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Motivation

Motivation
An example of algebraic cryptanalysis

Discrete logarithm problem over elliptic curves (ECDLP)

E elliptic curve over a finite field
Given P ∈ E and Q ∈ 〈P〉, find x such that Q = [x ]P

Basic outline of index calculus method for DLP
1 define a factor base: F = {P1, . . . ,PN}
2 relation search: for random (ai , bi ), try to decompose [ai ]P + [bi ]Q as

sum of points in F
3 linear algebra step: once k > N relations found, deduce with sparse

algebra techniques the DL of Q
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Motivation

Motivation
Cryptanalysis of the DLP on E(Fqn )

Relation search on E (Fqn) - [Gaudry,Diem]

Factor base: F = {(x , y) ∈ E (Fqn) : x ∈ Fq}
Goal: find a least #F decompositions of random combinations
R = [a]P + [b]Q into m points of F : R = P1 + . . . + Pm

Algebraic attack

for each R, construct the corresponding polynomial system SR
I Semaev’s summation polynomials and symmetrization
I Weil restriction: write Fqn as Fq[t]/(f (t))

SR = {f1, . . . , fn} ⊂ Fq[X1, . . . ,Xm]
I coefficients depend polynomially on xR

each decomposition trial ↔ find the solutions of SR over Fq
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Techniques for resolution of polynomial systems

Polynomial system solving over finite fields

Difficult pb: how to compute V (I ) where I = 〈f1, ..., fr 〉 ⊂ Fq[X1, ...,Xm]?

Gröbner bases: good representations for ideals

Convenient generators g1, . . . , gs of I capturing the main features of I

G ⊂ I is a Gröbner basis of I if 〈LT (G )〉 = LT (I )

Gröbner basis computation

Basic operation: computation and reduction of critical pair
S(p1, p2) = u1p1 − u2p2 where lcm = LM(p1) ∨ LM(p2), ui = lcm

LM(pi )

Buchberger’s result: to compute a GB of I ,
1 start with G = {f1, . . . , fr}
2 iterate basic operation on all possible critical pairs of elements of G ,

add non-zero remainders to G
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Techniques for resolution of polynomial systems

Techniques for resolution of polynomial systems

F4: efficient implementation of Buchberger’s algorithm

linear algebra to process several pairs simultaneously

selection strategy (e.g. lowest total degree lcm)

at each step construct a Macaulay-style matrix containing
I products uipi coming from the selected critical pairs
I polynomials from preprocessing phase

polynomial P coeff(P,m)

monomial m

Macaulay-style
matrix
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Techniques for resolution of polynomial systems

Techniques for resolution of polynomial systems

Standard Gröbner basis algorithms

1 F4 algorithm (Faugère ’99)
I fast and complete reductions of critical pairs
I drawback: many reductions to zero

2 F5 algorithm (Faugère ’02)
I elaborate criterion → skip unnecessary reductions
I drawback: incomplete polynomial reductions

multipurpose algorithms

do not take advantage of the common shape of the systems

knowledge of a prior computation
→ no more reduction to zero in F4 ?
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Techniques for resolution of polynomial systems

Specifically devised algorithms

Outline of our F4 variant
1 F4Precomp: on the first system

I at each step, store the list of all involved polynomial multiples
I reduction to zero → remove well-chosen multiple from the list

2 F4Remake: for each subsequent system

I no queue of untreated pairs
I at each step, pick directly from the list the relevant multiples

Former works

Gröbner basis over Q using CRT and modular computations

Traverso ’88: analysis of Gröbner trace for rational Gröbner basis
computations with Buchberger’s algorithm
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Analysis of F4Remake

Analysis of F4Remake

“Similar” systems

parametric family of systems: {F1(y), . . . ,Fr (y)}y∈K`

where F1, . . . ,Fr ∈ K[Y1, . . . ,Y`][X1, . . . ,Xn]

{f1, . . . , fr} ⊂ K[X ] random instance of this parametric family

Generic behaviour
1 “compute” the GB of 〈F1, . . . ,Fr 〉 in K(Y )[X ] with F4 algorithm
2 f1, . . . , fr behaves generically if during the GB computation with F4

I same number of iterations
I at each step, same new leading monomials → similar critical pairs

F4Remake computes successfully the GB of f1, . . . , fr
if the system behaves generically
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Analysis of F4Remake

Algebraic condition for generic behaviour

1 Assume f1, . . . , fr behaves generically until the (i − 1)-th step
2 At step i , F4 constructs

I Mg =matrix of polynomial multiples at step i for the parametric system
I M =matrix of polynomial multiples at step i for f1, . . . , fr

3 Reduced row echelon form of Mg and M

s

LT (M)

RTZ

Ag,0

0
Ag ,1

Ag ,2Ag ,3

A0

0
A1

A2A3

f1, . . . , fr behaves generically at step i ⇔ B has full rank
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Analysis of F4Remake

Probability of success

Heuristic assumption

The B matrices are uniformly random over Mn,`(Fq)

The probabilities that the B matrices have full rank are independent

Probability estimates over Fq

The probability that a system f1, . . . , fr behaves generically is heuristically
greater than c(q)nstep where

nstep is the number of steps during the F4 computation of the
parametric system F1, . . . ,Fr ∈ K(Y )[X ]

c(q) =
∞∏
i=1

(1− q−i ) = 1− 1/q + O
q→∞

(1/q2)
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Applications ECDLP

Application to index calculus method for ECDLP

Joux-V. approach

ECDLP: P ∈ E (Fqn),Q ∈ 〈P〉, find x such that Q = [x ]P

find ' q decompositions of random combination R = [a]P + [b]Q
into n − 1 points of F = {P ∈ E (Fqn) : xP ∈ Fq}

solve ' q2 overdetermined systems of n eq. and n − 1 var. over Fq

heuristic assumption makes sense
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Applications ECDLP

Experimental results on E (Fp5), p odd (Joux-V.)

system of 5 eq / 4 var over Fp, total degree 8

Precomputation done in 8.963 sec, 29 steps, dreg = 19

size of p est. failure proba. F4Remake1 F41 F4/F4Remake F4 Magma2

8 bits 0.11 2.844 5.903 2.1 9.660

16 bits 4.4× 10−4 3.990 9.758 2.4 9.870

25 bits 2.4× 10−6 4.942 16.77 3.4 118.8

32 bits 5.8× 10−9 8.444 24.56 2.9 1046

Step degree F4Remake matrix sizes F4 matrix sizes ratio

14 17 1062× 3072 1597× 3207 1.6

15 16 1048× 2798 1853× 2999 1.9

16 15 992× 2462 2001× 2711 2.2

17 14 903× 2093 2019× 2369 2.5

18 13 794× 1720 1930× 2000 2.8

12.93GHz Intel Xeon processor
2V2.15-15

Vanessa VITSE - Antoine JOUX (UVSQ) A variant of the F4 algorithm CT-RSA 2011



Applications Oracle-assisted SDHP

Results in characteristic 2
The IPSEC Oakley key determination protocol ’Well Known Group’ 3 curve

The Oakley curve: an interesting target

F2155 = F2[u]/(u155+u62+1)

E : y2+xy = x3+(u18+u17+u16+u13+u12+u9+u8+u7+u3+u2+u+1)
G = E (F2155),
#G = 12 ∗ 3805993847215893016155463826195386266397436443

Remarks

this curve is known to be theoretically weaker than curves over
comparable size prime fields (GHS)

we show that an actual attack on this curve is feasible.
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Applications Oracle-assisted SDHP

Attack of Oracle-assisted Static Diffie-Hellman Problem
Granger-Joux-V.

Oracle-assisted SDHP

G finite group and d secret integer

Initial learning phase: the attacker has access to an oracle which
outputs [d ]Y for any Y ∈ G

After a number of oracle queries, the attacker has to compute [d ]X
for a previously unseen challenge X

Attack on the Oakley curve

learning phase: ask the oracle Q = [d ]P for each P ∈ F where
F = {P ∈ E (F2155) : P = (xP , yP), xP ∈ F231}
find a decomposition of [r ]X (r random) in a sum of 4 points in F
↔ solve ' 5.1010 systems of 5 eq / 4 var over F231 , total deg 8
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Applications Oracle-assisted SDHP

Results for the ’Well Known Group’ 3 Oakley curve

Timings

Magma (V2.15-15): each decomposition trial takes about 1 sec

F4Variant + dedicated optimizations of arithmetic and linear algebra
→ only 22.95 ms per test on a 2.93 GHz Intel Xeon processor
→ ' 400× faster than results in odd characteristic

Feasible attack : oracle-assisted SDHP solvable in ≤ 2 weeks with 1000
processors after a learning phase of 230 oracle queries
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Applications UOV

Limits of the heuristic assumption

Specific case

Parametric polynomials with highest degree homogeneous part in K[X ]

heuristic assumption not valid

but generic behaviour until the first fall of degree occurs

Unbalanced Oil and Vinegar scheme

Security based on problem of solving multivariate quadratic systems
Recommended parameters: 16 eq., 32 (or 48) variables over K = F24

Pk =
48∑

i ,j=1

akijxixj +
48∑
i=1

bki xi + ck , k = 1 . . . 16

Hybrid approach [Bettale, Faugère, Perret]:
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Applications UOV

Limits of the heuristic assumption

Specific case

Parametric polynomials with highest degree homogeneous part in K[X ]

heuristic assumption not valid

but generic behaviour until the first fall of degree occurs

Unbalanced Oil and Vinegar scheme

Recommended parameters : m = 16 eq, n = 32 (or 48) var over K = F24

Hybrid approach [Bettale, Faugère, Perret]:

fix m − n variables and find a solution of the system with 16 eq / var

exhaustive search over 3 more variables (overdetermined system)

Pk =
13∑

i ,j=1

akijxixj +
13∑
i=1

(
bki +

16∑
j=14

akijxj

)
xi +

( 16∑
i ,j=14

akijxixj +
16∑

i=14

bki xi +ck
)
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Applications UOV

UOV and Hybrid approach example

Goal : compute GB of systems Sx14,x15,x16 = {P1, . . . ,P16} for all
(x14, x15, x16) ∈ F3

24 where

Pk =
13∑

i ,j=1

akijxixj +
13∑
i=1

(
bki +

16∑
j=14

akijxj

)
xi +

( 16∑
i ,j=14

akijxixj +
16∑

i=14

bki xi +ck
)

Resolution with F4Remake

6 steps, first fall of degree observed at step 5

Proba(Sx14,x15,x16 behaves generically) ≥ c(16)2 ' 0.87

exhaustive search: the probability observed on different examples is
about 90%

Vanessa VITSE - Antoine JOUX (UVSQ) A variant of the F4 algorithm CT-RSA 2011



Applications UOV

UOV and Hybrid approach example

F4Remake1 F41 F4 Magma2 F4/F4Remake

Timing (sec) 5.04 16.77 120.6 3.3

Largest matrix 5913× 7005 10022× 8329 10245× 8552 2.0

precomputation done in 32.3 sec

to be compared to the 9.41 sec of F53 mentioned by Faugère et al.

generically the GB is 〈1〉
→ solutions to be found among the non generic systems

12.6GHz Intel Core 2 duo
2V2.16-12
32.4GHz Bi-pro Xeon
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Addendum: What about non genericity?

1 When the precomputation is correct:
I correctness of F4Remake easy to detect: non generic behaviour as soon

as we encounter a reduction to zero or a polynomial with smaller LT
than excepted

I when F4Remake fails, continue the computation with classical F4

2 The precomputation is incorrect if:
I F4Remake produces a leading monomial greater than the one obtained

by F4Precomp during the same step
I other possibility: execute F4Precomp on several systems and compare

the lists of leading monomials

Vanessa VITSE - Antoine JOUX (UVSQ) A variant of the F4 algorithm CT-RSA 2011



Addendum: Comparison with F5

Common features:

elimination of the reductions to zero

same upper bound for the theoretical complexity:

Õ

((
dreg + n

n

)ω)

In practice, for the system on E (Fp5):

F5 generates many redundant polynomials (F5 criterion) :
17249 polynomials in the GB before minimization

F4 creates only 2789 polynomials
→ better behavior, independent of the implementation
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