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Known attacks of the ECDLP

Section 1

Known attacks of the ECDLP
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Known attacks of the ECDLP Generalities on DLP

Discrete logarithm problem

Discrete logarithm problem (DLP)

Given a group G and g , h ∈ G , find – when it exists – an integer x s.t.

h = g x

Difficulty is related to the group:

1 Generic attacks: complexity in Ω(max(αi
√
pi )) if #G =

∏
i p

αi
i

2 G ⊂ (F∗q,×): index calculus method with complexity in Lq(1/3)
where Lq(α) = exp(c(log q)α(log log q)1−α).

3 G ⊂ (JC(Fq),+): index calculus method with sub-exponential
complexity (depending of the genus g > 2)
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Known attacks of the ECDLP Generalities on DLP

Basic outline of index calculus methods
(additive notations)

1 Choice of a factor base: F = {g1, . . . , gN} ⊂ G

2 Relation search: decompose ai · g + bi · h (ai , bi random) into F

ai · g + bi · h =
N∑
j=1

ci ,j · gj

3 Linear algebra: once k relations found (k > N)

I construct the matrices A =
(
ai bi

)
1≤i≤k and M = (ci,j) 1≤i≤k

1≤j≤N

I find v = (v1, . . . , vk) ∈ ker(tM) such that vA 6= 0 mod #G

I compute the solution of DLP: x = − (
∑

i aivi ) / (
∑

i bivi ) mod #G
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Known attacks of the ECDLP Generalities on DLP

Hardness of ECDLP

ECDLP

Given P ∈ E (Fq) and Q ∈ 〈P〉, find x such that Q = [x ]P

Specific attacks on few families of curves:

1 Curves defined over prime fields
I lift to characteristic zero fields: anomalous curves
I transfer to F∗pk via pairings: curves with small embedding degree
I otherwise only generic attacks (Pollard’s Rho)

2 Curves defined over extension fields
I Weil descent: transfer from E (Fpn) to JC(Fp) where C has genus g ≥ n
I direct index calculus methods on E (Fpn)
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Known attacks of the ECDLP Weil descent and cover attacks

Lift of the ECDLP via cover maps

π : C → E cover map where C curve defined over Fq and E elliptic curve
defined over Fqn

1 transfer the DLP from E (Fqn) to JC(Fq)

JC(Fqn)
Tr // JC(Fq)

E (Fqn) ' JE (Fqn)

π∗

OO 77

2 use index calculus on JC(Fq) : if C is hyperelliptic with small genus g
I factor base: F = {D ∼ (u, v) : deg(u) = 1} (Mumford representation)
I decomposition: D = (u, v) decomposes in F ⇒ u is split over Fq

I complexity in q2−2/g as q →∞, g fixed

Main difficulty : find a convenient curve C with a genus small enough
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Known attacks of the ECDLP Weil descent and cover attacks

The GHS construction

Gaudry-Heß-Smart (binary fields), Diem (odd characteristic case)

Given an elliptic curve E|Fqn
and a degree 2 map E → P1,

construct a curve C|Fq
and a cover map π : C → E .

Problem: for most elliptic curves, g is of the order of 2n

Index calculus on JC(Fq) usually slower than generic methods on
E (Fqn)

Possibility of using isogenies from E to a vulnerable curve [Galbraith]
→ increase the number of vulnerable curves
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Known attacks of the ECDLP Decomposition attacks

Decomposition attack

Idea from Gaudry and Diem: no transfer, but apply directly index calculus
on E (Fqn) (or JH(Fqn))

Principle

Factor base:
F = {DQ ∈ JH(Fqn) : DQ ∼ (Q)− (OH),Q ∈ H(Fqn), x(Q) ∈ Fq}
Decomposition of an arbitrary divisor D ∈ JH(Fqn) into ng divisors of
the factor base D ∼

∑ng
i=1 ((Qi )− (OH))

complexity in q2−2/ng as q →∞

interesting when g is small (g ≤ 3)

every curves are equally weak under this attack

decomposition is harder (need to solve polynomial systems)
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Known attacks of the ECDLP Decomposition attacks

Nagao’s approach for decompositions

How to check if D = (u, v) can be decomposed ?

D +

ng∑
i=1

((Qi )− (OH)) ∼ 0⇔ D +

ng∑
i=1

((Qi )− (OH)) = div(f )

where f ∈ L (ng(OH)− D), Fqn -vector space of dim. ` = (n − 1)g + 1

Polynomial Fλ1,...,λ`(X ) with roots x(Q1), . . . , x(Qng )

Fλ1,...,λ` ∈ Fq[X ]⇔ components of the λi in a (Fqn/Fq)-linear base
satisfy a system of polynomial equations

Decomposition of D ↔ solve a quadratic polynomial system over Fq

of (n− 1)ng equations and variables + test if Fλ1,...,λ` is split in Fq[X ]

complexity of the polynomial system resolution
→ relevant approach only for n and g small enough

in the elliptic case: use Semaev’s summation polynomials instead

Vanessa VITSE (UVSQ) Cover and decomposition attack 5 avril 2011 9 / 16



Known attacks of the ECDLP Decomposition attacks

Nagao’s approach for decompositions

How to check if D = (u, v) can be decomposed ?

D +

ng∑
i=1

((Qi )− (OH)) ∼ 0⇔ D +

ng∑
i=1

((Qi )− (OH)) = div(f )

where f ∈ L (ng(OH)− D), Fqn -vector space of dim. ` = (n − 1)g + 1

Polynomial Fλ1,...,λ`(X ) with roots x(Q1), . . . , x(Qng )

Fλ1,...,λ` ∈ Fq[X ]⇔ components of the λi in a (Fqn/Fq)-linear base
satisfy a system of polynomial equations

Decomposition of D ↔ solve a quadratic polynomial system over Fq

of (n− 1)ng equations and variables + test if Fλ1,...,λ` is split in Fq[X ]

complexity of the polynomial system resolution
→ relevant approach only for n and g small enough

in the elliptic case: use Semaev’s summation polynomials instead

Vanessa VITSE (UVSQ) Cover and decomposition attack 5 avril 2011 9 / 16



A new index calculus method

Section 2

A new index calculus method

Vanessa VITSE (UVSQ) Cover and decomposition attack 5 avril 2011 10 / 16



A new index calculus method Decomposition attacks

A modified relation search

In practice, decompositions as D ∼
∑ng

i=1 ((Qi )− (OH)) are too slow to
compute

Improvement

Compute relations between elements of F :
∑ng+2

i=1 ((Qi )− (OH)) ∼ 0

Resolution of an underdetermined quadratic polynomial system of
n(n − 1)g + 2n − 2 equations in n(n − 1)g + 2n variables.

After initial precomputation, each specialization of the last two
variables yields an easy to solve system.

Can be combined with a sieving technique to avoid factorizing the
resulting polynomial Fλ1,...,λ` .

Still need a few Nagao’s style decompositions to actually solve the DLP
(descent phase).
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A new index calculus method Cover and decomposition attack

A combined attack

Let E (Fqn) elliptic curve such that

GHS provides covering curves C with too large genus

n is too large for a practical decomposition attack

Cover and decomposition attack

If n composite, combine both approaches

1 use GHS on the subextension Fqn/Fqd to transfer the DL to JC(Fqd )

2 use decomposition attack on JC(Fqd ) with base field Fq to solve the
DLP
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A new index calculus method Application to elliptic curves defined over F
q6

Genus 3 cover

Most favorable case for this combined attack:

extension degree n = 6 (occurs for OEF), and

E|Fq6
has a genus 3 cover by H|Fq2

→ occurs for Θ(q4) curves directly [Thériault, Momose-Chao]
→ for most curves after an isogeny walk

On curves defined over such extension fields:

GHS: cover C|Fq
with genus g ≥ 9 and with equality for less than q3

curves
 index calculus on JC(Fq) is slower

direct decomposition attack fails to compute any relation
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A new index calculus method Application to elliptic curves defined over F
q6

Complexity and comparison with other attacks

Estimations for E elliptic curve defined over Fp6 with |p| ' 27 bits and
#E (Fp6) = 4` with ` a 160-bit prime

Attack Asymptotic 162-bit example Ratio of vulnerable curves

complexity cost (without isogeny walk)

Pollard p3 299 1

Ind. calc. on H|F
p2
, g(H) = 3 p8/3 290 1/p2

Ind. calc. on H|Fp , g(H) = 9 p16/9 268 ≤ 1/p3

Decomp. on E|F(p2)3
p8/3 297 1

Decomp. on E|Fp6
p5/3 2135 1

Decomp. on H|F
p2
, g(H) = 3 p5/3 265 1/p2

Decomp. on H|F
p3
, g(H) = 2 p5/3 2112 1
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A new index calculus method Application to elliptic curves defined over F
q6

A 130-bit example

E : y2 = (x − c)(x − α)(x − σ(α)) defined over Fp6 where p = 222 + 15,
such that #E = 4 · 1361158674614712334466525985682062201601.

Decomposition on the genus 3 hyperelliptic curve H|Fp2
covering E :

1 Relation search:
I lex GB of a system of 10 eq. and 8 var. in 1 min (Magma on a 2.6 GHz

Intel Core 2 Duo proc)
I sieving phase: ' 25 · p relations in about 1 h with 200 cores (2.93 GHz

quadri-core Intel Xeon 5550 proc)  750 times faster than Nagao’s

2 Linear algebra on the very sparse matrix of relations:
I Structured Gaussian elimination: 1 357 sec on a single core  reduces

by a factor 3 the number of unknowns
I Lanczos algorithm: 27 h16 min on 128 cores (MPI communications)
I Logarithms of all remaining elements in the factor base obtained in

10 min on a single core

3 Descent phase: ' 10 sec for one point on a single core
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Conclusion

Conclusion

New index calculus algorithm to compute DL on elliptic curves
defined over extension fields of composite degree

Efficient attack on elliptic curves defined over sextic extension field
→ practical resolution of DLP on a 130-bit elliptic curve in
3700 CPU hours or 30 h real time with ≤ 200 cores

Also available on every elliptic curves defined over a degree 4
extension field, but advantage over generic methods less significant

How to target more curves?
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