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Known attacks of the ECDLP Generalities on DLP

Discrete logarithm problem

Discrete logarithm problem (DLP)

Given a group G and g , h ∈ G , find – when it exists – an integer x s.t.

h = g x

Difficulty is related to the group:

1 Generic attack: complexity in Ω(max(αi
√
pi )) if #G =

∏
i p

αi
i

2 G ⊂ (F∗q,×): index calculus method with complexity in Lq(1/3)
where Lq(α) = exp(c(log q)α(log log q)1−α).

3 G ⊂ (JC(Fq),+): index calculus method with sub-exponential
complexity (depending of the genus g > 2)
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Known attacks of the ECDLP Generalities on DLP

Basic outline of index calculus methods
(additive notations)

1 Choice of a factor base: F = {g1, . . . , gN} ⊂ G

2 Relation search: decompose ai · g + bi · h (ai , bi random) into F

ai · g + bi · h =
N∑
j=1

ci ,j · gj

3 Linear algebra: once k relations found (k > N)

I construct the matrices A =
(
ai bi

)
1≤i≤k and M = (ci,j) 1≤i≤k

1≤j≤N

I find v = (v1, . . . , vk) ∈ ker(tM) such that vA 6= 0 [#G ]

I compute the solution of DLP: x = − (
∑

i aivi ) / (
∑

i bivi ) mod #G
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Known attacks of the ECDLP Generalities on DLP

Hardness of ECDLP

ECDLP

Given P ∈ E (Fq) and Q ∈ 〈P〉, find x such that Q = [x ]P

Attacks on special curves

Curves defined over prime fields
I anomalous curves (p-adic lifts)
I small embedding degree (transfer via pairings)

Curves defined over extension fields
I Weil descent [Frey]:

transfer from E (Fpn) to JC(Fp) where C is a genus g ≥ n curve
I Decomposition index calculus on E (Fpn)
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Known attacks of the ECDLP Weil descent and cover attacks

Lift of the ECDLP via cover maps

π : C → E cover map,
C curve defined over Fq of genus g , E elliptic curve defined over Fqn

1 transfer the DLP from 〈P〉 ⊂ E (Fqn) to JC(Fq)

JC(Fqn)
Tr // JC(Fq)

E (Fqn) ' JE (Fqn)

π∗

OO 77

ker(Tr ◦π∗) ∩ 〈P〉 = {O}
⇒ g ≥ n

2 use index calculus on JC(Fq):
→ efficient if C is hyperelliptic with small genus g or has a small
degree plane model

Main difficulty: find a convenient curve C with a genus small enough
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Known attacks of the ECDLP Weil descent and cover attacks

The GHS construction
Gaudry-Heß-Smart (binary fields), Diem (odd characteristic)

σFqn/Fq
Frobenius automorphism

F ′ =
∏n−1

i=0 Fqn(σi (E ))

σ

��

Fqn(E ) F = F ′σ

Fqn(x)

σ
��

2

Fqn

σ
��

Fq(x)

Fq

F is the function field of the wanted curve

the construction depends on x ∈ Fqn(E ) such
that Fqn(E ) is a degree 2 extension of Fqn(x)
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Known attacks of the ECDLP Weil descent and cover attacks

The GHS construction
Gaudry-Heß-Smart (binary fields), Diem (odd characteristic)

F ′

2mFqn(E ) Fqn(σ(E )) · · · Fqn(σn−1(E ))

Fqn(x)

2 2 2

m “magic number” such that the genus g of F ′ depends essentially of
[F ′ : Fqn(x)] = 2m

For most elliptic curves E , m ' n → g is of order 2n
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Known attacks of the ECDLP Weil descent and cover attacks

Observations

1 For most elliptic curves, g is of the order of 2n

I Index calculus on JC(Fq) usually slower than generic methods on
E (Fqn)

I Possibility of using isogenies from E to a vulnerable curve [Galbraith]
→ increase the number of vulnerable curves

2 Kernel of Tr ◦π∗ intersects 〈P〉 ⊂ E (Fqn) trivially in most
cryptographic settings

3 Complexity of the Weil descent usually negligible compared to the
index calculus phase, unless isogeny walk used
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Known attacks of the ECDLP Weil descent and cover attacks

Index calculus step of the Weil Descent
[Adleman, DeMarais, Huang, Gaudry, Diem, Enge, Thomé, Thériault...]

Index calculus on JH(Fq), H hyperelliptic

1 factor base: F = {D ∼ (u, v) : u ∈ Fq[x ] irred, deg(u) ≤ B}
2 relation search:

D = (u, v) decomposes in F ↔ u is B-smooth over Fq[x ]

3 sparse linear algebra in Õ(#F2)

g large: optimal choice of B in logq(Lqg (1/2))
→ complexity in Lqg (1/2)

g small: B = 1, #F = O(q)
relation search in Õ(g !q): faster than linear algebra step when q large
→ double large prime variation to rebalance the two steps [Thériault]
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Known attacks of the ECDLP Weil descent and cover attacks

Double large prime variation

Idea: reduce the factor base to rebalance the 2 steps

In the factor base F = {D ∼ (u, v) : u ∈ Fq[x ], deg(u) = 1}, choose:
F ′ ⊂ F set of “small primes”; F \ F ′ set of “large primes”

Discard all relations involving more than 2 large primes

After collecting about #F relations 2LP, eliminate all the large
primes to obtain ' #F ′ relations involving only small primes

Linear algebra in Õ((#F ′)2)

Asymptotic best choice when q →∞ (g fixed): #F ′ = q1−1/g

⇒ complexity in Õ(q2−2/g )

Practical best choice depends on the actual cost of the two phases and the
computing power available (easy to parallelize the relation search but not
the linear algebra)
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Practical best choice depends on the actual cost of the two phases and the
computing power available (easy to parallelize the relation search but not
the linear algebra)

Vanessa VITSE (UVSQ) Cover and decomposition attack 20 avril 2011 11 / 30



Known attacks of the ECDLP Weil descent and cover attacks

Index calculus step of the Weil Descent

Index calculus on JC(Fq), C small degree plane curve [Diem]

C plane curve of degree d , P0 ∈ C(Fq) base point, D∞ divisor associated
to the line at infinity

1 factor base: F = {(P)− (P0),P ∈ C(Fq)} ∪ {D∞ − d(P0)}
small primes: F ′ ⊂ F

2 relation search: for each P1,P2 ∈ F ′, consider f the equation of the
line through P1,P2: div(f ) = (P1) + (P2) + D − D∞
→ relation if D sum of d − 2 points in F , only 2 of which not in F ′

3 sparse linear algebra in Õ(#F ′2)

Asymptotic best choice when q →∞ (d fixed): #F ′ = Õ(q1−1/(d−2))

⇒ complexity in Õ(q2−2/(d−2))

→ for g = 3, DLP easier on non-hyperelliptic curves
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Known attacks of the ECDLP Decomposition attacks

Decomposition attack

Idea from Gaudry and Diem: no transfer, but apply directly index calculus
on E (Fqn) (or JH(Fqn))

Principle

Factor base:
F = {DQ ∈ JH(Fqn) : DQ ∼ (Q)− (OH),Q ∈ H(Fqn), x(Q) ∈ Fq}
Decomposition of an arbitrary divisor D ∈ JH(Fqn) into ng divisors of
the factor base D ∼

∑ng
i=1 ((Qi )− (OH))

interesting when g is small (g ≤ 3)

every curves are equally weak under this attack

decomposition is harder (need to solve polynomial systems)
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Known attacks of the ECDLP Decomposition attacks

Nagao’s approach for decompositions

How to check if D = (u, v) can be decomposed ?

D +

ng∑
i=1

((Qi )− (OH)) ∼ 0⇔ D +

ng∑
i=1

((Qi )− (OH)) = div(f )

where f ∈ L (ng(OH)− D), Fqn -vector space of dim. ` = (n − 1)g + 1

Polynomial Fλ1,...,λ`(x) with roots x(Q1), . . . , x(Qng )

Fλ1,...,λ` ∈ Fq[x ]⇔ components of the λi in a (Fqn/Fq)-linear base
satisfy a system of polynomial equations

Decomposition of D ↔ solve a quadratic polynomial system of
(n − 1)ng equations and variables + test if Fλ1,...,λ` is split in Fq[x ]
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Known attacks of the ECDLP Decomposition attacks

Example for a genus 2 curve over F672 = F67[t]/(t2 − 2)
H : y 2 = x5 + (50t + 66)x4 + (40t + 22)x3 + (65t + 23)x2 + (61t + 3)x + 43t + 6

consider L(4(OH)− D) = 〈u(x), y − v(x), x u(x)〉
starting from f (x , y) = x u(x) + λ1(y − v(x)) + λ2u(x)
compute Fλ1,λ2(x) = f (x , y)f (x ,−y)/u(x)
→ monic deg. 4 poly. in x , with roots x(Qi ), quadratic in λ1, λ2

find λ1, λ2 ∈ F672 s.t. Fλ1,λ2 is in F67[x ]

For D = [x2+(52t+3)x+21t+2, (22t+41)x+25t+42] ∈ JH(F672)

Fλ1,λ2(x) = x4 + (−λ2
1+2λ2+52t+3) x3 + ... ∈ F67[x ]

⇒ λ1, λ2 s.t.

{
−λ2

1+2λ2+52t+3 ∈ F67

...

Weil restriction: solve a quadratic polynomial system with 4 var/eq
and check if resulting Fλ1,λ2 splits in linear factors

Vanessa VITSE (UVSQ) Cover and decomposition attack 20 avril 2011 15 / 30



Known attacks of the ECDLP Decomposition attacks

Nagao’s decomposition

D = [x2+(52t+3)x+21t+2, (22t+41)x+25t+42] ∈ JH(F672)
Weil restriction: let λ1 = λ1,0 + tλ1,1 and λ2 = λ2,0 + tλ2,1,

Fλ1,λ2(x) ∈ F67[x ]⇒

{
−2λ1,0λ1,1+2λ2,1+52=0

...
with 2 solutions:

λ1 = 7 + 40t, λ2 = 8 + 53t: Fλ1,λ2 (x) = x4 + 53x3 + 26x2 + 44x + 12

λ1 = 55 + 37t, λ2 = 52− t: Fλ1,λ2 (x) = (x − 23)(x − 34)(x − 51)(x − 54)

 D = (Q1) + (Q2) + (Q3) + (Q4)− 4(OH) where

Q1 =
23

23t+12
,Q2 =

34

10t+43
,Q3 =

51

17t+3
,Q4 =

54

23t+15

Non-hyperelliptic case

Use a resultant to compute Fλ1,...,λ`(x)

Decomposition of D → solve a polynomial system of (n − 1)ng
equations and variables with degree > 2
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Known attacks of the ECDLP Decomposition attacks

Complexity of decomposition attacks

Complexity of the relation search:
system resolution at least polynomial in 2n(n−1)g

→ relevant only for n and g small enough
→ total complexity in Õ(q)

Complexity of the linear algebra in Õ(q2)

Double large prime variation ?

Overall asymptotic complexity in q2−2/ng as q →∞, n fixed

In practice, huge cost of the decompositions → almost no rebalance
needed

In the elliptic case: use Semaev’s summation polynomials instead
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Results

Section 2

Results
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Results Cover and decomposition attack

A combined attack

Let E (Fqn) elliptic curve such that

GHS provides covering curves C with too large genus

n is too large for a practical decomposition attack

Cover and decomposition attack

If n composite, combine both approaches

1 use GHS on the subextension Fqn/Fqd to transfer the DL to JC(Fqd )

2 use decomposition attack on JC(Fqd ) with base field Fq to solve the
DLP

Typical case Fp6

1 cover map lifts DLP to genus 3 curve over Fp2

2 decomposition on genus 3 curve
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Results Cover and decomposition attack

Algorithm with precomputation

Precomputation on JC(Fqd )

Find enough relations between factor base elements with a modified
relation search

Do linear algebra to get logs of factor base elements

Individual logarithms on E (Fqn)

Use cover map to lift DLP from E (Fqn) to JC(Fqd )

Use a Nagao’s style decomposition to obtain representation as sum of
factor base elements

Recover discrete logarithm
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Results Precomputation and decomposition attacks

A modified relation search

In practice, decompositions as D ∼
∑ng

i=1 ((Qi )− (OH)) are too slow to
compute

Improvement

Compute relations between elements of F :
∑ng+2

i=1 ((Qi )− (OH)) ∼ 0

Finding such a relation  working in L((ng + 2)(OH))

Resolution of an underdetermined quadratic polynomial system of
n(n − 1)g + 2n − 2 equations in n(n − 1)g + 2n variables.

After initial precomputation, each specialization of the last two
variables yields an easy to solve system.
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Results Precomputation and decomposition attacks

A sieving technique
Idea: combine the modified relation search with a sieving technique
→ avoid the factorisation of Fλ1,...,λ` in Fq[X ]

Sieving method

1 Specialisation of 1 variable λi ,1 instead of (λi ,1, λi ,2)

2 Express all remaining variables in terms of λi ,2
→ F becomes a polynomial in Fq[X , λi ,2], with a smaller degree in
λi ,2 (as low as 2 in our applications)

3 Enumeration in X ∈ Fq instead of λi ,2
→ corresponding values of λi ,2 are easier to compute

4 Possible to recover the values of λi ,2 for which there were degX F
associated values of X

Remark

This sieving works well with double large prime variation
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→ F becomes a polynomial in Fq[X , λi ,2], with a smaller degree in
λi ,2 (as low as 2 in our applications)

3 Enumeration in X ∈ Fq instead of λi ,2
→ corresponding values of λi ,2 are easier to compute

4 Possible to recover the values of λi ,2 for which there were degX F
associated values of X

Remark

This sieving works well with double large prime variation
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Results Precomputation and decomposition attacks

Complexity with the modified relation search

On the asymptotic side...

Decomposition in ng + 2 instead of ng points seems worse:

Double large prime variation less efficient:
→ complexity in O(q2−2/(ng+2)) instead of O(q2−2/ng )

With the sieving: complexity in O(q2−2/(ng+1))

But in practice...

better actual complexity for all accessible values of q

much faster to compute decompositions with our variant
→ about 750 times faster in our application to sextic extensions
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Results Application to elliptic curves defined over sextic extensions

Application to E (Fq6)

Extension degree n = 6 recommended for some Optimal Extension Fields
(fast arithmetic). Potential attacks on curves defined over Fq6 :

GHS: cover C|Fq
with genus g ≥ 9 (genus 9 very rare: less than q3

curves)
 index calculus on JC(Fq) is usually slower than generic attacks

direct decomposition attack fails to compute any relation

Combined attack on Fq6 —Fq3 —Fq or Fq6 —Fq2 —Fq

Favorable cases for this attack: E|Fq6
admits either a

1 (hyperelliptic) genus 2 cover H ′|Fq3

2 non-hyperelliptic genus 3 cover C|Fq2

3 hyperelliptic genus 3 cover H|Fq2
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Results Application to elliptic curves defined over sextic extensions

Covers of E (Fq6)
1 Genus 2 cover by H ′|Fq3

:

E is in Scholten form

y2 = αx3 + βx2 + σ(β)x + σ(α), (α, β ∈ Fq6 , σFq6/Fq3
)

Θ(q6) elliptic curves can be expressed in Scholten form

natural genus 2 curve defined over Fq6 :

y2 = αx6 + βx4 + σ(β)x2 + σ(α)

after the change of coordinates (x , y) =
(

X−c
X−σ(c) ,

Y
(X−σ(c))3

)
,

genus 2 cover defined over Fq3

Y 2=α(X−c)6+β(X−c)4(X−σ(c))2+σ(β)(X−c)2(X−σ(c))4+σ(α)(X−σ(c))6
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Results Application to elliptic curves defined over sextic extensions

Covers of E (Fq6)

2 Non-hyperelliptic genus 3 cover by C|Fq2
[Momose-Chao]

I E is of the form y2 = (x − α)(x − αq2
)(x − β)(x − βq2

),
where α, β ∈ Fq6 \ Fq2 or α ∈ Fq12 \ (Fq4 ∪ Fq6) and β = αq6

I occurs for Θ(q6) curves

3 Hyperelliptic genus 3 cover by H|Fq2
[Thériault, Momose-Chao]

I E is of the form y2 = h(x)(x − α)(x − αq2
),

where α ∈ Fq6 \ Fq2 , h ∈ Fq2 [x ]
I occurs for Θ(q4) curves directly
I occurs for most curves with cardinality divisible by 4, after an

isogeny walk of length O(q2)
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Results Application to elliptic curves defined over sextic extensions

Complexity and comparison with other attacks

Estimations for E elliptic curve defined over Fp6 with |p| ' 27 bits and
#E (Fp6) = 4` with ` a 160-bit prime

Attack Asymptotic 162-bit example Ratio of vulnerable curves

complexity cost (without isogeny walk)

Pollard p3 299 1

Ind. calc. on H|F
p2

, g(H) = 3 p8/3 290 1/p2

Ind. calc. on H|Fp , g(H) = 9 p16/9 268 ≤ 1/p3

Decomp. on E|F(p2)3
p8/3 297 1

Decomp. on E|Fp6
p5/3 2135 1

Decomp. on H|F
p2

, g(H) = 3 p5/3 265 1/p2

Decomp. on H|F
p3

, g(H) = 2 p5/3 2112 1
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Results Application to elliptic curves defined over sextic extensions

A 130-bit example

A seemingly secure curve

E : y2 = (x − c)(x − α)(x − σ(α)) defined over Fp6 where p = 222 + 15,
such that #E = 4 · 1361158674614712334466525985682062201601.

GHS  Fp-defined cover of genus 33, too large for efficient index calculus

Decomposition on the genus 3 hyperelliptic cover H|Fp2
:

using structured Gaussian elimination instead of the 2LP variation

1 Relation search

I lex GB of a system of 8 eq. and 10 var. in 1 min (Magma on a

2.6 GHz Intel Core 2 Duo proc)
I sieving phase: ' 25 · p relations in about 1 h with 200 cores

(2.93 GHz quadri-core Intel Xeon 5550 proc)

 750 times faster than Nagao’s
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Results Application to elliptic curves defined over sextic extensions

A 130-bit example (2)

Decomposition on the genus 3 hyperelliptic cover H|Fp2
:

2 Linear algebra on the very sparse matrix of relations:

I Structured Gaussian elimination: 1 357 sec on a single core
 reduces by a factor 3 the number of unknowns

I Lanczos algorithm: 27 h16 min on 128 cores (MPI communications)
I Logarithms of all remaining elements in the factor base obtained

in 10 min on a single core

3 Descent phase: ' 10 sec for one point

Complete resolution in 3700 CPU hours

Linear algebra by far the slowest phase (parallelization issue: 42.5 MB
of data broadcast at each round)

No further balance possible due to relation exhaustion
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Conclusion

Conclusion

New index calculus algorithm to compute DL on elliptic curves
defined over extension fields of composite degree

Efficient attack on elliptic curves defined over sextic extension field
→ practical resolution of DLP on a 130-bit elliptic curve in
3700 CPU hours or 30 h real time with ≤ 200 cores

Also available on every elliptic curves defined over a degree 4
extension field, but advantage over generic methods less significant

How to target more curves?
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