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1 Introduction

A large class of physical problems lead to dissipative systems, that is physical systems
which admit an energy decreasing along the trajectories and the trajectories of which
asymptotically tend to equilibria. Such particular systems have been called gradient sys-
tems or gradient-like systems (see Definition 2.1 below). The gradient structure plays an
important role in the qualitative study of the dynamics of an equation, since, for example,
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a gradient system does not contain any periodic orbit or homoclinic orbit.
Here, we study the damped wave equation on a bounded regular domain Ω ⊂ R

d (d = 1, 2
or 3):







utt(x, t) + γ(x)ut(x, t) = ∆u(x, t) + f(x, u(x, t)) (x, t) ∈ Ω × R+

u(x, t) = 0 (x, t) ∈ ∂Ω × R+

(u(x, 0), ut(x, 0)) ∈ H
1
0(Ω) × L

2(Ω)
(1.1)

Conditions on the support of the dissipation γ(x) ≥ 0 are known to imply the gradient-
like structure for Equation (1.1), see [22] and [16], and also [17] for Neumann boundary
conditions. The purpose of this paper is to enhance technics which show that the gradient-
like structure is, in some sense, a property which is stable under small perturbations. We
briefly illustrate these technics with two examples :
- In Section 2, we prove that, if the support of γ(x) satisfies the geometric control con-
dition introduced by C.Bardos, G.Lebeau and J.Rauch in [3], Equation (1.1) generates a
gradient-like dynamical system for a generic non-linearity f(x, u) (or f(u)).
- In Section 3, we study the case where the damping γ(x) of (1.1) can be slightly negative
on some part of Ω. Notice that, in this case, no explicit Lyapounov functional is known.
However, we can prove the existence of a compact global attractor and exhibit a gradient-
like structure for most of the cases.

Remarks :
• The damped wave equations are models for the propagation of waves in dissipative media.
More generally, they are used to model propagation or invasion phenomena. For example,
they arise in biology when studying the evolution of species populations (see [8] and [20]).
• It is very natural to expect that the geometric control condition of [3] is sufficient for the
damped wave equation to be a gradient-like system. Indeed, the fact that the trajectory of
any wave intersects the support of the damping should imply that any solution relaxes to
an equilibrium. Theorem 2.3 is a slight progress in this direction, but the full result, the
gradient-like structure without any condition on the nonlinearity, is still a difficult open
problem.
• Classically, the damping γ(x) of the wave equation is non-negative. In Section 3, the
damping has an indefinite sign. This can be explained as follows : the positive part of
γ(x) is modelling a damping phenomena whereas the negative part is modelling a supply
of energy given to the system. Therefore, the indefinite damping is a basic model to study
how a small localized supply of energy modifies the dissipative structure of a system. To
give a concrete example, in the biological model introduced in [20], a large birth rate of
the species compared to the speed of diffusion may be seen as a negative damping.
• Many papers have studied wave or plate equations with indefinite damping (see for
example [6], [7] or [18]). However, to our knowledge, it is the first time that the nonlinear
equation is considered and that nonlinear properties as existence of a global attractor or
gradient structure are obtained.
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• The technics used in Section 3 may also be applied to other perturbations of gradient-like
dynamical systems. For example, [5] considers the convergence of differential systems with
memory to the parabolic equation ut = ∆u+ f(x, u). Such a study is interesting to justify
the models using the parabolic equation. Indeed, the irreversibility of this equation or its
infinite propagation speed of informations may be strong limitations in the points of view
of physicists and biologists. Therefore, it is interesting to see the parabolic equation as
an approximation of more physical systems. In [5], it is considered as a limit of systems
having a very short memory. Notice that systems with memory such as the Gurtin-Pipkin
model are reversible, admit finite propagation speed of informations and are used to model
some physical phenomena as visco-elastic fluids (see [5]). The problem is that, unlike
the parabolic equation, systems with memory are not gradient-like in general. Using the
same technics as in Section 3, we can show that, under generic hypotheses, a system with
memory is gradient-like as soon as the memory concerns sufficiently recent times only.
• In Section 3, technical assumptions on the nonlinearity f are made. These conditions
are derived from the ones given by E. Zuazua in [24] and imply that the energy of the
trajectories of (1.1) is uniformly exponentially decreasing outside a bounded set of H

1
0(Ω)×

L
2(Ω). We expect that this exponential decay and the result of [24] hold for all the

subcritical nonlinearities satisfying

lim sup
u−→±∞

sup
x∈Ω

f(x, u)

u
< λ1 , (1.2)

where λ1 is the first eigenvalue of the Laplacian operator with Dirichlet boundary condi-
tions. Notice that (1.2) is the natural condition to avoid the blow-up of the energy and
thus to ensure global existence of the trajectories of the dynamical system. However, to our
knowledge, the exponential decay of the energy for the nonlinear damped wave equation,
assuming (1.2) only, is still open.

Acknowledgements : The author is thankful for the help provided by Geneviève Raugel
during the writing of this paper and for the remarks of Bopeng Rao and of the referee.

2 A generic gradient-like structure for effective dissi-

pations

2.1 Statement of the result

Let Ω be a smooth bounded domain of R
d with d = 2, 3. We set X = H

1
0(Ω)× L

2(Ω). Let
G

k be the space of the functions of class Ck(Ω × R, R), k ≥ 1 which are subcritical and
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dissipative that is, there exists α ∈]0, 2
d−2

[ such that

∀(u1, u2) ∈ R
2, sup

x∈Ω
|f(x, u1) − f(x, u2)| ≤ C(1 + |u1|

α + |u2|
α)|u1 − u2| (2.1)

and lim sup
u−→±∞

sup
x∈Ω

f(x, u)

u
< λ1 , (2.2)

where λ1 is the first eigenvalue of the Laplacian operator −∆D with Dirichlet boundary
conditions. We endow the space G

k of non-linearities with the Whitney topology, that is
the topology generated by the open sets

V = {g ∈ G
k / |Dif(x, u) − Dig(x, u)| ≤ δ(u), i = 0, ..., k, (x, u) ∈ Ω × R} , (2.3)

where f belongs to G
k, Dif is the differential of order i and δ is a positive continuous

function on R.

Let γ ∈ L
∞(Ω) be a nonnegative function. We consider the damped wave equation







utt(x, t) + γ(x)ut(x, t) = ∆u(x, t) + f(x, u(x, t)) (x, t) ∈ Ω × R+

u(x, t) = 0 (x, t) ∈ ∂Ω × R+

(u(x, 0), ut(x, 0)) = (u0, u1) ∈ X
(2.4)

It is well-known that Equation (2.4) generates a local dynamical system S(t) on X. The
linear operator associated with (2.4) is

A =

(

0 Id
∆ −γ(x)

)

D(A) = (H2(Ω) ∩ H
1
0(Ω)) × H

1
0(Ω) ,

and we denote eAt the linear semigroup generated by A. We assume that γ(x) satisfies the
following property : there is a length L such that all geodesics on Ω associated with the
operator ∂2

tt − ∆ and of length greater than L meet the support of γ. We recall that the
geodesics are in fact straight lines which rebound on the boundary according to the laws of
reflexion. Such a dissipation γ will be called here an effective dissipation. This geometric
control condition was first introduced by C.Bardos, G.Lebeau and J.Rauch. They proved
in [3] that it implies the existence of two positive constants M and λ such that

∀t ≥ 0, ‖eAt‖L(X) ≤ Me−λt . (2.5)

It is classical to prove that (2.5) and (2.1) (with α < 2
d−2

) imply that S(t) is an asymptot-
ically smooth system (see [9]).

Let Φ be the functional

Φ :

(

X −→ R

(u, v) 7−→
∫

Ω
1
2
(|
−→
∇u|2 + |v|2) − F (x, u)

)

, (2.6)
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where F (x, u) =
∫ u

0
f(x, ξ)dξ. Obviously, Φ is non-increasing along the trajectories U(t) =

(u, ut)(t) = S(t)U0 since

Φ(U0) − Φ(S(t)U0) =

∫ t

0

∫

Ω

γ(x)|ut(x, s)|2dxds .

We recall that the decay of Φ and Hypothesis (2.2) imply that the trajectories of bounded
sets are bounded.

Here we are interested in the gradient-like structure of (2.4).

Definition 2.1. Let S(t) be a dynamical system on a Banach space X.
We say that S(t) is a gradient dynamical system if there exists a functional Φ ∈ C0(X),
called the Lyapounov functional, such that, for all t ≥ 0 and U0 ∈ X, Φ(S(t)U0) ≤ Φ(U0)
and if Φ(S(t)U0) = Φ(U0) for all t ≥ 0 then U0 is an equilibrium point that is that S(t)U0 =
U0 for all t ≥ 0.
We say that S(t) is a gradient-like dynamical system if, for all U0 ∈ X, the α− and
ω−limit sets of U0 only contain equilibrium points and if their intersection is empty.

Different geometric conditions on the support of the dissipation γ are known to imply
that Φ is a Lyapounov function for S(t) and so to ensure that S(t) is a gradient-like
system (see [22] and [16]). All of them satisfy the geometric control condition of [3]. Thus,
it seems natural to wonder if the effectiveness of γ is sufficient for S(t) to be a gradient-like
dynamical system. The first answer to this question is given in [12] (see also [15]). Its
proof is based on a regularity result of [11] and a unique continuation property of [21].

Theorem 2.2. Let γ be an effective dissipation. If f(x, u) ∈ G
k is a function of class

C∞(Ω×R, R) which is analytic with respect to u, then the dynamical system S(t) generated
by Equation (2.4) is gradient-like.

The purpose of this section is to prove the following result.

Theorem 2.3. Let γ be an effective dissipation. The dynamical system S(t) generated by
Equation (2.4) is gradient-like, generically with respect to f(x, u) ∈ G

k or with respect to
f(u) ∈ G̃

k where G̃
k is the subset of G

k consisting of the functions f(u) depending of u
only.

Remark 2.4. Actually, the above result is true for any subset G̃
k ⊂ G

k such that, for all
M > 0, any open set of G̃

k contains a function f(x, u) whose restriction to Ω × [−M, M ]
is of class C∞ and is analytic with respect to u.
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2.2 Proof of Theorem 2.3

Let k ≥ 1 and f ∈ G̃
k, where G̃

k ⊂ G
k is a subset of G

k satisfying the hypothesis given in
Remark 2.4. For all M > 0, we set

W
M
f =

{

U(t) ∈ C0(R, X) / U(t) = (u, ut)(t) is a solution of (2.4), Φ(U(t)) is

constant with respect to t, sup
t∈R

‖U(t)‖X ≤ M and sup
t∈R

‖ut(t)‖L2 ≥
1

M

} (2.7)

Clearly, ∪M>0W
M
f contains all the trajectories which are not equilibrium points and are

included in the α− and ω−limit sets of S(t) and also contains the homoclinic orbits. Thus,
S(t) is gradient-like if ∪M>0W

M
f = ∅. To show Theorem 2.3, we will prove that the set of

functions f ∈ G̃
k such that W

M
f = ∅ contains a dense open set of G̃

k.
We begin with a classical regularity lemma.

Lemma 2.5. Let M > 0 and f ∈ G̃
k. There exist a neighborhood V of f in G̃

k and a
positive constant K such that for any g ∈ V and any U(t) = (u, ut)(t) ∈ W

M
g ,

sup
t∈R

‖u(t)‖L∞ ≤ K .

Proof : See [11] and also [9] and [13] �

As a consequence, we obtain the following result.

Lemma 2.6. The set of functions f ∈ G̃
k such that W

M
f = ∅ is dense in G̃

k.

Proof : Let O be a neighborhood of a function f in G̃
k. Let V and K > 0 be the

neighborhood and the constant introduced in Lemma 2.5. By hypothesis, we can find a
function g(x, u) ∈ V ∩ O whose restriction to Ω × [−K, K] is of class C∞ and is analytic
with respect to u. With the same arguments as the ones used in the proof of Theorem 2.2,
W

M
g = ∅ (see [12]). �

To prove that the set of functions f ∈ G̃
k such that W

M
f = ∅ is open in G̃

k, we fix a se-

quence of functions (fn) ∈ G̃
k such that (fn) converges to a limit function f in the Whitney

topology. We denote by Sn(t) (resp. S(t)) the dynamical system generated by Equation
(2.4) corresponding to the non-linearity fn (resp. f). We assume that W

M
n := W

M
fn

is not
empty and we have to show that W

M
f is also not empty.

We first notice that the following convergence result holds.
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Lemma 2.7. The dynamical system Sn(t) converges to S(t) in the sense that for all
bounded set B ⊂ X, and all time T ≥ 0,

sup
U0∈B

sup
t∈[0,T ]

‖S(t)U0 − Sn(t)U0‖X −−−−−−−→
n−→+∞

0 .

Proof : The proof is very classical. Let ε > 0. For n large enough, fn belongs to the
neighborhood V of f defined by (2.3) with δ(u) = ε. The assumption (2.2) implies that the
trajectories ∪t≥0Sn(t)B are uniformly bounded with respect to n. Moreover, (2.1) implies
that (u, v) 7→ (0, f(x, u)) is Lipschitz-continuous on the bounded sets of X, in particular
has a Lipschitz constant Clip on ∪n ∪t≥0 Sn(t)B. We set Un = (un, ∂tun) = Sn(t)U0 and
U = (u, ∂tu) = S(t)U0. For all t ∈ [0, T ], we find, for n large enough,

‖S(t)U0 − Sn(t)U0‖X ≤

∫ t

0

‖eA(t−s)(0, f(x, un(x, s)) − fn(x, un(x, s)))‖Xds

+

∫ t

0

‖eA(t−s)(0, f(x, u(x, s))− f(x, un(x, s)))‖Xds

≤ εM
√

|Ω| +

∫ t

0

Me−λ(t−s)Clip‖U(s) − Un(s)‖Xds

≤ εM
√

|Ω| + MClip

∫ t

0

‖U(s) − Un(s)‖Xds ,

where |Ω| =
∫

Ω
dx is the volume of Ω.

Then, we conclude with Gronwall’s lemma. �

We will also need the convergence of the Lyapounov functions.

Lemma 2.8. Let Φn be the functional defined by (2.6) with f replaced by fn. Then, we
have

sup
U∈X

|Φ(U) − Φn(U)| −−−→
n−→0

0 .

Proof : Let η > 0. We define a neighborhood Vη of f by setting δ(u) = ηe−|u| in (2.3).
As (fn) converges to f in the Whitney topology, for n large enough, fn belongs to Vη.

Let F (x, u) =
∫ u

0
f(x, ξ)dξ, Fn(x, u) =

∫ u

0
fn(x, ξ)dξ and Λ(u) =

∫ |u|

0
ηe−|u|. Clearly, Λ is

bounded in L
∞(Ω) by η. Thus, for n large enough, we have, for all U = (u, v) ∈ X,

|Φ(U) − Φn(U)| ≤

∫

Ω

|F (x, u) − Fn(x, u)|dx ≤

∫

Ω

Λ(u)dx ≤ η|Ω| .

�
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Since Φ is a Lyapounov function, the trajectory S(t)B(0, M) of any ball is bounded in
X. As S(t) is asymptotically smooth, there exists a compact bounded invariant set AM

such that S(t)B(0, M) is attracted by AM , that is

sup
‖U‖X≤M

distX(S(t)U,AM) −−−−→
t−→+∞

0 .

It is well-known that Lemma 2.7 implies that

sup
Un∈WM

n

distX(Un,AM) −−−−−→
n−→+∞

0 , (2.8)

where distX is the distance between a point U ∈ X and a set S ⊂ X defined by

distX(U,S) = inf
U ′∈S

‖U − U ′‖X . (2.9)

Lemma 2.9. Let Un(t) ∈ C0(R, X) be a trajectory of Sn(t) belonging to W
M
n . Let (tn)n∈N ⊂

R be a sequence of times. There exists a globally defined and bounded trajectory U(t) ⊂ AM

for the system S(t) and subsequences Sϕ(n)(t), tϕ(n) and Uϕ(n), such that, for every positive
time T , we have

sup
t∈]−T,T [

‖U(t) − Uϕ(n)(tϕ(n) + t)‖X −→ 0 when n −→ +∞ . (2.10)

Proof : Using (2.8), we know that there exists Vn ∈ AM such that ‖Un(tn)−Vn‖X −→ 0.
As AM is compact, there exists U ∈ AM and an extraction ϕ1 : N 7→ N, such that
Uϕ1(n)(tϕ1(n)) −→ U . We set T = 1. Using the same arguments as above, we find a point
V2 ∈ AM and an extraction ϕ2 such that Uϕ1◦ϕ2(n)(tϕ1◦ϕ2(n)−T ) −→ V2. Lemma 2.7 implies
that

sup
t∈]−T,T [

‖Uϕ1◦ϕ2(n)(tϕ1◦ϕ2(n) + t) − S(t + T )V2‖X −→ 0 .

For all t ∈] − T, T [, we set U(t) = S(t + T )V2. Notice that U(0) = U .
Then, we repeat the same arguments : let T = 2, there exists V3 ∈ AM and an extraction
ϕ3 such that

sup
t∈]−T,T [

‖Uϕ1◦ϕ2◦ϕ3(n)(tϕ1◦ϕ2◦ϕ3(n) + t) − S(t + T )V3‖X −→ 0 ,

and for all t ∈] − T, T [, we set U(t) = S(t + T )V3, and so on...
Then, Lemma 2.9 follows from the classical diagonal extraction ϕ(n) = ϕ1 ◦ϕ2 ◦ ...◦ϕn(n).
�
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We recall that we want to show that the fact that W
M
n is not empty implies that W

M
f

is also not empty. Let Un(t) = (un, ∂tun)(t) ∈ C0(R, X) be a trajectory of Sn(t) belonging
to W

M
n . By definition of W

M
n , we can find a sequence of times (tn) ⊂ R such that

lim inf
n−→+∞

‖∂tun(tn)‖L2 ≥
1

M
.

Lemma 2.9 implies that, up to the extraction of a subsequence, there exists a globally
defined and bounded trajectory U(t) ⊂ AM for the system S(t) such that, for all T > 0,

sup
t∈]−T,T [

‖U(t) − Un(tn + t)‖X −−−−−→
n−→+∞

0 .

Of course, by continuity, we have that

sup
t∈R

‖U(t)‖X ≤ M and sup
t∈R

‖ut(t)‖L2 ≥
1

M
.

Thus, it remains to show that Φ is constant on U . For each n, the Lyapounov function Φn

is constant on Un(t). Moreover, the sequence of values Φn(Un) is bounded. Therefore, up
to the extraction of a subsequence, we can assume that Φn(Un) converges and Lemma 2.8
implies that Φ is constant on U . This shows that U belongs to W

M
f , which is therefore not

empty. Thus, the set of functions f ∈ G̃
k such that W

M
f = ∅ is open in G̃

k, and Theorem
2.3 is proved.

3 Gradient-like structure for a wave equation with

indefinite damping

Let Ω be a bounded domain of R
d (d = 1, 2, 3). Let γ ∈ L

∞(Ω, R+) be chosen so that
there exists x0 ∈ R

d such that the support of γ contains a neighborhood of the set {x ∈
∂Ω / (x − x0).ν > 0}, where ν is the exterior unit normal vector. It is well-known that
this hypothesis implies the exponential decay property (2.5). Moreover, it is proved in [16]
that it also implies the following unique continuation property.

Proposition 3.1. There exists a time T > 0 such that, for all w ∈ H
1(Ω×]0, T [) and

h ∈ L
∞(Ω×]0, T [) satisfying







wtt = ∆w + h(x, t)w
w|∂Ω = 0
w = 0 on the support of γ(x)

then w vanishes everywhere in Ω×]0, T [.

9



Let f ∈ C2(Ω × R, R). We assume that f can be written as follows :

f(x, u) = a(u) + λu + b(x, u) , (3.1)

with λ < λ1, where λ1 is the first eigenvalue of the Laplacian operator −∆D with Dirichlet
boundary conditions.

We assume that b ∈ C1(Ω×R, R) and that b(x, u) and
−→
∇xb(x, u) are sublinear in the sense

that Dub(x, u) and Du

−→
∇xb(x, u) are globally bounded and satisfy

lim
u→±∞

sup
x∈Ω

|Dub(x, u)| + |Du

−→
∇xb(x, u)| = 0 . (3.2)

We assume that a ∈ C1(R) and that, for all u ∈ R, a(u)u ≤ 0. We also assume that a
satisfies the growth condition (2.1) and one of the following properties :

• either a′ is globally bounded and the limits limu→±∞ a′(u) = a′(±∞) exist,

• or a is superlinear in the sense that there exists δ > 0 such that
−a(u)u ≥ −(2 + δ)

∫ u

0
a(ζ)dζ, for all u ∈ R.

Remark 3.2. As a(u)u ≤ 0 for every u ∈ R, the positive constant δ can be chosen as
small as needed.

Let Φ be the functional defined by (2.6). The hypotheses on a were introduced by E.Zuazua
in [24] to obtain the exponential decay of the energy Φ along the trajectories of the damped
wave equation if b = 0. We also notice that the assumptions on f imply that

∃C > 0, ∀U ∈ X, ‖U‖2
X ≤ C(Φ(U) + C) . (3.3)

Let g ∈ L
∞(Ω, R) be a damping with indefinite sign. We set g+ = max(g, 0) and g− =

max(−g, 0). For all ε ≥ 0, we denote Sε(t) the semigroup generated on X = H
1
0(Ω)×L

2(Ω)
by the equation

{

utt + (γ(x) + εg(x))ut = ∆u + f(x, u) on Ω
u = 0 on ∂Ω

(3.4)

Our assumption on the support of γ implies, via Proposition 3.1, that the functional Φ is
a Lyapounov function for S0(t) and that S0(t) is a gradient dynamical system. In fact, the
result is stronger.

Proposition 3.3. Let T be the time introduced in Proposition 3.1. If U0 ∈ X is such that
Φ(S0(T )U0) = Φ(U0), then U0 is an equilibrium point.
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It is also well-known that S0(t) admits a compact global attractor A0 (see for example [9]).

In this section, we study the gradient-like structure of Sε(t) (see Definition 2.1). We
enhance that, if the support of g− is not included in the support of γ, the classical Lya-
pounov functional Φ is even not non-increasing along the trajectories of Sε(t), as soon as
ε is positive. Thus, the gradient-like structure of Sε(t) is not immediate.
We recall that distX(U,S) denotes the distance between a point U ∈ X and a set S ⊂ X,
see (2.9). We also introduce the Hausdorff distance between two sets S1 ⊂ X and S2 ⊂ X
by

dX(S1,S2) = max

(

sup
U∈S1

distX(U,S2) ; sup
U∈S2

distX(U,S1))

)

. (3.5)

The first result of this section is the following.

Theorem 3.4. There exists a positive number ε0 such that, for all ε ∈]0, ε0[, Sε(t) admits
a compact global attractor Aε. Moreover, the family of attractors is uniformly bounded in
X and upper-semicontinuous with respect to ε :

sup
U∈Aε

distX(U,A0) −−→
ε→0

0 .

The main result of this section is the gradient-like structure for the wave equation (3.4).

Theorem 3.5. Assume that all the equilibria of S0(t) are hyperbolic. Then, there exists a
positive number ε0 such that, for all ε ∈]0, ε0[, Sε(t) is gradient-like. Moreover, for ε small
enough, the dynamics on the attractor Aε of Sε(t) respect the order of equilibria induced by
the energy functional Φ in the sense that, if E− and E+ are two equilibria such that there
exists a heteroclinic orbit Uε(t) for Sε(t) with limt→±∞ Uε(t) = E±, then Φ(E−) > Φ(E+).
In addition, the attractors Aε are continuous :

dX(Aε,A0) −−−→
ε−→0

0 . (3.6)

We recall that the hypothesis that all the equilibria of S0(t) are hyperbolic is a generic
hypothesis (see [23] and [4]). We point out that the dynamics on Aε can be different from
the ones on A0. Indeed, we do not assume any Morse-Smale property for S0(t).

3.1 Proof of Theorem 3.4

The existence of a compact global attractor for the dynamical system Sε(t) is equivalent
to the fact that Sε(t) is asymptotically compact, point dissipative and is such that the
trajectories of the bounded sets of X are bounded (see [9] or [19] for example).
The last two properties are direct consequences of (3.3) and of the following proposition.
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Proposition 3.6. There exist a bounded set B ⊂ X and a constant ε0 > 0 such that,
for all ε ∈ [0, ε0[, the dynamical system Sε(t) is exponentially decreasing outside B in the
following sense. There exist two positive constants K and µ, independent of ε, such that,
for all ε ∈ [0, ε0[, if U0 ∈ X and t ≥ 0 satisfy Sε(s)U0 6∈ B for all s ∈ [0, t], then

Φ(Sε(t)U0) ≤ Ke−µtΦ(U0) ,

where Φ is the energy defined in (2.6).

The proof is mainly based on the arguments of [24] for a non-linearity f(u) satisfying
the same assumptions as a(u). Thus, we only give here the outline of the proof and the
main differences with [24]. We refer to [24] for the missing details.
Let U0 ∈ X and ε ∈ [0, ε0[. We set Sε(t)U0 = Uε(t) = (uε, ∂tuε)(t). The first step of the
proof is the following estimate.

Lemma 3.7. Let T be the time such that the unique continuation property stated in Propo-
sition 3.1 holds. There exist a time T ′ ≥ T and a positive constant C such that, for all
U0 ∈ X,

Φ(Uε(T
′)) ≤ C

(

∫ T ′

0

∫

Ω

(γ(x) + ε|g(x)|)|∂tuε|
2dxdt +

∫ T ′

0

∫

Ω

|uε|
2dxdt + 1

)

. (3.7)

Proof : As b and
−→
∇xb are sublinear, there exists a positive constant C such that
∫

Ω

|b(x, u)u|dx +

∫

Ω

|
−→
∇xb(x, u)u|dx ≤ C(

∫

Ω

|u|2 + 1) . (3.8)

Let m(x) = (x − x0) where x0 ∈ R
d is chosen so that the support of γ contains a neigh-

borhood of the set Γ(x0) = {x ∈ ∂Ω / (x − x0).ν > 0}. We set

γε(x) = γ(x) + ε|g(x)|

Using (3.8) and the arguments of [24], as well as multipliers technics, one shows that there
exists a positive constant C such that, for all η > 0,
∫ T ′

0

∫

Ω
(
d

2
− η)|∂tuε|

2 + (1 + η −
d

2
)|
−→
∇uε|

2dxdt

−η

∫ T ′

0

∫

Ω
a(uε)uεdxdt + d

∫ T ′

0

∫

Ω

(
∫ uε

0
a(ζ)dζ

)

dxdt

≤ 1

2

∫ T ′

0

∫

Γ(x0)
(m.ν)|

∂uε

∂ν
|2dσdt +

∫ T ′

0

∫

Ω
γε(x)|∂tuεm.

−→
∇uε|dxdt

+

[
∫

Ω

∣

∣

∣

∣

∂tuεm.
−→
∇uε + ηuε

(

∂tuε +
1

2
γε(x)uε

)∣

∣

∣

∣

dx

]T ′

0

+ Cη

(

∫ T ′

0

∫

Ω
|u|2dxdt + T ′

)

(3.9)
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Using (3.3), we obtain the estimate
[
∫
∣

∣

∣

∣

∂tuεm.
−→
∇uε + ηuε

(

∂tuε +
1

2
γεuε

)
∣

∣

∣

∣

]T ′

0

≤ C (Φ(Uε(0)) + Φ(Uε(T
′) + C))

and for all positive number κ
∫

Ω

γε(x)|∂tuεm.
−→
∇uε|dx ≤ κ‖m‖2

L∞

∫

Ω

|
−→
∇uε|dx +

1

2κ
‖γε(x)‖L∞

∫

Ω

γε(x)|∂tuε|
2dx .

Moreover, if a is globally Lipschitz-continuous, we have
∫

Ω

|a(uε)uε|dx +

∫

Ω

∣

∣

∣

∣

∫ uε

0

a(ζ)dζ

∣

∣

∣

∣

dx ≤ C

(
∫

Ω

|u|2dx + 1

)

,

and if a is superlinear, then, for all η ∈] d
2
− 1, d

2
[, we have, for δ as small as needed,

−ηδ

∫

Ω

(
∫ uε

0

a(ζ)dζ

)

dx ≤ −η

∫

Ω

a(uε)uεdx + d

∫

Ω

(
∫ uε

0

a(ζ)dζ

)

dx .

In both cases, the above inequalities together with (3.9) show that there exists a positive
constant C such that

C

∫ T ′

0

Φ(Uε(t))dt ≤
1

2

∫ T ′

0

∫

Γ(x0)

(m.ν)|
∂uε

∂ν
|2dxdt +

∫ T ′

0

∫

Ω

γε(x)|∂tuε|
2dxdt

+Φ(Uε(0)) + Φ(Uε(T
′)) +

∫ T ′

0

∫

Ω

|uε|
2dx + CT ′ (3.10)

We follow again the method of [24] and use (3.8) to get

C

∫ T ′

0

∫

Γ(x0)

(m.ν)|
∂uε

∂ν
|2dxdt ≤

∫ T ′

0

∫

Ω

γε(x)|∂tuε|
2dxdt +

∫ T ′

0

∫

Ω

|uε|
2

+ Φ(Uε(0)) + Φ(Uε(T
′) + CT ′ (3.11)

Since for all t ∈ [0, T ′],

Φ(Uε(0)) −

∫ t

0

∫

Ω

γε(x)|∂tuε|
2dxdt ≤ Φ(Uε(t)) ≤ Φ(Uε(0)) + ε

∫ t

0

∫

Ω

g−(x)|∂tuε|
2dxdt ,

(3.12)
(3.10) and (3.11) show that

CT ′ min
t∈[0,T ′]

Φ(Uε(t)) ≤

∫ T ′

0

∫

Ω

γε(x)|∂tuε|
2dxdt +

∫ T ′

0

∫

Ω

|uε|
2dxdt + 2Φ(Uε(T

′)) + CT ′ .

Using (3.12) and the fact that the constant C is independent of T ′, we find that (3.7) is
satisfied for T ′ large enough. �
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Lemma 3.8. Let T be the time such that the unique continuation property stated in Propo-
sition 3.1 holds. For all T ′ ≥ T , there exist positive constants ε0 and C such that, for all
ε ∈ [0, ε0[, and all U0 ∈ X,

∫ T ′

0

∫

Ω

|uε|
2dxdt ≤ C

(

∫ T ′

0

∫

Ω

γ(x)|∂tuε|
2dxdt + 1

)

. (3.13)

Proof : Assume that (3.13) is not satisfied, then there exist a sequence εn −→ 0 and a
sequence of initial data Un

0 such that

∫ T ′

0

∫

Ω

|un
εn
|2dxdt ≥ n

(

∫ T ′

0

∫

Ω

γ(x)|∂tu
n
εn
|2dxdt + 1

)

. (3.14)

We set ũn
εn

= un
εn

/λn where λn =
∫ ∫

|un
εn
|2 −→ +∞. Then, we get a contradiction with

the same arguments as the ones of [24]. We only emphasize the slight modifications. If a(u)
is superlinear, we have −F (x, u) ≥ C(|u|2+δ −C) which implies that (3.14) is incompatible
with the estimate (3.7). If a(u) is globally Lipschitz-continuous, the arguments consist in
finding a limit v for the sequence un

εn
/λn in L

2(Ω×]0, T [) and a limit equation satisfied by
vt. Notice that, due to (3.2), the term b(x, u) does not appear in this limit process. Then,
we apply Proposition 3.1 to get vt = 0 in Ω×]0, 1[. Finally, the contradiction comes from
the sign conditions on a and λ and the elliptic equation satisfied by v(x, t) = v(x). �

Proof of Proposition 3.6 : Using Lemma 3.8, the inequality (3.7) becomes

Φ(Uε(T
′)) ≤ C

(

Φ(Uε(0)) − Φ(Uε(T
′)) + ε

∫ T ′

0

∫

Ω

|g|(x)|∂tuε|
2 + 1

)

. (3.15)

Using (3.3) and (3.12), we obtain

∫ T ′

0

∫

Ω

|g|(x)|∂tuε|
2 ≤ ‖g‖∞T ′ sup

t∈[0,T ′]

‖∂tuε(t)‖
2
L2

≤ C sup
t∈[0,T ′]

‖Uε(t)‖
2
X

≤ C

(

sup
t∈[0,T ′]

Φ(Uε(t)) + C

)

≤ C

(

Φ(Uε(0)) + ε

∫ T ′

0

∫

Ω

g−(x)|∂tuε|
2dxdt + C

)

14



So, for ε small enough,
∫ T ′

0

∫

Ω
g(x)|∂tuε|

2 ≤ C(Φ(Uε(0)) + C). Thus, for Φ(Uε(0)) large
enough and ε small enough, (3.15) implies that there exists a positive constant C, with
C < 1, such that

Φ(Uε(T
′)) ≤ CΦ(Uε(0)) .

This is well-known to imply the exponential decay of the energy. Notice that the fact that
the above estimate is only true for Φ(Uε(0)) large enough implies that the exponential
decay only occurs outside a ball of X. Moreover, we enhance that all the constants of
Lemma 3.7 and 3.8 are uniform with respect to ε ∈ [0, ε0[. �

In Proposition 3.6, we have shown that the energy Φ decreases exponentially outside a
ball, with constants K and µ independent of ε ∈ [0, ε0[. Choosing f = 0, the same result
for the linear semigroups immediately proves the following corollary.

Corollary 3.9. Let

Aε =

(

0 Id
∆ −γ(x) − εg(x)

)

.

There exist three positive constants ε1, K and µ such that, for all ε ∈ [0, ε1[, and t ≥ 0,

‖eAεt‖L(X) ≤ Ke−µt .

Notice that the exponential decay of the semigroup eAεt had already been investigated.
In particular, in [18], using Carleman estimates, an explicit value for ε1 is given.

Corollary 3.9 and the fact that f is subcritical imply that the dynamical systems Sε(t)
are asymptotically smooth (see [9]). Together with the fact that Sε(t) is point dissipative
and is such that the trajectories of the bounded sets of X are bounded, this implies
that Sε(t) admits a compact global attractor Aε. Moreover, since we have proved in
Proposition 3.6 that one can choose the same absorbing set for all the systems Sε(t), the
union ∪εAε is bounded in X. The upper-semicontinuity of the attractors then follows from
the convergence of the trajectories (see [19] for example).

Lemma 3.10. There exists a positive constant C such that, for all ε ∈ [0, ε1[ and t ≥ 0,

‖eAεt − eA0t‖L(X) ≤ Cε . (3.16)

Moreover, for any bounded set B ⊂ X, there exists a positive constant C(B) such that, for
all ε ∈ [0, ε1[, U0 ∈ B and t ≥ 0,

‖Sε(t)U0 − S0(t)U0‖X ≤ C(B)eC(B)tε . (3.17)
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Proof : Let U0 ∈ X and ε ∈ [0, ε1[. We set U(t) = (u, ut)(t) = Sε(t)U0. The estimate
(3.16) immediatly follows from Corollary 3.9 and the equality

(eAεt − eA0t)U0 =

∫ t

0

eA0(t−s)(0, εg(x)ut(x, s))ds .

Then, we classically deduce (3.17) from Duhamel’s formula and Gronwall’s lemma. �

3.2 Proof of Theorem 3.5

First, we state a preliminary result concerning the local stable and unstable manifolds of
hyperbolic equilibria and their convergence when ε −→ 0. Let E be an equilibrium point
of S0(t). For all r > 0, we denote by B(E, r) the ball of center E and radius r.

Theorem 3.11. There exists a positive constant ε0 such that the following properties hold.
If E is a hyperbolic equilibrium point of S0(t), then for all ε ∈ [0, ε0[, E is also a hyperbolic
equilibrium point of Sε(t). Moreover, there exists a radius r > 0 small enough such that
the sets W s

ε (E, r) = {U0 ∈ B(E, r) | ∀t ≥ 0, Sε(t)U0 ∈ B(E, r)} and
W u

ε (E, r) = {U0 ∈ B(E, r) | there exists a negative trajectory U(t) ∈ C0(] −∞, 0], X) for
Sε(t) such that U(0) = U0 and ∀t ≤ 0, U(t) ∈ B(E, r)}, are embedded manifolds of X. In
addition, any U0 ∈ W s

ε (E, r) satisfies Sε(t)U0 −→ E when t −→ +∞ and any trajectory
U(t) ∈ C0(] −∞, 0], X) included in W u

ε (E, r) satisfies U(t) −→ E when t −→ −∞.
Finally, the local stable and unstable manifolds are continuous at ε = 0, that is

dX(W u
ε (E, r), W u

0 (E, r)) ≤ ε and dX(W s
ε (E, r), W s

0 (E, r)) ≤ ε ,

where dX is the Hausdorff distance defined in (3.5).

Proof : The existence of local stable and unstable manifolds is classical, see for example
the Appendix of [9] or [2]. The outline of the proof of the result of convergence is also
well-known, see [19], [10] or [14]. We only want to enhance that the construction of the
local stable and unstable manifolds is done in a neighborhood of E uniform with respect
to ε ∈ [0, ε0[ due to Corollary 3.9. �

We assume in the remaining part of this section that all the equilibria of S0(t) are
hyperbolic. We have to show that, for ε small enough, the dynamical system Sε(t) has the
property that any ω−limit set of a point U ∈ X is an equilibrium point. As the proof of
the same property for the α−limit sets of globally bounded trajectories is similar, we omit
it.
We argue by contradiction. Let (εn) be a sequence of positive numbers converging to 0
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and let (Un) be a sequence of points of X such that the ω−limit set of Un for Sεn
(t) does

not only contain one equilibrium point. Due to Theorem 3.4, there exists a bounded set
B such that the ω−limit set of Un for Sεn

(t) belongs to B. In particular, we can assume
without loss of generality that Sεn

(t)Un ∈ B for all n ≥ 0 and t ≥ 0. For all t ≥ 0, we set
Un(t) = Sεn

(t)Un. Using the same arguments as in Lemma 2.9, we obtain the following
result.

Lemma 3.12. Let (tn)n∈N ⊂ R be a sequence of times with tn −→ +∞. There exists a
globally defined and bounded trajectory U(t) ⊂ A for the system S0(t) and subsequences
tϕ(n) and Uϕ(n)(t), such that, for all positive time θ, and for all n such that tϕ(n) ≥ θ, we
have

sup
t∈]−θ,θ[

‖U(t) − Uϕ(n)(tϕ(n) + t)‖X −−−→
n−→0

0 . (3.18)

We recall that Φ denotes the Lyapounov functional of S0(t) defined by (2.6) and that
this functional is no longer a Lyapounov functional for Sε(t) when ε is positive. We set

l = inf{ζ ∈ R / ∃(tn)n∈N ⊂ R+, tn −−−−→
n→+∞

+∞ and Φ(Un(tn)) −−−−→
n→+∞

ζ} . (3.19)

This infimum exists since Φ is bounded from below in B. Let (tn) ⊂ R+ be a sequence
such that tn −→ +∞ and Φ(Un(tn)) −→ l when n −→ +∞. Lemma 3.12 implies that, up
to the extraction of a subsequence, there exists a complete trajectory U(t) for S0(t) such
that, for all θ > 0

sup
t∈]−θ,θ[

‖U(t) − Un(tn + t)‖X −−−→
n−→0

0 . (3.20)

Moreover, by continuity of Φ and by the definition of l, we have that

∀t ≥ 0, Φ(U(t)) ≥ Φ(U(0)) .

As Φ is a Lyapounov functional for S0(t), this implies that for all t ≥ 0, U(t) = E where
E is an equilibrium point of the dynamical systems Sε(t).
Let r > 0 be the radius introduced in Theorem 3.11. We next prove that, for εn small
enough, Un(t) belongs to B(E, r) for all t ≥ tn. As E is hyperbolic for Sεn

(t), if Un(t)
belongs to B(E, r) for all t ≥ tn, then Theorem 3.11 implies that Un(t) −→ E when
t −→ +∞. This contradicts the fact that the ω−limit set of Un for Sεn

(t) does not only
contain a equilibrium point and finishes the proof of the gradient-like structure of Sε(t)
stated in Theorem 3.5.
Once again, we argue by contradiction : assume that there exists a time t ≥ tn such that
Un(t) 6∈ B(E, r), where tn −→ +∞ is a sequence of times satisfying Φ(Un(tn)) −→ l. We
set

τn = inf{t ≥ tn / Un(t) 6∈ B(E, r)} .
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Lemma 3.12 shows that, up to the extraction of a subsequence, there exists a complete
trajectory V (t) for S0(t) such that, for all T > 0,

sup
t∈]−T,T [

‖V (t) − Un(τn + t)‖X −−−→
n−→0

0 . (3.21)

Since Property (3.20) holds for U(t) = E, τn−tn has to go to +∞. Therefore, V (t) belongs
to B(E, r) for all t ≤ 0, that is that V (t) belongs to the local unstable manifold W u

0 (E, r)
for all t ≤ 0. Moreover, the definition (3.19) of l implies that Φ(V (0)) ≥ Φ(E). This is
impossible according to Proposition 3.3 and the fact that V (t) −→ E when t −→ −∞.

We just have proved that, for ε small enough, Sε(t) is a gradient-like dynamical system.
Then, the hyperbolicity of the equilibrium points implies that

Aε = ∪E∈EW
u
ε (E) = ∪E∈E ∪t≥0 Sε(t)W

u
ε (E, r) ,

where E is the set of equilibrium points of Sε(t) and W u
ε (E) is the global unstable manifold

of E. Then, the continuity of the attractors (3.6) classically follows from Theorem 3.11
(see [10], [2] or [19] for example).

We finish the proof of Theorem 3.5 by showing that Sε(t) preserves the order on the
equilibrium points induced by Φ. Assume that it is not the case and that there exist a
sequence (εn) converging to 0 and a sequence (Un(t)) ⊂ C0(R, X) such that Un(t) is a
trajectory of Sεn

(t) and Un(t) −→ E± when t −→ ±∞, with Φ(E−) ≤ Φ(E+). Let r > 0
be such that the balls B(E, r), E ∈ E , are disjoint. We use some technics close to the
ones of the finite-dimensional combined trajectory introduced in [1] (see [2] and also [14]
for similar methods). Let σ1

n be the first time such that Un(σ1
n) ∈ ∂B(E−, r). Using the

same arguments as above, we know that, up to the extraction of a subsequence, there
exists V1 ∈ W u

0 (E−, r) such that Un(σ1
n) converges to V1. There exists an equilibrium point

E1 such that S0(t)V1 → E1 when t → +∞. As S0(t) is a gradient dynamical system and
V1 connects E− to E1, Φ(E−) > Φ(E1). Using Lemma 3.10 and the fact that ∪nAεn

is
bounded, we obtain a sequence of times t1n such that Sεn

(t1n) → E1 when n → +∞. Then,
up to the extraction of a subsequence, either Un(t) belongs to B(E1, r) for all t ≥ t1n, that
is that E1 = E+, or there exists a first time σ2

n > t1n such that Un(σ1
n) ∈ ∂B(E−, r). In the

last case, there exists V2 ∈ W u
0 (E1, r) such that Un(σ2

n) converges to V2, and so on... We
apply the same arguments until Ek = E+. This needs only a finite number of iterations
since, at each step Φ(Ek) decreases and there is only a finite number of equilibrium points.
Finally, this yields a sequence of equilibria E− = E0, E1, ..., Ep = E+ and a sequence of
heteroclinic orbits Vk(t) for S0(t), connecting Ek to Ek+1. As Φ is a Lyapounov functional
for S0(t), we have Φ(E−) > Φ(E1) > ... > Φ(E+), which lieds to a contradiction and
finishes the proof of Theorem 3.5.
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