
Improved sieving on algebraic curves

Abstract

The best algorithms for discrete logarithms in Jacobians of algebraic curves of
small genus are based on index calculus methods coupled with large prime variations.
For hyperelliptic curves, relations are obtained by looking for reduced divisors with
smooth Mumford representation (Gaudry); for non-hyperelliptic curves it is faster to
obtain relations using special linear systems of divisors (Diem, Kochinke). Recently,
Sarkar and Singh have proposed a sieving technique, inspired by an earlier work
of Joux and Vitse, to speed up the relation search in the hyperelliptic case. We
give a new description of this technique, and show that this new formulation applies
naturally to the non-hyperelliptic case with or without large prime variations. In
particular, we obtain a speed-up by a factor approximately 3 for the relation search
in Diem and Kochinke’s methods.

Keywords : discrete logarithm, index calculus, algebraic curves, curve-based cryp-
tography.

1 Introduction

Given a commutative group (G,+), and two elements g, h of G, the discrete logarithm
problem consists in finding, if it exists, an integer x such that x · g = h. It is considered
as a major computational challenge and much work has been done on the principal
families of groups in the last decades. Jacobians of algebraic curves defined over finite
fields are of particular interest, largely because of their link with elliptic curves (which,
as genus 1 curves, are their own Jacobians). Indeed, transfer attacks as introduced in [5]
can reduce certain discrete logarithm instances on elliptic curves to instances on higher
genus curves, see for instance the record computations of [7]. Consequently, even though
for applications in cryptography only genus 1 (i.e. elliptic curves) or genus 2 curves are
currently considered, assessing the exact difficulty of the DLP in higher genus is still
very important from both the practical and the number-theoretical points of view.

A popular approach to the discrete logarithm problem is given by the index calculus
family of algorithms, that rely heavily on the structures surrounding the group. The
general picture is always the same. We start by choosing a so-called “factor base” B,
i.e. a subset of the elements of the group. Then in a first phase we search for relations
involving elements of the factor base, yielding linear equations between their discrete
logarithms; we call this first phase “harvesting” throughout this paper. In a second
phase we basically solve the linear system of equations given by the relation matrix and

1



deduce the wanted discrete logarithm. This linear algebra phase does not depend on the
structure of the group, but its complexity clearly depends on the cardinality N of the
factor base, since it is roughly the size of the relation matrix.

It is possible to simplify the linear algebra at the expense of the harvesting phase
by decreasing the size of the factor base. This must be done with added care since
less elements in the factor base means lower probability of obtaining a relation. In the
so-called “large prime” variants1 (see [2, 6, 8, 11]), we choose or construct a subset Bs
of the factor base B called the set of “small primes”, of size O(Nα) with 0 < α < 1. The
set B\Bs is the set of large primes. Then we accept only relations involving elements in
Bs and at most two large primes. This decreases the probability of a relation, but it is
shown in [2, 6] that finding O(N) relations involving at most two large primes is enough
to form O(Nα) relations involving only small primes. The linear algebra phase over Bs
then runs in O(N2α) and it remains to choose α to balance both main phases of index
calculus. More details are given at the end of Section 2.1

In this work we focus on improving the known harvesting methods, dedicating to
Jacobian varieties of algebraic curves defined over finite fields. We emphasize that all
the other aspects of the index calculus method (such as the choice of the factor base,
the processing of large prime relations and the linear algebra phase) are not modified.
Recently, Sarkar and Singh proposed in [10] to use a sieving technique for harvesting
relations in the hyperelliptic case, instead of the standard approach of Gaudry [4] based
on smooth reduced divisors. A very similar sieve had actually been used before by Joux
and Vitse in [7], but in the different context of curves defined over extension fields and
Weil restrictions. It turns out that Sarkar and Singh’s sieve has a simpler interpretation,
which allows to generalize it to the index calculus introduced by Diem [2] for non-
hyperelliptic curves, or more exactly small degree planar curves. In our experiments, the
new non-hyperelliptic sieve improves Diem’s original method, as well as its development
by Diem and Kochinke [3], by a factor approximately 3.

The presentation follows these steps. We begin by the case of hyperelliptic curves,
recalling the classical approach of Gaudry based on smoothness check. We present and
analyze the sieving variant of Sarkar and Singh before introducing its simpler reformu-
lation. The next section deals with algebraic curves of genus g admitting a plane model
of degree d ≤ g + 1. Again we start by the classical ideas of using principal divisors as-
sociated to equations of lines to generate relations (Diem). We then give the adaptation
of our sieve to small degree curves, and compare it to Diem’s method. We also briefly
present the singularity-based technique of Diem and Kochinke and show that our sieve
adapts again to this setting. Experiments and timings are reported in the last section.

1The terminology of index calculus stems from the context of integer factorization. In our setting,
“large primes” are arbitrary elements, and involve no notion of size.

2



2 Sieving for hyperelliptic curves

2.1 Gaudry’s relation search

Index calculus on hyperelliptic curves relies on the search of smooth Mumford represen-
tations of divisors. Let H be a genus g imaginary hyperelliptic curve defined over Fq,
with equation y2 = h(x) (so that deg h = 2g + 1) and point at infinity P∞. For simplic-
ity we assume that we are in the odd characteristic case, but everything can be easily
adapted to the characteristic two case. We recall that any element [D] in the Jacobian
variety JacH(Fq) can be uniquely represented by a couple [u(x), v(x)] of polynomials
such that:

• u is monic and deg u ≤ g;

• deg v < deg u;

• u|(h− v2).

More precisely, this is the Mumford representation of the unique reduced divisor D =
(P1) + · · · + (Pdeg u) − deg u (P∞) in the class [D]. The roots of u are exactly the x-
coordinates of the points Pi ∈ H(Fq), and v satisfies v(xPi) = yPi . The Mumford
representation is actually defined for every semi-reduced divisor, i.e. of the form (P1) +
· · ·+ (Pw)−w(P∞) with Pi 6= ıPj if i 6= j, where ı stands for the hyperelliptic involution
(x, y) 7→ (x,−y). The integer w = deg u is called the weight of the divisor, which is
reduced if and only if w ≤ g.

With this setting we see that if the polynomial u splits over Fq, then for each i the
point Pi is Fq-rational so that the class of (Pi) − (P∞) defines an element of JacH(Fq).
Furthermore, we have D =

∑
i ((Pi)− (P∞)) (i.e. D is 1-smooth) and the same equality

holds when taking linear equivalence classes. Gaudry’s algorithm [4] stems from this
observation, and its harvesting phase can be summarized as follows.

• The factor base B is the set {(P ) − (P∞) : P ∈ H(Fq)}, or rather a set of repre-
sentatives of its quotient by the hyperelliptic involution, accounting for the trivial
relations (ıP )− (P∞) ∼ − ((P )− (P∞)). It contains Θ(q) elements.

• At each step, we compute (using a semi-random walk) the Mumford representation
[u, v] of a reduced divisor D ∼ aD0 + bD1, where D0 and D1 are the entries of the
DLP challenge.

• If u splits over Fq as
∏
i(x−xi) then a relation is found: aD0+bD1 ∼

∑
i ((Pi)− (P∞))

where Pi = (xi, v(xi)).

We see that each step of the harvesting phase requires a few operations in JacH followed
by the factorization of u, which is generically a degree g polynomial. The probability
that u actually splits over Fq is about 1/g!, so we need about g! trials before finding a
relation.

3



A precise analysis of the complexity is given by the author in [4]. However, asymp-
totically when g is fixed and q grows to +∞, the cost of finding one relation is in Õ(1),
so the complexity of the harvesting phase is in Õ(q). By contrast, the linear algebra
phase costs Õ(q2) and dominates the complexity. Balancing the two phases has first
been proposed by Harley and improved by Thériault [11], who introduced the large
prime variants in this context. Asymptotically, the best result2 is obtained by Gaudry,
Thériault, Thomé and Diem [6] using the double large prime variation with a factor base
Bs of size ≈ q1−1/g, yielding a complexity of Õ(q2−2/g) for both the harvesting and the
linear algebra phase. Giving a detailed description of the double large variant is outside
the scope of this paper, but we mention that there are two distinct approaches regarding
the construction of the small prime factor base. A first possibility is to define directly
Bs as a subset of B whose elements satisfy an easy to check condition, so that member-
ship testing and enumeration are very fast; alternately, the set BS can be constructed
progressively from the first relations in order to simplify the future elimination of large
primes (as done in by Laine and Lauter [8] in the non-hyperelliptic case).

2.2 Sarkar and Singh’s sieve

A recent result of Sarkar and Singh [10] proposes a sieving approach to the relation search
for hyperelliptic curves. In this method, with the same factor base B as in Section 2.1,
we start from a weight g reduced divisor D = [u, v] =

∑g
i=1(Pi)−g(P∞), usually related

to the challenge. We then consider all the weight g+1 semi-reduced divisors D′ = [u′, v′]
that are linearly equivalent to −D; a relation is obtained each time u′ is split (the factor
base B is the same as in the previous version). The set of all the decompositions of −D
as

−D ∼
g+1∑
i=1

(Qi)− (g + 1)(P∞),

i.e. the set of all weight g + 1 semi-reduced divisors linearly equivalent to −D, is in
one-to-one correspondence with the set of divisors of functions in the Riemann-Roch
space L(−D + (g + 1)(P∞)) = L(−

∑g
i=1(Pi) + (2g + 1)(P∞)). This space is equal to

Span(u(x), y − v(x)) (since functions in this space have poles at P∞ only, of order at
most 2g + 1, and vanish at the support of D), and thus the decompositions of −D can
be parametrized by an element λ ∈ Fq.

We begin with the non-large-prime, non-sieving version of the algorithm. The re-
lation search consists of two main loops, the outer one being simply a semi-random
walk iterating through reduced divisors D = [u, v] ∼ aD0 + bD1. The inner loop it-
erates over the value of the parameter λ ∈ Fq. For each λ, we consider the function
fλ = y − v(x) + λu(x) and the corresponding semi-reduced divisor Dλ = −D + div(fλ).

2This is only true asymptotically. For actual instances of the DLP many other factors have to be
taken into account, and large prime variations are not always appropriate.

4



The Mumford representation [uλ, vλ] of Dλ is given by the formulae{
uλ = c (λu−v)

2−h
u = c(λ2u− 2λv + v2−h

u )

vλ = v − λu mod uλ
,

where c ∈ Fq is the constant that makes uλ monic. We obtain a relation each time Dλ

is 1-smooth, i.e. when uλ is split over Fq; this happens heuristically with probability
1/(g + 1)!.

The main advantage of this relation search is that it admits a sieving version, in the
spirit of [7]. The idea is to replace the inner loop in λ by an inner loop in x ∈ Fq. For
each value of x, we compute the expression

S(x, λ) = λ2u(x)− 2λv(x) +
v(x)2 − h(x)

u(x)
,

which becomes a quadratic polynomial in λ, and find the corresponding roots (for sim-
plicity we can skip the values of x for which u(x) = 0). There are two distinct roots λ0
and λ1 if and only if h(x) is a square in Fq, and those roots are given by:

λ0 =
v(x) + h(x)1/2

u(x)
, λ1 =

v(x)− h(x)1/2

u(x)
.

As explained by the authors, this step is very fast if a table containing a square root of
h(x) (if it exists) for each x ∈ Fq has been precomputed. We then store the corresponding
couples (λ0, x) and (λ1, x). At the end of the inner loop, we look for the values of λ
that have appeared g + 1 times: this means that the corresponding polynomial uλ has
g+1 distinct roots, so that Dλ yields a relation, i.e. a decomposition of −D. In practice,
we can either store each value of x in an array L of lists indexed by λ; each time
a value of λ is obtained as a root of the quadratic expression, we append x to L[λ].
When #L[λ] = g + 1, we directly have the x-coordinates of the points in the support
of div(fλ) − D, and a last step is then to compute back the y-coordinates using fλ.
Alternatively, we can simply maintain a counter array Ctr indexed by λ and increment
Ctr[λ] each time λ is obtained as a root. When this counter reaches g + 1, we factorize
the corresponding split polynomial uλ. This variant has the merit of saving memory at
the expense of some duplicate computations, but is more interesting when g increases
since the proportion of λ’s yielding a relation becomes small.

The main speed-up is provided by the fact that at each iteration of the inner loop, we
replace the splitting test and the eventual factorization of either the degree g polynomial
u (in Gaudry’s version) or the degree g + 1 polynomial S(λ, x) evaluated in λ, by the
resolution of the much simpler equation S(λ, x) = 0, evaluated in x. This comes at the
expense of a slightly lower decomposition probability, namely 1/(g+ 1)! instead of 1/g!,
and higher memory requirement.

As already noticed in [7], a second advantage of this sieve is its compatibility with
the double large prime variation. Indeed, once the “small prime” factor base Bs is
constructed, it is sufficient to sieve among the values of x ∈ Fq corresponding to abscissae

5



of its elements (the full sieving as described above can still be used in the construction
steps of Bs if necessary). Since the cardinality of Bs is in Θ(qα) with α = 1 − 1/g, this
shortened sieving only costs Õ(qα) instead of Õ(q). We then look for the values of λ that
have been obtained at least g−1 times. The corresponding polynomials uλ have at least
g−1 roots corresponding to small primes, and it just remains to test if it is indeed split,
which happens with heuristic probability 1/2 (in the case where λ has been obtained
exactly g−1 times). Note that we cannot simply scan the array L or Ctr, as it would cost
Õ(q) (even with a very small hidden constant) and defeat our purpose. So additional
care must be taken in the implementation in order to recover the interesting values of
λ in only Õ(qα), for instance using associative arrays, see [10] for details. Although it
is not specified in the original paper, one can show that the asymptotic complexity of
this variant is still in Õ(q2−2/g) for fixed g, as in the work of Gaudry, Thomé, Thériault
and Diem [6], but it is more efficient in practice, and the authors report a significant
speed-up.

2.3 Sarkar and Singh’s sieve revisited

As mentioned above, precomputing a table containing an eventual square root of h(x)
for each x ∈ Fq can significantly speed up the sieving phase (for a Õ(q) overhead). But
this table is actually nothing more than a list of the rational points of H. Indeed, if
y is a square root of h(x) then (x, y) and (x,−y) are exactly the two points in H(Fq)
with abscissa x, and this precomputation is actually performed when the factor base
B = {(P )− (P∞) : P ∈ H(Fq)} is enumerated.

This means that we can modify Sarkar and Singh’s sieve as follows. Recall that we
are looking for functions fλ = y − v(x) − λu(x) such that −D + div(fλ) is 1-smooth.
Instead of sieving over the value of x ∈ Fq, or in a small subset corresponding to small
primes, we directly sieve over P = (xP , yP ) ∈ B or Bs, and the corresponding value of λ

is simply recovered as yP−v(xP )
u(xP ) . We give a pseudo-code of this sieve in Alg. 1.

This pseudo-code corresponds to the non-large-prime version. Details like the man-
agement of the list or associative array L and the update of M are omitted. As mentioned
above, a simple counter array Ctr can be used instead of L, requiring the factorization
of S(x, λ) for the update of M . If the double large prime variation is used, then the first
inner loop iterates only over the elements of the small factor base Bs, and in the second
we test if #L[λ] ≥ g − 1 and subsequently if the remaining factor of S(x, λ) splits.

An easy improvement, not included in the pseudo-code for the sake of clarity, is to
use the action of the hyperelliptic involution to divide by two the size of the factor base.
We can then compute simultaneously the values of λ corresponding to P = (xP , yP )
and ıP = (xP ,−yP ). This saves one evaluation of u and of v at xP , and one inversion
of u(xP ), although it is also possible to precompute all inverses. It is clear that this
is basically a rewriting of Sarkar and Singh’s original sieve, so that the performances
of both should be similar. However, we will now see that it is easier to adapt to the
non-hyperelliptic case.

6



Algorithm 1 Sieving in the hyperelliptic case
Input: the set of rational points B of H.
Output: the relation matrix M .
nrel = 0.
repeat

Choose a random reduced divisor D = [u, v] ∼ aD0 + bD1.
Initialize an array of lists L.
for P = (xP , yP ) ∈ B do

Compute u(xP ) and v(xP ).
if u(xP ) 6= 0 then

Compute λ = (yP − v(xP ))/u(xP ).
Append P to L[λ].

end if
end for
for λ ∈ Fq do

if #(L[λ]) = g + 1 then
Update M .
Increment nrel.

end if
end for

until nrel > #B
return the matrix M .

3 Sieving for small degree curves

3.1 Diem’s relation search

Gaudry’s algorithm can be adapted to non-hyperelliptic curves. Most divisors can still be
represented by Mumford coordinates, but computations in the Jacobian variety are not
as tractable and checking for 1-smoothness is less obvious. However, all these operations
are in Õ(1) when g is fixed, so that the asymptotic complexity is still in Õ(q2−2/g), albeit
with a larger hidden constant than in the hyperelliptic case.

In [2], Diem devised a different harvesting technique for plane curves whose degree
is really close to the genus. More precisely, if a curve of genus g ≥ 3 is general enough
(which rules out hyperelliptic curves), we can find in polynomial time a plane model
of expected degree d ≤ g + 1 using a probabilistic algorithm. This means that Diem’s
algorithm applies to almost all non-hyperelliptic curves, with the (then unexpected)
consequence that the DLP is easier on non-hyperelliptic curves than on hyperelliptic
ones.

Harvesting is done by considering relations coming from principal divisors corre-
sponding to equations of lines. For any couple of rational points P1 and P2 on the curve
C, we consider the affine function f = ax+ by + c ∈ Fq(C) such that the equation of the
line L passing through P1 and P2 is f = 0. The intersection of L and the affine part
of C contains up to d rational points, of which we already know two; determining the
remaining d− 2 amounts to finding the roots of a degree d− 2 polynomial. If there are
exactly d − 2 other rational intersection points P3, . . . , Pd then we obtain a relation of

7



the form
div(f) = (P1) + · · ·+ (Pd)−D∞ ∼ 0,

where D∞ is the divisor corresponding to the intersection of C with the line at infinity.
This happens with probability 1/(d − 2)!, which is better than the 1/g! probability for
hyperelliptic curves as soon as d ≤ g + 1.

We can summarize Diem’s harvesting technique as follows. The curve C is defined
by the equation F (x, y) = 0, and we denote by C0 its affine, non-singular part. We
no longer consider only (classes of) degree 0 divisors, so technically we are working in
the full divisor class group and not only its degree 0 part, but in practice it makes no
difference.

• The factor base is B = {(P ) : P ∈ C0(Fq)} ∪ {D∞}

• We choose two points P1 = (x1, y1) and P2 = (x2, y2) in B such that x1 6= x2 (for
simplicity) and compute λ = (y2 − y1)/(x2 − x1) and µ = y1 − λx1.

• We test if the degree d− 2 polynomial F (x,λx+µ)
(x−x1)(x−x2) splits over Fq. If it is the case,

we compute its roots x3, . . . , xd and the associated y-coordinates y3 = λx3 +µ, . . . ,
and we store the relation

(P1) + (P2) + (P3) + · · ·+ (Pd)−D∞ ∼ 0

where Pi = (xi, yi), provided these points are non-singular.

• We go back to the second step until enough relations are found.

Note that a descent phase is needed to express the entries of the DLP challenge in
terms of elements of the factor base, see [2].

The whole routine is particularly well-suited to a two large prime variation (see
also [8] for another version differing mainly on the construction of the factor base and
the large prime graph). Instead of selecting two points in B, we pick them in the small
factor base Bs and keep only relations involving at most two large primes. The main
advantage (as compared to the hyperelliptic case) is that we ensure in this way that
each potential relation contains already two small primes; this greatly increases the
probability of finding relations with only two large primes. In particular if d = 4, every
relation found by the above method automatically satisfies the two large prime condition.

A precise complexity analysis is given in [2] and, if C admits a plane model of degree
g + 1, gives an asymptotic running time of Õ(q2−2/(d−2)), for a small factor base Bs of
size Θ(q1−1/(d−2)). If d = g+ 1 this is Õ(q2−2/(g−1)), which improves over the Õ(q2−2/g)
complexity of the hyperelliptic case. Note however that the size of the small factor base
is such that in order to find enough relations, almost all lines going through pairs of
points of Bs have to be considered. This is troublesome because each line, and thus each
relation, can be obtained several times, namely n(n − 1)/2 times if it contains n small
factor base points. This is not really an issue if d = 4, but for higher d some extra care
has to be taken in order to prevent duplicate relations.

8



3.2 The sieving technique

We can easily adapt our sieving formulation to Diem’s setting. The factor base remains
the same set of points. Basically, in a first loop we iterate over P1 = (x1, y1) ∈ C0(Fq);
the equation of a non-vertical line passing through P1 is (y − y1)− λ(x− x1) = 0. The
task is now to find the values of λ such that the line has d rational points of intersection
with C without checking for smoothness. For this we then loop in P2 = (x2, y2) ∈ C0(Fq)
and compute the corresponding λ = (y2 − y1)/(x2 − x1). But instead of looking for the
intersection of the line with C, we just append P2 to the list L[λ], where L is an array
of lists; alternatively, we can simply increment a counter Ctr[λ]. If this counter reaches
d− 1, or if L[λ] contains d− 1 elements, we know that the line contains enough points
and yields a relation. This is made precise in the pseudo-code of Alg. 2.

Algorithm 2 Sieving for small degree curves

Input: the list of rational non-singular affine points B = C0(Fq).
Output: the relation matrix M .
nrel = 0.
for i = 1 to #B do

(x1, y1)← B[i]
Initialize an array of lists L.
for j = i+ 1 to #B do

(x2, y2)← B[j].
if x2 6= x1 then

Compute λ = (y2 − y1)/(x2 − x1).
Append (x2, y2) to L[λ].

end if
end for
for λ ∈ Fq do

if #L[λ] = d− 1 then
Update M .
Increment nrel.

end if
if nrel > #B then

return the matrix M .
end if

end for
end for

Note that in the inner loop we do not iterate over the elements of B that have already
been considered in the outer loop. Indeed, after an iteration of the outer loop all the
lines passing through the given point P1 = B[i] have been surveyed, so there is no reason
to scan this point again. In this way no line can be considered twice, and we avoid
completely having to check for duplicate relations.

In Diem’s version, each step requires the computation and factorization of F (x,λx+µ)
(x−x1)(x−x2) .

The probability of finding a relation is 1/(d−2)!, so that after q steps about q/(d−2)! rela-
tions are harvested. By comparison, in our sieving each step requires a single division (or
multiplication if the inverses are pretabulated). The inner loop ends after about #B ≈ q

9



steps, and yields approximately q/(d− 1)! relations: all the lines through P1 = (x1, y1)
have been explored, and contain d− 1 other points with probability 1/(d− 1)!. Thus we
need d− 1 times as many steps to obtain the same number of relations, but each step is
much simpler, and the experiments of the next section confirm the important speed-up.

This sieve can be adapted straightforwardly to the double large prime variation : we
just have to restrict both loops to the small factor base Bsn (once it is constructed, if the
version of [8] is followed), then we recover the values of λ such that #L[λ] ≥ d−3. When
#L[λ] = d−3, we still have to check if the remaining two points on the line are rational,
which amounts to factorizing a degree 2 polynomial. If d = 4, in Diem’s version there
are at most two remaining points on any line anyway; our new sieve is thus basically
equivalent and does not provide a significant speed-up when using double large primes.
However as soon as d ≥ 5 it outperforms Diem’s version, but the asymptotic complexity
remains in Õ(q2−2/(d−2)).

3.3 Sieving with singularities

An article of Diem and Kochinke [3] tries to improve on the asymptotic complexity of
the above method. The basic idea is to consider singular small degree plane models, and
use a singular point as one of the points defining the lines cutting out the curve. Indeed,
a singular point appears with a multiplicity greater than one in any line passing through
it, so that there are fewer remaining points of intersection with C, and the degree of
the polynomial to test for smoothness is less than when two regular points are used.
Unfortunately in general there are not enough singular points on a given planar curve to
obtain sufficiently many relations. Thus an important part of Diem and Kochinke’s work
is to find a way to compute new singular plane models of degree d ≤ g + 1 for a given
genus g curve, but this is outside of the scope of the present article; furthermore, the
computation of the maps between the different models is not asymptotically relevant.
Using Brill-Noether theory and considerations on special linear systems, they show that
this method works for “general enough” non-hyperelliptic curves, of genus g ≥ 5.

So we assume that we are given a degree d curve C, of equation F (x, y) = 0, with a
rational singular point P1 of multiplicity m ≥ 2 (in most cases m = 2). The factor base
is given by the rational points of the desingularization C̃ of C, i.e. B = {(P ) : P ∈ C̃(Fq)}.
In the original version, for each other point P2 in B or in the small factor base Bs, the
intersection of C with the line passing through P1 and P2 is computed as before. This
amounts to finding the roots of the polynomial

F (x, λx+ µ)

(x− x1)m(x− x2)
,

which has degree d−m−1. If it splits, which happens with probability ≈ 1/(d−m−1)!,
we compute the intersection points P3, . . . , Pd−m−1 and obtain a relation that we can
write as

D ∼ (P2) + (P3) + · · ·+ (Pd−m−1),

where D involves the singularity and the points at infinity. In the double large prime
variation we keep this relation only if it involves no more than two large primes. To get

10



rid of the divisor D on the left-hand side we would like to subtract one such relation
from all the other ones. But in order to do this (using large primes) we need one relation
involving only small primes ; if it does not exist a solution is then to add some points to
Bs. Since there are less points on the right-hand side than in Diem’s first algorithm, the
probability of finding a relation increases, and one can show that the overall complexity
becomes Õ(q2−2/(g−2)). Note that here again, some care must be taken to avoid duplicate
relations, and in particular not all points P2 but only a fraction of the factor base should
be considered.

Now it is clear that our sieve can be naturally adapted to this new setting. Indeed,
we can keep the inner loops of Alg. 2 ; the point (x1, y1) is now the singular point P1,
and we look for the values of λ that have been obtained d−m times, or d−m−2 times in
the double large prime variation. Once again, this replaces the factorization of a degree
d−m− 1 polynomial by a single division, and avoids checking for duplicate relations.

4 Experiments

We have experimented the harvesting techniques presented in this article for several
curves of different genera, defined over different finite fields. All computations have
been done using the computer algebra system Magma [1] on an AMD Opteron

TM
6176

SE@2.3GHz processor. We only implemented the non-large-prime version of the algo-
rithms, the main reason being that we wanted the tests to be as simple as possible3.
The curves have been generated with the command RandomCurveByGenus, which always
returned a degree g curve (instead of g+1) for g ≥ 6; for this reason the results in genus
6 are very close to those in genus 5 and we did not report them. For the non-sieving ver-
sions, we used associative arrays and sets to automate the check for duplicate relations,
but this is more and more costly as the number of relations grows.

We give in Table 1 the comparison between Diem’s method and our sieve; the values
are the timings in seconds (on an Intel c© Core i5@2.00Ghz processor) to obtain p ≈ #F
relations, averaged over several curves.

In Table 2 we give timings comparing the new sieve with Diem and Kochinke’s
method. We did not implement the change of plane models; instead, we simply chose
random curves possessing rational singular points, and used one of them as the base point
for the relation search. In the sieving version all the relations involving lines passing
through the singularity were computed, whereas in the non-sieving case we only iterated
through half of the basis, as suggested in [3]. For this reason the values correspond to the
timings in seconds needed to obtain 1000 relations, again averaged over several curves.

3More fundamentally, large prime variations are interesting for the asymptotic complexity analysis,
but are not always well-suited in practice ; other methods such as the Gaussian structured elimination [9]
can be more efficient.

11



p 78137 177167 823547 1594331

Genus 3, degree 4
Diem 11.57 27.54 135.1 266.1

Diem + sieving 3.65 9.38 46.96 94.60
Ratio 3.16 2.95 2.88 2.81

Genus 4, degree 5
Diem 51.85 122.4 595.8 1174

Diem + sieving 15.58 40.01 195.1 387.6
Ratio 3.33 3.06 3.05 3.03

Genus 5, degree 6
Diem 229.4 535.8 2581 5062

Diem + sieving 75.66 199.0 969.3 1909
Ratio 3.03 2.69 2.66 2.65

Genus 7, degree 7
Diem 1382 3173 14990 29280

Diem + sieving 458.5 1199 5859 11510
Ratio 3.02 2.65 2.56 2.54

Table 1: Comparisons of the new sieve with Diem’s classical method

p 78137 177167 823547 1594331

Genus 5, degree 6
Diem & Kochinke 1.58 1.60 1.69 1.76

DK + sieving 0.43 0.45 0.52 0.61
Ratio 3.67 3.60 3.23 2.90

Genus 7, degree 7
Diem & Kochinke 8.59 8.68 8.97 9.20

DK + sieving 1.21 1.25 1.56 1.93
Ratio 7.13 6.96 5.74 4.77

Table 2: Comparisons of the new sieve with Diem and Kochinke’s method

5 Conclusion

We have shown in this work that a reformulation of Sarkar and Singh’s sieve [10], namely
sieving over points instead of x-coordinates, gives a simpler presentation of the harvesting
phase of the index calculus algorithm on hyperelliptic curves. More importantly, it
can be naturally adapted to Diem and Kochinke’s index calculus for non-hyperelliptic
curves [2, 3]. Our experiments show that the new sieve clearly outperforms the relation
search of the other methods in all circumstances and should always be preferred.

Acknowlegdements. We would like to thank the anonymous referees for their useful
comments during the elaboration of the article.

References

[1] W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system. I. The user
language. J. Symbolic Comput., 24(3-4):235–265, 1997. Computational algebra and
number theory (London, 1993).

12



[2] C. Diem. An index calculus algorithm for plane curves of small degree. In Algorith-
mic number theory, volume 4076 of Lecture Notes in Comput. Sci., pages 543–557.
Springer, 2006

[3] C. Diem and S. Kochinke. Computing discrete logarithms with special lin-
ear systems. Preprint, available at http://www.math.uni-leipzig.de/~diem/

preprints/dlp-linear-systems.pdf, 2013.

[4] P. Gaudry. An algorithm for solving the discrete log problem on hyperelliptic curves.
In Advances in cryptology—EUROCRYPT 2000, volume 1807 of Lecture Notes in
Comput. Sci., pages 19–34. Springer, 2000.

[5] P. Gaudry, F. Hess, and N.P. Smart. Constructive and destructive facets of Weil
descent on elliptic curves. J. Cryptology, 15(1):19–46, 2002.

[6] P. Gaudry, E. Thomé, N. Thériault, and C. Diem. A double large prime variation
for small genus hyperelliptic index calculus. Math. Comput., 76(257):475–492, 2007.

[7] A. Joux and V. Vitse. Cover and decomposition index calculus on elliptic curves
made practical: application to a previously unreachable curve over Fq6 . In Advances
in cryptology—EUROCRYPT 2012, volume 7237 of Lecture Notes in Comput. Sci.,
pages 9–26. Springer, 2012.

[8] K. Laine and K. Lauter. Time-memory trade-offs for index calculus in genus 3. To
appear in J. Math. Crypto.

[9] B. A. LaMacchia and A. M. Odlyzko. Computation of discrete logarithms in prime
fields. Des. Codes Cryptogr., 1(1):47–62, 1991.

[10] P. Sarkar and S. Singh. A new method for decomposition in the Jacobian of small
genus hyperelliptic curves. Cryptology ePrint Archive, Report 2014/815, 2014.

[11] N. Thériault. Index calculus attack for hyperelliptic curves of small genus. In
Advances in Cryptology – ASIACRYPT 2003, volume 2894 of Lecture Notes in
Comput. Sci., pages 75–92. Springer, 2003.

13


