σ -algèbres

2014-2015 : TD 1

Exercice 1.— Limites inférieures et supérieures d'ensembles

Soit \mathscr{A} une σ -algèbre sur un ensemble X et $(A_n)_{n\in\mathbb{N}}$ une famille d'éléments de \mathscr{A} . On définit les ensembles :

$$\limsup_{n} A_{n} = \left\{ x \in X \mid x \text{ appartient à une infinité de } A_{n} \right\}$$
$$\liminf_{n} A_{n} = \left\{ x \in X \mid x \in A_{n} \text{ à partir d'un certain } n \right\}.$$

Montrer que $\liminf_n A_n$ et $\limsup_n A_n$ sont membres de la σ -algèbre \mathscr{A} . Donner des exemples intelligents où ces deux ensembles coïncident ainsi que des exemples où ils diffèrent.

Exercice 2.— σ -algèbres sur \mathbb{R}

- (a) Caractériser la σ -algèbre sur \mathbb{R} engendrée par l'ensemble des singletons.
- (b) Montrer que la σ -algèbre des boréliens $\mathscr{B}(\mathbb{R})$ est engendrée par l'ensemble

$$\left\{]-\infty,r]\subset\mathbb{R}\ \middle|\ r\in\mathbb{Q} \right\}.$$

(c) Trouver un sous-ensemble infini de $\mathscr{P}(\mathbb{R})$ qui contient \mathbb{R} , est stable par union dénombrable et intersection dénombrable, mais n'est pas une σ -algèbre.

 $[\sigma$ -algèbre sur un espace métrique dénombrable] Montrer que la σ -algèbre des boréliens $\mathcal{B}(\mathbb{Q})$ coïncide avec la σ -algèbre pleine $\mathcal{P}(\mathbb{Q})$. Généraliser au cas d'un espace métrique dénombrable.

Exercice 3.— Quelques boréliens de $\mathbb R$

Soit $(f_n)_{n\in\mathbb{N}}$ une famille d'applications continues de \mathbb{R} dans \mathbb{R} . Montrer que les ensembles suivants sont boréliens :

(a)
$$\left\{ x \in \mathbb{R} \mid f_n(x) \xrightarrow[n \to \infty]{} 0 \right\};$$

(b)
$$\left\{ x \in \mathbb{R} \mid (f_n(x))_{n \in \mathbb{N}} \text{ converge} \right\};$$

(c)
$$\{x \in \mathbb{R} \mid (f_n(x))_{n \in \mathbb{N}} \text{ admet } 0 \text{ comme valeur d'adhérence} \}.$$

Exercice 4.— Boréliens de $\mathbb Q$

Montrer que la σ -algèbre des boréliens $\mathscr{B}(\mathbb{Q})$ coïncide avec la σ -algèbre pleine $\mathscr{P}(\mathbb{Q})$. Généraliser au cas d'un espace métrique dénombrable.

Exercice 5.— Intervalles dyadiques

On appelle intervalle dyadique de [0,1[un intervalle de la forme $\left[\frac{k}{2^n},\frac{k+1}{2^n}\right[$, où $n \in \mathbb{N}$ et k est un entier compris entre 0 et $2^n - 1$.

(a) Montrer que deux intervalles dyadiques sont emboîtés ou disjoints.

- (b) Montrer que l'ensemble \mathscr{A} des unions finies d'intervalles dyadiques est une algèbre sur [0,1[.
- (c) Montrer que la σ -algèbre engendrée par les intervalles dyadiques est la σ -algèbre borélienne $\mathcal{B}([0,1[)$.

Exercice 6.— σ -algèbre produit

Soit (X_1, \mathscr{A}_1) et (X_2, \mathscr{A}_2) deux espaces mesurables (*i.e.* ensembles munis d'une σ -algèbre). On définit la σ -algèbre produit $\mathscr{A}_1 \otimes \mathscr{A}_2$ comme la σ -algèbre engendrée;

$$\mathscr{A}_1 \otimes \mathscr{A}_2 = \sigma \left(\left\{ A_1 \times A_2 \,\middle|\, A_i \in \mathscr{A}_i \right\} \right).$$

On note $\mathcal{D}(X)$ la σ -algèbre des parties dénombrables ou codénombrables d'un ensemble X et $\mathcal{B}(X)$ la σ -algèbre borélienne d'un espace métrique X.

- (a) Montrer que $\mathscr{B}(\mathbb{R}^2) = \mathscr{B}(\mathbb{R}) \otimes \mathscr{B}(\mathbb{R})$.
- (b) Soit X et Y deux ensembles. Dans quels cas a-t-on $\mathcal{D}(X \times Y) = \mathcal{D}(X) \otimes \mathcal{D}(Y)$?

Exercice 7.— σ -algèbres sur les ensembles dénombrables

Soit X un ensemble dénombrable. On dit qu'une σ -algèbre est engendrée par une relation d'équivalence si elle est engendrée par les classes d'équivalence de cette relation.

- (a) Montrer que toute σ -algèbre est engendrée par une relation d'équivalence. Identifier les relations correspondant aux σ -algèbres pleine et triviale.
- (b) En déduire le nombre de σ -algèbres sur un ensemble fini.

Exercice 8.— σ -algèbres dénombrables

Démontrer qu'il n'existe pas de σ -algèbre infinie dénombrable. On pourra commencer par montrer que l'on peut toujours trouver dans une σ -algèbre infinie une collection infinie d'ensembles disjoints.

Mesures

2014-2015 : TD 2

Exercice 1.— Mesures sur \mathbb{Q}

Trouver toutes les mesures sur $(\mathbb{Q}, \mathscr{B}(\mathbb{Q}) = \mathscr{P}(\mathbb{Q}))$.

Exercice 2.— Lemme de Borel-Cantelli, première partie

Soit (X, \mathscr{A}, μ) un espace mesuré et $(A_n)_{n \in \mathbb{N}}$ une suite d'éléments de \mathscr{A} telle que $\sum_{n=0}^{+\infty} \mu[A_n]$ est finie. Montrer que l'ensemble des points qui appartiennent à une infinité de A_n est de mesure nulle.

Exercice 3.— Sommes de mesures de Dirac

Soit $(x_n)_{n\in\mathbb{N}}$ une suite de réels.

- (a) Montrer que $\mu = \sum_{n \in \mathbb{N}} \delta_{x_n}$ définit une mesure sur $(\mathbb{R}, \mathscr{B}(\mathbb{R}))$.
- (b) Montrer que μ est finie sur tous les intervalles bornés si et seulement si $|x_n| \xrightarrow[n \to \infty]{} +\infty$.
- (c) Pour quelles suites la mesure μ est-elle σ -finie?

Exercice 4.— Mesure de Lebesgue sur \mathbb{R} : vrai ou faux?

Pour chacune des affirmations suivantes, dire si elle est vraie ou fausse. On demande, suivant les cas, une preuve ou un contre-exemple.

- Soit (A_n) une suite décroissante de boréliens de \mathbb{R} d'intersection vide. Alors $m_1[A_n] \xrightarrow[n \to \infty]{} 0$.
- Soit A un borélien de \mathbb{R} d'intérieur vide. Alors $m_1[A]=0$.
- Soit A un borélien de \mathbb{R} d'intérieur non vide. Alors $m_1[A] > 0$.
- Soit K un compact de \mathbb{R} . Alors $m_1[K]$ est finie.

Exercice 5.— Exemple de Vitali

Soit \sim la relation d'équivalence définie par $x \sim y \Leftrightarrow x - y \in \mathbb{Q}$. Justifier que chaque classe rencontre l'intervalle [0,1]. On forme l'ensemble V en prenant dans chaque classe d'équivalence un représentant dans [0,1]. On obtient donc une partie $V \subset [0,1]$ intersectant en un unique point chaque classe d'équivalence de \sim . Montrer que V n'est pas borélien.

Exercice 6.— Ensembles de Cantor

(a) On définit l'ensemble triadique de Cantor K_3 de la manière suivante : $K_3^{(0)}$ est l'intervalle [0,1], $K_3^{(1)}$ est obtenu en découpant $K_3^{(0)}$ en trois intervalles de même taille et en ne gardant que les deux intervalles (fermés) extrêmes $(K_3^{(1)} = [0,1/3] \cup [2/3,1])$, $K_3^{(2)}$ est obtenu en faisant subir le même sort aux (deux) intervalles constituant $K_3^{(1)}$ ($K_3^{(2)} = [0,1/9] \cup [2/9,1/3] \cup [2/3,7/9] \cup [8/9,1]$). On construit ainsi par récurrence des compacts $K_3^{(n)}$ formés de 2^n intervalles. Ces compacts sont emboîtés et on pose $K_3 = \bigcap_{n \in \mathbb{N}} K_3^{(n)}$. Calculer la mesure de Lebesgue de l'ensemble triadique de Cantor.

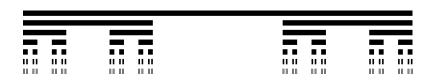


FIGURE $1 - K_3$: premières étapes de construction (source : wikipédia)

- (b) On généralise la construction précédente : pour n'importe quelle suite de nombres $\lambda_n \in]0,1[$, on définit les compacts $K^{(n)}$ par récurrence en partant de $K^{(0)} = [0,1]$ et en passant de $K^{(n)}$ à $K^{(n+1)}$ en ôtant à chacun des 2^n intervalles I formant $K^{(n)}$ l'intervalle ouvert central de longueur $\lambda_n \cdot m_1[I]$. On pose enfin $K = \bigcap_{n \in \mathbb{N}} K_n$. L'exemple de la question précédente correspond à la suite constante $\forall n, \lambda_n = 1/3$. Montrer que pour tout $\alpha \in [0,1[$, on peut construire par ce procédé un compact de mesure α .
- (c) Montrer que les compacts précédents ont la puissance du continu (c'est-à-dire, on le rappelle, qu'ils sont en bijection avec \mathbb{R} ou $\{0,1\}^{\mathbb{N}}$).

Exercice 7.— Propriétés d'invariance de la mesure de Lebesgue

- (a) Montrer que la mesure de Lebesgue m_n sur \mathbb{R}^n est invariante par translation.
- (b) Soit μ une mesure définie sur $(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$ invariante par translation et telle que $\mu[[0,1]^n] = \lambda < \infty$. Montrer que $\mu = \lambda m_n$.
- (c) Soit E un borélien de \mathbb{R}^n et $A:\mathbb{R}^n\to\mathbb{R}^n$ un endomorphisme. Montrer que

$$m_n[A(E)] = |\det A| \cdot m_n[E].$$

- (d) Soit $E = C([0,1],\mathbb{R})$ l'espace des fonctions continues de $[0,1] \to \mathbb{R}$, muni de la norme $\|f\|_{\infty} = \max_{[0,1]} |f|$. Montrer qu'il n'existe pas sur E de mesure μ non nulle vérifiant les propriétés suivantes :
 - μ est invariante par translation;
 - Tout point $p \in E$ admet un voisinage de μ -mesure finie.

Fonctions mesurables, liminf et limsup

2014-2015 : TD 3

Exercice 1.— Propriétés des fonctions mesurables

Dans tout cet exercice, \mathbb{R} est muni de la tribu borélienne.

- (a) Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue. Montrer que f est mesurable.
- (b) Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction croissante. Montrer que f est mesurable.
- (c) Les fonctions en escalier sont-elles mesurables?
- (d) Soit $f_n:(X,\mathcal{A})\to\mathbb{R}$ une suite de fonctions mesurables. Montrer que l'ensemble des points où f_n converge est dans \mathcal{A} .

Exercice 2.— lim inf pour les suites et pour les ensembles

On rappelle que pour A_n une suite de parties d'un ensemble X, on note lim inf A_n l'ensemble des $x \in X$ qui sont dans tous les A_n à partir d'un certain rang.

Soit $(x_n)_{n\in\mathbb{N}}$ une suite réelle. Pour tout n, on pose $A_n =]-\infty, x_n]$. Montrer qu'on est dans l'un des deux cas suivants :

- 1. $\liminf A_n =]-\infty, \liminf (x_n)];$
- 2. $\liminf A_n =]-\infty, \liminf (x_n)[.$

Exercice 3.— Lemme de Fatou sur les séries

- (a) Soient (a_n) et (b_n) deux suites de réels.
 - Montrer que $\liminf a_n + \liminf b_n \leq \liminf (a_n + b_n)$.
 - Donner un exemple pour lequel cette inégalité est stricte.
 - Que se passe-t-il si (a_n) converge?
- (b) Montrer que, si $(x_{n,m})$ est une suite de réels positifs ou nuls, on a :

$$\sum_{n=1}^{\infty} \left(\liminf_{m \to \infty} x_{n,m} \right) \le \liminf_{m \to \infty} \left(\sum_{n=1}^{\infty} x_{n,m} \right)$$

Exercice 4.— Boréliens et projection

On considère l'espace $C([0,1],\mathbb{R})$ muni de la topologie de la convergence uniforme. Le but de l'exercice est de montrer que la tribu des boréliens sur $C([0,1],\mathbb{R})$ est la plus petite tribu qui rende les projections

$$\Phi_x: C([0,1],\mathbb{R}) \to \mathbb{R}$$

$$f \mapsto f(x)$$

mesurables pour tout $x \in [0, 1]$.

- 1. Montrer que les projections sont mesurables pour la tribu borélienne.
- 2. Soit X un espace métrique. Montrer qu'il est à base dénombrable d'ouverts si et seulement s'il est séparable (c'est-à-dire qu'il contient une partie dénombrable dense).

- 3. Montrer que $C([0,1],\mathbb{R})$ est séparable.
- 4. Soit \mathcal{A} une tribu de $C([0,1],\mathbb{R})$ qui rend les projections mesurables. Montrer que \mathcal{A} contient toutes les boules fermées.
- 5. Conclure.

Exercice 5.— Boréliens de $\overline{\mathbb{R}}$

On définit $\overline{\mathbb{R}}$ comme $\mathbb{R} \cup \{-\infty, +\infty\}$ muni de la distance :

$$d(x, y) = |\arctan(x) - \arctan(y)|$$

où par convention, $\arctan(-\infty) = -\pi/2$ et $\arctan(-\infty) = \pi/2$.

- 1. Montrer que d est bien une distance.
- 2. Montrer que la tribu des boréliens est engendrée par les $[a, +\infty]$.

Exercice 6.— Produit de lebesguiens

On note $\mathcal{M}(\mathbb{R}^k)$ l'ensemble des parties mesurables de \mathbb{R}^k (c'est-à-dire la tribu complétée de $\mathcal{B}(\mathbb{R}^k)$). A-t-on :

$$\mathcal{M}(\mathbb{R})\otimes\mathcal{M}(\mathbb{R})=\mathcal{M}(\mathbb{R}^2)$$
?

Fonctions mesurables, tribu complétée

2014-2015: TD 4

Exercice 1.— Limite simple de fonctions mesurables

Soit \mathcal{A} une σ -algèbre sur un ensemble X, et soit $f_n: X \to \mathbb{R}$ une suite d'applications mesurables.

- (a) Montrer que $A = \{x \in X | \lim_{n \to +\infty} f_n(x) \text{ existe } \} \in \mathcal{A}.$
- (b) Montrer que l'application $f: A \to \mathbb{R}$ qui à $x \in A$ associe $\lim_{n \to +\infty} f_n(x)$ est mesurable.
- (c) Généraliser au cas d'une suite d'applications mesurables $f_n: X \to Y$ où Y est un espace métrique complet muni de sa tribu borélienne.

Exercice 2.— Limite simple de fonctions simples

Soit $f:(X,\mathcal{A},\mu)\to\mathbb{R}$ mesurable.

1. Dans cette question, on suppose $f \geq 0$. Pour $n \in \mathbb{N}$ et $0 \leq i \leq n2^n - 1$, on pose

$$E_{i,n} = \left\{ x \mid \frac{i}{2^n} \le f(x) < \frac{i+1}{2^n} \right\};$$

$$E_{n2^n,n} = \{x \mid f(x) \ge n\};$$

$$s_n = \sum_{0 \le i \le n2^n} \frac{i}{2^n} \chi_{E_{i,n}}.$$

- (a) Montrer que pour tout $n \in \mathbb{N}$, s_n est une fonction mesurable simple.
- (b) Montrer que la suite $(s_n)_{n\in\mathbb{N}}$ est croissante et converge simplement vers f.
- (c) Montrer que $\int_X f d\mu = \lim \int_X s_n d\mu$.
- 2. Dans le cas général, montrer qu'il existe une suite $(g_n)_{n\in\mathbb{N}}$ de fonctions simples, qui converge simplement vers f, et telle que pour tout $n\in\mathbb{N}$ et tout $x\in X$, $|g_n(x)|\leq |f(x)|$.

Exercice 3.— Propriétés du « presque partout »

Soit (X, \mathcal{A}, μ) un espace mesuré. Étant données deux fonctions mesurables $f, g: X \to \mathbb{R}$, on note :

$$f = g \iff \mu(\lbrace x \in X | f(x) \neq g(x) \rbrace) = 0$$

$$f \leq g \iff \mu(\{x \in X | g(x) < f(x)\}) = 0$$

- (a) Montrer que la relation = d'égalité presque partout est une relation d'équivalence.
- (b) Montrer que la relation \leq d'infériorité presque partout est transitive et que :

$$f \leq g \text{ et } g \leq f \Rightarrow f = g.$$

- (c) Montrer que si $f_i, g_i : X \to \mathbb{C}$ vérifient $f_1 = f_2$ et $g_1 = g_2$, alors pour tous $\alpha, \beta \in \mathbb{C}$, $\alpha f_1 + \beta g_1 = \alpha f_2 + \beta g_2$.
- (d) Montrer que, si $f_n, g_n : X \to \mathbb{R}$ vérifient $f_n = g_n$ pour tout $n \in \mathbb{N}$, alors $\liminf_{n \to \infty} f_n = \lim_{n \to \infty} \inf_{n \to \infty} g_n$ et $\limsup_{n \to \infty} f_n = \lim_{n \to \infty} \sup_{n \to \infty} g_n$. Si de plus, (f_n) converge presque partout, montrer qu'il en est de même pour (g_n) et qu'alors $\lim_{n \to \infty} f_n = \lim_{n \to \infty} g_n$.

Exercice 4.— Fonctions mesurables pour la tribu complétée

Soit (X, \mathcal{A}, μ) un espace mesuré dont on note (X, \mathcal{A}', μ') le complété. Soit $f: X \to \mathbb{R}$ mesurable pour la tribu \mathcal{A}' . Montrer qu'il existe une fonction g égale à f μ' -presque partout (c'est-à-dire que $\mu'(\{x \in X \mid f(x) \neq g(x)\}) = 0$), qui est mesurable pour la tribu \mathcal{A} .

Exercice 5.— Fonctions presque nulles

Soit (X, \mathcal{A}, μ) un espace mesuré. Soit $f: X \to \mathbb{R}$ une fonction positive mesurable (\mathbb{R} est muni de sa tribu borélienne). On suppose que $\int_X f d\mu = 0$. Montrer que f est nulle presque partout.

Intégrales de fonctions à valeurs réelles ou complexes

2014-2015 : TD 5

Exercice 1.— Autour de l'inégalité de Chebychev

Soit $f:(X, \mathcal{A}, \mu) \to \mathbb{R}^+$ mesurable. On pose, pour $n \in \mathbb{N}^*$, $A_n = \{x \in X | f(x) \ge n\}$ et $B_n = \{x \in X | n \le f(x) < n+1\}$.

- 1. Monter que si f est intégrable, $(p \mu(A_p))_{p \in \mathbb{N}^*}$ est bornée.
- 2. Montrer que si f est intégrable, $\sum_{p\in\mathbb{N}^*} p\,\mu(B_p)$ converge.
- 3. Montrer que si f est intégrable, $\sum_{p\in\mathbb{N}^*} \mu(A_p)$ converge.
- 4. À quelle(s) condition(s) les réciproques sont-elles vraies?

Exercice 2.— Fonctions presque nulles Soit (X, \mathcal{A}, μ) un espace mesuré.

- 1. Soit $f:X\to\mathbb{R}^+$ une fonction mesurable. On suppose que $\int_X f d\mu=0$. Montrer que f est nulle presque partout.
- 2. Soit $f:X\to\mathbb{R}$ une fonction intégrable. On suppose que $\forall A\in\mathscr{A},\int_A f\,d\mu=0$. Montrer que f est nulle presque partout.

Exercice 3.— Sommation par tranches

Soit $f:(X,\mathscr{A},\mu)\to\mathbb{R}$ une fonction mesurable positive. Montrer que

$$\int_{X} f(x) d\mu(x) = \int_{\mathbb{R}_{+}} \mu \left[\left\{ x \in X | f(x) > t \right\} \right] dm_{1}(t) = \lim_{n \to \infty} \sum_{k \in \mathbb{N}} \frac{1}{2^{n}} \mu \left[\left\{ x \in X | f(x) > \frac{k}{2^{n}} \right\} \right].$$

Exercice 4.— Lemme des moyennes

Soit $g:(X,\mathscr{A},\nu)\to\mathbb{C}$ intégrable, où ν est une mesure finie. On suppose qu'il existe un fermé $F\subset\mathbb{C}$ tel que, pour tout $A\in\mathscr{A}$ vérifiant $\nu(A)\in]0,+\infty[$, on a $\frac{1}{\nu(A)}\int_A g\,d\nu\in F.$ Montrer que pour presque tout $x\in X,\,g(x)\in F.$

Révisions

2014-2015 : TD 6

Exercice 1.— Fonctions continues presque partout Soit f une fonction de \mathbb{R} dans \mathbb{R} .

- 1. On suppose qu'il existe une fonction continue g telle que f soit égale à g presque partout. f est-elle nécessairement continue presque partout?
- 2. On suppose f continue presque partout. Existe-t-il nécessairement une fonction continue g telle que f soit égale à g presque partout?

Exercice 2.— Image d'un négligeable par une fonction lipschitzienne

Soit $f : \mathbb{R} \to \mathbb{R}$ une fonction lipschitzienne (resp. localement lipschitzienne). Montrer que l'image d'une ensemble Lebesgue-négligeable est Lebesgue-négligeable.

Exercice 3.— Fonction constante presque partout

Soit f une fonction de $(X, \mathscr{A}_X, \mu_X)$ dans (Y, \mathscr{A}_Y) , constante presque partout. On suppose que \mathscr{A}_X est complète pour μ_X . Montrer que f est mesurable.

Exercice 4.— Convergence monotone inversée

Soit f_n une suite de fonctions intégrables de (X, \mathcal{A}, μ) dans \mathbb{R}^+ , décroissante. En utilisant le théorème de convergence monotone, montrer que

$$\int f_n \underset{n \to +\infty}{\to} \int \lim_{n \to +\infty} f_n.$$

Ce résultat est-il encore vrai si l'on ne suppose pas les f_n intégrables?

Exercice 5.— Intégrale de Riemann

On rappelle qu'une fonction en escalier $g:[0,1] \to \mathbb{R}$ est une fonction munie d'une subdivision adaptée $0 = a_0 < a_1 < \cdots < a_p = 1$ telle que g est constante (égale à b_k) sur chaque intervalle de la forme $]a_k, a_{k+1}[$ pour $k \in \{1, \ldots, p-1\}$. Son intégrale au sens de Riemann est définie comme

$$\int g = \sum_{k=1}^{p} (a_k - a_{k-1}) b_k.$$

Une fonction $f:[0,1]\to\mathbb{R}$ est intégrable au sens de Riemann si

$$\inf \left\{ \int g \mid g \text{ en escalier }, g \geq f \right\} = \sup \left\{ \int g \mid g \text{ en escalier }, g \leq f \right\}$$

et dans ce cas, l'intégrale de f est définie comme la valeur commune des deux membres de cette égalité.

Montrer que si $f:[0,1]\to\mathbb{R}^+$ est intégrable au sens de Riemann, elle est Lebesgue-mesurable, intégrable au sens de Lebesgue, et les deux intégrales coïncident.

Théorèmes de Lebesgue

2014-2015 : TD 7

Exercice 1.— Dérivabilité sous l'intégrale

Soient I un intervalle ouvert de \mathbb{R} et $f: \mathbb{R} \to \mathbb{R}$ une fonction mesurable. On suppose que pour tout $x \in I, t \in \mathbb{R} \to g(x,t) = e^{xt} f(t)$ est intégrable. Montrer que

$$h(x) = \int_{\mathbb{R}} g(x, t) \ dt$$

définit une fonction dérivable sur I.

Exercice 2.— Une étude asymptotique

Soit (X, μ) un espace mesuré, $f: X \to [0, +\infty]$ une fonction mesurable d'intégrale 1. Montrer que $\int_X n \log \left[1 + \left(\frac{f}{n}\right)^{\alpha}\right] d\mu$ converge :

- 1. vers $+\infty$ quand $0 < \alpha < 1$;
- 2. vers 1 quand $\alpha = 1$;
- 3. vers 0 quand $\alpha > 1$.

Exercice 3.— Lemme de Scheffé

Soit (X, μ) un espace mesuré, (f_n) une suite de fonctions positives et intégrables, convergeant presque-partout vers une fonction intégrable f, vérifiant

$$\int_X f_n \ d\mu \to \int_X f \ d\mu.$$

Montrer que $\int_X |f_n - f| d\mu \to 0$.

Exercice 4.— Espace mesuré fini

Soit (X, μ) un espace mesuré. On suppose qu'il existe une fonction f strictement positive telle que f et 1/f soient intégrables. Montrer qu'alors $\mu(X) < \infty$.

Exercice 5.— Convergence et domination

(a) Soit $\varphi : \mathbb{R} \to \mathbb{R}_+$ une fonction continue nulle en dehors de [0,1] et d'intégrale de Lebesgue égale à 1. On pose les suites de fonctions

$$f_n(x) = n\varphi(nx), \ g_n(x) = \frac{1}{n}\varphi(\frac{x}{n}), \ h_n(x) = \varphi(x-n).$$

Ces trois suites de fonctions satisfont-elles la conclusion du théorème de convergence dominée de Lebesgue? Satisfont-elles l'hypothèse de domination?

(b) Construire une famille (f_n) de fonctions positives intégrables convergeant vers 0 presque partout, dont les intégrales convergent vers 0, mais qui n'est cependant pas dominée par une fonction intégrable.

- (c) Montrer que de toute famille (f_n) de fonctions positives intégrables convergeant vers 0 presque partout et dont les intégrales convergent vers 0, on peut extraire une sous-suite dominée par une fonction intégrable.
- (d) Montrer que le résultat précédent n'est plus vrai si on ne suppose plus les fonctions positives.

Espaces de Lebesgue

2014-2015 : TD 8

Exercice 1.— Représentation duale des normes L^p

Soient (X, \mathcal{A}, μ) un espace mesuré, $1 \leq p < \infty$ et $f \in L^p$. On note q l'exposant conjugué de p.

(a) Montrer que

$$||f||_{L^p} = \sup\{\int_X fg \ d\mu \ | \ ||g||_q = 1\}.$$

(b) On suppose que μ est σ -finie, montrer que le résultat précédent s'étend au cas $p=+\infty$.

Exercice 2.— Convergence en mesure

Soit (X, \mathcal{A}, μ) un espace mesuré fini. Soit une suite de fonctions mesurables $f_n : X \to \mathbb{R}$ mesurables. On dit que (f_n) converge en mesure vers f si pour tout $\epsilon > 0$,

$$\mu(|f_n - f|^{-1}(]\epsilon, +\infty[)) \underset{n \to \infty}{\longrightarrow} 0.$$

- (a) Soit $1 \le p \le +\infty$. Montrer que si $|f_n f|_{L^p} \underset{n \to \infty}{\longrightarrow} 0$ alors (f_n) converge en mesure vers f. Remarquer que la réciproque est fausse.
- (b) Montrer que si (f_n) converge vers f presque partout alors (f_n) converge en mesure vers f.
- (c) Donner un exemple de suite de fonctions mesurables (f_n) qui converge vers 0 pour la norme L^p , mais qui ne converge pas vers 0 presque partout.
- (d) Montrer que si (f_n) converge en mesure vers f alors il existe une sous-suite de (f_n) qui converge presque partout vers f.
- (e) Soit (f_n) une suite de fonctions réelles dans \mathcal{L}^p qui converge vers f dans L^p et qui converge vers g presque-partout. Montrer que f = g presque partout.

Exercice 3.— Emboîtement des espaces de Lebesgue

- 1. Soient (X, \mathcal{A}, μ) un espace mesuré fini et $1 \leq p < q \leq +\infty$. Montrer que $L^q(X) \subset L^p(X)$ et que cette inclusion est une application linéaire continue, donner sa norme.
- 2. Soit (X, \mathcal{A}, μ) un espace mesuré tel qu'il existe $1 \le p < q \le +\infty$ pour lesquels $L^q(X) \subset L^p(X)$. Montrer que

$$\sup\{\mu(A)|\ A\in\mathscr{A},\ \mu(A)<+\infty\}<+\infty.$$

Exercice 4.— Séparabilité des espaces $L^p([0,1])$

- 1. Soit $p \in [1, +\infty[$. Montrer que $L^p([0, 1])$ est séparable, c'est-à-dire qu'il contient une partie dénombrable dense.
- 2. Montrer que $L^{\infty}([0,1])$ n'est pas séparable.

Densité des fonctions continues, espaces de Hilbert

2014-2015 : TD 9

Exercice 1.— Translatées d'une fonction L^p

Soit $p \in [1, +\infty[$ et $h \in \mathbb{R}^d$. Pour $u \in L^p(\mathbb{R}^d)$, on pose $(\tau_h u)(x) = u(x - h)$.

- 1. Montrer que $\|\tau_h u\|_{L^p} = \|u\|_{L^p}$.
- 2. Montrer que $\lim_{h\to 0} ||\tau_h u u||_{L^p} = 0$.

Exercice 2.— Projection sur un convexe fermé

Soit (X, \mathcal{A}, μ) un espace mesuré. Dans $H = L^2(X, \mu, \mathbb{R})$, on note $C = \{f \in H | f \geq_{pp} 0\}$.

- 1. Montrer que C est un convexe fermé.
- 2. Décrire la projection sur C.
- 3. Que dire dans $L^2(X, \mu, \mathbb{C})$?

Exercice 3.— Convergence faible

Soit (X, \mathcal{A}, μ) un espace mesuré. Soient $p, p' \in]1, +\infty[$ tels que 1/p + 1/p' = 1. On dit qu'une suite $(f_n)_{n \in \mathbb{N}}$ d'éléments de $L^p(\mu)$ converge faiblement vers $f \in L^p(\mu)$ si pour tout $g \in L^{p'}(\mu)$,

$$\lim \int_X f_n g d\mu = \int_X f g d\mu.$$

- 1. Montrer que la convergence dans L^p implique la convergence faible.
- 2. On suppose que (X, \mathcal{A}, μ) est \mathbb{R}^d muni de la mesure de Lebesgue, et que pour toute ϕ continue à support compact, on a

$$\lim \int_X f_n \phi d\mu = \int_X f \phi d\mu.$$

On suppose de plus que la suite $||f_n||_{L^p}$ est bornée. Montrer que la suite (f_n) converge faiblement vers f.

3. Soit $f \in L^p(\mathbb{R})$, non nulle. En posant $(\tau_n f)(x) = f(x-n)$, montrer que $\tau_n f$ ne converge pas vers 0 dans L^p , mais converge faiblement vers 0.

Exercice 4.— Adjoint d'un opérateur

1. Soit H un espace de Hilbert, et soit $u:H\to H$ une application linéaire continue. Montrer qu'il existe une unique application linéaire continue $u^*:H\to H$ telle que :

$$\forall (x,y) \in H^2 \langle x|u(y)\rangle = \langle u^*(x)|y\rangle.$$

- 2. On définit $P: L^2([0,1]) \to L^2([0,1])$ par $P(f)(x) = \int_0^x f(t) dt$.
 - (a) Montrer que P est bien définie.
 - (b) Montrer que P est linéaire et continue.
 - (c) Montrer que $P^*(f)(x) = \int_x^1 f(t)dt$ pour toute $f \in L^2([0,1])$.

Mesures produits, théorème de Fubini

2014-2015 : TD 10

Exercice 1.— Mesures produits

Soit (X, \mathcal{A}, μ) un espace mesuré σ -fini, et soit y_0 un point d'un ensemble Y. Calculer la mesure produit $\mu \otimes \delta_{y_0}$.

Exercice 2.— Hypothèses pour Fubini-Tonelli

1. On désigne par λ (resp. μ) la mesure de Lebesgue (resp. la mesure de comptage) sur ([0,1], $\mathcal{B}([0,1])$). Soit $\Delta = \{(x,x)|x \in [0,1]\}$. Est-ce que Δ est un borélien de \mathbb{R}^2 ? Justifier ensuite l'existence des intégrales itérées suivantes, et les comparer :

$$I_1 = \int_{[0,1]} \left(\int_{[0,1]} \chi_{\Delta}(x,y) d\lambda(x) \right) d\mu(y)$$

$$I_2 = \int_{[0,1]} \left(\int_{[0,1]} \chi_{\Delta}(x,y) d\mu(y) \right) d\lambda(x).$$

2. On considère $\mathbb R$ muni de la mesure de Lebesgue λ sur les boréliens. Soit ϕ une fonction continue à support dans [0,1] telle que $\int_0^1 \phi d\lambda = 1$. On note $H = \chi_{\mathbb R^+}$ la fonction de Heaviside. On pose

$$f: \mathbb{R}^2 \to \mathbb{R}$$

 $(x, y) \mapsto H(y)\phi(y - |y|) (\phi(x - |y|) - \phi(x - |y| - 1)).$

Montrer que les quantités $\int \int f(x,y) dy dx$ et $\int \int f(x,y) dx dy$ sont bien définies et les comparer.

3. Que peut-on déduire de cet exercice?

Exercice 3.— Mesures diffuses

Soit μ une mesure de probabilités sur $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$. Pour $x \in \mathbb{R}$, on pose :

$$\phi(x) = \int_{\mathbb{R}} e^{ixt} d\mu(t).$$

- 1. Montrer que la fonction ϕ est continue et bornée sur \mathbb{R} .
- 2. Soient $n \geq 1$ et $a \in \mathbb{R}$. Montrer que :

$$\frac{1}{2n} \int_{-\pi}^{n} e^{-iax} \phi(x) dx = \int_{\mathbb{R}} K_n(t-a) d\mu(t)$$

où K_n est une fonction indépendante de a que l'on explicitera.

3. Déterminer $\lim_{n\to\infty} \frac{1}{2n} \int_{-n}^n e^{-iax} \phi(x) dx$.

4. En déduire que si ϕ est intégrable pour la mesure de Lebesgue sur \mathbb{R} , alors μ est une mesure diffuse.

Exercice 4.— Sommation par tranches

Soient (X, \mathscr{A}, μ) un espace mesuré σ -fini et $f: X \to [0, +\infty]$ une fonction $(\mathscr{A}, B(\mathbb{R}))$ -mesurable.

a) Soit ν une mesure σ -finie sur $(\mathbb{R}, B(\mathbb{R}))$. Montrer que

$$\int_X \nu([0, f(x)[) \ d\mu(x) = \int_{\mathbb{R}_+} \mu(f^{-1}(]t, +\infty])) \ d\nu(t).$$

b) En déduire que pour $p \in [1, +\infty[$,

$$\int_{X} f^{p} d\mu = \int_{\mathbb{R}_{+}} pt^{p-1} \mu(f^{-1}(]t, +\infty]) d\lambda(t)$$

où λ désigne la mesure de Lebesgue sur \mathbb{R} .

Exercice 5.— Mesurabilité

Soit $f: \mathbb{R}^2 \to \mathbb{R}$ telle que

- a) Pour tout $y \in \mathbb{R}$, $x \mapsto f(x, y)$ est continue;
- b) Pour tout $x \in \mathbb{R}$, $y \mapsto f(x, y)$ est mesurable.
 - 1. Montrer que f est mesurable.
 - 2. Le résultat reste-t-il vrai si l'on remplace "continue" par "mesurable" dans la première condition?

Théorème de Radon-Nikodym, mesures réelles

2014-2015 : TD 11

Exercice 1.— Hypothèses pour Radon-Nikodym

On note λ la mesure de Lebesgue et μ la mesure de comptage sur la σ -algèbre B([0,1]) des boréliens de [0,1].

Montrer qu'il n'existe pas de fonction borel-mesurable $h:[0,1]\to [0,+\infty[$ telle que pour tout $A\in B([0,1]),$

$$\lambda(A) = \int_A h \ d\mu.$$

Quelle est la morale de cet exercice?

Exercice 2.— Théorème de Radon-Nikodym, le cas réel.

Soient μ et ν deux mesures σ -finies sur un espace mesurable (X, \mathcal{A}) où μ est positive et ν est réelle à valeurs dans $]-\infty, +\infty]$.

Pour toute fonction mesurable $f: X \to \mathbb{R}$ telle que $f^- \in L^1(\mu)$, on pose $fd\mu$ la mesure définie par $(fd\mu)(A) = \int_A fd\mu$.

- 1. Montrer que $\nu = \nu_e + \nu_a$ avec $\nu_e \perp \mu$ et $\nu_a \ll \mu$, et que cette décomposition est unique.
- 2. Montrer qu'il existe $f: X \to \mathbb{R}$ telle que $f^- \in L^1(\mathbb{R})$ et $\nu_a = f d\mu$.

Exercice 3.— Changement de variable

Soit (X, \mathcal{A}, μ) un espace mesuré, Y un ensemble, et $\phi : X \to Y$. Pour tout A appartenant à la σ -algèbre $\phi_* \mathcal{A} = \{C \subseteq Y \mid \phi^{-1}(C) \in \mathcal{A}\}$, on définit la mesure $\phi_* \mu(A) = \mu(\phi^{-1}(A))$. Soit $f: Y \to \mathbb{R}$ mesurable.

- 1. Montrer que $\phi_* \mathcal{A}$ est bien une σ -algèbre, et que $\phi_* \mu$ est bien une mesure.
- 2. On considère les deux hypothèses suivantes :
 - a) $f \circ \phi$ est intégrable pour μ
 - b) f est intégrable pour $\phi_*\mu$.

Montrer que si l'une de ces deux hypothèse est vraie, alors l'autre est vraie également, et :

$$\int_{X} f(\phi(x))d\mu(x) = \int_{Y} f(y)d(\phi_*\mu)(y).$$

3. Dans cette question, on suppose que X et Y sont des intervalles de \mathbb{R} , que f est intégrable pour la mesure de Lebesgue sur I, et que ϕ est un \mathcal{C}^1 -difféomorphisme. Montrer qu'alors :

$$\int_X f(\phi(x)) |\phi'(x)| dx = \int_Y f(y) dy.$$

Exercice 4.— Fonctions absolument continues.

Soit I un segment de \mathbb{R} . On dit que f est absolument continue si pour tout $\epsilon > 0$, il existe $\eta > 0$ tel que pour toute famille dénombrable d'intervalles disjoints $]\alpha_i, \beta_i[$ de I tels que

$$\sum_{i} |\beta_i - \alpha_i| < \eta$$

on ait

$$\sum_{i} |f(\beta_i) - f(\alpha_i)| < \epsilon.$$

On suppose f strictement croissante. Montrer que les trois propositions suivantes sont équivalentes.

- a) f est absolument continue.
- b) L'image par f de tout ensemble lebesgue-négligeable est négligeable.
- c) f est dérivable presque partout sur $I, f' \in L^1$, et pour tous $x, y \in I$,

$$f(y) - f(x) = \int_{x}^{y} f'(t)dt.$$

On admettra le résultat suivant : pour toute fonction $f \in L^1(\mathbb{R})$, pour presque tout point $x \in \mathbb{R}$, on a ¹

$$\lim_{h \to 0^+} \frac{1}{2h} \int_{x-h}^{x+h} f(t)dt = f(x).$$

On rappelle également le lemme de Borel-Cantelli : Soit (X, \mathscr{A}, μ) un espace mesuré et $(A_n)_{n\in\mathbb{N}}$ une suite d'éléments de \mathcal{A} telle que $\sum_{n=0}^{+\infty} \mu(A_n)$ est finie. Alors l'ensemble des points qui appartiennent à une infinité de A_n est de mesure nulle.

^{1.} Un tel point est appelé point de Lebesgue.