] Q_{i}$

Solving SDHP over $G=E\left(\mathbb{F}_{q^{n}}\right)$

$\mathcal{F}=\left\{P \in E\left(\mathbb{F}_{q^{n}}\right): P=\left(x_{p}, y_{p}\right), x_{p} \in \mathbb{F}_{q}\right\}$
An oracle-assisted SDHP-solving algorithm
(1) learning phase: ask the oracle to compute $Q=[d] P$ for each $P \in \mathcal{F}$
© self-randomization: given a challenge X, pick a random integer r coprime to the order of G and compute $X_{r}=[r] X$

- check if X_{r} can be written as a sum of m points of $\mathcal{F}: X_{r}=\sum_{i=1}^{m} P_{i}$
(0) if X_{r} is not decomposable, go back to step 2; else output $Y=[s]\left(\sum_{i=1}^{m} Q_{i}\right)$ where $s=r^{-1} \bmod |G|$.

Solving SDHP over $G=E\left(\mathbb{F}_{q^{n}}\right)$

$\mathcal{F}=\left\{P \in E\left(\mathbb{F}_{q^{n}}\right): P=\left(x_{p}, y_{p}\right), x_{p} \in \mathbb{F}_{q}\right\}$
An oracle-assisted SDHP-solving algorithm
(1) learning phase: ask the oracle to compute $Q=[d] P$ for each $P \in \mathcal{F}$
© self-randomization: given a challenge X, pick a random integer r coprime to the order of G and compute $X_{r}=[r] X$

- check if X_{r} can be written as a sum of m points of $\mathcal{F}: X_{r}=\sum_{i=1}^{m} P_{i}$
(-) if X_{r} is not decomposable, go back to step 2; else output $Y=[s]\left(\sum_{i=1}^{m} Q_{i}\right)$ where $s=r^{-1} \bmod |G|$.

Some complexities over $\mathbb{F}_{q^{n}}$

Degree of the extension field $\mathbb{F}_{q^{n}}$	$4 \mid n$	$5 \mid n$
Oracle calls	$O\left(q^{n / 4}\right)$	$O\left(q^{n / 5}\right)$
Decomposition cost	Poly $(\log q)$	$\tilde{O}\left(q^{n / 5}\right)$
Overall complexity	$O\left(q^{n / 4}\right)$	$\tilde{O}\left(q^{n / 5}\right)$

