CC3 Mat 302

6 décembre 2023

Documents et appareils électroniques interdits.

Dans la notation, il sera tenu compte de la qualité de la rédaction et de la précision des justifications.

Durée: 1h

Questions de cours (4p)

- 1. Soit $(\sum_n u_n)$ une série de terme général u_n . Donner la définition de la convergence de la série.
- 2. Donner la définition de la continuité uniforme d'une fonction $f:I\subset\mathbb{R}\to\mathbb{R}$, où I est un intervalle.
- 3. Soit [a,b] un intervalle compact et $f \in C^0([a,b],\mathbb{R})$ une fonction continue. Donner l'expression de la somme de Riemann fournie par la méthode des rectanges à gauche associée à f sur [a,b] quand on subdivise [a,b] et n intervalles de même longueur. Quelle est la limite de cette somme quand n tend vers l'infini ?

Exercice 1 (3p) Soit $f : \mathbb{R} \to \mathbb{R}$ une fonction continue. Dire pourquoi les fonctions définies sur \mathbb{R} par les formules ci-dessous sont dérivables et calculer leurs dérivées.

$$g_1(x) = \int_0^x f(t)dt$$
, $g_2(x) = \int_{3x}^{x^3} f(t)dt$, $g_3(x) = \int_{3x}^{x^3} f(t^2)dt$.

Exercice 2 (5p)

1. Soient $a, b, c \in \mathbb{R}$. Calculer pour x > 1:

$$\int_{1}^{x} \frac{a}{t} dt + \int_{1}^{x} \frac{bt + c}{t^2 + 2t + 5} dt.$$

2. Calculer pour x > 1:

$$\int_{1}^{x} \frac{3t^2 + 5t + 5}{t(t^2 + 2t + 5)} dt.$$

Exercice 3 (8p) Calculer les intégrales suivantes pour x > 0:

- 1. $\int_1^x \frac{1-\sqrt{t}}{\sqrt{t}} dt,$
- 2. $\int_0^x t^2 \cos(t) dt$,
- 3. $\int_0^x \sin^4(t) dt$,
- 4. $\int_0^x \frac{\sin^3(t)\cos(t)}{\sin^8(t)+1} dt.$