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Background Generalities on DLP and motivations

Discrete logarithm problem

Discrete logarithm problem (DLP)

Given a group G and g , h ∈ G , find – when it exists – an integer x s.t.

h = g x

Difficulty is related to the group:

1 Generic attack: complexity in Ω(max(αi
√
pi )) if #G =

∏
i p

αi
i

2 G ⊂ (Z/nZ,+): solving DLP has polynomial complexity with
extended Euclid algorithm

3 G ⊂ (F∗q,×): index calculus method with complexity in Lq(1/3)
where Lq(α) = exp(c(log q)α(log log q)1−α).

4 G ⊂ (JacC(Fq),+): index calculus method asymptotically faster than
generic attacks, depending of the genus g > 2
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Background Generalities on DLP and motivations

Good candidates for DLP-based cryptosystems

P•

Q
•

−(P + Q)•

P + Q •

ECDLP: Given P ∈ E (Fq) and Q ∈ 〈P〉
find x such that Q = [x ]P

In general, no known attack better than generic
algorithms  shorter keys

Security (bits) Finite Field DLP ECDLP

80 1 248 160
96 1 776 192

112 2 432 224
128 3 248 256

Objective of this talk

Present a combined attack for curves over extension fields
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Background Weil descent

Transfer of the ECDLP via cover maps (Weil descent)

Let W = WFqn/Fq
(E ) be the Weil restriction of E|Fqn

elliptic curve.
Inclusion of a curve C|Fq

↪→W induces a cover map π : C(Fqn)→ E (Fqn).

1 transfer the DLP from 〈P〉 ⊂ E (Fqn) to JacC(Fq)

C(Fqn)

π

��
E (Fqn)

JacC(Fqn)
Tr // JacC(Fq)

JacE (Fqn) ' E (Fqn)

π∗

OO 66

ker(Tr ◦π∗) ∩ 〈P〉 = {OE}
⇒ g genus of C s.t. g ≥ n

2 use index calculus on JacC(Fq), complexity in

I Õ(g !q2−2/g ) if C is hyperelliptic with small genus g [Gaudry ’00]
I Õ(d!q2−2/(d−2)) if C has a small degree d plane model [Diem ’06]

Main difficulty: find a convenient curve C with a genus small enough
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Background Weil descent

The GHS technique

Goal: find fields F and F ′ s.t.

F ′ = Fqn · F = Fqn(C)
��

Fqn(E ) F = Fq(C)

Fqn(x)

Fqn

Fq(x)

Fq

Lift of Frobenius σ must exist on F ′, with fixed subfield F
Construction depends of the choice of x , i.e. of the equation for E
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Background Weil descent

The GHS technique

Goal: find fields F and F ′ s.t.

F ′

=
∏n−1

i=0 Fqn(Eσ
i
)

σ

��

Fqn(E ) F = F ′σ

Fqn(x)

σ
��

2

Fqn

σ
��

Fq(x)

Fq

No lift of Frobenius on Fqn(E ), but on index 2 subfield Fqn(x)

Construction depends of the choice of x , i.e. of the equation for E
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Background Weil descent

Magic number

F ′

2mFqn(E ) Fqn(Eσ) · · · Fqn(Eσ
n−1

)

Fqn(x)

2 2 2

m “magic number”: the genus g of F ′ depends essentially of
[F ′ : Fqn(x)] = 2m

For most elliptic curves E , m ' n → g(C) is of order 2n

For the few elliptic curves admitting a small genus cover C, use index
calculus methods on JacC(Fq)
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Background Index calculus for Jacobians of curves

Basic outline of index calculus

(G ,+) = 〈g〉 finite abelian group of prime order r , h ∈ G

1 Choice of a factor base: F = {g1, . . . , gN} ⊂ G

2 Relation search: decompose [ai ]g + [bi ]h (ai , bi random) into F

[ai ]g + [bi ]h =
N∑
j=1

[cij ]gj , where cij ∈ Z

3 Linear algebra: once k relations found (k ≥ N)

I construct the matrices A =
(
ai bi

)
1≤i≤k and M = (cij) 1≤i≤k

1≤j≤N

I find v = (v1, . . . , vk) ∈ ker(tM) such that vA 6=
(
0 0

)
mod r

I compute the solution of DLP: x = − (
∑

i aivi ) / (
∑

i bivi ) mod r
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Background Index calculus for Jacobians of curves

Adleman-DeMarrais-Huang’s index calculus

“Factorization” on the Jacobian variety of a hyperelliptic curve H

Proposition

Let D = (u, v) ∈ JacH(Fq). If u factorizes as
∏

j uj over Fq, then

Dj = (uj , vj) is in JacH(Fq), where vj = v mod uj

D =
∑

j Dj

Allows to apply index calculus [Enge-Gaudry]

Factor base: F = {(u, v) ∈ JacH(Fq) : u irreducible, deg u ≤ B}
Element [ai ]D0 + [bi ]D1 yields a relation if corresponding u
polynomial is B-smooth (easy to test)

Subexponential complexity in Lqg (1/2) when q →∞ and g = Ω(log q)
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Background Index calculus for Jacobians of curves

The small genus case

Gaudry’s algorithm for small genus hyperelliptic curves

Factor base: F = {(u, v) ∈ JacH(Fq) : deg u = 1} of size ' q

D = (u, v) decomposable ⇔ u splits over Fq

Probability of decomposition ' 1/g !

⇒ O(g !q) tests (relation search) + O(gq2) field operations (linear alg.)

Total cost: O((g2 log3 q)g !q + (g2 log q)q2)

For fixed genus g , relation search in Õ(q) vs linear algebra in Õ(q2)

resolution of the DLP in Õ(q2)
⇒ better than generic attacks as soon as g > 4

possible improvement by rebalancing the two phases with double large
prime variation: resolution in Õ(q2−2/g )
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Background Index calculus for Jacobians of curves

The small genus case

Gaudry’s algorithm for small genus hyperelliptic curves

Factor base: F = {(u, v) ∈ JacH(Fq) : deg u = 1} of size ' q

D = (u, v) decomposable ⇔ u splits over Fq

Probability of decomposition ' 1/g !

⇒ O(g !q) tests (relation search) + O(gq2) field operations (linear alg.)

Total cost: O((g2 log3 q)g !q + (g2 log q)q2)

For fixed genus g , relation search in Õ(q) vs linear algebra in Õ(q2)

resolution of the DLP in Õ(q2)

possible improvement by rebalancing the two phases with double large
prime variation: resolution in Õ(q2−2/g )

⇒ better than generic attacks as soon as g ≥ 3
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Background Decomposition attack

Index calculus on small dimension abelian varieties

Decomposition attack on DLP over A|Fq
, n-dimensional abelian variety

Gaudry’s method

1 Choose U ⊂ A dense affine subset and coord. (x1, . . . , xn, y1, . . . , ym)
on U s.t. Fq(A) algebraic extension of Fq(x1, . . . , xn)

2 Define factor base F = {P ∈ U : x2(P) = . . . = xn(P) = 0}
3 Decompose enough points of A as sum of n points of F using group

law over A ↔ solve a multivariate polynomial system (and check
rationality of solutions)

4 Extract the logarithms with sparse linear algebra

F should have ' q points

→ need O(q) relations

→ linear algebra in Õ(nq2)
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Background Decomposition attack

Index calculus on small dimension abelian varieties

Decomposition attack on DLP over A|Fq
, n-dimensional abelian variety

Gaudry’s method

1 Choose U ⊂ A dense affine subset and coord. (x1, . . . , xn, y1, . . . , ym)
on U s.t. Fq(A) algebraic extension of Fq(x1, . . . , xn)

2 Define factor base F = {P ∈ U : x2(P) = . . . = xn(P) = 0}
3 Decompose enough points of A as sum of n points of F using group

law over A ↔ solve a multivariate polynomial system (and check
rationality of solutions)

4 Extract the logarithms with sparse linear algebra

Rebalance with double large prime variation:
(heuristic) asymptotic complexity in Õ(q2−2/n) as q →∞, n fixed
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Background Decomposition attack

Index calculus on small dimension abelian varieties

Generalizes the classical index calculus on A = JacH(Fq) where H is
hyperelliptic with small genus g

Main application so far: A = WFqn/Fq
(E ) where E elliptic curve

defined over Fqn [Gaudry-Diem]

Practical difficulty

In general, polynomial systems arising from decompositions are huge
 find nice representations of A and clever reformulation of the
decompositions

For elliptic curves, use Semaev’s summation polynomials

For A = WFqn/Fq
(JacH(Fqn)): no equivalent of Semaev’s

polynomials, use reformulation by Nagao instead
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Decomposition attack on hyperelliptic curves Generalities

1 Background
Generalities on DLP and motivations
Weil descent
Index calculus for Jacobians of curves
Decomposition attack

2 Decomposition attack on hyperelliptic curves over extension fields
Generalities
New results

3 Cover and decomposition attacks

Vanessa VITSE (UVSQ) Cover and decomposition attacks 18 November 2011 16 / 33



Decomposition attack on hyperelliptic curves Generalities

The Riemann-Roch based approach of Nagao
C curve defined over Fqn of genus g with a unique point O at infinity.

Factor base

F = {DQ ∈ JacC(Fqn) : DQ ∼ (Q)− (O),Q ∈ C(Fqn), x(Q) ∈ Fq}

How to check if D can be decomposed ?

D +

ng∑
i=1

((Qi )− (O)) ∼ 0⇔ D +

ng∑
i=1

((Qi )− (O)) = div(f )

where f ∈ LD = L (ng(O)− D), Fqn -vector space of dim. (n − 1)g + 1

Set of decomp. of D parametrized by P(LD) ' P`, ` = (n − 1)g

(λ1, . . . , λ`) affine chart of P(LD) s.t. Qi 6= O for all i = 1, . . . , ng

Goal: determine λ1, . . . , λ` such that x(Qi ) ∈ Fq
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Decomposition attack on hyperelliptic curves Generalities

Nagao’s approach for hyperelliptic curves

Given the Mumford representation of D = (u, v) ∈ JacH(Fqn)

L (ng(OH)− D) = 〈u, xu, . . . , xm1u, y − v , x(y − v), . . . , xm2(y − v)〉

fλ1,...,λ`+1
(x , y) = u

m1∑
i=0

λ2i+1x
i + (y − v)

m2∑
i=0

λ2i+2x
i

Affine chart of P(LD)↔ λ`+1 = 1

Using equation of H, compute fλ1,...,λ`,1(x , y) · fλ1,...,λ`,1(x ,−y)/u
to get a new polynomial with roots x(Q1), . . . , x(Qng ):

Fλ1,...,λ`(x) = xng +

ng−1∑
i=0

ci (λ1, . . . , λ`)x
i

→ coefficient ci of x i is quadratic in the λi ∈ Fqn
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Decomposition attack on hyperelliptic curves Generalities

Nagao’s approach for hyperelliptic curves

Fλ1,...,λ`(x) = xng +
∑ng−1

i=0 ci (λ1, . . . , λ`)x
i with roots x(Q1), . . . , x(Qng )

→ Weil restriction of scalars: let Fqn = Fq(t) and write{
λi = λi ,0 + λi ,1t + · · ·+ λi ,n−1t

n−1

ci (λ1, . . . , λ`) =
∑n−1

j=0 ci ,j(λ1,0, . . . , λ`,n−1)t j

Then
Fλ1,...,λ` ∈ Fq[x ]⇔ ∀i ∈ {0, . . . , ng − 1},∀j ∈ {1, . . . , n − 1}, ci ,j = 0

Decomposition of D

solve a quadratic polynomial system of (n − 1)ng eq./var.

test if Fλ1,...,λ` is split in Fq[x ]

recover decomposition from roots of Fλ1,...,λ`
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Decomposition attack on hyperelliptic curves Generalities

Example for a genus 2 curve over F672 = F67[t]/(t2 − 2)

H : y2 = x5 + (50t + 66)x4 + (40t + 22)x3 + (65t + 23)x2 + (61t + 3)x + 43t + 6

Decomposition of
D = [x2 + (52t + 3)x + 21t + 2, (22t + 41)x + 25t + 42] ∈ JacH(F672 )

consider L(4(OH)− D) = 〈u(x), y − v(x), x u(x)〉

from fλ1,λ2,1(x , y) = x u(x) + λ1(y − v(x)) + λ2u(x) and h(x)
→ Fλ1,λ2(x) = x4 + (−λ2

1 + 2λ2 + 52t + 3) x3 + . . . ∈ F67[x ] with
roots x(Qi )

find λ1, λ2 ∈ F672 s.t. Fλ1,λ2 is in F67[x ]

⇒ λ1, λ2 such that

{
−λ2

1 + 2λ2 + 52t + 3 ∈ F67

...
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Decomposition attack on hyperelliptic curves Generalities

Example for a genus 2 curve over F672 = F67[t]/(t2 − 2)

Weil restriction: let λ1 = λ1,0 + tλ1,1 and λ2 = λ2,0 + tλ2,1

Fλ1,λ2(x) ∈ F67[x ]⇒

−2λ1,0λ1,1 + 2λ2,1 + 52 = 0
...

with 2 solutions:

λ1 = 7 + 40t, λ2 = 8 + 53t: Fλ1,λ2 (x) = x4 + 53x3 + 26x2 + 44x + 12

λ1 = 55 + 37t, λ2 = 52− t: Fλ1,λ2 (x) = (x − 23)(x − 34)(x − 51)(x − 54)

From fλ1,λ2,1(x , y) = x u(x) + λ1(y − v(x)) + λ2u(x) = 0 recover y(Qi )

 D = (Q1) + (Q2) + (Q3) + (Q4)− 4(OH) where

Q1 =
23

23t+12
,Q2 =

34

10t+43
,Q3 =

51

17t+3
,Q4 =

54

23t+15
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Decomposition attack on hyperelliptic curves Generalities

Complexity on hyperelliptic curves

Double large prime variation

Asymptotic complexity in Õ(q2−2/ng ) as q →∞, n and g fixed

What about hidden constants?

1 decomp. test ↔ solve a quadratic system of (n − 1)ng eq/var

Zero-dimensional ideal of degree d = 2(n−1)ng

Resolution with a lexicographic Gröbner basis computation
Tools: grevlex basis with F4Remake + ordering change with FGLM

Complexity: at least in d3 = 23(n−1)ng

→ relevant only for n and g small enough

Huge cost of decompositions → need for rebalance not so clear in practice
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Decomposition attack on hyperelliptic curves New results

1 Background
Generalities on DLP and motivations
Weil descent
Index calculus for Jacobians of curves
Decomposition attack

2 Decomposition attack on hyperelliptic curves over extension fields
Generalities
New results

3 Cover and decomposition attacks
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Decomposition attack on hyperelliptic curves New results

Modification of the relation search [Joux-V.]

H hyperelliptic curve of genus g with a unique point OH at infinity

In practice, decompositions as D ∼
∑ng

i=1 ((Qi )− (OH)) are too slow to
compute

Another type of relations

Compute relations involving only elements of F :

m∑
i=1

((Qi )− (OH)) ∼ 0

Heuristically, expected number of such relations is ' qm−ng/m!
→ as ' q relations are needed, consider m = ng + 2

Vanessa VITSE (UVSQ) Cover and decomposition attacks 18 November 2011 24 / 33



Decomposition attack on hyperelliptic curves New results

Modification of the relation search [Joux-V.]

H hyperelliptic curve of genus g defined over Fqn , n ≥ 2

Find relations of the form
∑ng+2

i=1 ((Qi )− (OH)) ∼ 0

Riemann-Roch based approach:
work in L((ng + 2)(OH)) = 〈1, x , x2, . . . , xm1 , y , yx , . . . , yxm2〉 of
dimension `+ 1 = (n − 1)g + 3

Derive Fλ1,...,λ`(x) whose roots are x(Q1), . . . , x(Qng+2)

Fλ1,...,λ`(x) ∈ Fq[x ]⇒ under-determined quadratic polynomial system
of n(n − 1)g + 2n − 2 equations in n(n − 1)g + 2n variables.

After initial lex Gröbner basis precomputation, each specialization of
the last two variables yields an easy to solve system.
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Decomposition attack on hyperelliptic curves New results

A special case: quadratic extensions
H hyperelliptic curve of genus g defined over Fq2 = Fq(t)/(P(t)) with
imaginary model y2 = h(x) where deg h = 2g + 1.

Riemann-Roch: f (x , y) = (xg+1 + λgx
g + . . .+ λ0) + µy

⇒ Fλ0,...,λg ,µ(x) = (xg+1 + λgx
g + . . .+ λ0)2 − µ2h(x)

µ = 0  trivial relation of the form
(P1) + (ι(P1)) + . . .+ (Pg+1) + (ι(Pg+1))− (2g + 2)OH ∼ 0

Weil restriction: λi = λi ,0 + tλi ,1 and µ2 = µ0 + tµ1

Fλ0,...,λg ,µ(x) ∈ Fq[x ] and µ 6= 0

⇔ (λ0,0, . . . , λg ,0, λ0,1, . . . , λg ,1, µ0, µ1) ∈ VFq(I : (µ0, µ1)∞)

where I is the ideal corresponding to the quadratic polynomial system
of 2g + 2 equations in 2g + 4 variables.
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Decomposition attack on hyperelliptic curves New results

A special case: quadratic extensions

Key point

Define Fq2 as Fq(t)/(t2 − ω)  additional structure on the equations

Fλ0,...,λg ,µ(x) = (1 · xg+1 + λgx
g + . . .+ λ0)2 − µ2h(x) ∈ Fq[x ]⇔

2(1·xg+1+λg ,0x
g +· · ·+λ0,0)(λg ,1x

g +· · ·+λ0,1)−µ0h1(x)−µ1h0(x) = 0

The polynomials generating I are multi-homogeneous of deg (1, 1) in
(1, λ0,0, . . . , λg ,0), (λ0,1, . . . , λg ,1, µ0, µ1)

→ speeds up the computation of the lex Gröbner basis:

genus 2 3 4

nb eq./var. 6/8 8/10 10/12

approx. timing <1 sec 2 sec 1 h

(g log2 q ' 70)
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Decomposition attack on hyperelliptic curves New results

A special case: quadratic extensions

The polynomials generating I are multi-homogeneous of deg (1, 1) in
(1, λ0,0, . . . , λg ,0), (λ0,1, . . . , λg ,1, µ0, µ1)

→ π1(V(I : (µ0, µ1)∞)) = π1(V(I : (λ0,1, . . . , λg ,1, µ0, µ1)∞)) has dim. 1
where π1 : (λ0,0, ..., λg ,0, λ0,1, ..., λg ,1, µ0, µ1) 7→ (λ0,0, ..., λg ,0)

Decomposition method

1 Outer loop:

I “specialization”: instead of evaluating e.g. λ0,0, choose of a
point (λ0,0, ..., λg ,0) ∈ π1(V(I : (µ0, µ1)∞))

I remaining variables lie in a one-dimensional vector space
2 Inner loop:

I specialization of a second variable λ0,1  easy to solve system
I factorization of Fλ0,...,λg ,µ(x) ∈ Fq[x ]  potential relation
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Decomposition attack on hyperelliptic curves New results

A second improvement: sieving

Idea: combine the modified relation search with a sieving technique
→ avoid the factorization of Fλ0,...,λg ,µ in Fq[x ]

Sieving method

1 Specialize λ0,0, ..., λg ,0 and express all remaining var. in terms of λ0,1

→ F becomes a polynomial in Fq[x , λ0,1] of degree 2 in λ0,1

2 Enumeration in x ∈ Fq instead of λ0,1

→ corresponding values of λ0,1 are easier to compute

3 Possible to recover the values of λ0,1 for which there were degx F
associated values of x

Time-memory trade-off:
λ0,1 0 1 2 · · · i · · · p − 1

#x x0 x1 x2 · · · xi · · · xp−1

Much faster to compute decompositions with our variant
→ about 960 times faster for (n, g) = (2, 3) on a 150-bit curve
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Much faster to compute decompositions with our variant
→ about 960 times faster for (n, g) = (2, 3) on a 150-bit curve
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Cover and decomposition attacks

A combined attack

Let E (Fqn) elliptic curve such that

GHS provides covering curves C with too large genus

n is too large for a practical decomposition attack

Cover and decomposition attack [Joux-V.]

If n composite, combine both approaches:

1 use GHS on the subextension Fqn/Fqd to transfer the DL to JacC(Fqd )

2 then use decomposition attack on JacC(Fqd ) with base field Fq to
solve the DLP
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Cover and decomposition attacks

The sextic extension case
Comparisons and complexity estimates for 160 bits based on Magma

p 27-bit prime, E (Fp6) elliptic curve with 160-bit prime order subgroup

1 Generic attacks: Õ(p3) cost, ≈ 5× 1013 years

2 Former index calculus methods:

Decomposition GHS

Fp6/Fp2 Õ(p2) memory bottleneck

Fp6/Fp intractable
efficient for ≤ 1/p3 curves

g = 9: Õ(p7/4), ≈ 1 500 years

3 Cover and decomposition:
Õ(p5/3) cost using a hyperelliptic genus 3 cover defined over Fp2

→ occurs directly for 1/p2 curves and most curves after isogeny walk

I Nagao-style decomposition: ≈ 750 years
I Modified relation search: ≈ 300 years
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g = 9: Õ(p7/4), ≈ 1 500 years

3 Cover and decomposition:
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Fp6/Fp2 Õ(p2) memory bottleneck

Fp6/Fp intractable
efficient for ≤ 1/p3 curves
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Cover and decomposition attacks

A concrete attack on a 150-bit curve

E : y2 = x(x − α)(x − σ(α)) defined over Fp6 where p = 225 + 35, such
that #E = 4 · 356814156285346166966901450449051336101786213

Previously unreachable curve: GHS gives cover over Fp of genus 33...

Complete resolution of DLP in about 1 month
with cover and decomposition, using genus 3 hyperelliptic cover H|Fp2

Relation search

lex GB: 2.7 sec with one core(1)

sieving: p2/(2 · 8!) ' 1.4× 1010

relations in 62 h on 1 024 cores(2)

→ 960× faster than Nagao

Linear algebra

SGE: 25.5 h on 32 cores(2)

→ fivefold reduction

Lanczos: 28.5 days on 64 cores(2)

(200 MB of data broadcast/round)

(Descent phase done in ∼ 14 s for one point)

(1) Magma on 2.6 GHz Intel Core 2 Duo (2) 2.93GHz quadri-core Intel Xeon 5550
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Cover and Decomposition Attacks on Elliptic Curves

Vanessa VITSE
Joint work with Antoine JOUX

Université de Versailles Saint-Quentin, Laboratoire PRiSM

Séminaire de Théorie des Nombres de Caen – LMNO
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Scaling data for our implementation

Size of p log2 p ≈ 23 log2 p ≈ 24 log2 p ≈ 25

Sieving (CPU.hours) 3 600 15 400 63 500

Sieving (real time) 3.5 hours 15 hours 62 hours

Group size 136 bits 142 bits 148 bits

Matrix column nb 990 193 1 736 712 3 092 914

(SGE reduction) (4.2) (4.8) (5.4)

Lanczos (CPU.hours) 4 900 16 000 43 800

Lanczos (real time) 77 hours 250 hours 28.5 days

→ approximately 200 CPU.years to break DLP over a 160-bit curve group
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