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Abstract. Algebraic cryptanalysis usually requires to find solutions of
several similar polynomial systems. A standard tool to solve this problem
consists of computing the Gröbner bases of the corresponding ideals,
and Faugère’s F4 and F5 are two well-known algorithms for this task.
In this paper, we adapt the “Gröbner trace” method of Traverso to the
context of F4. The resulting variant is a heuristic algorithm, well suited
to algebraic attacks of cryptosystems since it is designed to compute with
high probability Gröbner bases of a set of polynomial systems having the
same shape. It is faster than F4 as it avoids all reductions to zero, but
preserves its simplicity and its efficiency, thus competing with F5.
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1 Introduction

The goal of algebraic cryptanalysis is to break cryptosystems by using math-
ematical tools coming from symbolic computation and modern algebra. More
precisely, an algebraic attack can be decomposed in two steps: first the cryp-
tosystem and its specifics have to be converted into a set of multivariate polyno-
mial equations, then the solutions of the obtained polynomial system have to be
computed. The security of a cryptographic primitive thus strongly relies on the
difficulty of solving the associated polynomial system. These attacks have been
proven to be very efficient for both public key or symmetric cryptosystems and
stream ciphers (see [2] for a thorough introduction to the subject).

In this article, we focus on the polynomial system solving part. It is well
known that this problem is very difficult (NP-hard in general). However, for
many instances coming from algebraic attacks, the resolution is easier than in
the worst-case scenario. Gröbner bases, first introduced in [6], are a fundamental
tool for tackling this problem. Historically, one can distinguish two families of
Gröbner basis computation algorithms: the first one consists of developments
of Buchberger’s original algorithm [8, 14, 15, 19], while the second can be traced
back to the theory of elimination and resultants and relies on Gaussian elimina-
tion of Macaulay matrices [10, 24–26]. Which algorithm to use depends on the
shape and properties of the cryptosystem and its underlying polynomial system
(base field, degrees of the polynomials, number of variables, symmetries...).
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Faugère’s F4 algorithm [14] combines ideas from both families. It is proba-
bly the most efficient installation of Buchberger’s original algorithm, and uses
Gaussian elimination to speed up the time-consuming step of “critical pair”
reductions. It set new records in Gröbner basis computation when it was pub-
lished a decade ago, and its implementation in Magma [5] is still considered as a
major reference today. However, F4 shares the main drawback of Buchberger’s
algorithm: it spends a lot of time computing useless reductions. This issue was
addressed by Faugère’s next algorithm, F5 [15], which first rose to fame with
the cryptanalysis of the HFE Challenge [16]. Since then, it has been successfully
used to break several other cryptosystems (e.g. [4, 17]), increasing considerably
the popularity of algebraic attacks. It is often considered as the most efficient al-
gorithm for computing Gröbner bases over finite fields and its performances are
for the main part attributable to the use of an elaborate criterion. Indeed, the
F5 criterion allows to skip much more unnecessary critical pairs than the classi-
cal Buchberger’s criteria [7]; actually it eliminates a priori all reductions to zero
under the mild assumption that the system forms a semi-regular sequence [3].
Nevertheless, this comes at the price of degraded performances in the reduction
step: during the course of the F5 algorithm, many reductions are forbidden for
“signature” compatibility conditions, giving rise to polynomials that are either
redundant (not “top-reduced” [13]), or whose tails are left almost unreduced.

In many instances of algebraic attacks, one has to compute Gröbner bases for
numerous polynomial systems that have the same shape, and whose coefficients
are either random or depend on a relatively small number of parameters. In this
context, one should use specifically-devised algorithms that take this information
into account. A first idea would be to compute a parametric or comprehensive
Gröbner basis [30]; its specializations yield the Gröbner bases of all the ideals
in a parametric polynomial system. However, for the instances arising in crypt-
analysis, the computational cost of a comprehensive Gröbner basis is prohibitive.
Another method was proposed by Traverso in the context of modular computa-
tions of rational Gröbner bases [29]: by storing the trace of an initial execution
of the Buchberger algorithm, one can greatly increase the speed of almost all
subsequent computations. Surprisingly, it seems that this approach was never
applied to cryptanalysis until now.

We present in this paper how a similar method allows to avoid all reductions
to zero in the F4 algorithm after an initial precomputation. A list of relevant
critical pairs is extracted from a first F4 execution, and is used for all follow-
ing computations; the precomputation overhead is largely compensated by the
efficiency of the F4 reduction step, yielding theoretically better performances
than F5. This algorithm is by nature probabilistic: the precomputed list is in
general not valid for all the subsequent systems. One of the main contribution
of this article is to give a complete analysis of this F4 variant and to estimate
its probability of failure, which is usually very small.

The paper is organized as follows. After recalling the basic structure of
Buchberger-type algorithms, we explain in section 2 how to adapt it to the
context of several systems of the same shape. The detailed pseudo-code of our
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variant of F4, which consists of the two routines F4Precomp and F4Remake for
the first precomputation and the subsequent iterations respectively, is given in
the appendix. In section 3, we recall the mathematical frame for the otherwise
imprecise notion of “similar looking systems” and derive probability estimates
for the correctness of our algorithm, depending on the type of the system and
the size of the base field. We also compare the complexities of our variant and
of F5, and explain when it is better to use our algorithm. The last section is
devoted to applications: the first example comes from the index calculus method
of [20] and is a typical case where our algorithm outperforms F4 and F5. We
then show how it fits into the hybrid approach of [4] and consider the example
of the cryptanalysis of the UOV signature scheme [22]. The next example is pro-
vided by the Kipnis-Shamir attack on the MinRank problem: we compare our
results to those of [17]. Finally, we evaluate the performances of our F4 vari-
ant on the classical Katsura benchmarks. We would like to mention that the
Gröbner trace method has already been applied to Faugère’s algorithms for the
decoding of binary cyclic codes [1]; however, the analysis therein was limited to
this very specific case, and no implementation details nor probability estimates
were given. This idea was then independently rediscovered in [20], where it was
applied to the discrete log problem on elliptic curves.

2 The F4 variant

2.1 Description of the algorithm

We begin with the standard characterization of Gröbner bases. The notations
LM and LT stand for the leading monomial and the leading term of a polynomial
and ∨ denotes the least common multiple of two monomials.

Theorem 1 ([8]) A family G = {g1, . . . , gs} in K[X1, . . . , Xn] is a Gröbner
basis if and only if for all 1 ≤ i < j ≤ s, the remainder of S(gi, gj) on division
by G is zero, where S(gi, gj) is the S-polynomial of gi and gj:

S(gi, gj) =
LM(gi) ∨ LM(gj)

LT (gi)
gi −

LM(gi) ∨ LM(gj)
LT (gj)

gj

It is straightforward to adapt this result into the Buchberger’s algorithm [8],
which outputs a Gröbner basis of an ideal I = 〈f1, . . . , fr〉: one computes it-
eratively the remainder by G of every possible S-polynomial and appends this
remainder to G whenever it is different from zero. In the following, we will
rather work with critical pairs instead of S-polynomials: the critical pair of
two polynomials f1 and f2 is defined as the tuple (lcm, u1, f1, u2, f2) where
lcm = LM(f1) ∨ LM(f2) and ui = lcm

LM(fi)
.

The reduction of critical pairs is by far the biggest time-consuming part of the
Buchberger’s algorithm. The main idea of Faugère’s F4 algorithm is to use linear
algebra to simultaneously reduce a large number of pairs. At each iteration step,
a Macaulay-style matrix is constructed, whose columns correspond to monomials
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and rows to polynomials. This matrix contains the products (uifi) coming from
the selected critical pairs (classically, all pairs with the lowest total degree lcm,
but other selection strategies are possible) and also all polynomials involved
in their reductions, which are determined during the preprocessing phase. By
computing the reduced row echelon form of this matrix, we obtain the reduced
S-polynomials of all pairs considered. This algorithm, combined with an efficient
implementation of linear algebra, yields very good results.

As mentioned in the introduction, F4 has the drawback of computing many
useless reductions to zero, even when the classical criteria of Buchberger [7]
are taken into account. But when one has to compute several Gröbner bases of
similar polynomial systems, it is possible to avoid, in most cases, all reductions
to zero by means of a precomputation on the first system.

Here is the outline of our F4 variant:

1. For precomputation purposes, run a standard F4 algorithm on the first sys-
tem, with the following modifications:
– At each iteration, store the list of all polynomial multiples (ui, fi) coming

from the critical pairs.
– During the row echelon computing phase, reductions to zero correspond

to linear dependency relations between the rows of the matrix; for each
such relation, remove a multiple (ui, fi) from the stored list (some care
must be taken in the choice of the multiple, see the appendix for details).

2. For each subsequent system, run a F4 computation with these modifications:
– Do not maintain nor update a queue of untreated pairs.
– At each iteration, instead of selecting pairs from the queue, pick directly

from the previously stored list all the relevant multiples (ui, fi).

We give in the appendix the detailed pseudo-code of the F4Precomp algorithm
which performs the precomputation, and of the F4Remake algorithm which is
used for the subsequent systems.

2.2 Additional features

For the sake of concision, the pseudo-code of F4Remake given in the appendix
does not contain a test of the correctness of the computation, except for the
basic verification of line 9. More checks could be easily included: for instance,
it is possible to store during the precomputation the leading monomials of the
generators created at each step, and check in F4Remake if the new generators
have the correct LM . In case of a failed computation, proper error handling
would be recommended, e.g. by resuming the computation with the standard
F4. At the end of the execution, a last check would be to verify whether the
result (which is always a basis of the ideal) is indeed a Gröbner basis. This
can be quite expensive, but is usually unnecessary: indeed, the output is always
correct if the sets of leading monomials of the bases returned by F4Remake and
F4Precomp coincide, assuming that the precomputation behaved generically (see
section 3). Anyway, when the ideal is zero-dimensional with a small degree (as
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is often the case in the context of algebraic attacks), a verification is almost
immediate.

It is also possible to store during precomputation all the relevant polynomial
multiples appearing in the matrices M , instead of only those arising from the
critical pairs. This increases greatly the size of F4Precomp’s output, but allows
to skip the preprocessing phase in F4Remake. However, the gain provided by this
optimization is relatively minor, since the cost of the preprocessing is usually
small compared to the computation of the reduced row echelon form. A different
approach is outlined in [1]: instead of recording the information about relevant
polynomials in a file, the precomputation directly outputs a program (in the C
language) containing the instructions for the subsequent computations. Clearly,
this code generating technique is much more complicated, but should be faster
even when the compilation time of the output program is taken into account.

3 Analysis of the algorithm and complexity

3.1 Similar systems

Our algorithm is designed to be applied on many systems of the “same shape”.
If {f1, . . . , fr} and {f ′1, . . . , f ′r} are two similarly-looking polynomial systems,
we want to estimate the probability that our algorithm computes the Gröbner
basis of the second system, the precomputation having been done with the first
system. This requires some more precise definitions.

Definition 2 A generic polynomial F of degree d in n variables X1, . . . , Xn is
a polynomial with coefficients in K[{Yi1,...,in

}i1+...+in≤d] of the form

F =
∑

Yi1,...,in
Xi1

1 . . . Xin
n .

A generic polynomial is thus a polynomial in which each coefficient is a
distinct variable. Such polynomials are interesting to study because a system
of random polynomials f1, . . . , fr (i.e. such that each coefficient is random) of
total degree d1, . . . , dr respectively, is expected to behave like the corresponding
system of generic polynomials.

Let F1, . . . , Fr be a system of generic polynomials. If we consider Fi as an
element of K(Y )[X], we can compute the Gröbner basis of this system with the
F4 algorithm, at least theoretically (in practice, the rational fraction coefficients
will likely become extremely large). Now let f1, . . . , fr be a random system with
deg(fi) = deg(Fi). We say that f1, . . . , fr behaves generically if we encounter
the same number of iterations as with F1, . . . , Fr during the computation of its
Gröbner basis using F4, and if the same number of new polynomials with the
same leading monomials are generated at each step of the algorithm.

We will now translate this condition algebraically. Assume that the system
f1, . . . , fr behaves generically until the (i− 1)-th step; this implies in particular
that the critical pairs involved at step i for both systems are similar, in the
following sense: (lcm, u1, p1, u2, p2) is similar to (lcm′, u′1, p

′
1, u
′
2, p
′
2) if LM(p1) =



6 Antoine Joux and Vanessa Vitse

LM(p′1) and LM(p2) = LM(p′2) (so that ui = u′i and lcm = lcm′). Let Mg be
the matrix of polynomial multiples constructed by F4 at step i for the generic
system, and M be the one for f1, . . . , fr. It is possible that after the preprocessing
M is smaller than Mg, but for the purpose of our discussion, we may assume
that the missing polynomial multiples are added to M ; the corresponding rows
will have no effect whatsoever later in the algorithm. Thus the k-th rows of M
and Mg, seen as polynomials, have identical leading monomial; we note s the
number of distinct leading monomials in M (or Mg). Remark that the matrices
constructed by F4 are usually almost upper triangular, so that s is close to the
number of rows. If we compute the reduced row echelon form of Mg, up to a
well-chosen permutation of columns we obtain the following matrix M̃g where
r = `+ s is the rank of Mg. Using the same transformations on M with adapted
coefficients, we obtain a matrix M̃ where B is a matrix with ` columns.

M̃g =
Is 0 Ag,1

0 I` Ag,2

0 0 0

M̃ =
Is B1

0 B B2

Then the system f1, . . . , fr behaves generically at step i if and only if this
matrix B has full column rank. Finally, the condition for generic behavior is that
at each step, the corresponding matrix B has full column rank. Heuristically,
since the system is random, we will assume that these matrices B are random.
This hypothesis will allow us to give estimates for the probability that a system
behaves generically, using the following easy lemma:

Lemma 3 Let M = (mij) ∈ Mn,`(Fq), n ≥ `, be a random matrix, i.e. such
that the coefficients mij are chosen randomly, independently and uniformly in
Fq. Then M has full rank with probability

∏n
i=n−`+1(1 − q−i). This probability

is greater than the limit

c(q) =
∞∏

i=1

(1− q−i) = 1− 1/q + O
q→∞

(1/q2).

Since a system behaves generically if and only if all the matrices B have full
rank, we obtain the probability that our F4 variant works successfully:

Theorem 4 The algorithm F4Remake outputs a Gröbner basis of a random
system f1, . . . , fr ∈ Fq[X] with a probability that is heuristically greater than
c(q)nstep , assuming that the precomputation has been done with F4Precomp in
nstep steps, for a system f0

1 , . . . , f
0
r ∈ Fq[X] that behaves generically.

This estimate is relevant as soon as the distribution of the matrices B is
sufficiently close to the uniform one and the correlation between the steps is
small enough.

For a system of generic polynomials, it is known that the number of steps
nstep during the execution of F4 (for a degree-graded monomial order) is at most
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equal to the degree of regularity dreg of the homogenized system, which is smaller
than the Macaulay bound

∑r
i=1(degFi − 1) + 1 [24]; this bound is sharp when

the system is underdetermined. Since c(q) converges to 1 when q goes to infinity,
for a fixed degree of regularity the probability of success of our algorithm will
be very close to 1 when the base field Fq is sufficiently large.

In practice, it is rather uncommon to deal with completely random polyno-
mials. For many applications, the involved polynomial systems actually depend
on some random parameters, hence a more general framework is the following:

Definition 5 Let V be an algebraic variety in K` and F1, . . . , Fr be polynomials
in K(V )[X], where K(V ) is the function field of V . We call the image of the map
V → K[X]r, y 7→ (F1(y), . . . , Fr(y)) a parametric family (or family for short)
of systems. We call the system (F1, . . . , Fr) the generic parametric system of the
family.

A system of generic polynomials is of course a special case of a generic parametric
system. As above, the F4Remake algorithm will give correct results for systems
f1, . . . , fr in a family that behave like its associated generic parametric system.
The probability for this is difficult to estimate since it obviously depends on the
family considered, but is usually better than for systems of generic polynomials.
An important class of examples is when the highest degree homogeneous part of
the Fi has coefficients in K (instead of K(V )). Then all systems of this parametric
family behave generically until the first fall of degree occurs. As a consequence,
the probability of success of our algorithm can be quite good even when the base
field is relatively small, see section 4.2 for an example.

3.2 Change of characteristic

Another application of our algorithm is the computation of Gröbner bases of
“random” polynomial systems over a large field, using a precomputation done
over a small finite field. Even for a single system f1, . . . , fr in Fp[X], it is some-
times more advantageous to precompute the Gröbner basis of a system f ′1, . . . , f

′
r

with deg fi = deg f ′i in Fp′ [X] for a small prime p′, and then use F4Remake on
the initial system, than to directly compute the Gröbner basis with F4. The esti-
mated probabilities derived in section 3.1 do not directly apply to this situation,
but a similar analysis can be done.

We recall that for every prime number p, there exists a well-defined reduction
map Q[X]→ Fp[X], which sends a polynomial P to P̄ = cP mod p, where c ∈ Q
is such that cP belongs to Z[X] and is primitive (i.e. the gcd of its coefficients
is one). Let I = 〈f1, . . . , fr〉 be an ideal of Q[X], and let Ī = 〈f̄1, . . . , f̄r〉 be the
corresponding ideal in Fp[X]; we note {g1, . . . , gs} the minimal reduced Gröbner
basis of I. According to [12], we say that p is a “lucky” prime if {ḡ1, . . . , ḡs} is the
minimal reduced Gröbner basis of Ī, and “unlucky” otherwise. There is a weaker,
more useful notion (adapted from [27]) of “F4 (or weak) unlucky prime”: a prime
number p is called so if the computation of the Gröbner bases of I and Ī with F4
differs. By doing the same analysis as in section 3.1, we can show that p is weakly
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unlucky if and only if one of the above-defined matrices B is not of full rank.
As before, these matrices can heuristically be considered as random and thus
we obtain that the probability that a prime p is not weakly unlucky, is bounded
from below by c(p)nstep . So, if we want to compute the Gröbner basis of a system
f1, . . . , fr ∈ Fp[X] where p is a large prime, we can lift this system to Q[X] and
then reduce it to f ′1, . . . , f

′
r ∈ Fp′ [X] where p′ is a small prime number. Then

we execute F4Precomp on the latter system and use the precomputation on the
initial system with F4Remake. This will produce the correct result if p and p′ are
not weakly unlucky, thus p′, while small enough so that the precomputation takes
the least time possible, must be large enough so that the probability c(p′)nstep

is sufficiently close to 1. In practice, this last approach should be used whenever
possible. If one has to compute several Gröbner bases over a large field Fq of
systems of the same parametric family, the precomputation should not be done
over Fq, but rather over a smaller field. We will adopt this strategy in almost all
the applications presented in section 4.

3.3 Precomputation correctness

The output of F4Precomp is correct if the first system behaves generically; we
have seen that this occurs with a good probability c(q)nstep . We will now consider
what can happen when the precomputation is not correct, and how to detect
it. We can, at least theoretically, run F4Remake on the generic system; following
Traverso’s analysis [29] two cases are then possible:

1. This would produce an error. Then F4Remake will fail for most subsequent
systems, so this situation can be easily detected after very few executions (the
probability of no detection is very low: rough estimates have been given in
[29] for the different characteristic case). More precisely, as soon as an error
occurs with F4Remake, one has to determine whether the precomputation
was incorrect or the current system does not behave generically. This can
be done by looking at the course of the algorithm: if at some step F4Remake
computes more new generators than F4Precomp, or generators with higher
leading monomials, then clearly it is the precomputation which is incorrect.

2. The computation would succeed but the resulting output is not a Gröbner ba-
sis. This situation, while unlikely, is more difficult to detect: one has to check
that the outputs of F4Remake on the first executions are indeed Gröbner
bases. If there is a system for which this is not true, then the precomputa-
tion is incorrect.

Alternatively, one can run F4Precomp on several systems and check that the
outputs coincide. If it is not the case, one should obviously select the most
common output; the probability that a majority of precomputations is similarly
incorrect is extremely low. Of course, if c(q)nstep is sufficiently close to 1, then
the probability of an incorrect precomputation is low enough not to have to
worry about these considerations.
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3.4 Complexity

Generally, it is difficult to obtain good estimates for the complexity of Gröbner
basis computation algorithms, especially of those based on Buchberger’s ap-
proach. However, we can give a broad upper bound of the complexity of F4Remake,
by observing that it can be reduced to the computation of the row echelon form
of a D-Macaulay matrix of the homogenized system, whose useless rows would
have been removed. In the case of generic systems, D is equal to the degree of
regularity dreg of the homogenized system. Thus we have an upper-bound for
the complexity of our algorithm:

Proposition 6 The number of field operations performed by F4Remake on a
system of random polynomials over K[X1, . . . , Xn] is bounded by

O

((
dreg + n

n

)ω)
where dreg is the degree of regularity of the homogenized system and ω is the
constant of matrix multiplication.

Since there is no reduction to zero as well with F5 (under the assumption that
the system is semi-regular), the same reasoning applies and gives the same upper-
bound, cf [3]. However, we emphasize that these estimates are not really sharp
and do not reflect the difference in performances between the two algorithms.
Indeed, F4Remake has two main advantages over F5: the polynomials it generates
are fully reduced, and it avoids the incremental structure of F5. More precisely,
the F5 criterion relies on the use of a signature or label for each polynomial,
and we have already mentioned in the introduction that signature compatibility
conditions prohibit some reductions; therefore, the polynomials generated by
F5 are not completely reduced, or are even redundant [13]. This incurs either
more costly reductions later in the algorithm or a larger number of critical pairs.
Secondly, the incremental nature of F5 implies that the information provided by
the last system polynomials cannot be used to speed up the first stages of the
computation.

Thus, our F4 variant should be used preferentially as soon as several Gröbner
bases have to be computed and the base field is large enough for this family of
systems. Nevertheless, the F5 algorithm remains irreplaceable when the Gröbner
basis of only one system has to be computed, when the base field is too small
(in particular over F2) or when the systems are so large that a precomputation
would not be realisable.

4 Applications

In all applications, the variant F4Remake is compared with an implementation
of F4 which uses the same primitives and structures (in language C), and also
with the proprietary software Magma (V2.15-15) whose implementation is prob-
ably the best publicly available for the considered finite fields. Unless otherwise
specified, all tests are performed on a 2.6 GHz Intel Core 2 Duo processor and
times are given in seconds.
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4.1 Index calculus

An index calculus method has been recently proposed in [11, 18] for the resolution
of discrete logarithm on E(Fqn) where E is an elliptic curve defined over a small
degree extension field. In order to find “relations”, they make use of Semaev’s
idea [28] which allows to convert the relation search into the resolution of a
multivariate polynomial system. A variation of this approach is given in [20],
where relations with a slightly different form are considered: it has the advantage
of leading to overdetermined systems and is thus faster in practical cases. We
focus on the resolution of the polynomial systems arising from this last attack in
the special case of E(Fp5) where p is a prime number. The polynomial systems
in this example fit into the framework of parametric families: the coefficients
polynomially depend on the x-coordinate of a random point R ∈ E(Fp5) (and
also of the equation of the curve E). Our algorithm is particularly relevant for
this example because of the large number of relations to collect, leading to an
average of 4!p2 systems to solve. Moreover, p is large in all applications so the
probability of success of our F4 variant is extremely good.

The systems to solve are composed of 5 equations defined over Fp of total
degree 8 in 4 variables. Degrevlex Gröbner bases of the corresponding ideals over
several prime fields of size 8, 16, 25 and 32 bits are computed. The probabilities
of failure are estimated under the assumption that the systems are random, and
knowing that the computation takes 29 steps.

size of p est. failure probability F4Precomp F4Remake F4 F4/F4Remake F4 Magma

8 bits 0.11 8.963 2.844 5.903 2.1 9.660

16 bits 4.4× 10−4 (19.07) 3.990 9.758 2.4 9.870

25 bits 2.4× 10−6 (32.98) 4.942 16.77 3.4 118.8

32 bits 5.8× 10−9 (44.33) 8.444 24.56 2.9 1046

Step degree F4Remake matrix size F4 matrix size size ratio

14 17 1062× 3072 1597× 3207 1.6

15 16 1048× 2798 1853× 2999 1.9

16 15 992× 2462 2001× 2711 2.2

17 14 903× 2093 2019× 2369 2.5

18 13 794× 1720 1930× 2000 2.8

Fig. 1. Experimental results on E(Fp5)

As explained in section 3.2, it is sufficient to execute the precomputation on
the smaller field to get a list of polynomial multiples that works for the other
cases; the timings of F4Precomp over the fields of size 16, 25 and 32 bits are
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thus just indicative. The above figures show that the precomputation overhead
is largely compensated as soon as there are more than two subsequent compu-
tations. Note that it would have been hazardous to execute F4Precomp on a
smaller field as the probability of failure increases rapidly. It is mentioned in
[20] that the systems have also been solved with a personal implementation of
F5, and that the size of the Gröbner basis it computes at the last step before
minimization is surprisingly large (17249 labeled polynomials against no more
than 2789 polynomials for both versions of F4). As a consequence, the timings
of F5 obtained for these systems are much worse than those of F4 or its variants.
This shows clearly that on this example, it is much more efficient to apply our
algorithm rather than F5.

4.2 Hybrid approach

The hybrid approach proposed in [4] relies on a trade-off between exhaustive
search and Gröbner basis computation. The basic idea is that when one wants to
find a solution of a given system f1, . . . , fr ∈ K[X1, . . . , Xn], it is sometimes faster
to try to guess a small number of variables X1, . . . , Xk. For each possible k-tuple
(x1, . . . , xk), one computes the Gröbner basis of the corresponding specialized
system f1(x1, . . . , xk), . . . , fr(x1, . . . , xk) ∈ K[Xk+1, . . . , Xn] until a solution is
found; the advantage is that the specialized systems are much simpler to solve
than the initial one.

The hybrid approach is thus a typical case when many systems of the same
shape have to be solved and fits perfectly into the framework of parametric fam-
ilies we have described in section 3.1. However, this method is most useful when
the search space is reasonably small, which implies in particular that the size of
the base field cannot be too large, so one should be wary of the probability of
success before applying our F4 variant to this context. Note that, when the right
guess is made for the k-tuple (x1, . . . , xk), the corresponding specialized system
does not have a generic behaviour. As soon as this is detected by F4Remake (see
section 2.2), the computation can be continued with e.g. standard F4.

As an example, we consider the cryptanalysis of the Unbalanced Oil and
Vinegar system (UOV, [22]), described in [4]. Briefly, the attack can be reduced
to the resolution of a system of n quadratic equations in n variables over a
finite field K; for the recommended set of parameters, n = 16 and K = F16.
Although the base field is quite small, our F4 variant has rather good results in
this cryptanalysis: this is due to the fact that the quadratic part of the evaluated
polynomials fi(x1, . . . , xk) ∈ K[Xk+1, . . . , Xn] does not depend on the values of
the specialized variablesX1, . . . , Xk, and hence all the systems behave generically
until the first fall of degree.

For instance, for k = 3 the computation with F4 takes 6 steps, and no
fall of degree occurs before the penultimate step, so a heuristic estimation of the
probability of success is c(16)2 ' 0.87. To check this estimate we have performed
an exhaustive exploration of the search space F3

16 using F4Remake. The measured
probability of success depends of the actual system and varies around 90%, which
shows that our estimate is satisfying.
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The timings obtained during this experiment confirm that our variant pro-
vides a non-negligible speed-up. In particular, our timings are better (after a
precomputation of 32.3 sec) than the 9.41 sec of F5 given in [4]; of course, this
comparison is not really meaningful since the implementation of finite field arith-
metic and linear algebra cannot be compared and since different (but similar)
computers have been used.

F4Remake F4 F4 Magma F4/F4Remake

Timing (sec) 5.04 16.77 120.6 3.3

Largest matrix 5913× 7005 10022× 8329 10245× 8552 2.0

Fig. 2. Experimental results on UOV with 3 specialized variables

4.3 MinRank

We briefly recall the MinRank problem: given m+1 matrices M0,M1, . . . ,Mm ∈
Mn(K) and a positive integer r, is there a m-tuple (α1, . . . , αm) ∈ Km such that

Rank

(
m∑

i=1

αiMi −M0

)
≤ r.

We focus on the challenge A proposed in [9]: K = F65521;m = 10;n = 6; r = 3.
The Kipnis-Shamir’s attack converts instances of the MinRank problem into
quadratic multivariate polynomial systems [23]. For the set of parameters from
challenge A, we thus have to solve systems of 18 quadratic equations in 20
variables, and since they are underdetermined, we can specialize two variables
without loss of generality. These systems can be solve either directly or with the
hybrid approach [17]; in the first case, our F4 variant will be relevant only if one
wants to break several different instances of the MinRank problem.

Experiments with F4 and our variant show that, either for the full systems
or the systems with one specialized variable, the matrices involved at different
steps are quite large (up to 39138 × 22968) and relatively sparse (less than 5%
non-zero entries). With both types of systems, a lot of reductions to zero occurs;
for example, we have observed that for the full system at the 8th step, 17442
critical pairs among 17739 reduce to zero. This makes it clear that the classic
F4 algorithm is not well suited for these specific systems.

It is difficult to compare our timings with those given in [17] using F5: be-
sides the fact that the experiments were executed on different computers, the
linear algebra used in Faugère’s FGb implementation of F5 (whose source code
is not public) seems to be highly optimized, even more so than in Magma’s im-
plementation of F4. On this point, our own implementation is clearly not com-
petitive: for example, at the 7th step for the full system, Magma’s F4 reduces a
26723×20223 matrix in 28.95 sec, whereas at the same step our implementation
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reduces a slightly smaller matrix of size 25918×19392 in 81.52 sec. Despite these
limitations, we have obtained timings comparable with those of [17], listed in the
table below. This means that with a more elaborate implementation of linear
algebra, our F4 variant would probably be the most efficient for these systems.

F5 F4Remake F4 F4 Magma

full system 30.0 27.87 320.2 116.6

1 specialized variable 1.85 2.605 9.654 3.560

Fig. 3. Experimental results on MinRank

Computations were executed on a Xeon bi-processor 3.2 GHz for F5. The results of
F4Remake have been obtained after a precomputation over F257 of 4682 sec for the full
system and 113 sec for the system with one variable specialized.

4.4 Katsura benchmarks

To illustrate the approach presented in section 3.2, we have applied our algo-
rithm to the computation of the Gröbner bases of the Katsura11 and Katsura12
systems [21], over two prime fields of size 16 and 32 bits. As already explained,
the idea is to run a precomputation on a small prime field before executing
F4Remake over a large field (actually, for Katsura12 the first prime p = 251 we
chose was weakly unlucky). The timings show that for both systems, the speed
gain on 32 bits compensates the precomputation overhead, contrarily to the 16
bits case.

8 bits 16 bits 32 bits

Precomputation F4Remake F4 F4 Magma F4Remake F4 F4 Magma

Katsura11 27.83 9.050 31.83 19.00 15.50 60.93 84.1

Katsura12 202.5 52.66 215.4 143.3 111.4 578.8 > 5 h

Fig. 4. Experimental results on Katsura11 and Katsura12

As a side note, we observed that surprisingly, the matrices created by F4
are quite smaller in our version than in Magma (e.g. 15393 × 19368 versus
20162 × 24137 at step 12 of Katsura12); of course, both version still find the
same new polynomials at each step. This phenomenon was already present in
the previous systems, but not in such a proportion. This seems to indicate that
our implementation of the Simplify subroutine is much more efficient.
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Step degree F4Remake matrix size F4 matrix size size ratio

9 10 14846× 18928 18913× 20124 1.4

10 11 15141× 19235 17469× 19923 1.2

11 12 8249× 12344 16044× 19556 3.1

12 13 2225× 6320 15393× 19368 21.2

13 14 − 15229× 19313 −

(At the 13th step, F4 finds no new generator so this step is skipped by F4Remake)

Fig. 5. Sizes of the matrices involved in the last steps of Katsura12

5 Conclusion

We have presented in this article a variant of the F4 algorithm that provides a
very efficient probabilistic method for computing Gröbner bases; it is especially
designed for the case where many similar polynomial systems have to be solved.
We have given a precise analysis of this context, estimated the probability of
success, and evaluated both theoretically and experimentally the performances
of our algorithm, showing that it is well adapted for algebraic attacks on cryp-
tosystems.

Since Faugère’s F5 algorithm is considered as the most efficient tool for com-
puting Gröbner bases, we have tried as much as possible to compare its perfor-
mances with our F4 variant. Clearly, F5 remains irreplaceable when the Gröbner
basis of only one system has to be computed or when the base field is too small,
in particular over F2. However, our method should be used preferentially as soon
as several Gröbner bases have to be computed and the base field is large enough
for the considered family of systems. The obtained timings support in part this
claim, indicating that with a more elaborate implementation of linear algebra
our algorithm would outperform F5 in most cases.
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A Pseudo-code

A.1 The precomputation

Given a family of polynomials {f1, . . . , fr}, the F4Precomp algorithm computes
for each iteration step of the classical F4 algorithm, the list of polynomial multi-
ples that will be used by F4Remake on subsequent computations. This algorithm
follows very closely [14], with these additional features:

– A list L of lists of couples is introduced; at the end of the i-th main iteration,
L[i] contains the desired list of polynomial multiples for that step. Each
polynomial multiple is represented by a couple (m,n), wherem is a monomial
and n is the index of the polynomial in a global list G (this list G will be
progressively reconstructed by F4Remake). In the same way, a list Ltmp is
used to temporary store these couples.

– Instead of just computing the reduced row echelon form M ′ of the matrix M ,
we also compute an auxiliary matrix A such that AM = M ′. If reductions
to zero occur, then the bottom part of M ′ is null and the corresponding
bottom part of A gives the linear dependencies between the rows of M . This
information is exploited in lines 21 to 26, in order to remove from the tem-
porary list Ltmp the useless multiples before copy in L[step]. Actually, only
the bottom-left part A′ of A is of interest: it contains the linear dependencies
between the rows of M coming from the critical pairs, modulo those coming
from the preprocessing. It is clear that with each dependency relation, one
polynomial multiple can be removed, but some care must be taken in this
choice. To do so, the row echelon form Ã of A′ is then computed and the
polynomial multiples corresponding to the pivots of Ã are removed. Among
the remaining polynomial multiples, those whose leading monomial is now
unique can also be removed.
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Apart from these modifications, the pseudo-code is basically the F4 algorithm
with Gebauer and Möller installation of the Buchberger’s criteria (Update sub-
routine) [19]. The only notable change concerns the implementation of the Sim-
plify procedure: instead of searching through all the former matrices and their
row echelon forms for the adequate simplification as in [14], we introduce an
array TabSimplify which contains for each polynomial f in the basis a list of
couple of the form (m, g) ∈ T × K[X], meaning that the product mf can be
simplified into the more reduced polynomial g. This array is updated after the
reduced row echelon form is computed (lines 12 to 16 of Postprocessing).

Alg. 1 F4Precomp
Input: f1, . . . , fr ∈ K[X] Output: a list of lists of couples (m, n) ∈ T × N
1. G← [ ], Gmin ← ∅, P ← ∅, TabSimplify ← [ ], L← [ ]
2. for i = 1 to r do
3. G[i]← fi, TabSimplify[i]← [(1, fi)], Update(fi)
4. step = 1
5. while P 6= ∅ do
6. Psel ← Sel(P )
7. F ← [ ], LM(F )← ∅, T (F )← ∅, L[step]← [ ], Ltmp ← [ ]
8. for all pair = (lcm, t1, g1, t2, g2) ∈ Psel do
9. for k = 1 to 2 do

10. ind← index(gk, G)
11. if (tk, ind) /∈ Ltmp then
12. Append(Ltmp, (tk, ind))
13. f ← Simplify(tk, ind)
14. Append(F, f)
15. LM(F )← LM(F ) ∪ {LM(f)}
16. T (F )← T (F ) ∪ {m ∈ T : m monomial of f}
17. Preprocessing(F, T (F ), LM(F ))
18. M ← matrix whose rows are the polynomials in F
19. (M ′|A)← ReducedRowEchelonForm(M |I#F ) (⇒ AM = M ′)
20. rank ← Postprocessing(M ′, LM(F ))
21. if rank < #F then
22. A′ ← A[rank + 1..#F ][1..#Ltmp]
23. Ã← ReducedRowEchelonForm(A′)
24. C ← {c ∈ {1, . . . , #Ltmp} : c is not a column number of a pivot in Ã}
25. for j ∈ C do
26. if ∃k ∈ C, k 6= j and LM(F [k]) = LM(F [j]) then Append(L[step], Ltmp[j])
27. else L[step]← Ltmp

28. step← step + 1
29. return L

In the pseudo-code, some variables are supposed to be global: G, a list of
polynomials that forms a basis of 〈f1, . . . , fr〉; Gmin, a set of polynomials which is
the minimized version of G; TabSimplify, an array of lists of couples used for the
simplification of polynomials multiples; P , a queue of yet untreated critical pairs.
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The function Sel on line 6 is a selection function, whose expression depends on
the chosen strategy; usually, selecting all pairs of lowest total degree lcm (normal
strategy) yields the best performances. The notation index(g,G) stands for the
integer i such that G[i] = g, and the function pair(f1, f2) outputs the critical pair
(lcm, u1, f1, u2, f2). Finally, ReducedRowEchelonForm computes as expected
the reduced row echelon form of its input matrix. We stress that great care
should be taken in the implementation of this last function since almost all the
execution time of the algorithm is spent in it. Note that the test on line 10 in
Update is only necessary during the initialisation phase of F4Precomp (line 3).

Alg. 2 Update
Input: f ∈ K[X]
1. for all pair = (lcm, t1, g1, t2, g2) ∈ P do
2. if (LM(f)∨LM(g1) divides strictly lcm) AND (LM(f)∨LM(g2) divides strictly

lcm) then P ← P \ {pair}
3. P0 ← ∅, P1 ← ∅, P2 ← ∅
4. for all g ∈ Gmin do
5. if LM(f) ∧ LM(g) = 1 then P0 ← P0 ∪ pair(f, g) else P1 ← P1 ∪ pair(f, g)
6. for all pair = (lcm, t1, g1, t2, g2) ∈ P1 do
7. P1 ← P1 \ {pair}
8. if @pair′ = (lcm′, t′1, g

′
1, t
′
2, g
′
2) ∈ P0∪P1∪P2 s.t.lcm′|lcm then P2 ← P2∪{pair}

9. P ← P ∪ P2

10. if @g ∈ Gmin such that LM(g)|LM(f) then
11. for all g ∈ Gmin do
12. if LM(f)|LM(g) then Gmin ← Gmin \ {g}
13. Gmin ← Gmin ∪ {f}

Alg. 3 Preprocessing
Input: F, T (F ), LM(F )
1. Done← LM(F )
2. while T (F ) 6= Done do
3. m← max(T (F ) \Done)
4. Done← Done ∪ {m}
5. for all g ∈ Gmin do
6. if LM(g)|m then

7. g′ ← Simplify
“

m
LM(g)

, index(g, G)
”

8. Append(F, g′)
9. LM(F )← LM(F ) ∪ {m}

10. T (F )← T (F ) ∪ {m′ ∈ T : m′ monomial of g′}
11. break
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Alg. 4 Simplify
Input: t ∈ T, ind ∈ N Output: p ∈ K[X]
1. for (m, f) ∈ TabSimplify[ind] (from last to first) do
2. if m = t then return f
3. else if m|t then
4. Append

`
TabSimplify[ind],

`
m, t

m
f

´´
5. return t

m
f

Alg. 5 Postprocessing
Input: a matrix M in reduced row echelon form with #F lines and an ordered set of

monomials LM(F )
Output: the rank of the matrix M
1. for i = 1 to #F do
2. f ←M [i]
3. if f = 0 then break
4. if LM(f) /∈ LM(F ) then
5. Append(G, f)
6. Update(f)
7. TabSimplify[#G]← [(1, f)]
8. else
9. for g ∈ Gmin do

10. ind← index(g, G)
11. if LM(g)|LM(f) then
12. for j = 1 to #TabSimplify[ind] do

13. if TabSimplify[ind][j] =
“

LM(f)
LM(g)

, .
”

then

14. TabSimplify[ind][j] =
“

LM(f)
LM(g)

, f
”

15. break
16. if j > #TabSimplify[ind] then Append

“
TabSimplify[ind],

“
LM(f)
LM(g)

, f
””

17. return i− 1
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A.2 F4Remake

The F4Remake algorithm uses the same routines Simplify, Preprocessing and
Postprocessing. Since it no longer uses critical pairs, the subroutine Update
can be greatly simplified and is replaced by Update2.

Alg. 6 F4Remake
Input: f1, . . . , fr ∈ K[X], a list L of lists of couples (m, n) ∈ T × N
Output: Gmin, the reduced minimal Gröbner basis of f1, . . . , fr

1. G← [ ], Gmin ← ∅, TabSimplify ← [ ]
2. for i = 1 to r do
3. G[i]← fi

4. TabSimplify[i]← [(1, fi)]
5. Update2(fi)
6. for step = 1 to #L do
7. F ← [ ], LM(F )← ∅, T (F )← ∅
8. for all (m, n) ∈ L[step] do
9. if n > #G then computation fails ! exit

10. f ← Simplify(m, n), Append(F, f)
11. LM(F )← LM(F ) ∪ {LM(f)}
12. T (F )← T (F ) ∪ {m ∈ T : m monomial of f}
13. Preprocessing(F, T (F ), LM(F ))
14. M ← matrix whose rows are the polynomials in F
15. M ′ ← ReducedRowEchelonForm(M)
16. Postprocessing(M ′, LM(F ))
17. return InterReduce(Gmin)

Alg. 7 Update2
Input: f ∈ K[X]
1. if @g ∈ Gmin such that LM(g)|LM(f) then
2. for all g ∈ Gmin do
3. if LM(f)|LM(g) then Gmin ← Gmin \ {g}
4. Gmin ← Gmin ∪ {f}


