Cover and Decomposition Attack on Elliptic Curves

Vanessa VITSE – Antoine Joux

Université de Versailles Saint-Quentin, Laboratoire PRISM

Journées Codes et Cryptographie 2011

Vanessa VITSE (UVSQ)

Cover and decomposition attack

Section 1

Known attacks of the ECDLP

Vanessa VITSE (UVSQ)

3 5 avril 2011 2 / 16

-

・ロト ・ 日 ・ ・ 目 ト ・

Discrete logarithm problem

Discrete logarithm problem (DLP)

Given a group G and $g, h \in G$, find – when it exists – an integer x s.t.

$$h = g^{\times}$$

< ∃ > <

Discrete logarithm problem

Discrete logarithm problem (DLP)

Given a group G and $g, h \in G$, find – when it exists – an integer x s.t.

$$h = g^{x}$$

Difficulty is related to the group:

- Generic attacks: complexity in $\Omega(\max(\alpha_i \sqrt{p_i}))$ if $\#G = \prod_i p_i^{\alpha_i}$
- ② $G \subset (\mathbb{F}_q^*, \times)$: index calculus method with complexity in $L_q(1/3)$ where $L_q(\alpha) = exp(c(\log q)^{\alpha}(\log \log q)^{1-\alpha})$.
- G ⊂ (J_C(F_q), +): index calculus method with sub-exponential complexity (depending of the genus g > 2)

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Basic outline of index calculus methods (additive notations)

$$\textbf{0} \ \ \mathsf{Choice of a factor base:} \ \ \mathcal{F} = \{g_1, \ldots, g_N\} \subset G$$

2 Relation search: decompose $a_i \cdot g + b_i \cdot h(a_i, b_i \text{ random})$ into \mathcal{F}

$$a_i \cdot g + b_i \cdot h = \sum_{j=1}^N c_{i,j} \cdot g_j$$

Solution Linear algebra: once k relations found (k > N)

- construct the matrices $A = \begin{pmatrix} a_i & b_i \end{pmatrix}_{1 \le i \le k}$ and $M = \begin{pmatrix} c_{i,j} \end{pmatrix}_{1 \le i \le k}$
- find $v = (v_1, \ldots, v_k) \in \ker({}^tM)$ such that $vA \neq 0 \mod \#G$
- compute the solution of DLP: $x = -(\sum_i a_i v_i) / (\sum_i b_i v_i) \mod \#G$

Hardness of ECDLP

ECDLP

Given $P \in E(\mathbb{F}_q)$ and $Q \in \langle P \rangle$, find x such that Q = [x]P

イロト イヨト イヨト イヨト

Hardness of ECDLP

ECDLP

Given $P \in E(\mathbb{F}_q)$ and $Q \in \langle P \rangle$, find x such that Q = [x]P

Specific attacks on few families of curves:

- Ourves defined over prime fields
 - lift to characteristic zero fields: anomalous curves
 - ▶ transfer to $\mathbb{F}_{p^k}^*$ via pairings: curves with small embedding degree
 - otherwise only generic attacks (Pollard's Rho)

A E > A E >

Hardness of ECDLP

ECDLP

Given $P \in E(\mathbb{F}_q)$ and $Q \in \langle P \rangle$, find x such that Q = [x]P

Specific attacks on few families of curves:

- Ourves defined over prime fields
 - lift to characteristic zero fields: anomalous curves
 - ▶ transfer to $\mathbb{F}_{p^k}^*$ via pairings: curves with small embedding degree
 - otherwise only generic attacks (Pollard's Rho)
- ② Curves defined over extension fields
 - ▶ Weil descent: transfer from $E(\mathbb{F}_{p^n})$ to $J_{\mathcal{C}}(\mathbb{F}_p)$ where \mathcal{C} has genus $g \ge n$
 - direct index calculus methods on $E(\mathbb{F}_{p^n})$

Lift of the ECDLP via cover maps

 $\pi:\mathcal{C}\to E$ cover map where $\mathcal C$ curve defined over $\mathbb F_q$ and E elliptic curve defined over $\mathbb F_{q^n}$

• transfer the DLP from $E(\mathbb{F}_{q^n})$ to $\mathcal{J}_{\mathcal{C}}(\mathbb{F}_q)$

→ ∃ →

Lift of the ECDLP via cover maps

 $\pi: \mathcal{C} \to E$ cover map where \mathcal{C} curve defined over \mathbb{F}_q and E elliptic curve defined over \mathbb{F}_{q^n}

• transfer the DLP from $E(\mathbb{F}_{q^n})$ to $\mathcal{J}_{\mathcal{C}}(\mathbb{F}_q)$

2 use index calculus on $J_{\mathcal{C}}(\mathbb{F}_q)$: if \mathcal{C} is hyperelliptic with small genus g

- ▶ factor base: $\mathcal{F} = \{D \sim (u, v) : \deg(u) = 1\}$ (Mumford representation)
- decomposition: D = (u, v) decomposes in $\mathcal{F} \Rightarrow u$ is split over \mathbb{F}_q
- complexity in $q^{2-2/g}$ as $q \to \infty$, g fixed

- 本間 と えき と えき とうき

Lift of the ECDLP via cover maps

 $\pi: \mathcal{C} \to E$ cover map where \mathcal{C} curve defined over \mathbb{F}_q and E elliptic curve defined over \mathbb{F}_{q^n}

• transfer the DLP from $E(\mathbb{F}_{q^n})$ to $\mathcal{J}_{\mathcal{C}}(\mathbb{F}_q)$

2 use index calculus on $J_{\mathcal{C}}(\mathbb{F}_q)$: if \mathcal{C} is hyperelliptic with small genus g

- ▶ factor base: $\mathcal{F} = \{D \sim (u, v) : \deg(u) = 1\}$ (Mumford representation)
- decomposition: D = (u, v) decomposes in $\mathcal{F} \Rightarrow u$ is split over \mathbb{F}_q
- complexity in $q^{2-2/g}$ as $q \to \infty$, g fixed

Main difficulty : find a convenient curve $\ensuremath{\mathcal{C}}$ with a genus small enough

イロト 不得下 イヨト イヨト 二日

The GHS construction

Gaudry-Heß-Smart (binary fields), Diem (odd characteristic case)

Given an elliptic curve $E_{|\mathbb{F}_{q^n}}$ and a degree 2 map $E \to \mathbb{P}^1$, construct a curve $\mathcal{C}_{|\mathbb{F}_q}$ and a cover map $\pi : \mathcal{C} \to E$.

The GHS construction

Gaudry-Heß-Smart (binary fields), Diem (odd characteristic case)

Given an elliptic curve $E_{|\mathbb{F}_{q^n}}$ and a degree 2 map $E \to \mathbb{P}^1$, construct a curve $\mathcal{C}_{|\mathbb{F}_q}$ and a cover map $\pi : \mathcal{C} \to E$.

Problem: for most elliptic curves, g is of the order of 2^n

- Index calculus on $J_{\mathcal{C}}(\mathbb{F}_q)$ usually slower than generic methods on $E(\mathbb{F}_{q^n})$
- Possibility of using isogenies from *E* to a vulnerable curve [Galbraith]
 → increase the number of vulnerable curves

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Decomposition attack

Idea from Gaudry and Diem: no transfer, but apply directly index calculus on $E(\mathbb{F}_{q^n})$ (or $J_H(\mathbb{F}_{q^n})$)

Principle

• Factor base:

 $\mathcal{F} = \{ D_Q \in J_H(\mathbb{F}_{q^n}) : D_Q \sim (Q) - (\mathcal{O}_H), Q \in H(\mathbb{F}_{q^n}), x(Q) \in \mathbb{F}_q \}$

• Decomposition of an arbitrary divisor $D \in J_H(\mathbb{F}_{q^n})$ into ng divisors of the factor base $D \sim \sum_{i=1}^{ng} ((Q_i) - (\mathcal{O}_H))$

• complexity in
$$q^{2-2/ng}$$
 as $q o \infty$

- 4 3 6 4 3 6

Decomposition attack

Idea from Gaudry and Diem: no transfer, but apply directly index calculus on $E(\mathbb{F}_{q^n})$ (or $J_H(\mathbb{F}_{q^n})$)

Principle

• Factor base:

 $\mathcal{F} = \{ D_Q \in J_H(\mathbb{F}_{q^n}) : D_Q \sim (Q) - (\mathcal{O}_H), Q \in H(\mathbb{F}_{q^n}), x(Q) \in \mathbb{F}_q \}$

• Decomposition of an arbitrary divisor $D \in J_H(\mathbb{F}_{q^n})$ into ng divisors of the factor base $D \sim \sum_{i=1}^{ng} ((Q_i) - (\mathcal{O}_H))$

$$ullet$$
 complexity in $q^{2-2/\,ng}$ as $q o\infty$

- interesting when g is small $(g \leq 3)$
- every curves are equally weak under this attack
- decomposition is harder (need to solve polynomial systems)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Nagao's approach for decompositions

How to check if D = (u, v) can be decomposed ?

$$D + \sum_{i=1}^{ng} \left((Q_i) - (\mathcal{O}_H) \right) \sim 0 \Leftrightarrow D + \sum_{i=1}^{ng} \left((Q_i) - (\mathcal{O}_H) \right) = div(f)$$

where $f \in \mathcal{L}(ng(\mathcal{O}_H) - D)$, \mathbb{F}_{q^n} -vector space of dim. $\ell = (n-1)g + 1$

- Polynomial $F_{\lambda_1,...,\lambda_\ell}(X)$ with roots $x(Q_1),\ldots,x(Q_{ng})$
- *F*_{λ1,...,λℓ} ∈ 𝔽_q[X] ⇔ components of the λ_i in a (𝔽_{qⁿ}/𝔽_q)-linear base satisfy a system of polynomial equations
- Decomposition of D ↔ solve a quadratic polynomial system over 𝔽_q of (n-1)ng equations and variables + test if F_{λ1,...,λℓ} is split in 𝔽_q[X]

イロト 不得下 イヨト イヨト 二日

Nagao's approach for decompositions

How to check if D = (u, v) can be decomposed ?

$$D + \sum_{i=1}^{ng} \left((Q_i) - (\mathcal{O}_H) \right) \sim 0 \Leftrightarrow D + \sum_{i=1}^{ng} \left((Q_i) - (\mathcal{O}_H) \right) = div(f)$$

where $f \in \mathcal{L}(ng(\mathcal{O}_H) - D)$, \mathbb{F}_{q^n} -vector space of dim. $\ell = (n-1)g + 1$

- Polynomial $F_{\lambda_1,...,\lambda_\ell}(X)$ with roots $x(Q_1),\ldots,x(Q_{ng})$
- *F*_{λ1,...,λℓ} ∈ 𝔽_q[X] ⇔ components of the λ_i in a (𝔽_{qⁿ}/𝔽_q)-linear base satisfy a system of polynomial equations
- Decomposition of D ↔ solve a quadratic polynomial system over 𝔽_q of (n-1)ng equations and variables + test if F_{λ1,...,λℓ} is split in 𝔽_q[X]
- complexity of the polynomial system resolution \rightarrow relevant approach only for *n* and *g* small enough
- in the elliptic case: use Semaev's summation polynomials instead

Vanessa VITSE (UVSQ)

Section 2

A new index calculus method

• • • • • • • • • • • •

Decomposition attacks

A modified relation search

In practice, decompositions as $D \sim \sum_{i=1}^{ng} \left((Q_i) - (\mathcal{O}_H) \right)$ are too slow to compute

Improvement

Compute relations between elements of \mathcal{F} : $\sum_{i=1}^{ng+2} ((Q_i) - (\mathcal{O}_H)) \sim 0$

- Resolution of an underdetermined quadratic polynomial system of n(n-1)g + 2n 2 equations in n(n-1)g + 2n variables.
- After initial precomputation, each specialization of the last two variables yields an easy to solve system.
- Can be combined with a sieving technique to avoid factorizing the resulting polynomial $F_{\lambda_1,...,\lambda_\ell}$.

Still need a few Nagao's style decompositions to actually solve the DLP (descent phase).

Vanessa VITSE (UVSQ)

A combined attack

Let $E(\mathbb{F}_{q^n})$ elliptic curve such that

- \bullet GHS provides covering curves ${\cal C}$ with too large genus
- *n* is too large for a practical decomposition attack

Cover and decomposition attack

If n composite, combine both approaches

- **(**) use GHS on the subextension $\mathbb{F}_{q^n}/\mathbb{F}_{q^d}$ to transfer the DL to $\mathcal{J}_{\mathcal{C}}(\mathbb{F}_{q^d})$
- ② use decomposition attack on $J_{\mathcal{C}}(\mathbb{F}_{q^d})$ with base field \mathbb{F}_q to solve the DLP

Genus 3 cover

Most favorable case for this combined attack:

- extension degree n = 6 (occurs for OEF), and
- $E_{|\mathbb{F}_{q^6}}$ has a genus 3 cover by $H_{|\mathbb{F}_{q^2}}$
 - ightarrow occurs for $\Theta(q^4)$ curves directly [Thériault, Momose-Chao]
 - \rightarrow for most curves after an isogeny walk

On curves defined over such extension fields:

• GHS: cover $\mathcal{C}_{|\mathbb{F}_q}$ with genus $g \geq 9$ and with equality for less than q^3 curves

 \rightsquigarrow index calculus on $J_{\mathcal{C}}(\mathbb{F}_q)$ is slower

• direct decomposition attack fails to compute any relation

くほと くほと くほと

Complexity and comparison with other attacks

Estimations for *E* elliptic curve defined over \mathbb{F}_{p^6} with $|p| \simeq 27$ bits and $\#E(\mathbb{F}_{p^6}) = 4\ell$ with ℓ a 160-bit prime

Attack	Asymptotic	162-bit example	Ratio of vulnerable curves
	complexity	cost	(without isogeny walk)
Pollard	<i>р</i> ³	2 ⁹⁹	1
Ind. calc. on $H_{ \mathbb{F}_{p^2}}$, $g(H) = 3$	p ^{8/3}	2 ⁹⁰	$1/p^{2}$
Ind. calc. on $H_{ \mathbb{F}_p}$, $g(H) = 9$	p ^{16/9}	2 ⁶⁸	$\leq 1/p^3$
Decomp. on $E_{ \mathbb{F}_{(p^2)^3}}$	p ^{8/3}	2 ⁹⁷	1
Decomp. on $E_{ \mathbb{F}_{p^6}}$	p ^{5/3}	2 ¹³⁵	1
Decomp. on $H_{ \mathbb{F}_{p^2}}$, $g(H) = 3$	p ^{5/3}	2 ⁶⁵	$1/p^{2}$
Decomp. on $H_{ \mathbb{F}_{p^3}}$, $g(H) = 2$	p ^{5/3}	2 ¹¹²	1

(日) (周) (三) (三)

A 130-bit example

E : $y^2 = (x - c)(x - \alpha)(x - \sigma(\alpha))$ defined over \mathbb{F}_{p^6} where $p = 2^{22} + 15$, such that $\#E = 4 \cdot 1361158674614712334466525985682062201601$.

Decomposition on the genus 3 hyperelliptic curve $H_{|\mathbb{F}_{n^2}}$ covering E:

- Relation search:
 - lex GB of a system of 10 eq. and 8 var. in 1 min (Magma on a 2.6 GHz Intel Core 2 Duo proc)
 - sieving phase: ≃ 25 · p relations in about 1 h with 200 cores (2.93 GHz quadri-core Intel Xeon 5550 proc) ~→ 750 times faster than Nagao's

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

A 130-bit example

E : $y^2 = (x - c)(x - \alpha)(x - \sigma(\alpha))$ defined over \mathbb{F}_{p^6} where $p = 2^{22} + 15$, such that $\#E = 4 \cdot 1361158674614712334466525985682062201601$.

Decomposition on the genus 3 hyperelliptic curve $H_{|\mathbb{F}_{n^2}}$ covering E:

- Relation search:
 - lex GB of a system of 10 eq. and 8 var. in 1 min (Magma on a 2.6 GHz Intel Core 2 Duo proc)
 - sieving phase: ≃ 25 · p relations in about 1 h with 200 cores (2.93 GHz quadri-core Intel Xeon 5550 proc) ~→ 750 times faster than Nagao's
- Inear algebra on the very sparse matrix of relations:
 - Structured Gaussian elimination: 1 357 sec on a single core ~> reduces by a factor 3 the number of unknowns
 - Lanczos algorithm: 27 h16 min on 128 cores (MPI communications)
 - Logarithms of all remaining elements in the factor base obtained in 10 min on a single core

A 130-bit example

E : $y^2 = (x - c)(x - \alpha)(x - \sigma(\alpha))$ defined over \mathbb{F}_{p^6} where $p = 2^{22} + 15$, such that $\#E = 4 \cdot 1361158674614712334466525985682062201601$.

Decomposition on the genus 3 hyperelliptic curve $H_{|\mathbb{F}_{n^2}}$ covering E:

- Relation search:
 - lex GB of a system of 10 eq. and 8 var. in 1 min (Magma on a 2.6 GHz Intel Core 2 Duo proc)
 - sieving phase: ≃ 25 · p relations in about 1 h with 200 cores (2.93 GHz quadri-core Intel Xeon 5550 proc) ~→ 750 times faster than Nagao's

Icinear algebra on the very sparse matrix of relations:

- Structured Gaussian elimination: 1357 sec on a single core → reduces by a factor 3 the number of unknowns
- Lanczos algorithm: 27 h16 min on 128 cores (MPI communications)
- Logarithms of all remaining elements in the factor base obtained in 10 min on a single core
- 3 Descent phase: $\simeq 10$ sec for one point on a single core

Conclusion

- New index calculus algorithm to compute DL on elliptic curves defined over extension fields of composite degree
- Efficient attack on elliptic curves defined over sextic extension field
 → practical resolution of DLP on a 130-bit elliptic curve in
 3700 CPU hours or 30 h real time with ≤ 200 cores
- Also available on every elliptic curves defined over a degree 4 extension field, but advantage over generic methods less significant
- How to target more curves?