A variant of the F4 algorithm

Vanessa VITSE - Antoine JOUX

Université de Versailles Saint-Quentin, Laboratoire PRISM

CT-RSA, February 18, 2011

Motivation

An example of algebraic cryptanalysis

Discrete logarithm problem over elliptic curves (ECDLP)

E elliptic curve over a finite field

Given $P \in E$ and $Q \in \langle P \rangle$, find x such that Q = [x]P

Motivation

An example of algebraic cryptanalysis

Discrete logarithm problem over elliptic curves (ECDLP)

E elliptic curve over a finite field

Given $P \in E$ and $Q \in \langle P \rangle$, find x such that Q = [x]P

Basic outline of index calculus method for DLP

- **1** define a factor base: $\mathcal{F} = \{P_1, \dots, P_N\}$
- ② relation search: for random (a_i, b_i) , try to decompose $[a_i]P + [b_i]Q$ as sum of points in \mathcal{F}
- 3 linear algebra step: once k > N relations found, deduce with sparse algebra techniques the DL of Q

Motivation

Cryptanalysis of the DLP on $E(\mathbb{F}_{q^n})$

Relation search on $E(\mathbb{F}_{q^n})$ - [Gaudry, Diem]

- Factor base: $\mathcal{F} = \{(x,y) \in E(\mathbb{F}_{q^n}) : x \in \mathbb{F}_q\}$
- Goal: find a least $\#\mathcal{F}$ decompositions of random combinations R = [a]P + [b]Q into m points of \mathcal{F} : $R = P_1 + \ldots + P_m$

Algebraic attack

- ullet for each R, construct the corresponding polynomial system \mathcal{S}_R
 - Semaev's summation polynomials and symmetrization
 - ightharpoonup Weil restriction: write \mathbb{F}_{q^n} as $\mathbb{F}_q[t]/(f(t))$
- $S_R = \{f_1, \ldots, f_n\} \subset \mathbb{F}_q[X_1, \ldots, X_m]$
 - \sim coefficients depend polynomially on x_R

each decomposition trial \leftrightarrow find the solutions of \mathcal{S}_R over \mathbb{F}_q

Polynomial system solving over finite fields

Difficult pb: how to compute V(I) where $I = \langle f_1, ..., f_r \rangle \subset \mathbb{F}_q[X_1, ..., X_m]$?

Gröbner bases: good representations for ideals

- ullet Convenient generators g_1,\ldots,g_s of I capturing the main features of I
- $G \subset I$ is a Gröbner basis of I if $\langle LT(G) \rangle = LT(I)$

Polynomial system solving over finite fields

Difficult pb: how to compute V(I) where $I = \langle f_1, ..., f_r \rangle \subset \mathbb{F}_q[X_1, ..., X_m]$?

Gröbner bases: good representations for ideals

- ullet Convenient generators g_1,\ldots,g_s of I capturing the main features of I
- $G \subset I$ is a Gröbner basis of I if $\langle LT(G) \rangle = LT(I)$

Gröbner basis computation

- Basic operation: computation and reduction of critical pair $S(p_1, p_2) = u_1 p_1 u_2 p_2$ where $lcm = LM(p_1) \vee LM(p_2)$, $u_i = \frac{lcm}{LM(p_i)}$
- Buchberger's result: to compute a GB of I,
 - **1** start with $G = \{f_1, \ldots, f_r\}$
 - iterate basic operation on all possible critical pairs of elements of G, add non-zero remainders to G

Techniques for resolution of polynomial systems

F4: efficient implementation of Buchberger's algorithm

- linear algebra to process several pairs simultaneously
- selection strategy (e.g. lowest total degree lcm)
- at each step construct a Macaulay-style matrix containing
 - \triangleright products $u_i p_i$ coming from the selected critical pairs
 - polynomials from preprocessing phase

Macaulay-style matrix

Techniques for resolution of polynomial systems

Standard Gröbner basis algorithms

- F4 algorithm (Faugère '99)
 - fast and complete reductions of critical pairs
 - drawback: many reductions to zero
- F5 algorithm (Faugère '02)
 - ightharpoonup elaborate criterion ightarrow skip unnecessary reductions
 - drawback: incomplete polynomial reductions

- multipurpose algorithms
- do not take advantage of the common shape of the systems
- knowledge of a prior computation
 - \rightarrow no more reduction to zero in F4 ?

Specifically devised algorithms

Outline of our F4 variant

- F4Precomp: on the first system
 - at each step, store the list of all involved polynomial multiples
- ightharpoonup reduction to zero ightharpoonup remove well-chosen multiple from the list
- F4Remake: for each subsequent system
 - no queue of untreated pairs
 - at each step, pick directly from the list the relevant multiples

Former works

- ullet Gröbner basis over ${\mathbb Q}$ using CRT and modular computations
- Traverso '88: analysis of Gröbner trace for rational Gröbner basis computations with Buchberger's algorithm

Analysis of F4Remake

"Similar" systems

- parametric family of systems: $\{F_1(y), \dots, F_r(y)\}_{y \in \mathbb{K}^\ell}$ where $F_1, \dots, F_r \in \mathbb{K}[Y_1, \dots, Y_\ell][X_1, \dots, X_n]$
- ullet $\{f_1,\ldots,f_r\}\subset \mathbb{K}[\underline{X}]$ random instance of this parametric family

Generic behaviour

- "compute" the GB of $\langle F_1, \dots, F_r \rangle$ in $\mathbb{K}(\underline{Y})[\underline{X}]$ with F4 algorithm
- $\mathbf{Q} \ f_1, \ldots, f_r$ behaves generically if during the GB computation with F4
 - same number of iterations
 - $ilde{}$ at each step, same new leading monomials o similar critical pairs

Analysis of F4Remake

"Similar" systems

- parametric family of systems: $\{F_1(y), \dots, F_r(y)\}_{y \in \mathbb{K}^\ell}$ where $F_1, \dots, F_r \in \mathbb{K}[Y_1, \dots, Y_\ell][X_1, \dots, X_n]$
- $\{f_1, \ldots, f_r\} \subset \mathbb{K}[\underline{X}]$ random instance of this parametric family

Generic behaviour

- "compute" the GB of $\langle F_1, \dots, F_r \rangle$ in $\mathbb{K}(\underline{Y})[\underline{X}]$ with F4 algorithm
- $\mathbf{Q} \ f_1, \dots, f_r$ behaves generically if during the GB computation with F4
 - same number of iterations
 - $ilde{}$ at each step, same new leading monomials o similar critical pairs

F4Remake computes successfully the GB of f_1, \ldots, f_r if the system behaves generically

- **①** Assume f_1, \ldots, f_r behaves generically until the (i-1)-th step
- 2 At step *i*, F4 constructs
 - $lacktriangleq M_g =$ matrix of polynomial multiples at step i for the parametric system
 - ▶ $M = \text{matrix of polynomial multiples at step } i \text{ for } f_1, \dots, f_r$

- Assume f_1, \ldots, f_r behaves generically until the (i-1)-th step
- 2 At step *i*, F4 constructs
 - $lacktriangleq M_g = \text{matrix of polynomial multiples at step } i$ for the parametric system
 - ▶ $M = \text{matrix of polynomial multiples at step } i \text{ for } f_1, \dots, f_r$
- ullet Reduced row echelon form of M_g and M

0 A_0	A_1	١
A_3	A_2	

- **①** Assume f_1, \ldots, f_r behaves generically until the (i-1)-th step
- 2 At step *i*, F4 constructs
 - $lacktriangleq M_g =$ matrix of polynomial multiples at step i for the parametric system
 - ▶ $M = \text{matrix of polynomial multiples at step } i \text{ for } f_1, \dots, f_r$
- ullet Reduced row echelon form of M_g and M

$$\begin{pmatrix}
I_s & B_{g,1} \\
\hline
0 & B_{g,2}
\end{pmatrix}$$

Ι _s	B_1
0	B_2

- **1** Assume f_1, \ldots, f_r behaves generically until the (i-1)-th step
- 2 At step *i*, F4 constructs
 - $lacktriangleq M_g =$ matrix of polynomial multiples at step i for the parametric system
 - ▶ $M = \text{matrix of polynomial multiples at step } i \text{ for } f_1, \dots, f_r$
- ullet Reduced row echelon form of M_g and M

- **1** Assume f_1, \ldots, f_r behaves generically until the (i-1)-th step
- 2 At step *i*, F4 constructs
 - $lacktriangleq M_g =$ matrix of polynomial multiples at step i for the parametric system
 - ▶ $M = \text{matrix of polynomial multiples at step } i \text{ for } f_1, \dots, f_r$
- ullet Reduced row echelon form of M_g and M

	0	$C_{g,1}$
0	I_{ℓ}	$C_{g,2}$
\	0	0

Is		B_1'	
0	В	B_2'	

- **1** Assume f_1, \ldots, f_r behaves generically until the (i-1)-th step
- 2 At step *i*, F4 constructs
 - $ightharpoonup M_g =$ matrix of polynomial multiples at step i for the parametric system
 - ▶ $M = \text{matrix of polynomial multiples at step } i \text{ for } f_1, \dots, f_r$
- ullet Reduced row echelon form of M_g and M

	l _s	0	$C_{g,1}$
	0	I_{ℓ}	$C_{g,2}$
\	0	0	0

l _s		B_1'	
0	В	B_2'	

 f_1, \ldots, f_r behaves generically at step $i \Leftrightarrow B$ has full rank

Probability of success

Heuristic assumption

- ullet The B matrices are uniformly random over $\mathcal{M}_{n,\ell}(\mathbb{F}_q)$
- The probabilities that the B matrices have full rank are independent

Probability estimates over \mathbb{F}_q

The probability that a system f_1, \ldots, f_r behaves generically is heuristically greater than $c(q)^{n_{step}}$ where

- n_{step} is the number of steps during the F4 computation of the parametric system $F_1, \ldots, F_r \in \mathbb{K}(\underline{Y})[\underline{X}]$
- $c(q) = \prod_{i=1}^{\infty} (1 q^{-i}) = 1 1/q + \mathop{O}_{q \to \infty} (1/q^2)$

Application to index calculus method for ECDLP

Joux-V. approach

ECDLP: $P \in E(\mathbb{F}_{q^n}), Q \in \langle P \rangle$, find x such that Q = [x]P

- find $\simeq q$ decompositions of random combination R = [a]P + [b]Q into n-1 points of $\mathcal{F} = \{P \in E(\mathbb{F}_{q^n}) : x_P \in \mathbb{F}_q\}$
- ullet solve $\simeq q^2$ overdetermined systems of n eq. and n-1 var. over \mathbb{F}_q
- heuristic assumption makes sense

Experimental results on $E(\mathbb{F}_{p^5})$, p odd (Joux-V.)

- system of 5 eq / 4 var over \mathbb{F}_p , total degree 8
- Precomputation done in 8.963 sec, 29 steps, $d_{reg} = 19$

size of p	est. failure proba.	F4Remake ¹	F4 ¹	F4/F4Remake	F4 Magma ²
8 bits	0.11	2.844	5.903	2.1	9.660
16 bits	4.4×10^{-4}	3.990	9.758	2.4	9.870
25 bits	2.4×10^{-6}	4.942	16.77	3.4	118.8
32 bits	5.8×10^{-9}	8.444	24.56	2.9	1046

Step	degree	F4Remake matrix sizes	F4 matrix sizes	ratio
14	17	1062×3072	1597×3207	1.6
15	16	1048 × 2798	1853 × 2999	1.9
16	15	992 × 2462	2001 × 2711	2.2
17	14	903 × 2093	2019 × 2369	2.5
18	13	794 × 1720	1930 × 2000	2.8

¹2.93 GHz Intel Xeon processor

²V2.15-15

Results in characteristic 2

The IPSEC Oakley key determination protocol 'Well Known Group' 3 curve

The Oakley curve: an interesting target

$$\mathbb{F}_{2^{155}} = \mathbb{F}_{2}[u]/_{(u^{155}+u^{62}+1)}$$

$$E: y^{2}+xy = x^{3}+(u^{18}+u^{17}+u^{16}+u^{13}+u^{12}+u^{9}+u^{8}+u^{7}+u^{3}+u^{2}+u+1)$$

$$G = E(\mathbb{F}_{2^{155}}),$$

$$\#G = 12*3805993847215893016155463826195386266397436443$$

Remarks

- this curve is known to be theoretically weaker than curves over comparable size prime fields (GHS)
- we show that an actual attack on this curve is feasible.

Attack of Oracle-assisted Static Diffie-Hellman Problem Granger-Joux-V.

Oracle-assisted SDHP

G finite group and d secret integer

- Initial learning phase: the attacker has access to an oracle which outputs [d]Y for any $Y \in G$
- After a number of oracle queries, the attacker has to compute [d]X for a previously unseen challenge X

Attack of Oracle-assisted Static Diffie-Hellman Problem Granger-Joux-V.

Oracle-assisted SDHP

G finite group and d secret integer

- Initial learning phase: the attacker has access to an oracle which outputs [d]Y for any $Y \in G$
- After a number of oracle queries, the attacker has to compute [d]X for a previously unseen challenge X

Attack on the Oakley curve

- learning phase: ask the oracle Q = [d]P for each $P \in \mathcal{F}$ where $\mathcal{F} = \{P \in E(\mathbb{F}_{2^{155}}) : P = (x_P, y_P), x_P \in \mathbb{F}_{2^{31}}\}$
- find a decomposition of [r]X (r random) in a sum of 4 points in \mathcal{F} \leftrightarrow solve $\simeq 5.10^{10}$ systems of 5 eq / 4 var over $\mathbb{F}_{2^{31}}$, total deg 8

Results for the 'Well Known Group' 3 Oakley curve

Timings

- Magma (V2.15-15): each decomposition trial takes about 1 sec
- F4Variant + dedicated optimizations of arithmetic and linear algebra
 - \rightarrow only 22.95 ms per test on a 2.93 GHz Intel Xeon processor
 - $\rightarrow \simeq 400 \times$ faster than results in odd characteristic

Feasible attack : oracle-assisted SDHP solvable in \leq 2 weeks with 1000 processors after a learning phase of 2³⁰ oracle queries

Limits of the heuristic assumption

Specific case

Parametric polynomials with highest degree homogeneous part in $\mathbb{K}[\underline{X}]$

- heuristic assumption not valid
- but generic behaviour until the first fall of degree occurs

Limits of the heuristic assumption

Specific case

Parametric polynomials with highest degree homogeneous part in $\mathbb{K}[\underline{X}]$

- heuristic assumption not valid
- but generic behaviour until the first fall of degree occurs

Unbalanced Oil and Vinegar scheme

Security based on problem of solving multivariate quadratic systems Recommended parameters: 16 eq., 32 (or 48) variables over $\mathbb{K}=\mathbb{F}_{2^4}$

$$P_k = \sum_{i,j=1}^{48} a_{ij}^k x_i x_j + \sum_{i=1}^{48} b_i^k x_i + c^k, \quad k = 1 \dots 16$$

Limits of the heuristic assumption

Specific case

Parametric polynomials with highest degree homogeneous part in $\mathbb{K}[X]$

- heuristic assumption not valid
- but generic behaviour until the first fall of degree occurs

Unbalanced Oil and Vinegar scheme

Recommended parameters : m=16 eq, n=32 (or 48) var over $\mathbb{K}=\mathbb{F}_{2^4}$ Hybrid approach [Bettale, Faugère, Perret]:

- ullet fix m-n variables and find a solution of the system with $16\,\mathrm{eq}\,/\,\mathrm{var}$
- exhaustive search over 3 more variables (overdetermined system)

$$P_k = \sum_{i,j=1}^{13} a_{ij}^k x_i x_j + \sum_{i=1}^{13} \left(b_i^k + \sum_{j=14}^{16} a_{ij}^k x_j \right) x_i + \left(\sum_{i,j=14}^{16} a_{ij}^k x_i x_j + \sum_{i=14}^{16} b_i^k x_i + c^k \right)$$

UOV and Hybrid approach example

Goal : compute GB of systems $S_{x_{14},x_{15},x_{16}}=\{P_1,\ldots,P_{16}\}$ for all $(x_{14},x_{15},x_{16})\in\mathbb{F}_{2^4}^3$ where

$$P_k = \sum_{i,j=1}^{13} a_{ij}^k x_i x_j + \sum_{i=1}^{13} \left(b_i^k + \sum_{j=14}^{16} a_{ij}^k x_j \right) x_i + \left(\sum_{i,j=14}^{16} a_{ij}^k x_i x_j + \sum_{i=14}^{16} b_i^k x_i + c^k \right)$$

Resolution with F4Remake

6 steps, first fall of degree observed at step 5

Proba
$$(S_{x_{14},x_{15},x_{16}})$$
 behaves generically $\geq c(16)^2 \simeq 0.87$

 exhaustive search: the probability observed on different examples is about 90%

UOV and Hybrid approach example

	F4Remake ¹	F4 ¹	F4 Magma ²	F4/F4Remake
Timing (sec)	5.04	16.77	120.6	3.3
Largest matrix	5913 × 7005	10022 × 8329	10245 × 8552	2.0

- precomputation done in 32.3 sec
- to be compared to the 9.41 sec of F5³ mentioned by Faugère et al.
- ullet generically the GB is $\langle 1
 angle$
 - ightarrow solutions to be found among the non generic systems

¹2.6 GHz Intel Core 2 duo

²V2.16-12

³2.4 GHz Bi-pro Xeon

A variant of the F4 algorithm

Vanessa VITSE - Antoine JOUX

Université de Versailles Saint-Quentin, Laboratoire PRISM

CT-RSA, February 18, 2011

Addendum: What about non genericity?

- When the precomputation is correct:
 - correctness of F4Remake easy to detect: non generic behaviour as soon as we encounter a reduction to zero or a polynomial with smaller LT than excepted
 - when F4Remake fails, continue the computation with classical F4

- The precomputation is incorrect if:
 - ► F4Remake produces a leading monomial greater than the one obtained by F4Precomp during the same step
 - ▶ other possibility: execute F4Precomp on several systems and compare the lists of leading monomials

Addendum: Comparison with F5

Common features:

- elimination of the reductions to zero
- same upper bound for the theoretical complexity:

$$\tilde{O}\left(\binom{d_{reg}+n}{n}^{\omega}\right)$$

In practice, for the system on $E(\mathbb{F}_{p^5})$:

- F5 generates many redundant polynomials (F5 criterion):
 17249 polynomials in the GB before minimization
- F4 creates only 2789 polynomials
 - ightarrow better behavior, independent of the implementation

