Cover and Decomposition Attacks on Elliptic Curves

Vanessa VITSE Joint work with Antoine JOUX

Université de Versailles Saint-Quentin, Laboratoire PRiSM

Séminaire de Théorie des Nombres de Caen - LMNO

Generalities on DLP and motivations

- Weil descent
- Index calculus for Jacobians of curves
- Decomposition attack

Decomposition attack on hyperelliptic curves over extension fields

- Generalities
- New results

3 Cover and decomposition attacks

Discrete logarithm problem (DLP)

Given a group G and $g, h \in G$, find – when it exists – an integer x s.t.

$$h = g^{x}$$

3

< 同 ト く ヨ ト く ヨ ト

Discrete logarithm problem (DLP)

Given a group G and g, $h \in G$, find – when it exists – an integer x s.t.

$$h = g^{x}$$

Difficulty is related to the group:

• Generic attack: complexity in $\Omega(\max(\alpha_i \sqrt{p_i}))$ if $\#G = \prod_i p_i^{\alpha_i}$

< 回 ト < 三 ト < 三 ト

Discrete logarithm problem (DLP)

Given a group G and $g, h \in G$, find – when it exists – an integer x s.t.

$$h = g^{x}$$

Difficulty is related to the group:

- Generic attack: complexity in $\Omega(\max(\alpha_i \sqrt{p_i}))$ if $\#G = \prod_i p_i^{\alpha_i}$
- G ⊂ (ℤ/nℤ, +): solving DLP has polynomial complexity with extended Euclid algorithm

< 回 ト < 三 ト < 三 ト

Discrete logarithm problem (DLP)

Given a group G and $g, h \in G$, find – when it exists – an integer x s.t.

$$h = g^{x}$$

Difficulty is related to the group:

- Generic attack: complexity in $\Omega(\max(\alpha_i \sqrt{p_i}))$ if $\#G = \prod_i p_i^{\alpha_i}$
- G ⊂ (ℤ/nℤ, +): solving DLP has polynomial complexity with extended Euclid algorithm
- $G \subset (\mathbb{F}_q^*, \times)$: index calculus method with complexity in $L_q(1/3)$ where $L_q(\alpha) = \exp(c(\log q)^{\alpha}(\log \log q)^{1-\alpha})$.

Discrete logarithm problem (DLP)

Given a group G and $g, h \in G$, find – when it exists – an integer x s.t.

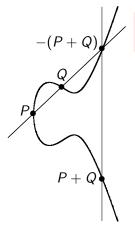
$$h = g^{x}$$

Difficulty is related to the group:

- Generic attack: complexity in $\Omega(\max(\alpha_i \sqrt{p_i}))$ if $\#G = \prod_i p_i^{\alpha_i}$
- **3** $G \subset (\mathbb{Z}/n\mathbb{Z}, +)$: solving DLP has polynomial complexity with extended Euclid algorithm
- $G \subset (\mathbb{F}_q^*, \times)$: index calculus method with complexity in $L_q(1/3)$ where $L_q(\alpha) = \exp(c(\log q)^{\alpha}(\log \log q)^{1-\alpha})$.
- G ⊂ (Jac_C(𝔽_q), +): index calculus method asymptotically faster than generic attacks, depending of the genus g > 2

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Good candidates for DLP-based cryptosystems

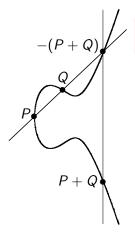


$$\begin{array}{l} \mathsf{ECDLP:} \text{ Given } P \in E(\mathbb{F}_q) \text{ and } Q \in \langle P \rangle \\ \text{ find } x \text{ such that } Q = [x]P \end{array}$$

In general, no known attack better than generic algorithms \rightsquigarrow shorter keys

Security (bits)	Finite Field DLP	ECDLP
80	1 248	160
96	1776	192
112	2 4 3 2	224
128	3 2 4 8	256

Good candidates for DLP-based cryptosystems

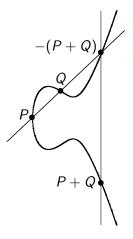


$$\begin{array}{l} \textbf{CDLP: Given } P \in E(\mathbb{F}_q) \text{ and } Q \in \langle P \rangle \\ \text{find } x \text{ such that } Q = [x]P \end{array}$$

Attacks on special curves:

- Curves defined over prime fields
 - small embedding degree (transfer via pairings)
 - anomalous curves (p-adic lifts)
- Curves defined over extension fields
 - Weil descent: transfer from E(𝔽_{pⁿ}) to Jac_C(𝔽_p) where C is a genus g ≥ n curve
 - Decomposition index calculus on $E(\mathbb{F}_{p^n})$

Good candidates for DLP-based cryptosystems



$$\begin{array}{l} \textbf{CDLP: Given } P \in E(\mathbb{F}_q) \text{ and } Q \in \langle P \rangle \\ \text{find } x \text{ such that } Q = [x]P \end{array}$$

Attacks on special curves:

- Curves defined over prime fields
 - small embedding degree (transfer via pairings)
 - anomalous curves (p-adic lifts)
- Curves defined over extension fields
 - Weil descent: transfer from E(𝔽_{pⁿ}) to Jac_C(𝔽_p) where C is a genus g ≥ n curve
 - ▶ Decomposition index calculus on E(𝔽_{pⁿ})

Objective of this talk

Present a combined attack for curves over extension fields

Vanessa VITSE (UVSQ)

Cover and decomposition attacks

Generalities on DLP and motivations

- Weil descent
- Index calculus for Jacobians of curves
- Decomposition attack

Decomposition attack on hyperelliptic curves over extension fields

- Generalities
- New results

3 Cover and decomposition attacks

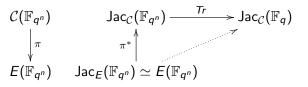
A 1

Let $\mathcal{W} = \mathcal{W}_{\mathbb{F}_{q^n}/\mathbb{F}_q}(E)$ be the **Weil restriction** of $E_{|\mathbb{F}_{q^n}}$ elliptic curve. Inclusion of a curve $\mathcal{C}_{|\mathbb{F}_q} \hookrightarrow \mathcal{W}$ induces a **cover map** $\pi : \mathcal{C}(\mathbb{F}_{q^n}) \to E(\mathbb{F}_{q^n})$.

< 回 ト < 三 ト < 三 ト

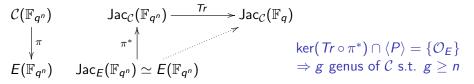
Let $\mathcal{W} = \mathcal{W}_{\mathbb{F}_{q^n}/\mathbb{F}_q}(E)$ be the **Weil restriction** of $E_{|\mathbb{F}_{q^n}}$ elliptic curve. Inclusion of a curve $\mathcal{C}_{|\mathbb{F}_q} \hookrightarrow \mathcal{W}$ induces a **cover map** $\pi : \mathcal{C}(\mathbb{F}_{q^n}) \to E(\mathbb{F}_{q^n})$.

• transfer the DLP from $\langle P \rangle \subset E(\mathbb{F}_{q^n})$ to $\operatorname{Jac}_{\mathcal{C}}(\mathbb{F}_q)$



Let $\mathcal{W} = \mathcal{W}_{\mathbb{F}_{q^n}/\mathbb{F}_q}(E)$ be the **Weil restriction** of $E_{|\mathbb{F}_{q^n}}$ elliptic curve. Inclusion of a curve $\mathcal{C}_{|\mathbb{F}_q} \hookrightarrow \mathcal{W}$ induces a **cover map** $\pi : \mathcal{C}(\mathbb{F}_{q^n}) \to E(\mathbb{F}_{q^n})$.

• transfer the DLP from $\langle P \rangle \subset E(\mathbb{F}_{q^n})$ to $\operatorname{Jac}_{\mathcal{C}}(\mathbb{F}_q)$



Let $\mathcal{W} = \mathcal{W}_{\mathbb{F}_{q^n}/\mathbb{F}_q}(E)$ be the **Weil restriction** of $E_{|\mathbb{F}_{q^n}}$ elliptic curve. Inclusion of a curve $\mathcal{C}_{|\mathbb{F}_q} \hookrightarrow \mathcal{W}$ induces a **cover map** $\pi : \mathcal{C}(\mathbb{F}_{q^n}) \to E(\mathbb{F}_{q^n})$.

• transfer the DLP from $\langle P \rangle \subset E(\mathbb{F}_{q^n})$ to $\operatorname{Jac}_{\mathcal{C}}(\mathbb{F}_q)$

$$\begin{array}{ccc} \mathcal{C}(\mathbb{F}_{q^n}) & \operatorname{Jac}_{\mathcal{C}}(\mathbb{F}_{q^n}) \xrightarrow{Tr} \operatorname{Jac}_{\mathcal{C}}(\mathbb{F}_q) \\ & & & \\ \downarrow^{\pi} & & \pi^* & \\ E(\mathbb{F}_{q^n}) & \operatorname{Jac}_{E}(\mathbb{F}_{q^n}) \simeq E(\mathbb{F}_{q^n}) & \Rightarrow g \text{ genus of } \mathcal{C} \text{ s.t. } g \ge n \end{array}$$

2 use index calculus on $Jac_{\mathcal{C}}(\mathbb{F}_q)$, complexity in

- $\tilde{O}(g!q^{2-2/g})$ if C is hyperelliptic with small genus g [Gaudry '00]
- $\tilde{O}(d!q^{2-2/(d-2)})$ if C has a small degree d plane model [Diem '06]

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Let $\mathcal{W} = \mathcal{W}_{\mathbb{F}_{q^n}/\mathbb{F}_q}(E)$ be the **Weil restriction** of $E_{|\mathbb{F}_{q^n}}$ elliptic curve. Inclusion of a curve $\mathcal{C}_{|\mathbb{F}_q} \hookrightarrow \mathcal{W}$ induces a **cover map** $\pi : \mathcal{C}(\mathbb{F}_{q^n}) \to E(\mathbb{F}_{q^n})$.

• transfer the DLP from $\langle P \rangle \subset E(\mathbb{F}_{q^n})$ to $\operatorname{Jac}_{\mathcal{C}}(\mathbb{F}_q)$

$$\begin{array}{ccc} \mathcal{C}(\mathbb{F}_{q^n}) & \operatorname{Jac}_{\mathcal{C}}(\mathbb{F}_{q^n}) \xrightarrow{Tr} & \operatorname{Jac}_{\mathcal{C}}(\mathbb{F}_q) \\ \downarrow^{\pi} & \pi^* & \downarrow & \\ E(\mathbb{F}_{q^n}) & \operatorname{Jac}_{E}(\mathbb{F}_{q^n}) \simeq E(\mathbb{F}_{q^n}) & \Rightarrow g \text{ genus of } \mathcal{C} \text{ s.t. } g \geq n \end{array}$$

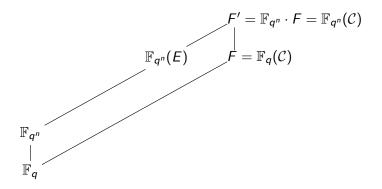
2 use index calculus on $Jac_{\mathcal{C}}(\mathbb{F}_q)$, complexity in

- $\tilde{O}(g!q^{2-2/g})$ if C is hyperelliptic with small genus g [Gaudry '00]
- $\tilde{O}(d!q^{2-2/(d-2)})$ if C has a small degree d plane model [Diem '06]

Main difficulty: find a convenient curve $\ensuremath{\mathcal{C}}$ with a genus small enough

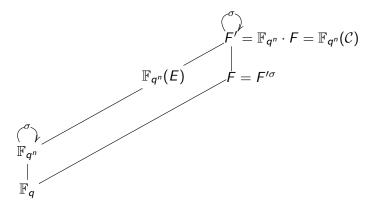
イロト 不得下 イヨト イヨト

Goal: find fields F and F' s.t.



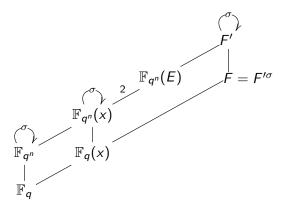
< 67 ▶

Goal: find fields F and F' s.t.



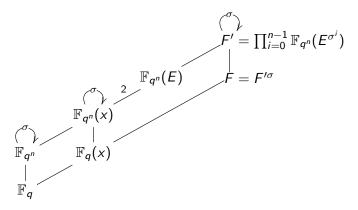
Lift of Frobenius σ must exist on F', with fixed subfield F

Goal: find fields F and F' s.t.



No lift of Frobenius on $\mathbb{F}_{q^n}(E)$, but on index 2 subfield $\mathbb{F}_{q^n}(x)$

Goal: find fields F and F' s.t.



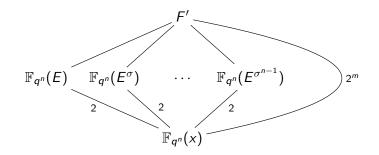
Choose for F' compositum of function fields $\mathbb{F}_{q^n}(E^{\sigma'})$.

Goal: find fields F and F' s.t.



Choose for F' compositum of function fields $\mathbb{F}_{q^n}(E^{\sigma^i})$. Construction depends of the choice of x, i.e. of the equation for E

Magic number



- *m* "magic number": the genus *g* of *F*' depends essentially of $[F' : \mathbb{F}_{q^n}(x)] = 2^m$
- For most elliptic curves E, $m \simeq n \rightarrow g(\mathcal{C})$ is of order 2^n
- For the few elliptic curves admitting a small genus cover C, use index calculus methods on Jac_C(𝔽_q)

Background

- Generalities on DLP and motivations
- Weil descent

Index calculus for Jacobians of curves

Decomposition attack

Decomposition attack on hyperelliptic curves over extension fields

- Generalities
- New results

3 Cover and decomposition attacks

Basic outline of index calculus

 $({\it G},+)=\langle g
angle$ finite abelian group of prime order r, $h\in {\it G}$

• Choice of a factor base: $\mathcal{F} = \{g_1, \ldots, g_N\} \subset G$

- 31

イロン 不聞と 不同と 不同と

Basic outline of index calculus

 $({\it G},+)=\langle g
angle$ finite abelian group of prime order r, $h\in {\it G}$

- Choice of a factor base: $\mathcal{F} = \{g_1, \ldots, g_N\} \subset G$
- **2** Relation search: decompose $[a_i]g + [b_i]h(a_i, b_i \text{ random})$ into \mathcal{F}

$$[a_i]g + [b_i]h = \sum_{j=1}^N [c_{ij}]g_j, ext{ where } c_{ij} \in \mathbb{Z}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Basic outline of index calculus

 $({\it G},+)=\langle g
angle$ finite abelian group of prime order r, $h\in {\it G}$

- Choice of a factor base: $\mathcal{F} = \{g_1, \ldots, g_N\} \subset G$
- **2** Relation search: decompose $[a_i]g + [b_i]h(a_i, b_i \text{ random})$ into \mathcal{F}

$$[a_i]g + [b_i]h = \sum_{j=1}^N [c_{ij}]g_j, ext{ where } c_{ij} \in \mathbb{Z}$$

Solution Linear algebra: once k relations found $(k \ge N)$

- ► construct the matrices $A = \begin{pmatrix} a_i & b_i \end{pmatrix}_{1 \le i \le k}$ and $M = \begin{pmatrix} c_{ij} \end{pmatrix}_{1 \le i \le k}_{1 \le i \le N}$
- ▶ find $v = (v_1, ..., v_k) \in \ker({}^tM)$ such that $vA \neq \begin{pmatrix} 0 & 0 \end{pmatrix} \mod r$
- compute the solution of DLP: $x = -(\sum_i a_i v_i) / (\sum_i b_i v_i) \mod r$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Adleman-DeMarrais-Huang's index calculus

"Factorization" on the Jacobian variety of a hyperelliptic curve ${\mathcal H}$

Proposition

Let $D = (u, v) \in \mathsf{Jac}_{\mathcal{H}}(\mathbb{F}_q)$. If u factorizes as $\prod_i u_j$ over \mathbb{F}_q , then

•
$$D_j = (u_j, v_j)$$
 is in $\operatorname{Jac}_{\mathcal{H}}(\mathbb{F}_q)$, where $v_j = v \mod u_j$

• $D = \sum_j D_j$

イロト イポト イヨト イヨト 二日

Adleman-DeMarrais-Huang's index calculus

"Factorization" on the Jacobian variety of a hyperelliptic curve $\ensuremath{\mathcal{H}}$

Proposition

Let $D = (u, v) \in \mathsf{Jac}_{\mathcal{H}}(\mathbb{F}_q)$. If u factorizes as $\prod_i u_j$ over \mathbb{F}_q , then

•
$$D_j = (u_j, v_j)$$
 is in $\operatorname{Jac}_{\mathcal{H}}(\mathbb{F}_q)$, where $v_j = v \mod u_j$

•
$$D = \sum_{j} D_{j}$$

Allows to apply index calculus [Enge-Gaudry]

- Factor base: $\mathcal{F} = \{(u, v) \in \mathsf{Jac}_{\mathcal{H}}(\mathbb{F}_q) : u \text{ irreducible, } \deg u \leq B\}$
- Element $[a_i]D_0 + [b_i]D_1$ yields a relation if corresponding *u* polynomial is *B*-smooth (easy to test)

イロト 不得下 イヨト イヨト 二日

Adleman-DeMarrais-Huang's index calculus

"Factorization" on the Jacobian variety of a hyperelliptic curve $\ensuremath{\mathcal{H}}$

Proposition

Let $D = (u, v) \in \mathsf{Jac}_{\mathcal{H}}(\mathbb{F}_q)$. If u factorizes as $\prod_i u_j$ over \mathbb{F}_q , then

•
$$D_j = (u_j, v_j)$$
 is in $Jac_{\mathcal{H}}(\mathbb{F}_q)$, where $v_j = v \mod u_j$

•
$$D = \sum_{i} D_{i}$$

Allows to apply index calculus [Enge-Gaudry]

- Factor base: $\mathcal{F} = \{(u, v) \in \mathsf{Jac}_{\mathcal{H}}(\mathbb{F}_q) : u \text{ irreducible, } \deg u \leq B\}$
- Element $[a_i]D_0 + [b_i]D_1$ yields a relation if corresponding *u* polynomial is *B*-smooth (easy to test)

Subexponential complexity in $L_{q^g}(1/2)$ when $q \to \infty$ and $g = \Omega(\log q)$

- 3

(日) (同) (日) (日) (日)

The small genus case

Gaudry's algorithm for small genus hyperelliptic curves

- Factor base: $\mathcal{F} = \{(u, v) \in \mathsf{Jac}_{\mathcal{H}}(\mathbb{F}_q) : \deg u = 1\}$ of size $\simeq q$
- D = (u, v) decomposable $\Leftrightarrow u$ splits over \mathbb{F}_q
- Probability of decomposition $\simeq 1/g!$

 $\Rightarrow O(g!q) \text{ tests (relation search)} + O(gq^2) \text{ field operations (linear alg.)}$ **Total cost**: $O((g^2 \log^3 q)g!q + (g^2 \log q)q^2)$

The small genus case

Gaudry's algorithm for small genus hyperelliptic curves

- Factor base: $\mathcal{F} = \{(u, v) \in \mathsf{Jac}_{\mathcal{H}}(\mathbb{F}_q) : \deg u = 1\}$ of size $\simeq q$
- D = (u, v) decomposable $\Leftrightarrow u$ splits over \mathbb{F}_q
- Probability of decomposition $\simeq 1/g!$

 $\Rightarrow O(g!q) \text{ tests (relation search)} + O(gq^2) \text{ field operations (linear alg.)}$ **Total cost**: $O((g^2 \log^3 q)g!q + (g^2 \log q)q^2)$

For fixed genus g, relation search in $\tilde{O}(q)$ vs linear algebra in $\tilde{O}(q^2)$ • resolution of the DLP in $\tilde{O}(q^2)$

 \Rightarrow better than generic attacks as soon as g>4

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

The small genus case

Gaudry's algorithm for small genus hyperelliptic curves

- Factor base: $\mathcal{F} = \{(u, v) \in \mathsf{Jac}_{\mathcal{H}}(\mathbb{F}_q) : \deg u = 1\}$ of size $\simeq q$
- D = (u, v) decomposable $\Leftrightarrow u$ splits over \mathbb{F}_q
- Probability of decomposition $\simeq 1/g!$

 $\Rightarrow O(g!q) \text{ tests (relation search)} + O(gq^2) \text{ field operations (linear alg.)}$ **Total cost**: $O((g^2 \log^3 q)g!q + (g^2 \log q)q^2)$

For fixed genus g, relation search in $\tilde{O}(q)$ vs linear algebra in $\tilde{O}(q^2)$

- resolution of the DLP in $\tilde{O}(q^2)$
- possible improvement by rebalancing the two phases with double large prime variation: resolution in $\tilde{O}(q^{2-2/g})$

 \Rightarrow better than generic attacks as soon as $g\geq 3$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Background

- Generalities on DLP and motivations
- Weil descent
- Index calculus for Jacobians of curves
- Decomposition attack

Decomposition attack on hyperelliptic curves over extension fields

- Generalities
- New results

3 Cover and decomposition attacks

Index calculus on small dimension abelian varieties

Decomposition attack on DLP over $\mathcal{A}_{|\mathbb{F}_{q}}$, *n*-dimensional abelian variety

Gaudry's method

- Choose U ⊂ A dense affine subset and coord. (x₁,...,x_n, y₁,..., y_m) on U s.t. F_q(A) algebraic extension of F_q(x₁,...,x_n)
- 3 Define factor base $\mathcal{F} = \{P \in U : x_2(P) = \ldots = x_n(P) = 0\}$
- Obecompose enough points of A as sum of n points of F using group law over A ↔ solve a multivariate polynomial system (and check rationality of solutions)
- Extract the logarithms with sparse linear algebra

- 4 同 6 4 日 6 4 日 6

Index calculus on small dimension abelian varieties

Decomposition attack on DLP over $\mathcal{A}_{|\mathbb{F}_{q}}$, *n*-dimensional abelian variety

Gaudry's method

- Choose U ⊂ A dense affine subset and coord. (x₁,...,x_n, y₁,..., y_m) on U s.t. F_q(A) algebraic extension of F_q(x₁,...,x_n)
- 3 Define factor base $\mathcal{F} = \{P \in U : x_2(P) = \ldots = x_n(P) = 0\}$
- Obecompose enough points of A as sum of n points of F using group law over A ↔ solve a multivariate polynomial system (and check rationality of solutions)
- Extract the logarithms with sparse linear algebra

${\mathcal F}$ should have $\simeq q$ points

- ightarrow need O(q) relations
- ightarrow linear algebra in $ilde{O}(\mathit{nq}^2)$

(日) (周) (三) (三)

Index calculus on small dimension abelian varieties

Decomposition attack on DLP over $\mathcal{A}_{|\mathbb{F}_{q}}$, *n*-dimensional abelian variety

Gaudry's method

- Choose U ⊂ A dense affine subset and coord. (x₁,...,x_n, y₁,..., y_m) on U s.t. F_q(A) algebraic extension of F_q(x₁,...,x_n)
- 3 Define factor base $\mathcal{F} = \{P \in U : x_2(P) = \ldots = x_n(P) = 0\}$
- Obecompose enough points of A as sum of n points of F using group law over A ↔ solve a multivariate polynomial system (and check rationality of solutions)
- Extract the logarithms with sparse linear algebra

```
For fixed n, one relation costs \tilde{O}(1)
\Rightarrow relation search in \tilde{O}(q) vs linear algebra in \tilde{O}(q^2)
```

- 3

イロト 不得下 イヨト イヨト

Index calculus on small dimension abelian varieties

Decomposition attack on DLP over $\mathcal{A}_{|\mathbb{F}_{q}}$, *n*-dimensional abelian variety

Gaudry's method

- Choose U ⊂ A dense affine subset and coord. (x₁,...,x_n, y₁,..., y_m) on U s.t. F_q(A) algebraic extension of F_q(x₁,...,x_n)
- 3 Define factor base $\mathcal{F} = \{P \in U : x_2(P) = \ldots = x_n(P) = 0\}$
- Obecompose enough points of A as sum of n points of F using group law over A ↔ solve a multivariate polynomial system (and check rationality of solutions)
- Extract the logarithms with sparse linear algebra

Rebalance with double large prime variation: (heuristic) asymptotic complexity in $\tilde{O}(q^{2-2/n})$ as $q \to \infty$, *n* fixed

イロト 不得 トイヨト イヨト 二日

Index calculus on small dimension abelian varieties

- Generalizes the classical index calculus on $\mathcal{A} = \operatorname{Jac}_{\mathcal{H}}(\mathbb{F}_q)$ where \mathcal{H} is hyperelliptic with small genus g
- Main application so far: $\mathcal{A} = W_{\mathbb{F}_{q^n}/\mathbb{F}_q}(E)$ where E elliptic curve defined over \mathbb{F}_{q^n} [Gaudry-Diem]

Index calculus on small dimension abelian varieties

- Generalizes the classical index calculus on $\mathcal{A} = \operatorname{Jac}_{\mathcal{H}}(\mathbb{F}_q)$ where \mathcal{H} is hyperelliptic with small genus g
- Main application so far: $\mathcal{A} = W_{\mathbb{F}_{q^n}/\mathbb{F}_q}(E)$ where E elliptic curve defined over \mathbb{F}_{q^n} [Gaudry-Diem]

Practical difficulty

In general, polynomial systems arising from decompositions are huge \rightsquigarrow find nice representations of $\mathcal A$ and clever reformulation of the decompositions

- For elliptic curves, use Semaev's summation polynomials
- For A = W_{Fqⁿ/Fq}(Jac_H(Fqⁿ)): no equivalent of Semaev's polynomials, use reformulation by Nagao instead

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Background

- Generalities on DLP and motivations
- Weil descent
- Index calculus for Jacobians of curves
- Decomposition attack

Decomposition attack on hyperelliptic curves over extension fields Generalities

New results

3 Cover and decomposition attacks

The Riemann-Roch based approach of Nagao

 \mathcal{C} curve defined over \mathbb{F}_{q^n} of genus g with a unique point \mathcal{O} at infinity.

Factor base

$$\mathcal{F} = \{ D_Q \in \mathsf{Jac}_{\mathcal{C}}(\mathbb{F}_{q^n}) \ : \ D_Q \sim (Q) - (\mathcal{O}), Q \in \mathcal{C}(\mathbb{F}_{q^n}), x(Q) \in \mathbb{F}_q \}$$

How to check if D can be decomposed?

$$D + \sum_{i=1}^{ng} \left((Q_i) - (\mathcal{O}) \right) \sim 0 \Leftrightarrow D + \sum_{i=1}^{ng} \left((Q_i) - (\mathcal{O}) \right) = div(f)$$

where $f \in \mathcal{L}_D = \mathcal{L}(ng(\mathcal{O}) - D)$, \mathbb{F}_{a^n} -vector space of dim. (n-1)g + 1

The Riemann-Roch based approach of Nagao

 \mathcal{C} curve defined over \mathbb{F}_{q^n} of genus g with a unique point \mathcal{O} at infinity.

Factor base

$$\mathcal{F} = \{ D_Q \in \mathsf{Jac}_{\mathcal{C}}(\mathbb{F}_{q^n}) \ : \ D_Q \sim (Q) - (\mathcal{O}), Q \in \mathcal{C}(\mathbb{F}_{q^n}), x(Q) \in \mathbb{F}_q \}$$

How to check if D can be decomposed?

$$D + \sum_{i=1}^{ng} \left((Q_i) - (\mathcal{O}) \right) \sim 0 \Leftrightarrow D + \sum_{i=1}^{ng} \left((Q_i) - (\mathcal{O}) \right) = div(f)$$

where $f \in \mathcal{L}_D = \mathcal{L}(ng(\mathcal{O}) - D)$, \mathbb{F}_{a^n} -vector space of dim. (n-1)g + 1

- Set of decomp. of D parametrized by $\mathbb{P}(\mathcal{L}_D) \simeq \mathbb{P}^{\ell}$, $\ell = (n-1)g$
- $(\lambda_1, \ldots, \lambda_\ell)$ affine chart of $\mathbb{P}(\mathcal{L}_D)$ s.t. $Q_i \neq \mathcal{O}$ for all $i = 1, \ldots, ng$

The Riemann-Roch based approach of Nagao

 \mathcal{C} curve defined over \mathbb{F}_{q^n} of genus g with a unique point \mathcal{O} at infinity.

Factor base

$$\mathcal{F} = \{D_Q \in \mathsf{Jac}_\mathcal{C}(\mathbb{F}_{q^n}) \; : \; D_Q \sim (Q) - (\mathcal{O}), Q \in \mathcal{C}(\mathbb{F}_{q^n}), x(Q) \in \mathbb{F}_q\}$$

How to check if D can be decomposed?

$$D + \sum_{i=1}^{ng} \left((Q_i) - (\mathcal{O}) \right) \sim 0 \Leftrightarrow D + \sum_{i=1}^{ng} \left((Q_i) - (\mathcal{O}) \right) = div(f)$$

where $f \in \mathcal{L}_D = \mathcal{L}(ng(\mathcal{O}) - D)$, \mathbb{F}_{a^n} -vector space of dim. (n-1)g + 1

- Set of decomp. of D parametrized by $\mathbb{P}(\mathcal{L}_D) \simeq \mathbb{P}^{\ell}$, $\ell = (n-1)g$
- $(\lambda_1, \ldots, \lambda_\ell)$ affine chart of $\mathbb{P}(\mathcal{L}_D)$ s.t. $Q_i \neq \mathcal{O}$ for all $i = 1, \ldots, ng$

Goal: determine $\lambda_1, \ldots, \lambda_\ell$ such that $x(Q_i) \in \mathbb{F}_q$

Vanessa VITSE (UVSQ)

Nagao's approach for hyperelliptic curves

Given the Mumford representation of $D = (u, v) \in \mathsf{Jac}_\mathcal{H}(\mathbb{F}_{q^n})$

• $\mathcal{L}(ng(\mathcal{O}_{\mathcal{H}}) - D) = \langle u, xu, \dots, x^{m_1}u, y - v, x(y - v), \dots, x^{m_2}(y - v) \rangle$

$$f_{\lambda_1,...,\lambda_{\ell+1}}(x,y) = u \sum_{i=0}^{m_1} \lambda_{2i+1} x^i + (y-v) \sum_{i=0}^{m_2} \lambda_{2i+2} x^i$$

Affine chart of $\mathbb{P}(\mathcal{L}_D) \leftrightarrow \lambda_{\ell+1} = 1$

Generalities

Nagao's approach for hyperelliptic curves

Given the Mumford representation of $D = (u, v) \in Jac_{\mathcal{H}}(\mathbb{F}_{a^n})$

• $\mathcal{L}(ng(\mathcal{O}_{\mathcal{H}}) - D) = \langle u, xu, \dots, x^{m_1}u, y - v, x(y - v), \dots, x^{m_2}(y - v) \rangle$

$$f_{\lambda_1,...,\lambda_{\ell+1}}(x,y) = u \sum_{i=0}^{m_1} \lambda_{2i+1} x^i + (y-v) \sum_{i=0}^{m_2} \lambda_{2i+2} x^i$$

Affine chart of $\mathbb{P}(\mathcal{L}_D) \leftrightarrow \lambda_{\ell+1} = 1$

• Using equation of \mathcal{H} , compute $f_{\lambda_1,\dots,\lambda_{\ell},1}(x,y) \cdot f_{\lambda_1,\dots,\lambda_{\ell},1}(x,-y)/u$ to get a new polynomial with roots $x(Q_1), \ldots, x(Q_{n\sigma})$:

$$\mathcal{F}_{\lambda_1,\ldots,\lambda_\ell}(x) = x^{ng} + \sum_{i=0}^{ng-1} c_i(\lambda_1,\ldots,\lambda_\ell) x^i$$

 \rightarrow coefficient c_i of x^i is quadratic in the $\lambda_i \in \mathbb{F}_{q^n}$

Nagao's approach for hyperelliptic curves

 $F_{\lambda_1,\ldots,\lambda_\ell}(x) = x^{ng} + \sum_{i=0}^{ng-1} c_i(\lambda_1,\ldots,\lambda_\ell) x^i$ with roots $x(Q_1),\ldots,x(Q_{ng})$

ightarrow Weil restriction of scalars: let $\mathbb{F}_{q^n} = \mathbb{F}_q(t)$ and write

$$\begin{cases} \lambda_i = \lambda_{i,0} + \lambda_{i,1}t + \dots + \lambda_{i,n-1}t^{n-1} \\ c_i(\lambda_1, \dots, \lambda_\ell) = \sum_{j=0}^{n-1} c_{i,j}(\lambda_{1,0}, \dots, \lambda_{\ell,n-1})t^j \end{cases}$$

Nagao's approach for hyperelliptic curves

 $F_{\lambda_1,\ldots,\lambda_\ell}(x) = x^{ng} + \sum_{i=0}^{ng-1} c_i(\lambda_1,\ldots,\lambda_\ell) x^i$ with roots $x(Q_1),\ldots,x(Q_{ng})$

ightarrow Weil restriction of scalars: let $\mathbb{F}_{q^n} = \mathbb{F}_q(t)$ and write

$$\begin{cases} \lambda_i = \lambda_{i,0} + \lambda_{i,1}t + \dots + \lambda_{i,n-1}t^{n-1} \\ c_i(\lambda_1, \dots, \lambda_\ell) = \sum_{j=0}^{n-1} c_{i,j}(\lambda_{1,0}, \dots, \lambda_{\ell,n-1})t^j \end{cases}$$

Then

$$F_{\lambda_1,\ldots,\lambda_\ell} \in \mathbb{F}_q[x] \Leftrightarrow \forall i \in \{0,\ldots,ng-1\}, \forall j \in \{1,\ldots,n-1\}, \ c_{i,j} = 0$$

Generalities

Nagao's approach for hyperelliptic curves

$$\mathcal{F}_{\lambda_1,\dots,\lambda_\ell}(x) = x^{ng} + \sum_{i=0}^{ng-1} c_i(\lambda_1,\dots,\lambda_\ell) x^i$$
 with roots $x(Q_1),\dots,x(Q_{ng})$

 \rightarrow Weil restriction of scalars: let $\mathbb{F}_{q^n} = \mathbb{F}_q(t)$ and write

$$\begin{cases} \lambda_i = \lambda_{i,0} + \lambda_{i,1}t + \dots + \lambda_{i,n-1}t^{n-1} \\ c_i(\lambda_1, \dots, \lambda_\ell) = \sum_{j=0}^{n-1} c_{i,j}(\lambda_{1,0}, \dots, \lambda_{\ell,n-1})t^j \end{cases}$$

Then

$$F_{\lambda_1,\ldots,\lambda_\ell} \in \mathbb{F}_q[x] \Leftrightarrow \forall i \in \{0,\ldots,ng-1\}, \forall j \in \{1,\ldots,n-1\}, c_{i,j} = 0$$

Decomposition of D

- solve a quadratic polynomial system of (n-1)ng eq./var.
- test if $F_{\lambda_1,\ldots,\lambda_\ell}$ is split in $\mathbb{F}_q[x]$
- recover decomposition from roots of $F_{\lambda_1,\ldots,\lambda_\ell}$

3

Example for a genus 2 curve over $\mathbb{F}_{67^2} = \mathbb{F}_{67}[t]/(t^2-2)$

 $\mathcal{H}: y^2 = x^5 + (50t + 66)x^4 + (40t + 22)x^3 + (65t + 23)x^2 + (61t + 3)x + 43t + 6$ Decomposition of $D = [x^2 + (52t + 3)x + 21t + 2, (22t + 41)x + 25t + 42] \in \mathsf{Jac}_{\mathcal{H}}(\mathbb{F}_{67^2})$

Example for a genus 2 curve over $\mathbb{F}_{67^2} = \mathbb{F}_{67}[t]/(t^2-2)$

 $\mathcal{H}: y^2 = x^5 + (50t + 66)x^4 + (40t + 22)x^3 + (65t + 23)x^2 + (61t + 3)x + 43t + 6$ Decomposition of $D = [x^2 + (52t + 3)x + 21t + 2, (22t + 41)x + 25t + 42] \in Jac_{\mathcal{H}}(\mathbb{F}_{67^2})$

• consider $\mathcal{L}(4(\mathcal{O}_{\mathcal{H}}) - D) = \langle u(x), y - v(x), x u(x) \rangle$

• from $f_{\lambda_1,\lambda_2,1}(x,y) = x u(x) + \lambda_1(y - v(x)) + \lambda_2 u(x)$ and h(x) $\rightarrow F_{\lambda_1,\lambda_2}(x) = x^4 + (-\lambda_1^2 + 2\lambda_2 + 52t + 3)x^3 + \ldots \in \mathbb{F}_{67}[x]$ with roots $x(Q_i)$

• find
$$\lambda_1, \lambda_2 \in \mathbb{F}_{67^2}$$
 s.t. F_{λ_1, λ_2} is in $\mathbb{F}_{67}[x]$
 $\Rightarrow \lambda_1, \lambda_2$ such that
$$\begin{cases} -\lambda_1^2 + 2\lambda_2 + 52t + 3 \in \mathbb{F}_{67} \\ \vdots \end{cases}$$

Example for a genus 2 curve over $\mathbb{F}_{67^2} = \mathbb{F}_{67}[t]/(t^2-2)$

Weil restriction: let $\lambda_1 = \lambda_{1,0} + t\lambda_{1,1}$ and $\lambda_2 = \lambda_{2,0} + t\lambda_{2,1}$

 $F_{\lambda_1,\lambda_2}(x) \in \mathbb{F}_{67}[x] \Rightarrow \begin{cases} -2\lambda_{1,0}\lambda_{1,1} + 2\lambda_{2,1} + 52 = 0\\ \vdots \end{cases}$ with 2 solutions: • $\lambda_1 = 7 + 40t$, $\lambda_2 = 8 + 53t$: $F_{\lambda_1,\lambda_2}(x) = x^4 + 53x^3 + 26x^2 + 44x + 12$ • $\lambda_1 = 55 + 37t$, $\lambda_2 = 52 - t$: $F_{\lambda_1, \lambda_2}(x) = (x - 23)(x - 34)(x - 51)(x - 54)$ From $f_{\lambda_1,\lambda_2,1}(x,y) = x u(x) + \lambda_1(y - v(x)) + \lambda_2 u(x) = 0$ recover $v(Q_i)$ $\rightsquigarrow D = (Q_1) + (Q_2) + (Q_3) + (Q_4) - 4(O_{\mathcal{H}})$ where $Q_1 = \begin{vmatrix} 23 \\ 23t+12 \end{vmatrix}$, $Q_2 = \begin{vmatrix} 34 \\ 10t+43 \end{vmatrix}$, $Q_3 = \begin{vmatrix} 51 \\ 17t+3 \end{vmatrix}$, $Q_4 = \begin{vmatrix} 54 \\ 23t+15 \end{vmatrix}$

Vanessa VITSE (UVSQ)

Complexity on hyperelliptic curves

Double large prime variation

Asymptotic complexity in $ilde{O}(q^{2-2/ng})$ as $q o \infty$, n and g fixed

What about hidden constants?

- 1 decomp. test \leftrightarrow solve a quadratic system of (n-1)ng eq/var
 - Zero-dimensional ideal of degree $d = 2^{(n-1)ng}$
 - Resolution with a lexicographic Gröbner basis computation
 Tools: grevlex basis with F4Remake + ordering change with FGLM
 - Complexity: at least in $d^3 = 2^{3(n-1)ng}$

 \rightarrow relevant only for *n* and *g* small enough

Huge cost of decompositions \rightarrow need for rebalance not so clear in practice

(日) (同) (三) (三)

Background

- Generalities on DLP and motivations
- Weil descent
- Index calculus for Jacobians of curves
- Decomposition attack

Decomposition attack on hyperelliptic curves over extension fields

- Generalities
- New results

3 Cover and decomposition attacks

Modification of the relation search [Joux-V.]

 ${\mathcal H}$ hyperelliptic curve of genus g with a unique point ${\mathcal O}_{{\mathcal H}}$ at infinity

In practice, decompositions as $D \sim \sum_{i=1}^{ng} ((Q_i) - (\mathcal{O}_{\mathcal{H}}))$ are too slow to compute

Another type of relations

Compute relations involving only elements of \mathcal{F} :

$$\sum_{i=1}^m \left((\mathcal{Q}_i) - (\mathcal{O}_\mathcal{H})
ight) \sim 0$$

Heuristically, expected number of such relations is $\simeq q^{m-ng}/m!$ \rightarrow as $\simeq q$ relations are needed, consider m = ng + 2

イロト イポト イヨト イヨト

Modification of the relation search [Joux-V.]

 \mathcal{H} hyperelliptic curve of genus g defined over \mathbb{F}_{q^n} , $n \geq 2$ Find relations of the form $\sum_{i=1}^{ng+2} ((Q_i) - (\mathcal{O}_{\mathcal{H}})) \sim 0$

- Riemann-Roch based approach: work in L((ng + 2)(O_H)) = ⟨1, x, x²,..., x^{m1}, y, yx,..., yx^{m2}⟩ of dimension ℓ + 1 = (n − 1)g + 3
- Derive $F_{\lambda_1,...,\lambda_\ell}(x)$ whose roots are $x(Q_1),\ldots,x(Q_{ng+2})$
- *F*_{λ1,...,λℓ}(x) ∈ 𝔽_q[x] ⇒ under-determined quadratic polynomial system of n(n-1)g + 2n - 2 equations in n(n-1)g + 2n variables.
- After initial lex Gröbner basis precomputation, each specialization of the last two variables yields an easy to solve system.

 \mathcal{H} hyperelliptic curve of genus g defined over $\mathbb{F}_{q^2} = \mathbb{F}_q(t)/(P(t))$ with imaginary model $y^2 = h(x)$ where deg h = 2g + 1.

• Riemann-Roch: $f(x, y) = (x^{g+1} + \lambda_g x^g + \ldots + \lambda_0) + \mu y$

$$\Rightarrow F_{\lambda_0,\ldots,\lambda_g,\mu}(x) = (x^{g+1} + \lambda_g x^g + \ldots + \lambda_0)^2 - \mu^2 h(x)$$

New results

A special case: quadratic extensions

 \mathcal{H} hyperelliptic curve of genus g defined over $\mathbb{F}_{q^2} = \mathbb{F}_q(t)/(P(t))$ with imaginary model $y^2 = h(x)$ where deg h = 2g + 1.

• Riemann-Roch: $f(x, y) = (x^{g+1} + \lambda_{\sigma} x^g + \ldots + \lambda_0) + \mu y$

$$\Rightarrow F_{\lambda_0,\ldots,\lambda_g,\mu}(x) = (x^{g+1} + \lambda_g x^g + \ldots + \lambda_0)^2 - \mu^2 h(x)$$

• $\mu = 0 \rightsquigarrow$ trivial relation of the form $(P_1) + (\iota(P_1)) + \ldots + (P_{g+1}) + (\iota(P_{g+1})) - (2g+2)\mathcal{O}_{\mathcal{H}} \sim 0$

 \mathcal{H} hyperelliptic curve of genus g defined over $\mathbb{F}_{q^2} = \mathbb{F}_q(t)/(P(t))$ with imaginary model $y^2 = h(x)$ where deg h = 2g + 1.

• Riemann-Roch: $f(x, y) = (x^{g+1} + \lambda_g x^g + \ldots + \lambda_0) + \mu y$

$$\Rightarrow F_{\lambda_0,\ldots,\lambda_g,\mu}(x) = (x^{g+1} + \lambda_g x^g + \ldots + \lambda_0)^2 - \mu^2 h(x)$$

•
$$\mu = 0 \rightsquigarrow$$
 trivial relation of the form
 $(P_1) + (\iota(P_1)) + \ldots + (P_{g+1}) + (\iota(P_{g+1})) - (2g+2)\mathcal{O}_{\mathcal{H}} \sim 0$

• Weil restriction: $\lambda_i = \lambda_{i,0} + t\lambda_{i,1}$ and $\mu^2 = \mu_0 + t\mu_1$

$$\begin{aligned} & \mathcal{F}_{\lambda_0,\dots,\lambda_g,\mu}(x) \in \mathbb{F}_q[x] \text{ and } \mu \neq 0 \\ & \Leftrightarrow (\lambda_{0,0},\dots,\lambda_{g,0},\lambda_{0,1},\dots,\lambda_{g,1},\mu_0,\mu_1) \in \mathbb{V}_{\mathbb{F}_q}(\mathrm{I}\!:\!(\mu_0,\mu_1)^\infty) \end{aligned}$$

where I is the ideal corresponding to the quadratic polynomial system of 2g + 2 equations in 2g + 4 variables.

Key point

Define \mathbb{F}_{q^2} as $\mathbb{F}_q(t)/(t^2-\omega) \rightsquigarrow$ additional structure on the equations

$$F_{\lambda_0,\dots,\lambda_g,\mu}(x) = (1 \cdot x^{g+1} + \lambda_g x^g + \dots + \lambda_0)^2 - \mu^2 h(x) \in \mathbb{F}_q[x] \Leftrightarrow$$

$$2(1 \cdot x^{g+1} + \lambda_{g,0} x^g + \dots + \lambda_{0,0}) (\lambda_{g,1} x^g + \dots + \lambda_{0,1}) - \mu_0 h_1(x) - \mu_1 h_0(x) = 0$$

- 3

くほと くほと くほと

Key point

Define \mathbb{F}_{q^2} as $\mathbb{F}_q(t)/(t^2-\omega) \rightsquigarrow$ additional structure on the equations

$$F_{\lambda_0,\dots,\lambda_g,\mu}(x) = (1 \cdot x^{g+1} + \lambda_g x^g + \dots + \lambda_0)^2 - \mu^2 h(x) \in \mathbb{F}_q[x] \Leftrightarrow$$

$$2(1 \cdot x^{g+1} + \lambda_{g,0} x^g + \dots + \lambda_{0,0}) (\lambda_{g,1} x^g + \dots + \lambda_{0,1}) - \mu_0 h_1(x) - \mu_1 h_0(x) = 0$$

The polynomials generating I are multi-homogeneous of deg (1, 1) in $(1, \lambda_{0,0}, \ldots, \lambda_{g,0}), (\lambda_{0,1}, \ldots, \lambda_{g,1}, \mu_0, \mu_1)$

 \rightarrow speeds up the computation of the lex Gröbner basis:

genus	2	3	4	
nb eq./var.	6/8	8/10	10/12	$(g \log_2 q \simeq 70)$
approx. timing	$< 1 \sec$	2 sec	1 h	

イロト イポト イヨト イヨト 二日

The polynomials generating I are multi-homogeneous of deg (1, 1) in $(1, \lambda_{0,0}, \ldots, \lambda_{g,0}), (\lambda_{0,1}, \ldots, \lambda_{g,1}, \mu_0, \mu_1)$

 $\rightarrow \pi_1(\mathbb{V}(I:(\mu_0,\mu_1)^\infty)) = \pi_1(\mathbb{V}(I:(\lambda_{0,1},\ldots,\lambda_{g,1},\mu_0,\mu_1)^\infty)) \text{ has dim. } 1$ where $\pi_1:(\lambda_{0,0},\ldots,\lambda_{g,0},\lambda_{0,1},\ldots,\lambda_{g,1},\mu_0,\mu_1) \mapsto (\lambda_{0,0},\ldots,\lambda_{g,0})$

イロト イポト イヨト イヨト 二日

New results

A special case: quadratic extensions

The polynomials generating I are multi-homogeneous of deg (1, 1) in $(1, \lambda_{0,0}, \ldots, \lambda_{g,0}), (\lambda_{0,1}, \ldots, \lambda_{g,1}, \mu_0, \mu_1)$

 $\rightarrow \pi_1(\mathbb{V}(I:(\mu_0,\mu_1)^\infty)) = \pi_1(\mathbb{V}(I:(\lambda_{0,1},\ldots,\lambda_{g,1},\mu_0,\mu_1)^\infty)) \text{ has dim. } 1$ where $\pi_1:(\lambda_{0,0},\ldots,\lambda_{g,0},\lambda_{0,1},\ldots,\lambda_{g,1},\mu_0,\mu_1) \mapsto (\lambda_{0,0},\ldots,\lambda_{g,0})$

Decomposition method

Outer loop:

"specialization": instead of evaluating e.g. $\lambda_{0,0}$, choose of a point $(\lambda_{0,0}, ..., \lambda_{g,0}) \in \pi_1(\mathbb{V}(I:(\mu_0, \mu_1)^{\infty}))$

remaining variables lie in a one-dimensional vector space

Inner loop:

- specialization of a second variable $\lambda_{0,1} \rightsquigarrow$ easy to solve system

factorization of $\mathcal{F}_{\lambda_0,...,\lambda_g,\mu}(x)\in \mathbb{F}_q[x] \rightsquigarrow$ potential relation

A second improvement: sieving

Idea: combine the modified relation search with a sieving technique \rightarrow avoid the factorization of $F_{\lambda_0,...,\lambda_g,\mu}$ in $\mathbb{F}_q[x]$

3

THE 1 1

< 4 → <

A second improvement: sieving

Idea: combine the modified relation search with a sieving technique \rightarrow avoid the factorization of $F_{\lambda_0,...,\lambda_g,\mu}$ in $\mathbb{F}_q[x]$

Sieving method

- Specialize $\lambda_{0,0}, ..., \lambda_{g,0}$ and express all remaining var. in terms of $\lambda_{0,1}$ $\rightarrow F$ becomes a polynomial in $\mathbb{F}_q[x, \lambda_{0,1}]$ of degree 2 in $\lambda_{0,1}$
- enumeration in x ∈ 𝔽_q instead of λ_{0,1}
 → corresponding values of λ_{0,1} are easier to compute
- Possible to recover the values of λ_{0,1} for which there were deg_x F associated values of x

Time-memory trade-off:

$\lambda_{0,1}$	0	1	2	 i	 p-1
#x	<i>x</i> ₀	<i>x</i> ₁	<i>x</i> ₂	 xi	 <i>x</i> _{<i>p</i>-1}

- 3

- 4 同 6 4 日 6 4 日 6

A second improvement: sieving

Idea: combine the modified relation search with a sieving technique \rightarrow avoid the factorization of $F_{\lambda_0,...,\lambda_g,\mu}$ in $\mathbb{F}_q[x]$

Sieving method

- Specialize $\lambda_{0,0}, ..., \lambda_{g,0}$ and express all remaining var. in terms of $\lambda_{0,1}$ $\rightarrow F$ becomes a polynomial in $\mathbb{F}_q[x, \lambda_{0,1}]$ of degree 2 in $\lambda_{0,1}$
- enumeration in x ∈ 𝔽_q instead of λ_{0,1}
 → corresponding values of λ_{0,1} are easier to compute
- Operation Possible to recover the values of λ_{0,1} for which there were deg_x F associated values of x

Time-memory trade-off:
$$\lambda_{0,1}$$
012 \cdots $p-1$ $\#x$ x_0 x_1 x_2 \cdots x_i \cdots x_{p-1}

Much faster to compute decompositions with our variant

ightarrow about 960 times faster for (n,g)=(2,3) on a 150-bit curve

Background

- Generalities on DLP and motivations
- Weil descent
- Index calculus for Jacobians of curves
- Decomposition attack

2 Decomposition attack on hyperelliptic curves over extension fields

- Generalities
- New results

3 Cover and decomposition attacks

< 177 ▶

A combined attack

- Let $E(\mathbb{F}_{q^n})$ elliptic curve such that
 - \bullet GHS provides covering curves ${\cal C}$ with too large genus
 - *n* is too large for a practical decomposition attack

3

A combined attack

- Let $E(\mathbb{F}_{q^n})$ elliptic curve such that
 - \bullet GHS provides covering curves ${\cal C}$ with too large genus
 - *n* is too large for a practical decomposition attack

Cover and decomposition attack [Joux-V.]

If *n* composite, combine both approaches:

- **(**) use GHS on the subextension $\mathbb{F}_{q^n}/\mathbb{F}_{q^d}$ to transfer the DL to $\operatorname{Jac}_{\mathcal{C}}(\mathbb{F}_{q^d})$
- ② then use decomposition attack on Jac_C(𝔽_{q^d}) with base field 𝔽_q to solve the DLP

12 N 4 12 N

Comparisons and complexity estimates for 160 bits based on Magma

p 27-bit prime, $E(\mathbb{F}_{p^6})$ elliptic curve with 160-bit prime order subgroup

Comparisons and complexity estimates for 160 bits based on Magma

p 27-bit prime, $E(\mathbb{F}_{p^6})$ elliptic curve with 160-bit prime order subgroup

• Generic attacks: $\tilde{O}(p^3)$ cost, $\approx 5 \times 10^{13}$ years

Comparisons and complexity estimates for 160 bits based on Magma

p 27-bit prime, $E(\mathbb{F}_{p^6})$ elliptic curve with 160-bit prime order subgroup

 ${\small \small \bigcirc } {\small \small Generic attacks: ~ \tilde{O}(p^3) \mbox{ cost}, \approx 5 \times 10^{13} \mbox{ years} }$

Pormer index calculus methods:

	Decomposition	GHS	
$\mathbb{F}_{p^6}/\mathbb{F}_{p^2}$	$ ilde{O}(ho^2)$ memory bottleneck		
$\mathbb{F}_{p^6}/\mathbb{F}_p$	intractable	efficient for $\leq 1/p^3$ curves $g = 9: \tilde{O}(p^{7/4}), \approx 1500$ years	

Comparisons and complexity estimates for 160 bits based on Magma

p 27-bit prime, $E(\mathbb{F}_{p^6})$ elliptic curve with 160-bit prime order subgroup

 ${\small \small \bigcirc } {\small \small Generic attacks: ~ \tilde{O}(p^3) \mbox{ cost}, \approx 5 \times 10^{13} \mbox{ years} }$

Pormer index calculus methods:

	Decomposition	GHS	
$\mathbb{F}_{p^6}/\mathbb{F}_{p^2}$	$ ilde{O}(ho^2)$ memory bottleneck		
$\mathbb{F}_{p^6}/\mathbb{F}_p$	intractable	efficient for $\leq 1/p^3$ curves $g=9:~ ilde{O}(p^{7/4}), pprox 1500$ years	

Over and decomposition:

 $\tilde{O}(p^{5/3})$ cost using a hyperelliptic genus 3 cover defined over \mathbb{F}_{p^2}

- \rightarrow occurs directly for $1/\textit{p}^2$ curves and most curves after isogeny walk
 - Nagao-style decomposition: pprox 750 years
 - Modified relation search: \approx 300 years

- 3

イロト 不得下 イヨト イヨト

A concrete attack on a 150-bit curve

E : $y^2 = x(x - \alpha)(x - \sigma(\alpha))$ defined over \mathbb{F}_{p^6} where $p = 2^{25} + 35$, such that $\#E = 4 \cdot 356814156285346166966901450449051336101786213$

• Previously unreachable curve: GHS gives cover over \mathbb{F}_p of genus 33...

A concrete attack on a 150-bit curve

E : $y^2 = x(x - \alpha)(x - \sigma(\alpha))$ defined over \mathbb{F}_{p^6} where $p = 2^{25} + 35$, such that $\#E = 4 \cdot 356814156285346166966901450449051336101786213$

- Previously unreachable curve: GHS gives cover over \mathbb{F}_p of genus 33...
- Complete resolution of DLP in about 1 month with cover and decomposition, using genus 3 hyperelliptic cover $\mathcal{H}_{|\mathbb{F}_{n^2}}$

Relation search

• lex GB: 2.7 sec with one core⁽¹⁾ • sieving: $p^2/(2 \cdot 8!) \simeq 1.4 \times 10^{10}$ relations in 62 h on 1024 cores⁽²⁾ \rightarrow 960× faster than Nagao

Linear algebra

- SGE: 25.5 h on 32 cores⁽²⁾ \rightarrow fivefold reduction
- Lanczos: 28.5 days on 64 cores⁽²⁾ (200 MB of data broadcast/round)

(Descent phase done in \sim 14 s for one point)

⁽¹⁾ Magma on 2.6 GHz Intel Core 2 Duo

 $^{(2)}$ 2.93 GHz quadri-core Intel Xeon 5550 $_{\odot}$

Vanessa VITSE (UVSQ)

Cover and decomposition attacks

Cover and Decomposition Attacks on Elliptic Curves

Vanessa VITSE Joint work with Antoine JOUX

Université de Versailles Saint-Quentin, Laboratoire PRiSM

Séminaire de Théorie des Nombres de Caen - LMNO

Scaling data for our implementation

Size of <i>p</i>	$\log_2 p \approx 23$	$\log_2 p \approx 24$	$\log_2 p pprox 25$
Sieving (CPU.hours)	3 600	15 400	63 500
Sieving (real time)	3.5 hours	15 hours	62 hours
Group size	136 bits	142 bits	148 bits
Matrix column nb	990 193	1 736 712	3 092 914
(SGE reduction)	(4.2)	(4.8)	(5.4)
Lanczos (CPU.hours)	4 900	16 000	43 800
Lanczos (real time)	77 hours	250 hours	28.5 days

ightarrow approximately 200 CPU.years to break DLP over a 160-bit curve group

3

- 4 @ > 4 @ > 4 @ >