Cover and Decomposition Attacks on Elliptic Curves

Vanessa VITSE
Joint work with Antoine JOUX

Université de Versailles Saint-Quentin, Laboratoire PRiSM
Séminaire de Théorie des Nombres de Caen - LMNO

(1) Background

- Generalities on DLP and motivations
- Weil descent
- Index calculus for Jacobians of curves
- Decomposition attack
(2) Decomposition attack on hyperelliptic curves over extension fields
- Generalities
- New results
(3) Cover and decomposition attacks

Discrete logarithm problem

Discrete logarithm problem (DLP)

Given a group G and $g, h \in G$, find - when it exists - an integer x s.t.

$$
h=g^{x}
$$

Discrete logarithm problem

Discrete logarithm problem (DLP)

Given a group G and $g, h \in G$, find - when it exists - an integer x s.t.

$$
h=g^{x}
$$

Difficulty is related to the group:

(1) Generic attack: complexity in $\Omega\left(\max \left(\alpha_{i} \sqrt{p_{i}}\right)\right)$ if $\# G=\prod_{i} p_{i}^{\alpha_{i}}$

Discrete logarithm problem

Discrete logarithm problem (DLP)

Given a group G and $g, h \in G$, find - when it exists - an integer x s.t.

$$
h=g^{x}
$$

Difficulty is related to the group:

(1) Generic attack: complexity in $\Omega\left(\max \left(\alpha_{i} \sqrt{p_{i}}\right)\right)$ if $\# G=\prod_{i} p_{i}^{\alpha_{i}}$
(2) $G \subset(\mathbb{Z} / n \mathbb{Z},+)$: solving DLP has polynomial complexity with extended Euclid algorithm

Discrete logarithm problem

Discrete logarithm problem (DLP)

Given a group G and $g, h \in G$, find - when it exists - an integer x s.t.

$$
h=g^{x}
$$

Difficulty is related to the group:

(1) Generic attack: complexity in $\Omega\left(\max \left(\alpha_{i} \sqrt{p_{i}}\right)\right)$ if $\# G=\prod_{i} p_{i}^{\alpha_{i}}$
(2) $G \subset(\mathbb{Z} / n \mathbb{Z},+)$: solving DLP has polynomial complexity with extended Euclid algorithm
(3) $G \subset\left(\mathbb{F}_{q}^{*}, \times\right)$: index calculus method with complexity in $L_{q}(1 / 3)$ where $L_{q}(\alpha)=\exp \left(c(\log q)^{\alpha}(\log \log q)^{1-\alpha}\right)$.

Discrete logarithm problem

Discrete logarithm problem (DLP)

Given a group G and $g, h \in G$, find - when it exists - an integer x s.t.

$$
h=g^{x}
$$

Difficulty is related to the group:

(1) Generic attack: complexity in $\Omega\left(\max \left(\alpha_{i} \sqrt{p_{i}}\right)\right)$ if $\# G=\prod_{i} p_{i}^{\alpha_{i}}$
(2) $G \subset(\mathbb{Z} / n \mathbb{Z},+)$: solving DLP has polynomial complexity with extended Euclid algorithm
(3) $G \subset\left(\mathbb{F}_{q}^{*}, \times\right)$: index calculus method with complexity in $L_{q}(1 / 3)$ where $L_{q}(\alpha)=\exp \left(c(\log q)^{\alpha}(\log \log q)^{1-\alpha}\right)$.
(9) $G \subset\left(\operatorname{Jac}_{\mathcal{C}}\left(\mathbb{F}_{q}\right),+\right)$: index calculus method asymptotically faster than generic attacks, depending of the genus $g>2$

Good candidates for DLP-based cryptosystems

ECDLP: Given $P \in E\left(\mathbb{F}_{q}\right)$ and $Q \in\langle P\rangle$ find x such that $Q=[x] P$

In general, no known attack better than generic algorithms \rightsquigarrow shorter keys

Security (bits)	Finite Field DLP	ECDLP
80	1248	160
96	1776	192
112	2432	224
128	3248	256

Good candidates for DLP-based cryptosystems

ECDLP: Given $P \in E\left(\mathbb{F}_{q}\right)$ and $Q \in\langle P\rangle$ find x such that $Q=[x] P$

Attacks on special curves:

- Curves defined over prime fields
- small embedding degree (transfer via pairings)
- anomalous curves (p-adic lifts)
- Curves defined over extension fields
- Weil descent: transfer from $E\left(\mathbb{F}_{p^{n}}\right)$ to $\operatorname{Jac}_{\mathcal{C}}\left(\mathbb{F}_{p}\right)$ where \mathcal{C} is a genus $g \geq n$ curve
- Decomposition index calculus on $E\left(\mathbb{F}_{p^{n}}\right)$

Good candidates for DLP-based cryptosystems

ECDLP: Given $P \in E\left(\mathbb{F}_{q}\right)$ and $Q \in\langle P\rangle$ find x such that $Q=[x] P$

Attacks on special curves:

- Curves defined over prime fields
- small embedding degree (transfer via pairings)
- anomalous curves (p-adic lifts)
- Curves defined over extension fields
- Weil descent: transfer from $E\left(\mathbb{F}_{p^{n}}\right)$ to $\operatorname{Jac}_{\mathcal{C}}\left(\mathbb{F}_{p}\right)$ where \mathcal{C} is a genus $g \geq n$ curve
- Decomposition index calculus on $E\left(\mathbb{F}_{p^{n}}\right)$

Objective of this talk

Present a combined attack for curves over extension fields

(1) Background

- Generalities on DLP and motivations
- Weil descent
- Index calculus for Jacobians of curves
- Decomposition attack
(2) Decomposition attack on hyperelliptic curves over extension fields
- Generalities
- New results
(3) Cover and decomposition attacks

Transfer of the ECDLP via cover maps (Weil descent)

Let $\mathcal{W}=W_{\mathbb{F}_{q^{n}} / \mathbb{F}_{q}}(E)$ be the Weil restriction of $E_{\mid \mathbb{F}_{q^{n}}}$ elliptic curve. Inclusion of a curve $\mathcal{C}_{\mid \mathbb{F}_{q}} \hookrightarrow \mathcal{W}$ induces a cover map $\pi: \mathcal{C}\left(\mathbb{F}_{q^{n}}\right) \rightarrow E\left(\mathbb{F}_{q^{n}}\right)$.

Transfer of the ECDLP via cover maps (Weil descent)

Let $\mathcal{W}=W_{\mathbb{F}_{q^{n}} / \mathbb{F}_{q}}(E)$ be the Weil restriction of $E_{\mid \mathbb{F}_{q^{n}}}$ elliptic curve. Inclusion of a curve $\mathcal{C}_{\mid \mathbb{F}_{q}} \hookrightarrow \mathcal{W}$ induces a cover map $\pi: \mathcal{C}\left(\mathbb{F}_{q^{n}}\right) \rightarrow E\left(\mathbb{F}_{q^{n}}\right)$.
(1) transfer the DLP from $\langle P\rangle \subset E\left(\mathbb{F}_{q^{n}}\right)$ to $\operatorname{Jac}_{\mathcal{C}}\left(\mathbb{F}_{q}\right)$
$\mathcal{C}\left(\mathbb{F}_{q^{n}}\right)$
$\operatorname{Jac}_{\mathcal{C}}\left(\mathbb{F}_{q^{n}}\right) \xrightarrow{\operatorname{Tr}} \operatorname{Jac}_{\mathcal{C}}\left(\mathbb{F}_{q}\right)$

$E\left(\mathbb{F}_{q^{n}}\right) \quad \operatorname{Jac}_{E}\left(\mathbb{F}_{q^{n}}\right) \simeq E\left(\mathbb{F}_{q^{n}}\right)$

Transfer of the ECDLP via cover maps (Weil descent)

Let $\mathcal{W}=W_{\mathbb{F}_{q^{n}} / \mathbb{F}_{q}}(E)$ be the Weil restriction of $E_{\mid \mathbb{F}_{q^{n}}}$ elliptic curve. Inclusion of a curve $\mathcal{C}_{\mid \mathbb{F}_{q}} \hookrightarrow \mathcal{W}$ induces a cover map $\pi: \mathcal{C}\left(\mathbb{F}_{q^{n}}\right) \rightarrow E\left(\mathbb{F}_{q^{n}}\right)$.
(1) transfer the DLP from $\langle P\rangle \subset E\left(\mathbb{F}_{q^{n}}\right)$ to $\operatorname{Jac}_{\mathcal{C}}\left(\mathbb{F}_{q}\right)$
$\mathcal{C}\left(\mathbb{F}_{q^{n}}\right)$
$\operatorname{Jac}_{\mathcal{C}}\left(\mathbb{F}_{q^{n}}\right) \xrightarrow{\operatorname{Tr}} \operatorname{Jac}_{\mathcal{C}}\left(\mathbb{F}_{q}\right)$

$E\left(\mathbb{F}_{q^{n}}\right) \quad \operatorname{Jac}_{E}\left(\mathbb{F}_{q^{n}}\right) \simeq E\left(\mathbb{F}_{q^{n}}\right)$

$$
\begin{aligned}
& \operatorname{ker}\left(\operatorname{Tr} \circ \pi^{*}\right) \cap\langle P\rangle=\left\{\mathcal{O}_{E}\right\} \\
& \Rightarrow g \text { genus of } \mathcal{C} \text { s.t. } g \geq n
\end{aligned}
$$

Transfer of the ECDLP via cover maps (Weil descent)

Let $\mathcal{W}=W_{\mathbb{F}_{q^{n}} / \mathbb{F}_{q}}(E)$ be the Weil restriction of $E_{\mid \mathbb{F}_{q^{n}}}$ elliptic curve. Inclusion of a curve $\mathcal{C}_{\mid \mathbb{F}_{q}} \hookrightarrow \mathcal{W}$ induces a cover map $\pi: \mathcal{C}\left(\mathbb{F}_{q^{n}}\right) \rightarrow E\left(\mathbb{F}_{q^{n}}\right)$.
(1) transfer the DLP from $\langle P\rangle \subset E\left(\mathbb{F}_{q^{n}}\right)$ to $\operatorname{Jac}_{\mathcal{C}}\left(\mathbb{F}_{q}\right)$
$\operatorname{Jac}_{\mathcal{C}}\left(\mathbb{F}_{q^{n}}\right) \xrightarrow{\operatorname{Tr}} \operatorname{Jac}_{\mathcal{C}}\left(\mathbb{F}_{q}\right)$

$E\left(\mathbb{F}_{q^{n}}\right) \quad \operatorname{Jac}_{E}\left(\mathbb{F}_{q^{n}}\right) \simeq E\left(\mathbb{F}_{q^{n}}\right)$

$$
\begin{aligned}
& \operatorname{ker}\left(\operatorname{Tr} \circ \pi^{*}\right) \cap\langle P\rangle=\left\{\mathcal{O}_{E}\right\} \\
& \Rightarrow g \text { genus of } \mathcal{C} \text { s.t. } g \geq n
\end{aligned}
$$

(2) use index calculus on $\operatorname{Jac}_{\mathcal{C}}\left(\mathbb{F}_{q}\right)$, complexity in

- $\tilde{O}\left(g!q^{2-2 / g}\right)$ if \mathcal{C} is hyperelliptic with small genus g [Gaudry '00]
- $\tilde{O}\left(d!q^{2-2 /(d-2)}\right)$ if \mathcal{C} has a small degree d plane model [Diem '06]

Transfer of the ECDLP via cover maps (Weil descent)

Let $\mathcal{W}=W_{\mathbb{F}_{q^{n}} / \mathbb{F}_{q}}(E)$ be the Weil restriction of $E_{\mid \mathbb{F}_{q^{n}}}$ elliptic curve. Inclusion of a curve $\mathcal{C}_{\mid \mathbb{F}_{q}} \hookrightarrow \mathcal{W}$ induces a cover map $\pi: \mathcal{C}\left(\mathbb{F}_{q^{n}}\right) \rightarrow E\left(\mathbb{F}_{q^{n}}\right)$.
(1) transfer the DLP from $\langle P\rangle \subset E\left(\mathbb{F}_{q^{n}}\right)$ to $\operatorname{Jac}_{\mathcal{C}}\left(\mathbb{F}_{q}\right)$
$\mathcal{C}\left(\mathbb{F}_{q^{n}}\right)$
$\operatorname{Jac}_{\mathcal{C}}\left(\mathbb{F}_{q^{n}}\right) \xrightarrow{\operatorname{Tr}} \operatorname{Jac}_{\mathcal{C}}\left(\mathbb{F}_{q}\right)$

$E\left(\mathbb{F}_{q^{n}}\right) \quad \operatorname{Jac}_{E}\left(\mathbb{F}_{q^{n}}\right) \simeq E\left(\mathbb{F}_{q^{n}}\right)$

$$
\begin{aligned}
& \operatorname{ker}\left(\operatorname{Tr} \circ \pi^{*}\right) \cap\langle P\rangle=\left\{\mathcal{O}_{E}\right\} \\
& \Rightarrow g \text { genus of } \mathcal{C} \text { s.t. } g \geq n
\end{aligned}
$$

(2) use index calculus on $\operatorname{Jac}_{\mathcal{C}}\left(\mathbb{F}_{q}\right)$, complexity in

- $\tilde{O}\left(g!q^{2-2 / g}\right)$ if \mathcal{C} is hyperelliptic with small genus g [Gaudry '00]
- $\tilde{O}\left(d!q^{2-2 /(d-2)}\right)$ if \mathcal{C} has a small degree d plane model [Diem '06]

Main difficulty: find a convenient curve \mathcal{C} with a genus small enough

The GHS technique

Goal: find fields F and F^{\prime} s.t.

The GHS technique

Goal: find fields F and F^{\prime} s.t.

Lift of Frobenius σ must exist on F^{\prime}, with fixed subfield F

The GHS technique

Goal: find fields F and F^{\prime} s.t.

No lift of Frobenius on $\mathbb{F}_{q^{n}}(E)$, but on index 2 subfield $\mathbb{F}_{q^{n}}(x)$

The GHS technique

Goal: find fields F and F^{\prime} s.t.

Choose for F^{\prime} compositum of function fields $\mathbb{F}_{q^{n}}\left(E^{\sigma^{i}}\right)$.

The GHS technique

Goal: find fields F and F^{\prime} s.t.

Choose for F^{\prime} compositum of function fields $\mathbb{F}_{q^{n}}\left(E^{\sigma^{i}}\right)$.
Construction depends of the choice of x, i.e. of the equation for E

Magic number

- m "magic number": the genus g of F^{\prime} depends essentially of $\left[F^{\prime}: \mathbb{F}_{q^{n}}(x)\right]=2^{m}$
- For most elliptic curves $E, m \simeq n \rightarrow g(\mathcal{C})$ is of order 2^{n}
- For the few elliptic curves admitting a small genus cover \mathcal{C}, use index calculus methods on $\operatorname{Jac}_{\mathcal{C}}\left(\mathbb{F}_{q}\right)$

(1) Background

- Generalities on DLP and motivations
- Weil descent
- Index calculus for Jacobians of curves
- Decomposition attack
(2) Decomposition attack on hyperelliptic curves over extension fields
- Generalities
- New results
(3) Cover and decomposition attacks

Basic outline of index calculus

$(G,+)=\langle g\rangle$ finite abelian group of prime order $r, h \in G$
(1) Choice of a factor base: $\mathcal{F}=\left\{g_{1}, \ldots, g_{N}\right\} \subset G$

Basic outline of index calculus

$(G,+)=\langle g\rangle$ finite abelian group of prime order $r, h \in G$
(1) Choice of a factor base: $\mathcal{F}=\left\{g_{1}, \ldots, g_{N}\right\} \subset G$
(2) Relation search: decompose $\left[a_{i}\right] g+\left[b_{i}\right] h\left(a_{i}, b_{i}\right.$ random $)$ into \mathcal{F}

$$
\left[a_{i}\right] g+\left[b_{i}\right] h=\sum_{j=1}^{N}\left[c_{i j}\right] g_{j}, \text { where } c_{i j} \in \mathbb{Z}
$$

Basic outline of index calculus

$(G,+)=\langle g\rangle$ finite abelian group of prime order $r, h \in G$
(1) Choice of a factor base: $\mathcal{F}=\left\{g_{1}, \ldots, g_{N}\right\} \subset G$
(2) Relation search: decompose $\left[a_{i}\right] g+\left[b_{i}\right] h\left(a_{i}, b_{i}\right.$ random $)$ into \mathcal{F}

$$
\left[a_{i}\right] g+\left[b_{i}\right] h=\sum_{j=1}^{N}\left[c_{i j}\right] g_{j}, \text { where } c_{i j} \in \mathbb{Z}
$$

(0) Linear algebra: once k relations found ($k \geq N$)

- construct the matrices $A=\left(\begin{array}{ll}a_{i} & b_{i}\end{array}\right)_{1 \leq i \leq k}$ and $M=\left(c_{i j}\right)_{\substack{1 \leq i \leq k \\ 1 \leq j \leq N}}$
- find $v=\left(v_{1}, \ldots, v_{k}\right) \in \operatorname{ker}\left({ }^{t} M\right)$ such that $v A \neq\left(\begin{array}{ll}0 & 0\end{array}\right) \bmod r$
- compute the solution of DLP: $x=-\left(\sum_{i} a_{i} v_{i}\right) /\left(\sum_{i} b_{i} v_{i}\right) \bmod r$

Adleman-DeMarrais-Huang's index calculus

"Factorization" on the Jacobian variety of a hyperelliptic curve \mathcal{H}

Proposition

Let $D=(u, v) \in \operatorname{Jac}_{\mathcal{H}}\left(\mathbb{F}_{q}\right)$. If u factorizes as $\prod_{j} u_{j}$ over \mathbb{F}_{q}, then

- $D_{j}=\left(u_{j}, v_{j}\right)$ is in $\operatorname{Jac}_{\mathcal{H}}\left(\mathbb{F}_{q}\right)$, where $v_{j}=v \bmod u_{j}$
- $D=\sum_{j} D_{j}$

Adleman-DeMarrais-Huang's index calculus

"Factorization" on the Jacobian variety of a hyperelliptic curve \mathcal{H}

Proposition

Let $D=(u, v) \in \operatorname{Jac}_{\mathcal{H}}\left(\mathbb{F}_{q}\right)$. If u factorizes as $\prod_{j} u_{j}$ over \mathbb{F}_{q}, then

- $D_{j}=\left(u_{j}, v_{j}\right)$ is in $\operatorname{Jac}_{\mathcal{H}}\left(\mathbb{F}_{q}\right)$, where $v_{j}=v \bmod u_{j}$
- $D=\sum_{j} D_{j}$

Allows to apply index calculus [Enge-Gaudry]

- Factor base: $\mathcal{F}=\left\{(u, v) \in \operatorname{Jac}_{\mathcal{H}}\left(\mathbb{F}_{q}\right): u\right.$ irreducible, $\left.\operatorname{deg} u \leq B\right\}$
- Element $\left[a_{i}\right] D_{0}+\left[b_{i}\right] D_{1}$ yields a relation if corresponding u polynomial is B-smooth (easy to test)

Adleman-DeMarrais-Huang's index calculus

"Factorization" on the Jacobian variety of a hyperelliptic curve \mathcal{H}

Proposition

Let $D=(u, v) \in \operatorname{Jac}_{\mathcal{H}}\left(\mathbb{F}_{q}\right)$. If u factorizes as $\prod_{j} u_{j}$ over \mathbb{F}_{q}, then

- $D_{j}=\left(u_{j}, v_{j}\right)$ is in $\operatorname{Jac}_{\mathcal{H}}\left(\mathbb{F}_{q}\right)$, where $v_{j}=v \bmod u_{j}$
- $D=\sum_{j} D_{j}$

Allows to apply index calculus [Enge-Gaudry]

- Factor base: $\mathcal{F}=\left\{(u, v) \in \operatorname{Jac}_{\mathcal{H}}\left(\mathbb{F}_{q}\right): u\right.$ irreducible, $\left.\operatorname{deg} u \leq B\right\}$
- Element $\left[a_{i}\right] D_{0}+\left[b_{i}\right] D_{1}$ yields a relation if corresponding u polynomial is B-smooth (easy to test)

Subexponential complexity in $L_{q^{g}}(1 / 2)$ when $q \rightarrow \infty$ and $g=\Omega(\log q)$

The small genus case

Gaudry's algorithm for small genus hyperelliptic curves

- Factor base: $\mathcal{F}=\left\{(u, v) \in \operatorname{Jac}_{\mathcal{H}}\left(\mathbb{F}_{q}\right): \operatorname{deg} u=1\right\}$ of size $\simeq q$
- $D=(u, v)$ decomposable $\Leftrightarrow u$ splits over \mathbb{F}_{q}
- Probability of decomposition $\simeq 1 / g$!
$\Rightarrow O(g!q)$ tests (relation search) $+O\left(g q^{2}\right)$ field operations (linear alg.)
Total cost: $O\left(\left(g^{2} \log ^{3} q\right) g!q+\left(g^{2} \log q\right) q^{2}\right)$

The small genus case

Gaudry's algorithm for small genus hyperelliptic curves

- Factor base: $\mathcal{F}=\left\{(u, v) \in \operatorname{Jac}_{\mathcal{H}}\left(\mathbb{F}_{q}\right): \operatorname{deg} u=1\right\}$ of size $\simeq q$
- $D=(u, v)$ decomposable $\Leftrightarrow u$ splits over \mathbb{F}_{q}
- Probability of decomposition $\simeq 1 / g$!
$\Rightarrow O(g!q)$ tests (relation search) $+O\left(g q^{2}\right)$ field operations (linear alg.)
Total cost: $O\left(\left(g^{2} \log ^{3} q\right) g!q+\left(g^{2} \log q\right) q^{2}\right)$

For fixed genus g, relation search in $\tilde{O}(q)$ vs linear algebra in $\tilde{O}\left(q^{2}\right)$

- resolution of the DLP in $\tilde{O}\left(q^{2}\right)$
\Rightarrow better than generic attacks as soon as $g>4$

The small genus case

Gaudry's algorithm for small genus hyperelliptic curves

- Factor base: $\mathcal{F}=\left\{(u, v) \in \operatorname{Jac}_{\mathcal{H}}\left(\mathbb{F}_{q}\right): \operatorname{deg} u=1\right\}$ of size $\simeq q$
- $D=(u, v)$ decomposable $\Leftrightarrow u$ splits over \mathbb{F}_{q}
- Probability of decomposition $\simeq 1 / g$!
$\Rightarrow O(g!q)$ tests (relation search) $+O\left(g q^{2}\right)$ field operations (linear alg.)
Total cost: $O\left(\left(g^{2} \log ^{3} q\right) g!q+\left(g^{2} \log q\right) q^{2}\right)$

For fixed genus g, relation search in $\tilde{O}(q)$ vs linear algebra in $\tilde{O}\left(q^{2}\right)$

- resolution of the DLP in $\tilde{O}\left(q^{2}\right)$
- possible improvement by rebalancing the two phases with double large prime variation: resolution in $\tilde{O}\left(q^{2-2 / g}\right)$
\Rightarrow better than generic attacks as soon as $g \geq 3$

(1) Background

- Generalities on DLP and motivations
- Weil descent
- Index calculus for Jacobians of curves
- Decomposition attack
(2) Decomposition attack on hyperelliptic curves over extension fields
- Generalities
- New results
(3) Cover and decomposition attacks

Index calculus on small dimension abelian varieties

Decomposition attack on DLP over $\mathcal{A}_{\mid \mathbb{F}_{q}}, n$-dimensional abelian variety

Gaudry's method

(1) Choose $U \subset \mathcal{A}$ dense affine subset and coord. $\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)$ on U s.t. $\mathbb{F}_{q}(\mathcal{A})$ algebraic extension of $\mathbb{F}_{q}\left(x_{1}, \ldots, x_{n}\right)$
(2) Define factor base $\mathcal{F}=\left\{P \in U: x_{2}(P)=\ldots=x_{n}(P)=0\right\}$
(3) Decompose enough points of \mathcal{A} as sum of n points of \mathcal{F} using group law over $\mathcal{A} \leftrightarrow$ solve a multivariate polynomial system (and check rationality of solutions)
(9) Extract the logarithms with sparse linear algebra

Index calculus on small dimension abelian varieties

Decomposition attack on DLP over $\mathcal{A}_{\mathbb{F}_{q}}, n$-dimensional abelian variety

Gaudry's method

(1) Choose $U \subset \mathcal{A}$ dense affine subset and coord. ($x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}$) on U s.t. $\mathbb{F}_{q}(\mathcal{A})$ algebraic extension of $\mathbb{F}_{q}\left(x_{1}, \ldots, x_{n}\right)$
(2) Define factor base $\mathcal{F}=\left\{P \in U: x_{2}(P)=\ldots=x_{n}(P)=0\right\}$
(0) Decompose enough points of \mathcal{A} as sum of n points of \mathcal{F} using group law over $\mathcal{A} \leftrightarrow$ solve a multivariate polynomial system (and check rationality of solutions)
(0. Extract the logarithms with sparse linear algebra
\mathcal{F} should have $\simeq q$ points
\rightarrow need $O(q)$ relations
\rightarrow linear algebra in $\tilde{O}\left(n q^{2}\right)$

Index calculus on small dimension abelian varieties

Decomposition attack on DLP over $\mathcal{A}_{\mid \mathbb{F} q}, n$-dimensional abelian variety

Gaudry's method

(1) Choose $U \subset \mathcal{A}$ dense affine subset and coord. $\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)$ on U s.t. $\mathbb{F}_{q}(\mathcal{A})$ algebraic extension of $\mathbb{F}_{q}\left(x_{1}, \ldots, x_{n}\right)$
(2) Define factor base $\mathcal{F}=\left\{P \in U: x_{2}(P)=\ldots=x_{n}(P)=0\right\}$
(3) Decompose enough points of \mathcal{A} as sum of n points of \mathcal{F} using group law over $\mathcal{A} \leftrightarrow$ solve a multivariate polynomial system (and check rationality of solutions)
(9) Extract the logarithms with sparse linear algebra

For fixed n, one relation costs $\tilde{O}(1)$
\Rightarrow relation search in $\tilde{O}(q)$ vs linear algebra in $\tilde{O}\left(q^{2}\right)$

Index calculus on small dimension abelian varieties

Decomposition attack on DLP over $\mathcal{A}_{\mid \mathbb{F} q}, n$-dimensional abelian variety

Gaudry's method

(1) Choose $U \subset \mathcal{A}$ dense affine subset and coord. $\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right)$ on U s.t. $\mathbb{F}_{q}(\mathcal{A})$ algebraic extension of $\mathbb{F}_{q}\left(x_{1}, \ldots, x_{n}\right)$
(2) Define factor base $\mathcal{F}=\left\{P \in U: x_{2}(P)=\ldots=x_{n}(P)=0\right\}$
(3) Decompose enough points of \mathcal{A} as sum of n points of \mathcal{F} using group law over $\mathcal{A} \leftrightarrow$ solve a multivariate polynomial system (and check rationality of solutions)
(9) Extract the logarithms with sparse linear algebra

Rebalance with double large prime variation: (heuristic) asymptotic complexity in $\tilde{O}\left(q^{2-2 / n}\right)$ as $q \rightarrow \infty, n$ fixed

Index calculus on small dimension abelian varieties

- Generalizes the classical index calculus on $\mathcal{A}=\operatorname{Jac}_{\mathcal{H}}\left(\mathbb{F}_{q}\right)$ where \mathcal{H} is hyperelliptic with small genus g
- Main application so far: $\mathcal{A}=W_{\mathbb{F}_{q^{n}} / \mathbb{F}_{q}}(E)$ where E elliptic curve defined over $\mathbb{F}_{q^{n}}$ [Gaudry-Diem]

Index calculus on small dimension abelian varieties

- Generalizes the classical index calculus on $\mathcal{A}=\operatorname{Jac}_{\mathcal{H}}\left(\mathbb{F}_{q}\right)$ where \mathcal{H} is hyperelliptic with small genus g
- Main application so far: $\mathcal{A}=W_{\mathbb{F}_{q^{n}} / \mathbb{F}_{q}}(E)$ where E elliptic curve defined over $\mathbb{F}_{q^{n}}$ [Gaudry-Diem]

Practical difficulty

In general, polynomial systems arising from decompositions are huge
\rightsquigarrow find nice representations of \mathcal{A} and clever reformulation of the decompositions

- For elliptic curves, use Semaev's summation polynomials
- For $\mathcal{A}=W_{\mathbb{F}_{q^{n}} / \mathbb{F}_{q}}\left(\operatorname{Jac}_{\mathcal{H}}\left(\mathbb{F}_{q^{n}}\right)\right)$: no equivalent of Semaev's polynomials, use reformulation by Nagao instead
(1) Background
- Generalities on DLP and motivations
- Weil descent
- Index calculus for Jacobians of curves
- Decomposition attack

2 Decomposition attack on hyperelliptic curves over extension fields

- Generalities
- New results

(3) Cover and decomposition attacks

The Riemann-Roch based approach of Nagao

\mathcal{C} curve defined over $\mathbb{F}_{q^{n}}$ of genus g with a unique point \mathcal{O} at infinity.

Factor base

$\mathcal{F}=\left\{D_{Q} \in \operatorname{Jac}_{\mathcal{C}}\left(\mathbb{F}_{q^{n}}\right): D_{Q} \sim(Q)-(\mathcal{O}), Q \in \mathcal{C}\left(\mathbb{F}_{q^{n}}\right), x(Q) \in \mathbb{F}_{q}\right\}$
How to check if D can be decomposed?

$$
D+\sum_{i=1}^{n g}\left(\left(Q_{i}\right)-(\mathcal{O})\right) \sim 0 \Leftrightarrow D+\sum_{i=1}^{n g}\left(\left(Q_{i}\right)-(\mathcal{O})\right)=\operatorname{div}(f)
$$

where $f \in \mathcal{L}_{D}=\mathcal{L}(n g(\mathcal{O})-D), \mathbb{F}_{q^{n}}$-vector space of dim. $(n-1) g+1$

The Riemann-Roch based approach of Nagao

\mathcal{C} curve defined over $\mathbb{F}_{q^{n}}$ of genus g with a unique point \mathcal{O} at infinity.

Factor base

$\mathcal{F}=\left\{D_{Q} \in \operatorname{Jac}_{\mathcal{C}}\left(\mathbb{F}_{q^{n}}\right): D_{Q} \sim(Q)-(\mathcal{O}), Q \in \mathcal{C}\left(\mathbb{F}_{q^{n}}\right), x(Q) \in \mathbb{F}_{q}\right\}$
How to check if D can be decomposed ?

$$
D+\sum_{i=1}^{n g}\left(\left(Q_{i}\right)-(\mathcal{O})\right) \sim 0 \Leftrightarrow D+\sum_{i=1}^{n g}\left(\left(Q_{i}\right)-(\mathcal{O})\right)=\operatorname{div}(f)
$$

where $f \in \mathcal{L}_{D}=\mathcal{L}(n g(\mathcal{O})-D), \mathbb{F}_{q^{n}}$-vector space of $\operatorname{dim} .(n-1) g+1$

- Set of decomp. of D parametrized by $\mathbb{P}\left(\mathcal{L}_{D}\right) \simeq \mathbb{P}^{\ell}, \ell=(n-1) g$
- $\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)$ affine chart of $\mathbb{P}\left(\mathcal{L}_{D}\right)$ s.t. $Q_{i} \neq \mathcal{O}$ for all $i=1, \ldots, n g$

The Riemann-Roch based approach of Nagao

\mathcal{C} curve defined over $\mathbb{F}_{q^{n}}$ of genus g with a unique point \mathcal{O} at infinity.

Factor base

$\mathcal{F}=\left\{D_{Q} \in \operatorname{Jac}_{\mathcal{C}}\left(\mathbb{F}_{q^{n}}\right): D_{Q} \sim(Q)-(\mathcal{O}), Q \in \mathcal{C}\left(\mathbb{F}_{q^{n}}\right), x(Q) \in \mathbb{F}_{q}\right\}$
How to check if D can be decomposed ?

$$
D+\sum_{i=1}^{n g}\left(\left(Q_{i}\right)-(\mathcal{O})\right) \sim 0 \Leftrightarrow D+\sum_{i=1}^{n g}\left(\left(Q_{i}\right)-(\mathcal{O})\right)=\operatorname{div}(f)
$$

where $f \in \mathcal{L}_{D}=\mathcal{L}(n g(\mathcal{O})-D), \mathbb{F}_{q^{n}}$-vector space of $\operatorname{dim} .(n-1) g+1$

- Set of decomp. of D parametrized by $\mathbb{P}\left(\mathcal{L}_{D}\right) \simeq \mathbb{P}^{\ell}, \ell=(n-1) g$
- $\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)$ affine chart of $\mathbb{P}\left(\mathcal{L}_{D}\right)$ s.t. $Q_{i} \neq \mathcal{O}$ for all $i=1, \ldots, n g$

Goal: determine $\lambda_{1}, \ldots, \lambda_{\ell}$ such that $x\left(Q_{i}\right) \in \mathbb{F}_{q}$

Nagao's approach for hyperelliptic curves

Given the Mumford representation of $D=(u, v) \in \operatorname{Jac}_{\mathcal{H}}\left(\mathbb{F}_{q^{n}}\right)$

- $\mathcal{L}\left(n g\left(\mathcal{O}_{\mathcal{H}}\right)-D\right)=\left\langle u, x u, \ldots, x^{m_{1}} u, y-v, x(y-v), \ldots, x^{m_{2}}(y-v)\right\rangle$

$$
f_{\lambda_{1}, \ldots, \lambda_{\ell+1}}(x, y)=u \sum_{i=0}^{m_{1}} \lambda_{2 i+1} x^{i}+(y-v) \sum_{i=0}^{m_{2}} \lambda_{2 i+2} x^{i}
$$

Affine chart of $\mathbb{P}\left(\mathcal{L}_{D}\right) \leftrightarrow \lambda_{\ell+1}=1$

Nagao's approach for hyperelliptic curves

Given the Mumford representation of $D=(u, v) \in \operatorname{Jac}_{\mathcal{H}}\left(\mathbb{F}_{q^{n}}\right)$

- $\mathcal{L}\left(n g\left(\mathcal{O}_{\mathcal{H}}\right)-D\right)=\left\langle u, x u, \ldots, x^{m_{1}} u, y-v, x(y-v), \ldots, x^{m_{2}}(y-v)\right\rangle$

$$
f_{\lambda_{1}, \ldots, \lambda_{\ell+1}}(x, y)=u \sum_{i=0}^{m_{1}} \lambda_{2 i+1} x^{i}+(y-v) \sum_{i=0}^{m_{2}} \lambda_{2 i+2} x^{i}
$$

Affine chart of $\mathbb{P}\left(\mathcal{L}_{D}\right) \leftrightarrow \lambda_{\ell+1}=1$

- Using equation of \mathcal{H}, compute $f_{\lambda_{1}, \ldots, \lambda_{\ell}, 1}(x, y) \cdot f_{\lambda_{1}, \ldots, \lambda_{\ell}, 1}(x,-y) / u$ to get a new polynomial with roots $x\left(Q_{1}\right), \ldots, x\left(Q_{n g}\right)$:

$$
F_{\lambda_{1}, \ldots, \lambda_{\ell}}(x)=x^{n g}+\sum_{i=0}^{n g-1} c_{i}\left(\lambda_{1}, \ldots, \lambda_{\ell}\right) x^{i}
$$

\rightarrow coefficient c_{i} of x^{i} is quadratic in the $\lambda_{i} \in \mathbb{F}_{q^{n}}$

Nagao's approach for hyperelliptic curves

$F_{\lambda_{1}, \ldots, \lambda_{\ell}}(x)=x^{n g}+\sum_{i=0}^{n g-1} c_{i}\left(\lambda_{1}, \ldots, \lambda_{\ell}\right) x^{i}$ with roots $x\left(Q_{1}\right), \ldots, x\left(Q_{n g}\right)$
\rightarrow Weil restriction of scalars: let $\mathbb{F}_{q^{n}}=\mathbb{F}_{q}(t)$ and write

$$
\left\{\begin{array}{l}
\lambda_{i}=\lambda_{i, 0}+\lambda_{i, 1} t+\cdots+\lambda_{i, n-1} t^{n-1} \\
c_{i}\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)=\sum_{j=0}^{n-1} c_{i, j}\left(\lambda_{1,0}, \ldots, \lambda_{\ell, n-1}\right) t^{j}
\end{array}\right.
$$

Nagao's approach for hyperelliptic curves

$F_{\lambda_{1}, \ldots, \lambda_{\ell}}(x)=x^{n g}+\sum_{i=0}^{n g-1} c_{i}\left(\lambda_{1}, \ldots, \lambda_{\ell}\right) x^{i}$ with roots $x\left(Q_{1}\right), \ldots, x\left(Q_{n g}\right)$
\rightarrow Weil restriction of scalars: let $\mathbb{F}_{q^{n}}=\mathbb{F}_{q}(t)$ and write

$$
\left\{\begin{array}{l}
\lambda_{i}=\lambda_{i, 0}+\lambda_{i, 1} t+\cdots+\lambda_{i, n-1} t^{n-1} \\
c_{i}\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)=\sum_{j=0}^{n-1} c_{i, j}\left(\lambda_{1,0}, \ldots, \lambda_{\ell, n-1}\right) t^{j}
\end{array}\right.
$$

Then
$F_{\lambda_{1}, \ldots, \lambda_{\ell}} \in \mathbb{F}_{q}[x] \Leftrightarrow \forall i \in\{0, \ldots, n g-1\}, \forall j \in\{1, \ldots, n-1\}, c_{i, j}=0$

Nagao's approach for hyperelliptic curves

$F_{\lambda_{1}, \ldots, \lambda_{\ell}}(x)=x^{n g}+\sum_{i=0}^{n g-1} c_{i}\left(\lambda_{1}, \ldots, \lambda_{\ell}\right) x^{i}$ with roots $x\left(Q_{1}\right), \ldots, x\left(Q_{n g}\right)$
\rightarrow Weil restriction of scalars: let $\mathbb{F}_{q^{n}}=\mathbb{F}_{q}(t)$ and write

$$
\left\{\begin{array}{l}
\lambda_{i}=\lambda_{i, 0}+\lambda_{i, 1} t+\cdots+\lambda_{i, n-1} t^{n-1} \\
c_{i}\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)=\sum_{j=0}^{n-1} c_{i, j}\left(\lambda_{1,0}, \ldots, \lambda_{\ell, n-1}\right) t^{j}
\end{array}\right.
$$

Then
$F_{\lambda_{1}, \ldots, \lambda_{\ell}} \in \mathbb{F}_{q}[x] \Leftrightarrow \forall i \in\{0, \ldots, n g-1\}, \forall j \in\{1, \ldots, n-1\}, c_{i, j}=0$

Decomposition of D

- solve a quadratic polynomial system of $(n-1) n g$ eq./var.
- test if $F_{\lambda_{1}, \ldots, \lambda_{\ell}}$ is split in $\mathbb{F}_{q}[x]$
- recover decomposition from roots of $F_{\lambda_{1}, \ldots, \lambda_{\ell}}$

Example for a genus 2 curve over $\mathbb{F}_{67^{2}}=\mathbb{F}_{67}[t] /\left(t^{2}-2\right)$

$$
\mathcal{H}: y^{2}=x^{5}+(50 t+66) x^{4}+(40 t+22) x^{3}+(65 t+23) x^{2}+(61 t+3) x+43 t+6
$$

Decomposition of
$D=\left[x^{2}+(52 t+3) x+21 t+2,(22 t+41) x+25 t+42\right] \in \operatorname{Jac}_{\mathcal{H}}\left(\mathbb{F}_{67^{2}}\right)$

Example for a genus 2 curve over $\mathbb{F}_{67^{2}}=\mathbb{F}_{67}[t] /\left(t^{2}-2\right)$

$\mathcal{H}: y^{2}=x^{5}+(50 t+66) x^{4}+(40 t+22) x^{3}+(65 t+23) x^{2}+(61 t+3) x+43 t+6$
Decomposition of
$D=\left[x^{2}+(52 t+3) x+21 t+2,(22 t+41) x+25 t+42\right] \in \operatorname{Jac}_{\mathcal{H}}\left(\mathbb{F}_{67^{2}}\right)$

- consider $\mathcal{L}\left(4\left(\mathcal{O}_{\mathcal{H}}\right)-D\right)=\langle u(x), y-v(x), x u(x)\rangle$
- from $f_{\lambda_{1}, \lambda_{2}, 1}(x, y)=x u(x)+\lambda_{1}(y-v(x))+\lambda_{2} u(x)$ and $h(x)$ $\rightarrow F_{\lambda_{1}, \lambda_{2}}(x)=x^{4}+\left(-\lambda_{1}^{2}+2 \lambda_{2}+52 t+3\right) x^{3}+\ldots \in \mathbb{F}_{67}[x]$ with roots $x\left(Q_{i}\right)$
- find $\lambda_{1}, \lambda_{2} \in \mathbb{F}_{67^{2}}$ s.t. $F_{\lambda_{1}, \lambda_{2}}$ is in $\mathbb{F}_{67}[x]$
$\Rightarrow \lambda_{1}, \lambda_{2}$ such that $\left\{\begin{array}{c}-\lambda_{1}^{2}+2 \lambda_{2}+52 t+3 \in \mathbb{F}_{67} \\ \vdots\end{array}\right.$

Example for a genus 2 curve over $\mathbb{F}_{67^{2}}=\mathbb{F}_{67}[t] /\left(t^{2}-2\right)$

Weil restriction: let $\lambda_{1}=\lambda_{1,0}+t \lambda_{1,1}$ and $\lambda_{2}=\lambda_{2,0}+t \lambda_{2,1}$
$F_{\lambda_{1}, \lambda_{2}}(x) \in \mathbb{F}_{67}[x] \Rightarrow\left\{\begin{array}{c}-2 \lambda_{1,0} \lambda_{1,1}+2 \lambda_{2,1}+52=0 \\ \vdots\end{array} \quad\right.$ with 2 solutions:

- $\lambda_{1}=7+40 t, \lambda_{2}=8+53 t: F_{\lambda_{1}, \lambda_{2}}(x)=x^{4}+53 x^{3}+26 x^{2}+44 x+12$
- $\lambda_{1}=55+37 t, \lambda_{2}=52-t: F_{\lambda_{1}, \lambda_{2}}(x)=(x-23)(x-34)(x-51)(x-54)$

From $f_{\lambda_{1}, \lambda_{2}, 1}(x, y)=x u(x)+\lambda_{1}(y-v(x))+\lambda_{2} u(x)=0$ recover $y\left(Q_{i}\right)$
$\rightsquigarrow D=\left(Q_{1}\right)+\left(Q_{2}\right)+\left(Q_{3}\right)+\left(Q_{4}\right)-4\left(O_{\mathcal{H}}\right)$ where
$Q_{1}=\left|\begin{array}{c}23 \\ 23 t+12\end{array}, Q_{2}=\left|\begin{array}{c}34 \\ 10 t+43\end{array}, Q_{3}=\left|\begin{array}{c}51 \\ 17 t+3\end{array}, Q_{4}=\right| \begin{array}{c}54 \\ 23 t+15\end{array}\right.\right.$

Complexity on hyperelliptic curves

Double large prime variation

Asymptotic complexity in $\tilde{O}\left(q^{2-2 / n g}\right)$ as $q \rightarrow \infty, n$ and g fixed

What about hidden constants?

1 decomp. test \leftrightarrow solve a quadratic system of $(n-1) n g$ eq/var

- Zero-dimensional ideal of degree $d=2^{(n-1) n g}$
- Resolution with a lexicographic Gröbner basis computation Tools: grevlex basis with F4Remake + ordering change with FGLM
- Complexity: at least in $d^{3}=2^{3(n-1) n g}$ \rightarrow relevant only for n and g small enough

Huge cost of decompositions \rightarrow need for rebalance not so clear in practice

(1) Background

- Generalities on DLP and motivations
- Weil descent
- Index calculus for Jacobians of curves
- Decomposition attack
(2) Decomposition attack on hyperelliptic curves over extension fields
- Generalities
- New results
(3) Cover and decomposition attacks

Modification of the relation search [Joux-V.]

\mathcal{H} hyperelliptic curve of genus g with a unique point $\mathcal{O}_{\mathcal{H}}$ at infinity In practice, decompositions as $D \sim \sum_{i=1}^{n g}\left(\left(Q_{i}\right)-\left(\mathcal{O}_{\mathcal{H}}\right)\right)$ are too slow to compute

Another type of relations

Compute relations involving only elements of \mathcal{F} :

$$
\sum_{i=1}^{m}\left(\left(Q_{i}\right)-\left(\mathcal{O}_{\mathcal{H}}\right)\right) \sim 0
$$

Heuristically, expected number of such relations is $\simeq q^{m-n g} / m$!
\rightarrow as $\simeq q$ relations are needed, consider $m=n g+2$

Modification of the relation search [Joux-V.]

\mathcal{H} hyperelliptic curve of genus g defined over $\mathbb{F}_{q^{n}}, n \geq 2$ Find relations of the form $\sum_{i=1}^{n g+2}\left(\left(Q_{i}\right)-\left(\mathcal{O}_{\mathcal{H}}\right)\right) \sim 0$

- Riemann-Roch based approach: work in $\mathcal{L}\left((n g+2)\left(\mathcal{O}_{\mathcal{H}}\right)\right)=\left\langle 1, x, x^{2}, \ldots, x^{m_{1}}, y, y x, \ldots, y x^{m_{2}}\right\rangle$ of dimension $\ell+1=(n-1) g+3$
- Derive $F_{\lambda_{1}, \ldots, \lambda_{\ell}}(x)$ whose roots are $x\left(Q_{1}\right), \ldots, x\left(Q_{n g+2}\right)$
- $F_{\lambda_{1}, \ldots, \lambda_{\ell}}(x) \in \mathbb{F}_{q}[x] \Rightarrow$ under-determined quadratic polynomial system of $n(n-1) g+2 n-2$ equations in $n(n-1) g+2 n$ variables.
- After initial lex Gröbner basis precomputation, each specialization of the last two variables yields an easy to solve system.

A special case: quadratic extensions

\mathcal{H} hyperelliptic curve of genus g defined over $\mathbb{F}_{q^{2}}=\mathbb{F}_{q}(t) /(P(t))$ with imaginary model $y^{2}=h(x)$ where $\operatorname{deg} h=2 g+1$.

- Riemann-Roch: $f(x, y)=\left(x^{g+1}+\lambda_{g} x^{g}+\ldots+\lambda_{0}\right)+\mu y$

$$
\Rightarrow F_{\lambda_{0}, \ldots, \lambda_{g}, \mu}(x)=\left(x^{g+1}+\lambda_{g} x^{g}+\ldots+\lambda_{0}\right)^{2}-\mu^{2} h(x)
$$

A special case: quadratic extensions

\mathcal{H} hyperelliptic curve of genus g defined over $\mathbb{F}_{q^{2}}=\mathbb{F}_{q}(t) /(P(t))$ with imaginary model $y^{2}=h(x)$ where $\operatorname{deg} h=2 g+1$.

- Riemann-Roch: $f(x, y)=\left(x^{g+1}+\lambda_{g} x^{g}+\ldots+\lambda_{0}\right)+\mu y$

$$
\Rightarrow F_{\lambda_{0}, \ldots, \lambda_{g}, \mu}(x)=\left(x^{g+1}+\lambda_{g} x^{g}+\ldots+\lambda_{0}\right)^{2}-\mu^{2} h(x)
$$

- $\mu=0 \rightsquigarrow$ trivial relation of the form
$\left(P_{1}\right)+\left(\iota\left(P_{1}\right)\right)+\ldots+\left(P_{g+1}\right)+\left(\iota\left(P_{g+1}\right)\right)-(2 g+2) \mathcal{O}_{\mathcal{H}} \sim 0$

A special case: quadratic extensions

\mathcal{H} hyperelliptic curve of genus g defined over $\mathbb{F}_{q^{2}}=\mathbb{F}_{q}(t) /(P(t))$ with imaginary model $y^{2}=h(x)$ where $\operatorname{deg} h=2 g+1$.

- Riemann-Roch: $f(x, y)=\left(x^{g+1}+\lambda_{g} x^{g}+\ldots+\lambda_{0}\right)+\mu y$

$$
\Rightarrow F_{\lambda_{0}, \ldots, \lambda_{g}, \mu}(x)=\left(x^{g+1}+\lambda_{g} x^{g}+\ldots+\lambda_{0}\right)^{2}-\mu^{2} h(x)
$$

- $\mu=0 \rightsquigarrow$ trivial relation of the form
$\left(P_{1}\right)+\left(\iota\left(P_{1}\right)\right)+\ldots+\left(P_{g+1}\right)+\left(\iota\left(P_{g+1}\right)\right)-(2 g+2) \mathcal{O}_{\mathcal{H}} \sim 0$
- Weil restriction: $\lambda_{i}=\lambda_{i, 0}+t \lambda_{i, 1}$ and $\mu^{2}=\mu_{0}+t \mu_{1}$

$$
\begin{aligned}
& F_{\lambda_{0}, \ldots, \lambda_{g}, \mu}(x) \in \mathbb{F}_{q}[x] \text { and } \mu \neq 0 \\
& \quad \Leftrightarrow\left(\lambda_{0,0}, \ldots, \lambda_{g, 0}, \lambda_{0,1}, \ldots, \lambda_{g, 1}, \mu_{0}, \mu_{1}\right) \in \mathbb{V}_{\mathbb{F}_{q}}\left(\mathrm{I}:\left(\mu_{0}, \mu_{1}\right)^{\infty}\right)
\end{aligned}
$$

where I is the ideal corresponding to the quadratic polynomial system of $2 g+2$ equations in $2 g+4$ variables.

A special case: quadratic extensions

Key point

Define $\mathbb{F}_{q^{2}}$ as $\mathbb{F}_{q}(t) /\left(t^{2}-\omega\right) \rightsquigarrow$ additional structure on the equations

$$
\begin{gathered}
F_{\lambda_{0}, \ldots, \lambda_{g}, \mu}(x)=\left(1 \cdot x^{g+1}+\lambda_{g} x^{g}+\ldots+\lambda_{0}\right)^{2}-\mu^{2} h(x) \in \mathbb{F}_{q}[x] \Leftrightarrow \\
2\left(1 \cdot x^{g+1}+\lambda_{g, 0} x^{g}+\cdots+\lambda_{0,0}\right)\left(\lambda_{g, 1} x^{g}+\cdots+\lambda_{0,1}\right)-\mu_{0} h_{1}(x)-\mu_{1} h_{0}(x)=0
\end{gathered}
$$

A special case: quadratic extensions

Key point

Define $\mathbb{F}_{q^{2}}$ as $\mathbb{F}_{q}(t) /\left(t^{2}-\omega\right) \rightsquigarrow$ additional structure on the equations

$$
\begin{gathered}
F_{\lambda_{0}, \ldots, \lambda_{g}, \mu}(x)=\left(1 \cdot x^{g+1}+\lambda_{g} x^{g}+\cdots+\lambda_{0}\right)^{2}-\mu^{2} h(x) \in \mathbb{F}_{q}[x] \Leftrightarrow \\
2\left(1 \cdot x^{g+1}+\lambda_{g, 0} x^{g}+\cdots+\lambda_{0,0}\right)\left(\lambda_{g, 1} x^{g}+\cdots+\lambda_{0,1}\right)-\mu_{0} h_{1}(x)-\mu_{1} h_{0}(x)=0
\end{gathered}
$$

The polynomials generating I are multi-homogeneous of deg $(1,1)$ in $\left(1, \lambda_{0,0}, \ldots, \lambda_{g, 0}\right),\left(\lambda_{0,1}, \ldots, \lambda_{g, 1}, \mu_{0}, \mu_{1}\right)$
\rightarrow speeds up the computation of the lex Gröbner basis:

genus	2	3	4
nb eq. $/$ var.	$6 / 8$	$8 / 10$	$10 / 12$
approx. timing	$<1 \mathrm{sec}$	2 sec	1 h

$\left(g \log _{2} q \simeq 70\right)$

A special case: quadratic extensions

The polynomials generating I are multi-homogeneous of deg $(1,1)$ in $\left(1, \lambda_{0,0}, \ldots, \lambda_{g, 0}\right),\left(\lambda_{0,1}, \ldots, \lambda_{g, 1}, \mu_{0}, \mu_{1}\right)$
$\rightarrow \pi_{1}\left(\mathbb{V}\left(\mathrm{I}:\left(\mu_{0}, \mu_{1}\right)^{\infty}\right)\right)=\pi_{1}\left(\mathbb{V}\left(\mathrm{I}:\left(\lambda_{0,1}, \ldots, \lambda_{g, 1}, \mu_{0}, \mu_{1}\right)^{\infty}\right)\right)$ has dim. 1 where $\pi_{1}:\left(\lambda_{0,0}, \ldots, \lambda_{g, 0}, \lambda_{0,1}, \ldots, \lambda_{g, 1}, \mu_{0}, \mu_{1}\right) \mapsto\left(\lambda_{0,0}, \ldots, \lambda_{g, 0}\right)$

A special case: quadratic extensions

The polynomials generating I are multi-homogeneous of $\operatorname{deg}(1,1)$ in $\left(1, \lambda_{0,0}, \ldots, \lambda_{g, 0}\right),\left(\lambda_{0,1}, \ldots, \lambda_{g, 1}, \mu_{0}, \mu_{1}\right)$
$\rightarrow \pi_{1}\left(\mathbb{V}\left(\mathrm{I}:\left(\mu_{0}, \mu_{1}\right)^{\infty}\right)\right)=\pi_{1}\left(\mathbb{V}\left(\mathrm{I}:\left(\lambda_{0,1}, \ldots, \lambda_{g, 1}, \mu_{0}, \mu_{1}\right)^{\infty}\right)\right)$ has dim. 1 where $\pi_{1}:\left(\lambda_{0,0}, \ldots, \lambda_{g, 0}, \lambda_{0,1}, \ldots, \lambda_{g, 1}, \mu_{0}, \mu_{1}\right) \mapsto\left(\lambda_{0,0}, \ldots, \lambda_{g, 0}\right)$

Decomposition method

(1) Outer loop:
"specialization": instead of evaluating e.g. $\lambda_{0,0}$, choose of a point $\left(\lambda_{0,0}, \ldots, \lambda_{g, 0}\right) \in \pi_{1}\left(\mathbb{V}\left(\mathrm{I}:\left(\mu_{0}, \mu_{1}\right)^{\infty}\right)\right)$ remaining variables lie in a one-dimensional vector space
(2) Inner loop:
specialization of a second variable $\lambda_{0,1} \rightsquigarrow$ easy to solve system factorization of $F_{\lambda_{0}, \ldots, \lambda_{g}, \mu}(x) \in \mathbb{F}_{q}[x] \rightsquigarrow$ potential relation

A second improvement: sieving

Idea: combine the modified relation search with a sieving technique \rightarrow avoid the factorization of $F_{\lambda_{0}, \ldots, \lambda_{g}, \mu}$ in $\mathbb{F}_{q}[x]$

A second improvement: sieving

Idea: combine the modified relation search with a sieving technique \rightarrow avoid the factorization of $F_{\lambda_{0}, \ldots, \lambda_{g}, \mu}$ in $\mathbb{F}_{q}[x]$

Sieving method

(1) Specialize $\lambda_{0,0}, \ldots, \lambda_{g, 0}$ and express all remaining var. in terms of $\lambda_{0,1}$ $\rightarrow F$ becomes a polynomial in $\mathbb{F}_{q}\left[x, \lambda_{0,1}\right]$ of degree 2 in $\lambda_{0,1}$
(2) Enumeration in $x \in \mathbb{F}_{q}$ instead of $\lambda_{0,1}$
\rightarrow corresponding values of $\lambda_{0,1}$ are easier to compute
(3) Possible to recover the values of $\lambda_{0,1}$ for which there were $\operatorname{deg}_{x} F$ associated values of x

Time-memory trade-off:

$\lambda_{0,1}$	0	1	2	\cdots	i	\cdots	$p-1$
$\# x$	x_{0}	x_{1}	x_{2}	\cdots	x_{i}	\cdots	x_{p-1}

A second improvement: sieving

Idea: combine the modified relation search with a sieving technique \rightarrow avoid the factorization of $F_{\lambda_{0}, \ldots, \lambda_{g}, \mu}$ in $\mathbb{F}_{q}[x]$

Sieving method

(1) Specialize $\lambda_{0,0}, \ldots, \lambda_{g, 0}$ and express all remaining var. in terms of $\lambda_{0,1}$ $\rightarrow F$ becomes a polynomial in $\mathbb{F}_{q}\left[x, \lambda_{0,1}\right]$ of degree 2 in $\lambda_{0,1}$
(2) Enumeration in $x \in \mathbb{F}_{q}$ instead of $\lambda_{0,1}$
\rightarrow corresponding values of $\lambda_{0,1}$ are easier to compute
(3) Possible to recover the values of $\lambda_{0,1}$ for which there were $\operatorname{deg}_{x} F$ associated values of x

Time-memory trade-off:

$\lambda_{0,1}$	0	1	2	\cdots	i	\cdots	$p-1$
$\# x$	x_{0}	x_{1}	x_{2}	\cdots	x_{i}	\cdots	x_{p-1}

Much faster to compute decompositions with our variant \rightarrow about 960 times faster for $(n, g)=(2,3)$ on a 150-bit curve

(1) Background

- Generalities on DLP and motivations
- Weil descent
- Index calculus for Jacobians of curves
- Decomposition attack
(2) Decomposition attack on hyperelliptic curves over extension fields
- Generalities
- New results
(3) Cover and decomposition attacks

A combined attack

Let $E\left(\mathbb{F}_{q^{n}}\right)$ elliptic curve such that

- GHS provides covering curves \mathcal{C} with too large genus
- n is too large for a practical decomposition attack

A combined attack

Let $E\left(\mathbb{F}_{q^{n}}\right)$ elliptic curve such that

- GHS provides covering curves \mathcal{C} with too large genus
- n is too large for a practical decomposition attack

Cover and decomposition attack [Joux-V.]

If n composite, combine both approaches:
(1) use GHS on the subextension $\mathbb{F}_{q^{n}} / \mathbb{F}_{q^{d}}$ to transfer the DL to $\mathrm{Jac}_{\mathcal{C}}\left(\mathbb{F}_{q^{d}}\right)$
(2) then use decomposition attack on $\operatorname{Jac}_{\mathcal{C}}\left(\mathbb{F}_{q^{d}}\right)$ with base field \mathbb{F}_{q} to solve the DLP

The sextic extension case

Comparisons and complexity estimates for 160 bits based on Magma
p 27-bit prime, $E\left(\mathbb{F}_{p^{6}}\right)$ elliptic curve with 160 -bit prime order subgroup

The sextic extension case

Comparisons and complexity estimates for 160 bits based on Magma
p 27-bit prime, $E\left(\mathbb{F}_{p^{6}}\right)$ elliptic curve with 160 -bit prime order subgroup
(1) Generic attacks: $\tilde{O}\left(p^{3}\right)$ cost, $\approx 5 \times 10^{13}$ years

The sextic extension case

Comparisons and complexity estimates for 160 bits based on Magma
p 27-bit prime, $E\left(\mathbb{F}_{p^{6}}\right)$ elliptic curve with 160 -bit prime order subgroup
(1) Generic attacks: $\tilde{O}\left(p^{3}\right)$ cost, $\approx 5 \times 10^{13}$ years
(2) Former index calculus methods:

	Decomposition	GHS
$\mathbb{F}_{p^{6}} / \mathbb{F}_{p^{2}}$	$\tilde{O}\left(p^{2}\right)$ memory bottleneck	
$\mathbb{F}_{p^{6}} / \mathbb{F}_{p}$	intractable	efficient for $\leq 1 / p^{3}$ curves $g=9: \tilde{O}\left(p^{7 / 4}\right), \approx 1500$ years

The sextic extension case

Comparisons and complexity estimates for 160 bits based on Magma
p 27-bit prime, $E\left(\mathbb{F}_{p^{6}}\right)$ elliptic curve with 160 -bit prime order subgroup
(1) Generic attacks: $\tilde{O}\left(p^{3}\right)$ cost, $\approx 5 \times 10^{13}$ years
(2) Former index calculus methods:

	Decomposition	GHS
$\mathbb{F}_{p^{6}} / \mathbb{F}_{p^{2}}$	$\tilde{O}\left(p^{2}\right)$ memory bottleneck	
$\mathbb{F}_{p^{6}} / \mathbb{F}_{p}$	intractable	efficient for $\leq 1 / p^{3}$ curves

(3) Cover and decomposition: $\tilde{O}\left(p^{5 / 3}\right)$ cost using a hyperelliptic genus 3 cover defined over $\mathbb{F}_{p^{2}}$ \rightarrow occurs directly for $1 / p^{2}$ curves and most curves after isogeny walk

- Nagao-style decomposition: ≈ 750 years
- Modified relation search: ≈ 300 years

A concrete attack on a 150-bit curve

$E: y^{2}=x(x-\alpha)(x-\sigma(\alpha))$ defined over $\mathbb{F}_{p^{6}}$ where $p=2^{25}+35$, such that $\# E=4 \cdot 356814156285346166966901450449051336101786213$

- Previously unreachable curve: GHS gives cover over \mathbb{F}_{p} of genus $33 \ldots$

A concrete attack on a 150-bit curve

$E: y^{2}=x(x-\alpha)(x-\sigma(\alpha))$ defined over $\mathbb{F}_{p^{6}}$ where $p=2^{25}+35$, such that $\# E=4 \cdot 356814156285346166966901450449051336101786213$

- Previously unreachable curve: GHS gives cover over \mathbb{F}_{p} of genus $33 \ldots$
- Complete resolution of DLP in about 1 month with cover and decomposition, using genus 3 hyperelliptic cover $\mathcal{H}_{\mid \mathbb{F}_{p^{2}}}$

Relation search

- lex GB: 2.7 sec with one core ${ }^{(1)}$
- sieving: $p^{2} /(2 \cdot 8!) \simeq 1.4 \times 10^{10}$ relations in 62 h on 1024 cores $^{(2)}$ $\rightarrow 960 \times$ faster than Nagao

Linear algebra

- SGE: 25.5 h on 32 cores $^{(2)}$
\rightarrow fivefold reduction
- Lanczos: 28.5 days on 64 cores $^{(2)}$ (200 MB of data broadcast/round)
(Descent phase done in $\sim 14 \mathrm{~s}$ for one point)
(1) Magma on 2.6 GHz Intel Core 2 Duo
(2) 2.93 GHz quadri-core Intel Xeon 5550

Cover and Decomposition Attacks on Elliptic Curves

Vanessa VITSE
Joint work with Antoine JOUX

Université de Versailles Saint-Quentin, Laboratoire PRiSM
Séminaire de Théorie des Nombres de Caen - LMNO

Scaling data for our implementation

Size of p	$\log _{2} p \approx 23$	$\log _{2} p \approx 24$	$\log _{2} p \approx 25$
Sieving (CPU.hours)	3600	15400	63500
Sieving (real time)	3.5 hours	15 hours	62 hours
Group size	136 bits	142 bits	148 bits
Matrix column nb	990193	1736712	3092914
(SGE reduction)	(4.2)	(4.8)	(5.4)
Lanczos (CPU.hours)	4900	16000	43800
Lanczos (real time)	77 hours	250 hours	28.5 days

\rightarrow approximately 200 CPU.years to break DLP over a 160-bit curve group

