Cover and Decomposition Attack on Elliptic Curves

Vanessa VITSE - Antoine Joux

Université de Versailles Saint-Quentin, Laboratoire PRISM
Journées Codes et Cryptographie 2011

Section 1

Known attacks of the ECDLP

Discrete logarithm problem

Discrete logarithm problem (DLP)

Given a group G and $g, h \in G$, find - when it exists - an integer x s.t.

$$
h=g^{x}
$$

Discrete logarithm problem

Discrete logarithm problem (DLP)
Given a group G and $g, h \in G$, find - when it exists - an integer x s.t.

$$
h=g^{x}
$$

Difficulty is related to the group:

(1) Generic attacks: complexity in $\Omega\left(\max \left(\alpha_{i} \sqrt{p_{i}}\right)\right)$ if $\# G=\prod_{i} p_{i}^{\alpha_{i}}$
(2) $G \subset\left(\mathbb{F}_{q}^{*}, \times\right)$: index calculus method with complexity in $L_{q}(1 / 3)$ where $L_{q}(\alpha)=\exp \left(c(\log q)^{\alpha}(\log \log q)^{1-\alpha}\right)$.
(3) $G \subset\left(J_{\mathcal{C}}\left(\mathbb{F}_{q}\right),+\right)$: index calculus method with sub-exponential complexity (depending of the genus $g>2$)

Basic outline of index calculus methods

 (additive notations)(1) Choice of a factor base: $\mathcal{F}=\left\{g_{1}, \ldots, g_{N}\right\} \subset G$
(2) Relation search: decompose $a_{i} \cdot g+b_{i} \cdot h\left(a_{i}, b_{i}\right.$ random $)$ into \mathcal{F}

$$
a_{i} \cdot g+b_{i} \cdot h=\sum_{j=1}^{N} c_{i, j} \cdot g_{j}
$$

(3) Linear algebra: once k relations found $(k>N)$

- construct the matrices $A=\left(\begin{array}{ll}a_{i} & b_{i}\end{array}\right)_{1 \leq i \leq k}$ and $M=\left(c_{i, j}\right)_{\substack{1 \leq i \leq k \\ 1 \leq j \leq N}}$
- find $v=\left(v_{1}, \ldots, v_{k}\right) \in \operatorname{ker}\left({ }^{t} M\right)$ such that $v A \neq 0 \bmod \# G$
- compute the solution of DLP: $x=-\left(\sum_{i} a_{i} v_{i}\right) /\left(\sum_{i} b_{i} v_{i}\right) \bmod \# G$

Hardness of ECDLP

ECDLP

Given $P \in E\left(\mathbb{F}_{q}\right)$ and $Q \in\langle P\rangle$, find x such that $Q=[x] P$

Hardness of ECDLP

ECDLP

Given $P \in E\left(\mathbb{F}_{q}\right)$ and $Q \in\langle P\rangle$, find x such that $Q=[x] P$

Specific attacks on few families of curves:

(1) Curves defined over prime fields

- lift to characteristic zero fields: anomalous curves
- transfer to $\mathbb{F}_{p^{k}}^{*}$ via pairings: curves with small embedding degree
- otherwise only generic attacks (Pollard's Rho)

Hardness of ECDLP

ECDLP

Given $P \in E\left(\mathbb{F}_{q}\right)$ and $Q \in\langle P\rangle$, find x such that $Q=[x] P$

Specific attacks on few families of curves:

(1) Curves defined over prime fields

- lift to characteristic zero fields: anomalous curves
- transfer to $\mathbb{F}_{p^{k}}^{*}$ via pairings: curves with small embedding degree
- otherwise only generic attacks (Pollard's Rho)
(2) Curves defined over extension fields
- Weil descent: transfer from $E\left(\mathbb{F}_{p^{n}}\right)$ to $J_{\mathcal{C}}\left(\mathbb{F}_{p}\right)$ where \mathcal{C} has genus $g \geq n$
- direct index calculus methods on $E\left(\mathbb{F}_{p^{n}}\right)$

Lift of the ECDLP via cover maps

$\pi: \mathcal{C} \rightarrow E$ cover map where \mathcal{C} curve defined over \mathbb{F}_{q} and E elliptic curve defined over $\mathbb{F}_{q^{n}}$
(1) transfer the DLP from $E\left(\mathbb{F}_{q^{n}}\right)$ to $J_{\mathcal{C}}\left(\mathbb{F}_{q}\right)$

$E\left(\mathbb{F}_{q^{n}}\right) \simeq J_{E}\left(\mathbb{F}_{q^{n}}\right)$

Lift of the ECDLP via cover maps

$\pi: \mathcal{C} \rightarrow E$ cover map where \mathcal{C} curve defined over \mathbb{F}_{q} and E elliptic curve defined over $\mathbb{F}_{q^{n}}$
(1) transfer the DLP from $E\left(\mathbb{F}_{q^{n}}\right)$ to $J_{\mathcal{C}}\left(\mathbb{F}_{q}\right)$

$$
E\left(\mathbb{F}_{q^{n}}\right) \simeq J_{E}\left(\mathbb{F}_{q^{n}}\right)
$$

(2) use index calculus on $J_{\mathcal{C}}\left(\mathbb{F}_{q}\right)$: if \mathcal{C} is hyperelliptic with small genus g

- factor base: $\mathcal{F}=\{D \sim(u, v): \operatorname{deg}(u)=1\}$ (Mumford representation)
- decomposition: $D=(u, v)$ decomposes in $\mathcal{F} \Rightarrow u$ is split over \mathbb{F}_{q}
- complexity in $q^{2-2 / g}$ as $q \rightarrow \infty, g$ fixed

Lift of the ECDLP via cover maps

$\pi: \mathcal{C} \rightarrow E$ cover map where \mathcal{C} curve defined over \mathbb{F}_{q} and E elliptic curve defined over $\mathbb{F}_{q^{n}}$
(1) transfer the DLP from $E\left(\mathbb{F}_{q^{n}}\right)$ to $J_{\mathcal{C}}\left(\mathbb{F}_{q}\right)$

$$
E\left(\mathbb{F}_{q^{n}}\right) \simeq J_{E}\left(\mathbb{F}_{q^{n}}\right)
$$

(2) use index calculus on $J_{\mathcal{C}}\left(\mathbb{F}_{q}\right)$: if \mathcal{C} is hyperelliptic with small genus g

- factor base: $\mathcal{F}=\{D \sim(u, v): \operatorname{deg}(u)=1\}$ (Mumford representation)
- decomposition: $D=(u, v)$ decomposes in $\mathcal{F} \Rightarrow u$ is split over \mathbb{F}_{q}
- complexity in $q^{2-2 / g}$ as $q \rightarrow \infty, g$ fixed

Main difficulty: find a convenient curve \mathcal{C} with a genus small enough

The GHS construction

Gaudry-Heß-Smart (binary fields), Diem (odd characteristic case)

Given an elliptic curve $E_{\mid \mathbb{F}_{q^{n}}}$ and a degree 2 map $E \rightarrow \mathbb{P}^{1}$, construct a curve $\mathcal{C}_{\mid \mathbb{F}_{q}}$ and a cover map $\pi: \mathcal{C} \rightarrow E$.

The GHS construction

Gaudry-Heß-Smart (binary fields), Diem (odd characteristic case)
Given an elliptic curve $E_{\mathbb{F}_{q^{n}}}$ and a degree 2 map $E \rightarrow \mathbb{P}^{1}$, construct a curve $\mathcal{C}_{\mathbb{F}_{q}}$ and a cover map $\pi: \mathcal{C} \rightarrow E$.

Problem: for most elliptic curves, g is of the order of 2^{n}

- Index calculus on $J_{\mathcal{C}}\left(\mathbb{F}_{q}\right)$ usually slower than generic methods on $E\left(\mathbb{F}_{q^{n}}\right)$
- Possibility of using isogenies from E to a vulnerable curve [Galbraith] \rightarrow increase the number of vulnerable curves

Decomposition attack

Idea from Gaudry and Diem: no transfer, but apply directly index calculus on $E\left(\mathbb{F}_{q^{n}}\right)\left(\right.$ or $\left.J_{H}\left(\mathbb{F}_{q^{n}}\right)\right)$

Principle

- Factor base:

$$
\mathcal{F}=\left\{D_{Q} \in J_{H}\left(\mathbb{F}_{q^{n}}\right): D_{Q} \sim(Q)-\left(\mathcal{O}_{H}\right), Q \in H\left(\mathbb{F}_{q^{n}}\right), x(Q) \in \mathbb{F}_{q}\right\}
$$

- Decomposition of an arbitrary divisor $D \in J_{H}\left(\mathbb{F}_{q^{n}}\right)$ into $n g$ divisors of the factor base $D \sim \sum_{i=1}^{n g}\left(\left(Q_{i}\right)-\left(\mathcal{O}_{H}\right)\right)$
- complexity in $q^{2-2 / n g}$ as $q \rightarrow \infty$

Decomposition attack

Idea from Gaudry and Diem: no transfer, but apply directly index calculus on $E\left(\mathbb{F}_{q^{n}}\right)\left(\right.$ or $\left.J_{H}\left(\mathbb{F}_{q^{n}}\right)\right)$

Principle

- Factor base:

$$
\mathcal{F}=\left\{D_{Q} \in J_{H}\left(\mathbb{F}_{q^{n}}\right): D_{Q} \sim(Q)-\left(\mathcal{O}_{H}\right), Q \in H\left(\mathbb{F}_{q^{n}}\right), x(Q) \in \mathbb{F}_{q}\right\}
$$

- Decomposition of an arbitrary divisor $D \in J_{H}\left(\mathbb{F}_{q^{n}}\right)$ into $n g$ divisors of the factor base $D \sim \sum_{i=1}^{n g}\left(\left(Q_{i}\right)-\left(\mathcal{O}_{H}\right)\right)$
- complexity in $q^{2-2 / n g}$ as $q \rightarrow \infty$
- interesting when g is small $(g \leq 3)$
- every curves are equally weak under this attack
- decomposition is harder (need to solve polynomial systems)

Nagao's approach for decompositions

How to check if $D=(u, v)$ can be decomposed ?

$$
D+\sum_{i=1}^{n g}\left(\left(Q_{i}\right)-\left(\mathcal{O}_{H}\right)\right) \sim 0 \Leftrightarrow D+\sum_{i=1}^{n g}\left(\left(Q_{i}\right)-\left(\mathcal{O}_{H}\right)\right)=\operatorname{div}(f)
$$

where $f \in \mathcal{L}\left(n g\left(\mathcal{O}_{H}\right)-D\right), \mathbb{F}_{q^{n}}$-vector space of dim. $\ell=(n-1) g+1$

- Polynomial $F_{\lambda_{1}, \ldots, \lambda_{\ell}}(X)$ with roots $x\left(Q_{1}\right), \ldots, x\left(Q_{n g}\right)$
- $F_{\lambda_{1}, \ldots, \lambda_{\ell}} \in \mathbb{F}_{q}[X] \Leftrightarrow$ components of the λ_{i} in a $\left(\mathbb{F}_{q^{n}} / \mathbb{F}_{q}\right)$-linear base satisfy a system of polynomial equations
- Decomposition of $D \leftrightarrow$ solve a quadratic polynomial system over \mathbb{F}_{q} of ($n-1$)ng equations and variables + test if $F_{\lambda_{1}, \ldots, \lambda_{\ell}}$ is split in $\mathbb{F}_{q}[X]$

Nagao's approach for decompositions

How to check if $D=(u, v)$ can be decomposed ?

$$
D+\sum_{i=1}^{n g}\left(\left(Q_{i}\right)-\left(\mathcal{O}_{H}\right)\right) \sim 0 \Leftrightarrow D+\sum_{i=1}^{n g}\left(\left(Q_{i}\right)-\left(\mathcal{O}_{H}\right)\right)=\operatorname{div}(f)
$$

where $f \in \mathcal{L}\left(n g\left(\mathcal{O}_{H}\right)-D\right), \mathbb{F}_{q^{n}}$-vector space of $\operatorname{dim} . \ell=(n-1) g+1$

- Polynomial $F_{\lambda_{1}, \ldots, \lambda_{\ell}}(X)$ with roots $x\left(Q_{1}\right), \ldots, x\left(Q_{n g}\right)$
- $F_{\lambda_{1}, \ldots, \lambda_{\ell}} \in \mathbb{F}_{q}[X] \Leftrightarrow$ components of the λ_{i} in a $\left(\mathbb{F}_{q^{n}} / \mathbb{F}_{q}\right)$-linear base satisfy a system of polynomial equations
- Decomposition of $D \leftrightarrow$ solve a quadratic polynomial system over \mathbb{F}_{q} of $(n-1) n g$ equations and variables + test if $F_{\lambda_{1}, \ldots, \lambda_{\ell}}$ is split in $\mathbb{F}_{q}[X]$
- complexity of the polynomial system resolution \rightarrow relevant approach only for n and g small enough
- in the elliptic case: use Semaev's summation polynomials instead

Section 2

A new index calculus method

A modified relation search

In practice, decompositions as $D \sim \sum_{i=1}^{n g}\left(\left(Q_{i}\right)-\left(\mathcal{O}_{H}\right)\right)$ are too slow to compute

Improvement

Compute relations between elements of $\mathcal{F}: \sum_{i=1}^{n g+2}\left(\left(Q_{i}\right)-\left(\mathcal{O}_{H}\right)\right) \sim 0$

- Resolution of an underdetermined quadratic polynomial system of $n(n-1) g+2 n-2$ equations in $n(n-1) g+2 n$ variables.
- After initial precomputation, each specialization of the last two variables yields an easy to solve system.
- Can be combined with a sieving technique to avoid factorizing the resulting polynomial $F_{\lambda_{1}, \ldots, \lambda_{\ell}}$.

Still need a few Nagao's style decompositions to actually solve the DLP (descent phase).

A combined attack

Let $E\left(\mathbb{F}_{q^{n}}\right)$ elliptic curve such that

- GHS provides covering curves \mathcal{C} with too large genus
- n is too large for a practical decomposition attack

Cover and decomposition attack
If n composite, combine both approaches
(1) use GHS on the subextension $\mathbb{F}_{q^{n}} / \mathbb{F}_{q^{d}}$ to transfer the DL to $J_{\mathcal{C}}\left(\mathbb{F}_{q^{d}}\right)$
(2) use decomposition attack on $J_{\mathcal{C}}\left(\mathbb{F}_{q^{d}}\right)$ with base field \mathbb{F}_{q} to solve the DLP

Genus 3 cover

Most favorable case for this combined attack:

- extension degree $n=6$ (occurs for OEF), and
- $E_{\mid \mathbb{F}_{q^{6}}}$ has a genus 3 cover by $H_{\mid \mathbb{F}_{q^{2}}}$
\rightarrow occurs for $\Theta\left(q^{4}\right)$ curves directly [Thériault, Momose-Chao]
\rightarrow for most curves after an isogeny walk

On curves defined over such extension fields:

- GHS: cover $\mathcal{C}_{\mid \mathbb{F}_{q}}$ with genus $g \geq 9$ and with equality for less than q^{3} curves
\rightsquigarrow index calculus on $J_{\mathcal{C}}\left(\mathbb{F}_{q}\right)$ is slower
- direct decomposition attack fails to compute any relation

Complexity and comparison with other attacks

Estimations for E elliptic curve defined over $\mathbb{F}_{p^{6}}$ with $|p| \simeq 27$ bits and $\# E\left(\mathbb{F}_{p^{6}}\right)=4 \ell$ with ℓ a 160 -bit prime

Attack	Asymptotic complexity	162-bit example cost	Ratio of vulnerable curves (without isogeny walk)
Pollard	p^{3}	2^{99}	1
Ind. calc. on $H_{\mid \mathbb{F}_{p^{2}}}, g(H)=3$	$p^{8 / 3}$	2^{90}	$1 / p^{2}$
Ind. calc. on $H_{\mid \mathbb{F}_{p}}, g(H)=9$	$p^{16 / 9}$	2^{68}	$\leq 1 / p^{3}$
Decomp. on $E_{\mid \mathbb{F}_{\left(p^{2}\right)^{3}}}$	$p^{8 / 3}$	2^{97}	1
Decomp. on $E_{\mid \mathbb{F}_{p^{6}}}$	$p^{5 / 3}$	2^{135}	1
Decomp. on $H_{\mid \mathbb{F}_{p^{2}}}, g(H)=3$	$p^{5 / 3}$	2^{65}	$1 / p^{2}$
Decomp. on $H_{\mid \mathbb{F}_{p^{3}}}, g(H)=2$	$p^{5 / 3}$	2^{112}	1

A 130-bit example

$E: y^{2}=(x-c)(x-\alpha)(x-\sigma(\alpha))$ defined over $\mathbb{F}_{p^{6}}$ where $p=2^{22}+15$, such that $\# E=4 \cdot 1361158674614712334466525985682062201601$.

Decomposition on the genus 3 hyperelliptic curve $H_{\mid \mathbb{F}_{p^{2}}}$ covering E :
(1) Relation search:

- lex GB of a system of 10 eq. and 8 var. in 1 min (Magma on a 2.6 GHz Intel Core 2 Duo proc)
- sieving phase: $\simeq 25 \cdot p$ relations in about 1 h with 200 cores (2.93 GHz quadri-core Intel Xeon 5550 proc) $\rightsquigarrow 750$ times faster than Nagao's

A 130-bit example

$E: y^{2}=(x-c)(x-\alpha)(x-\sigma(\alpha))$ defined over $\mathbb{F}_{p^{6}}$ where $p=2^{22}+15$, such that $\# E=4 \cdot 1361158674614712334466525985682062201601$.

Decomposition on the genus 3 hyperelliptic curve $H_{\mid \mathbb{F}_{p^{2}}}$ covering E :
(1) Relation search:

- lex GB of a system of 10 eq. and 8 var. in 1 min (Magma on a 2.6 GHz Intel Core 2 Duo proc)
- sieving phase: $\simeq 25 \cdot p$ relations in about 1 h with 200 cores $(2.93 \mathrm{GHz}$ quadri-core Intel Xeon 5550 proc) $\rightsquigarrow 750$ times faster than Nagao's
(2) Linear algebra on the very sparse matrix of relations:
- Structured Gaussian elimination: 1357 sec on a single core \rightsquigarrow reduces by a factor 3 the number of unknowns
- Lanczos algorithm: 27 h 16 min on 128 cores (MPI communications)
- Logarithms of all remaining elements in the factor base obtained in 10 min on a single core

A 130-bit example

$E: y^{2}=(x-c)(x-\alpha)(x-\sigma(\alpha))$ defined over $\mathbb{F}_{p^{6}}$ where $p=2^{22}+15$, such that $\# E=4 \cdot 1361158674614712334466525985682062201601$.

Decomposition on the genus 3 hyperelliptic curve $H_{\mathbb{F}_{p^{2}}}$ covering E :
(1) Relation search:

- lex GB of a system of 10 eq . and 8 var. in 1 min (Magma on a 2.6 GHz Intel Core 2 Duo proc)
- sieving phase: $\simeq 25 \cdot p$ relations in about 1 h with 200 cores $(2.93 \mathrm{GHz}$ quadri-core Intel Xeon 5550 proc) $\rightsquigarrow 750$ times faster than Nagao's
(2) Linear algebra on the very sparse matrix of relations:
- Structured Gaussian elimination: 1357 sec on a single core \rightsquigarrow reduces by a factor 3 the number of unknowns
- Lanczos algorithm: 27 h 16 min on 128 cores (MPI communications)
- Logarithms of all remaining elements in the factor base obtained in 10 min on a single core
(3) Descent phase: $\simeq 10 \mathrm{sec}$ for one point on a single core

Conclusion

- New index calculus algorithm to compute DL on elliptic curves defined over extension fields of composite degree
- Efficient attack on elliptic curves defined over sextic extension field \rightarrow practical resolution of DLP on a 130-bit elliptic curve in 3700 CPU hours or 30 h real time with ≤ 200 cores
- Also available on every elliptic curves defined over a degree 4 extension field, but advantage over generic methods less significant
- How to target more curves?

