ENERGY DECAY AND DIFFUSION PHENOMENON FOR THE
ASYMPTOTICALLY PERIODIC DAMPED WAVE EQUATION
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ABSTRACT. We prove local and global energy decay for the asymptotically periodic
damped wave equation on the Euclidean space. Since the behavior of high frequencies
is already mostly understood, this paper is mainly about the contribution of low
frequencies. We show in particular that the damped wave behaves like a solution of a
heat equation which depends on the H-limit of the metric and the mean value of the
absorption index.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

In this paper we are interested in the asymptotic behavior for large times of the
damped wave equation in an asymptotically periodic setting in R?, d > 1. In particular,
the damping is effective at infinity but it is not assumed to be greater than a positive
constant outside some compact subset of RZ. Our original motivation is the local energy
decay. We also obtain some results for the global energy. However, because of the
contribution of low frequencies, there is no exponential decay for the corresponding
semigroup, even under the usual Geometric Control Condition. More precisely, we will
prove that the contribution of low frequencies behaves like a solution of an explicit heat
equation. This will explain the rate of decay for the local energy decay.

1.1. The damped wave equation in an asymptotically periodic setting. We
consider on R¢ the damped wave equation

(1.1)

?u+ Pu+a(z)diu=0 onRy x RY
(w, Opu)|,—o = (ug,u1) on RY,

where (ug,u1) € HY(R?) x L2(RY).

The function a is the absorption index. It is bounded, continuous, and takes non-
negative values.

The operator P is a general Laplace operator. More explicitely, we consider a metric
G(z) = (Gjx(7))1<jk<d on R? and a positive function w such that, for some Gmax >
Gmin > 0 and Wiax = Wmin > 0 and for all 2 € R? and € € R,

Gmin |§’2 < <G(1")€7§>Rd < Gmax |§‘2 and Win < UJ(I) < Wmax- (12)

We also assume that G and w are smooth with bounded derivatives. Then we set
1

w(x)

P:=— divG(z)V. (1.3)
This includes in particular the case of the standard Laplace operator (with G(z) = Id
and w(xz) = 1), a Laplacian in divergence form (with w(z) = 1) or the Laplacian asso-

ciated with a metric g(z) (with w(z) = det(g(a;))% and G(z) = det(g(x))%g(:v)*l).
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The purpose of this paper is to consider the case where G, w and a are asymptotically
periodic. This means that we can write

G(z) = Gp(x) + Go(z), w(z)=wp(x)+wo(z) and a(x) = ap(z)+ ao(z),

where G, wp and ap are Z%periodic and Gg, wg and ag go to 0 at infinity. More
precisely, we assume that there exist pg, po > 0 and Cg, C, = 0 such that

Go(x)| < Ca (x)™"¢  and  |wo(z)| + |ao(x)| < Co (x)™"*, (1.4)

1
where (z) stands for (1+ |z|? )2. The periodic part ap of the absorption index is allowed
to vanish but it is not identically zero, so that the damping is effective at infinity. Notice
that if G(x) and w(z) are periodic and a(z) is constant, then we recover the setting of

[0ZPO1].

Let u be a solution of (1.1). We can check that if @ = 0 then the energy
E(t) := J (w(x) Opu(t, z)|* + G(x)Vul(t, z) - Vﬂ(t,x)) dx (1.5)
Rd

is constant. However, with the damping this is a non-increasing function of time. More
precisely, for t; < t5 we have

Ets) — B(ty) = —2 fZ fRd a() |ou(t, 2)|? w(z) dz dt < 0. (1.6)

Our purpose in this paper is to say more about the decay of this quantity. We are also
interested in the decay of the local energy

Ey(t) = fRd ()" (w(@) |au(t, ) + G@)Vu(t, ) - Va(t,2)) dr,
where 6 > 0.

1.2. The geometric damping condition on classical trajectories. The local en-
ergy decay for the wave equation in unbounded domains and the global energy decay
for the damped wave equation in compact domains are two problems which have quite
a long history.

In the first case the global energy is conserved but, at least for the free setting, the
energy escapes to infinity. In perturbed settings, it is then important to know wether
some energy can be trapped, to estimate the dependance of the decay of the local energy
with respect to the initial condition, etc. We refer for instance to [MRS77, Mel79, Bur98,
BH12, Boull] for different results in various asymptotically free settings.

For the damped wave equation we really have a loss of energy. Then the goal of
stabilisation results is to understand where the damping should be effective to make
this energy go to 0 (with the same kind of questions about the rates of decay). We refer
for instance to [RT74, BLR92, Leb96, LRI7].

The behavior of the energy of a wave depends on its frequency. The main difficulties
usually come from the contributions of high and low frequencies. It is now well known
that for high frequencies the behavior of the wave depends on the geometry of the do-
main. More precisely, the wave basically propagates following the classical trajectories
for the corresponding Hamiltonian problem. Then the local energy decays uniformly in
unbounded domains if and only if all these trajectories go to infinity (this is the so-called
non-trapping condition), while for the damped wave equation in compact domains, the
global energy decays uniformly if and only if all the classical trajectories meet the damp-
ing region (this is the geometric control condition, G.C.C. for short). The problems with
the contributions of low frequencies only appear in unbounded domains. The local en-
ergy for the contribution of low frequencies decays uniformly without assumption, but
it can be slower than for high frequencies. Typically, for compactly supported pertur-
bations of the free setting in even dimension, the local energy for the contribution of
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low frequencies decays like 2%, while the contribution of high frequencies decays faster
than any power of ¢t under the non-trapping condition.

In this paper we analyse the local energy decay for damped wave equation in an
unbounded domain. In this case the criterion for the contribution of high frequencies
combines the non-trapping and the geometric control conditions: each bounded trajec-
tories should either go through the damping region or escape to infinity.

For a compactly supported or asymptotically vanishing damping, we recover with this
assumption the same kind of results as for the undamped analog under the non-trapping
condition. See [AK02, Khe03, BR14, Roy16]. This is basically due to the fact that the
part which escapes to infinity is no longer influenced by the damping and behaves as in
the free case. In this kind of setting the trajectories at infinity never see the damping,
so we cannot expect a global energy decay.

The situation is quite different when the damping is effective at infinity. In the
asymptotically periodic case, we have at least the property that all the points in R are
uniformly close to the damping region.

For the contribution of high frequencies we will use the results of [BJ16], where the
damped Klein-Gordon equation is considered in a similar setting. We recall that the
Klein-Gordon equation is analogous to the wave equation, except that the non-negative
operator P is replaced by P+1. In this case there is no difficulty with the low frequencies
(0 is no longer in the spectrum), but this does not make any significant difference for
the contribution of high frequencies. So for high frequencies it is equivalent to look at
the wave or at the Klein-Gordon equation.

Thus, we can first deduce from [BJ16] that we have at least a logarithmic decay with
loss of regularity for the contribution of high frequencies. If P = —A and a is periodic,
then by [Wunl7] we obtain a polynomial decay (still with loss of regularity). The best
decay is obtained when all the classical trajectories go uniformly through the damping.
Since our main purpose is the analysis of the contribution of low frequencies, we assume
that this is the case in this paper.

For a more precise statement, we introduce on R?? ~ T*R¢ the symbol

. <G(x>£v‘£>]Rd
and the corresponding classical flow: for (zg,&) € R?*? we denote by ¢!(zq,&) the
solution of the Hamiltonian problem

Lot (z0,%) = (Vep(¢'(20,&0))s —Vap(9 (70, &0))),
¢0($0>§0) = (xovf(])‘

We recall that ¢'(zg, &) = (zo + 2t&, &) if P = —A and ¢! is the geodesic flow cor-
responding to the metric g if P = —A,. For a review about semiclassical analysis, we
refer to [Zwol2].

We assume that there exist 7" > 0 and « > 0 such that

T
Yo, &) € p~M({1}), fo a(¢' (20, €0)) dt > o, (1.7)

where we have extended a to a function on R?? which only depends on the first d
variables. Under this assumption, we know from Theorem 1.2 in [BJ16] that the global
(and therefore local) energy of the contribution of high frequencies decays uniformly
(without loss of regularity) exponentially. Thus, in all the results of this paper, the
restrictions in the rates of decay are due to the contributions of low frequencies.
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1.3. Energy decay for the damped wave equation in the periodic setting. After
multiplication by w(x), the problem (1.1) reads
{w(az)é’?u + Pgu + b(x)du =0 on R, x RY

1.8
(w, Opu) |,y = (ug,u1) on RY, (1.8)

where b(z) := w(x)a(x) and Pg is a Laplacian in divergence form:
Pg := —divG(x)V.

We denote by S the Schwartz space of smooth functions whose derivatives decay faster
than any polynomial at infinity. For § € R we denote by L*9(R%) the weighted space
L2((z)® dz) and by H*S(R?), k € N, the corresponding Sobolev space. Then we set

L:=L*RY x LARY), £7:= L*(RY) x L2(RY),
H = H (R x L2(RY), HO:= HYORY) x L2 (RY).

We begin with the purely periodic case. Thus, for (ug,u1) € H we first consider the
problem
wp (2)0%up + Ppup + bp(2)drup =0 on Ry x RY, (1.9)

(up, Orup)|,_o = (uo, u1) on R, '
where
Py = —divGp(z)V and bp(x) := wp(x)ap(z).

In the following result we describe the local and global energy decay for the solution

of (1.9).

Theorem 1.1 (Local and global energy decay in the periodic setting). Assume that the
damping condition (1.7) holds. Let s1,s9 € [0, g] and k > 1. Let s € [0,1]. Then there
exists C = 0 such that for t >0 and Uy = (ug,u1) € H21* we have

_s51+s2
lup (Ol 2 -rsi < C{) 2 |Uollygrss
71751+52
|Oeup ()] f2—rsy < C(t) > [Uollggrsa »
_1+4s_s1+s2
IVup(@)[ o —nsi—s < C(t)” 2 I 10/)) Py

where up(t) is the solution of (1.9).

Notice that we give decay estimates for the energy of the wave (i.e. for the time and
spatial derivatives of the solution), but also for the solution itself.

We will see that these estimates are sharp. When s; = s9 = s = 0, we obtain
estimates for the global energy (notice, however, that in the right-hand side |Up|,, is
not the initial energy, see Remark (2.5) below). When s; is positive, we are estimating
the local energy (which decays faster than the global energy). On the other hand, the
parameter s measures the localization of the initial data. We notice that even the global
energy decays faster if the initial data is assumed to be localized. Finally we observe
that the spatial derivatives do not play the same role as the time derivative, which is
unusual for a wave equation. However, if we can take s = 1 (this is the case if we are
interested in the local energy decay for localized initial data) then we recover for the
spatial derivatives the same estimates as for the time derivative.

1.4. Comparison with the solution of a heat equation. As mentioned above, the
rates of decay in Theorem 1.1 are not usual for a wave equation. This is due to the
contribution of low frequencies, which under a strong damping behaves like a solution
of a heat equation.

This phenomenon has already been observed in earlier papers. The simplest case is
the standard wave equation with constant damping

02u — Au + dyu = 0. (1.10)
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The energy decay for the solutions of (1.10) has been first studied in [Mat76]. More
precise results have then be given in [Nis03, MN03, HO04, Nar04]. In these papers it
is proved that a solution of (1.10) behaves for large times like a solution of the heat
equation

—Av+ v =0. (1.11)

This phenomenon can be understood as follows. Since G.C.C. is satisfied when a = 1,
the behavior of the wave for large times is governed by the contribution of low frequen-
cies. But for very slowly oscillating solutions, we expect that the contribution of the
term 07w in (1.10) will be very small compared to d;u, and then u will look like a solution
of (1.11).

The same phenomenon has been observed in an exterior domain (see [Ike02] for a
constant absorption index and [AIK15] for an absorption index equal to 1 outside some
compact) and in a wave guide (see [Roy] for a constant dissipation at the boundary
and [MR] for an asymptotically constant absorption index). For a slowly decaying ab-
sorption index (a(xz) = (x) ” with p € (0,1]) we refer to [TY09, ITY13, Wakl4] (we
recall from [Roy16] that if a(z) < (x)”” with p > 1 then we recover the behavior of
the undamped wave equation). For the problem in an exterior domain with possibly
slowly decaying damping, we refer to [SW16]. These questions are also of interest for the
semilinear damped wave equation (see [Wak17] and references therein). Finally, results
on an abstract setting can be found in [CH04, RTY10, Nis16, RTY16].

The same phenomenon occurs in our periodic setting. We can be more precise than in
Theorem 1.1 and prove that our wave can indeed be written as the sum of the solution
of some heat equation on R? and a smaller term (in the sense that it decays faster when
t goes to +00). Notice that this problem has already been studied in [OZP01] (see the
discussion after Theorem 1.3).

As already said, this diffusive phenomenon is due to the contribution of low frequen-
cies. Assume (at least formally) that u is a solution of (1.8) oscillating at a frequency 7
with |7| « 1. If for t > 0 and z € R? we set

t x
t = —
uT( 7‘7?) u<7_77_>7

then the function u, oscillates at frequency 1 and is solution of
T\ ~2 . T 1 T
Wp (;) Oiur —divGp (;) Vu, + ;bp (;) orur = 0.

This suggests that the first term should not play any role when 7 — 0. Moreover, at the
limit the wave should only see the mean value of the highly oscillating damping bp(%).
We set

by = fT wp(y)ap(y) dy, (1.12)

d
o (L]
2°2

Similarly, for the second term, we consider the effective operator which describes the
asymptotic behavior of the operator — div Gp(f)v at the limit 7 — 0. This is given
by the periodic homogenization theory (see for instance [BLP78, All02, Tar09]). Let
G be the H-limit of Gp(%£) when 7 goes to 0. This means that if v;,v € H*(R?) and
f € H Y(R?) are such that

where

—div Gy (;) Vo, = f and — divGpVo = f,
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then, as 7 goes to 0,
v; —v in HY(RY), and Gp <£> Vo, — GpVu  in L2(RY).
T

In general, the matrix Gy, is not the mean value of Gp,. If for £ € R? we denote by ()
Z%-periodic solution of

— div Gp () (€ + Vi) = 0 (1.13)

(¢ is defined up to a constant), and if we denote by W (x) the Z%-periodic matrix such
that

W(z)§ = & + V() (1.14)
then Gy, is in fact the mean value of W (x)TGp ()W (z):

(Gng, &) = qu (Gp(2)(§ + Vie(x)), (§ + Vipe(x))) da. (1.15)

Notice that it is natural to introduce all these quantities from the homogenization point
of view (see [CV97, OZ00, OZP01, COV02] for closely related contexts), but our proofs
will be purely spectral. We will see in Section 4 how by, G and the functions )¢ natu-
rally appear in this context.

Let
P, = —divGyV.

We now compare the solution up, of the dissipative wave equation (1.9) with the solution
up on R, x R? to the heat equation

bnoiun + Ppup =0 (1.16)
with initial condition
w
Unli—g = T:(apuo + u1). (1.17)

After a linear change of variables, the estimates of [MR] for the standard heat equation
read as follows.

Proposition 1.2. Let s1,s9 € [O, g] and k > 1. Let s € [0,1]. Then there exists C =0
such that for allt = 1 we have

—KS1 _tbi —KS9 _51‘532
()" e ™ (z) < C{) :
Z(L2(RY))
—KS1 _tbi —KSo _1_S1‘§32
()"t de *n () < Cf) ,
Z(L2(R4))
—KSs1—S *tbi —KS2—S§ _1?_31*2'32
(z) Ve ™ (z) < C(t)
Z(L2(R4))

Here and everywhere below, we denote by .2 (K1, K2) the space of bounded operators
from K; to KCa. We also write £ (Ky) for £ (K1, Kq).

The main result of this paper is the following. We prove that the difference between
the solution up of (1.9) and the solution uy, of (1.16)-(1.17) decays faster that up (except
for the gradient if s = 1, in which case we have the same estimate).

Theorem 1.3 (Comparison with the heat equation). Assume that the damping condi-

tion (1.7) holds. Let s1,s2 € [0,2] and k > 1. Then there exists C' > 0 such that for
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t >0 and Uy = (ug,u1) € H"2 we have

l_sl+32

lup(t) = un(®)]p2nsy < C(727 72 [Uollggess
_§_51+62
[0 (up(®) —un(®)) | poney < COT27 7 [Uollgprss
s1+s
[Vup(t) = W) 2vr < €072 [Uolgs
where up(t) and up are the solutions of (1.9) and (1.16)-(1.17), respectively, and W (z)

is defined by (1.14). Moreover W (x) is bounded.

Here we compare the solution up of the damped wave equation (1.9) (depending on
the metric Gp(x)) with the solution uy, of a heat equation with the constant (homoge-
nized) metric G,. We can also say that, at the first order, u behaves like a solution of
the heat equation with the metric Gp(x). Indeed, it is known that the solution of the
heat equation with the periodic metric Gp(z) behaves itself at the first order like the
solution of the heat equation with Gy,. See [OZ00].

We notice that the gradient of up does not exactly behave like that of up. We have
to use the corrector matrix W (x), but it is bounded, so it does not alter the estimate of
Vup.

With Proposition 1.2, Theorem 1.3 implies Theorem 1.1. More precisely, it confirms
the energy decay estimates, it proves that they are sharp, and it shows that, as for
the heat equation, we would not get better results by taking stronger (for instance,
compactly supported) weights. Thus, for compactly supported weights, we obtain the
following estimates. For R > 0 there exists Cr such that for ¢ = 0 and Uy supported in
the ball B(R) or radius R and centered at the origin we have

d
lu(®)l L2 B(ry) < Cr ()2 [Uolly (1.18)
and .,
[0cu()] r2a(ry) + IV 2 (mry < Cr (627 [Uolly - (1.19)

The comparison between the damped wave equation and the corresponding heat equa-
tion with a periodic metric has already been analysed in [OZP01]. Theorem 1.3 improves
the result in different directions.

The main improvements concern the absorption index. First, it is not necessarily
constant. This is an important difference for the spectral analysis of the operator cor-
responding to the wave equation, since in this case we do not necessarily have a Riesz
basis. Moreover, this absorption index is allowed to vanish, which also makes some
arguments used in [OZP01] unavailable.

On the other hand, the main result of [OZP01] provides an asymptotic developpe-
ment for localized initial data. More precisely, (ug,u1) € L*(R?) x H~'(R%) belongs to
some weighted L' space, and the more decay we have at infinity, the more precise the
developpement is. Here we give estimates which are uniform in the energy of the initial
data (however we still get better results for more localized initial data, and the dual
remark is that the rate of decay will be better for the localized energy, even if the wave
is dissipated at infinity).

However, compared to [OZP01], we give a less precise developpement. We only give
the leading term, given by the solution uy of (1.16)-(1.17). However, it may happen
that apug + u1 = 0 (then up = 0) or that its Fourier transform vanishes near 0 (then
up decays exponentially). In these cases, we could get better estimates for the damped
wave u in Theorem 1.1.

In fact, we could continue the developpement for the purely periodic setting, but not
for the general setting which we consider in this paper. Indeed, we allow a perturbation
of all the periodic coefficients by asymptotically vanishing terms, which would invalidate
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the developpement. However, we will see that this does not alter the main term, so the
estimates of Theorem 1.1 remain valid. This is described in the following paragraph.

1.5. Perturbation of the periodic setting. In Theorems 1.1 and 1.3 we have con-
sidered a purely periodic problem. Now we can state the generalizations of these results
for the perturbed setting.

Theorem 1.4 (Perturbation of the periodic wave). Assume that the damping condition
(1.7) holds. Let k > 1 and s1,s2,n = 0 be such that

d
max(sy, S2) + 7 < min <2,p(;,pa + 1) . (1.20)

Then there exists C = 0 such that for Uy = (ug,u1) € H"? and t = 0 we have

s1+s9

— _n
Ju(t) — up ()| poney < C (&) 2 2 |Up|lppmes
_1_81ts2 1
10 (u(t) = up(®) | o vey < CTT 2 72 |Upllpgnss -
s1ts2 7

1 _n
[V (u(t) = up(®) | j2nsy < CO)7Z7 7772 |Unllyyess
where u(t) and up(t) are the solutions of (1.1) and (1.9), respectively.

With Theorems 1.1 and 1.4 we deduce the following estimates in the general setting:

Corollary 1.5 (Energy estimates in the general setting). Assume that the damping
condition (1.7) holds. Let k> 1, s1,s2 € |0, %) and s € [0,1] be such that

. (d
max(si, s2) + s < min 52 PG Pa +1).

Then there exists C = 0 such that for Uy = (ug,u1) € H215 and t = 0 we have

_51+52
lu(®lpz—rss < C )2 [Uollggess »
_1_51+52
lou()|p2—nsr < C(F) = [Uollpgrss
_1+4s_s1t+so
[Vu)|p2nsi—s < C @) 22 |[Upllggmsas

where u(t) is the solution of (1.1).

These estimates are the same as those of Theorem 1.1, even if there is a restriction
in the choice of s; and s9 when the perturbative coefficients Gy, ag and wqy decay slowly
at infinity. In particular, we recover exactly the same estimates as in the periodic case
for the uniform global energy decay or if the perturbation is compactly supported.

1.6. Organisation of the paper. The paper is organized as follows. In Section 2
we introduce the wave operator in the energy space and its resolvent. In Section 3 we
discuss the contributions of high frequencies and explain how the problem reduces to the
analysis of low frequencies. The main part of the paper is Section 4, about the purely
periodic case. We prove Theorem 1.3, and Theorem 1.1 will follow with Proposition 1.2.
Finally, we consider the perturbed setting in Section 5.

2. THE RESOLVENT OF THE WAVE EQUATION

We will prove all the energy decay estimates from a spectral point of view. In this
section we introduce the corresponding operators and give their basic spectral properties.
Let

Ci ={zeC : Im(z) > 0}.

We recall that an operator 7" with domain Dom(7") on a Hilbert space K is said to be

dissipative (respectively accretive) if

Vo e Dom(T), Im (T, @) <0 (respectively, Re(T¢, ) = 0).
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Then the operator T is said to be maximal dissipative if (T' — z) is boundedly invertible
for some (and therefore any) z € C,. In this case we have, for all z € C,
1
1
< ——.
”L(IC) Im(z)
Moreover, if T is also accretive, then (7" — z) is boundedly invertible when Re(z) < 0
and we have

||(T —z)"

1

(T —2)~"

| ”E(IC) |Re(z)|’

We recall that Py and b were defined after (1.8). If z € C is such that the operator
(Pe —izb(z) — 22w(z)) € ZL(H*(RY), L*(R?)) (2.1)

has a bounded inverse, we set
R(z) = (Pg —izb(z) — zQw(x))fl.

Proposition 2.1. Let z € C,. Then the operator (2.1) has a bounded inverse and its
inverse R(z) extends to a bounded operator from H~'(RY) to H'(R?). Moreover for
v > 0 there exists ¢, > 0 such that for z € Cy with Im(z) > v and A, 5, € N¢ with
16| <1 and |5, <1 we have

|2|1Bil+1B -

()25 L(L2(RY)) s o Im(z)

Proof. LetZ—T—l—z,uervlthT Oand,u>0 We set

T(2) := P —izb(z) — 22w(z) = (Pg + pb(z) + (1° — 7°)w(x)) — i(rb(z) + 2rpw(z)).
Assume that p < 27. Then T( ) = T(z ) + 20T pwnin is a dissipative and bounded

perturbation of the selfadjoint operator Pg, so it is maximal dissipative. Thus T'(z) =
T(2) — 2iTpwmiy is boundedly invertible and in .Z(L?(R%)) we have

- _ 1
()7 = |(T(2) = 2irpoin) | < 57—
e = | (7e) —2impnan) | < 5L
Now assume that p > 27. Then T(z) := T(z) — “;wmin is a dissipative and accretive

perturbation of the non-negative selfadjoint operator Pg, so T(z) = T(z) + %Zwmin is
boundedly invertible and

2

|T(z)7) = (T(Z) + /;wmin> < eI

In any case we have
1

plzl
If 7 < 0 we observe that T'(z) = T(—%)* to obtain the same results. This gives the
existence of R(z) and the estimate for 5 = 5, = 0.

Now we fix v > 0 and assume that u > v. For ¢ € § we have

IVR(2)6]72ra) S (PaR(2)$, R(2)6) < (6, R(2)) + |2 (1 + [2]) [R(2)0]* < :2 l]*

This gives the estimate when || = 1 and 5, = 0. The estimate for 5 = 0 and |5,] = 1
follows by duality. Finally, for the case |5)| = |G| = 1 we write

IVR(z)VS|* < (PaR(2)V, R(z)V9) < (Vo, R(z)V9) + |2| (1 + |2]) [R(z) Vo *

‘Z’ o],

and the conclusion follows. Again, we have strongly used in this last step that |z| is
bounded below by v > 0. O

1T ™ o r2@ay <

S [VR()Ve[ o] +
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We consider on H the operator
0 wt
A= <PG’ —ia) (2.2)
with domain
Dom(A) = H?(R%) x HY(RY). (2.3)
Let F' = (ug,iwu;) € Dom(A). Then u is a solution to the problem (1.8) if and only
if U = (u,iwdu) is a solution to

(0 +iA)U(t) = 0,
{U (0) =F. 24)

Proposition 2.2. For z € C, the operator (A — z) is boundedly invertible on H, and
we have

o R(2)(ib + 2w) R(z)
(A-2)7" = <w +wR(2)(izb + 22w) sz(2)> '

Moreover for v > 0 there exists C, = 0 such that for all z € C4 with Im(z) > v we have

_ Cy
[(A =2y < im()’

Proof. Let z =7 +ipue Cy, with 7€ R and p > 0. For F = (f,g) € H we set

B R(2)(ib+ zw) f + R(2)
Ra(2)F = (w f+wR(2)(izb + 2%w) f + zfuR(z)g>

_ (iR(z)ng— if+R(2)g>
wR(z)Paf + zwR(z)g )’

With the first expression we see that R 4(z) is a bounded operator from H to Dom(A).
By an explicit computation, we check that R4(z) is an inverse for (A — z). Finally,
with the second expression of R 4(z) and the estimates of Proposition 2.1, we obtain for
Im(z) > v

1
2|
+ RV g(z2,02) IV 2 + [21 [1R(2)| 222 12y 19 2

1
IRA(2)Flly = 2l IRV 22,10y IV iz + 5 [ e + 1B 222,51y 19 2

IFl,
,u
The proposition is proved. O

By the Hille-Yosida Theorem (see for instance Theorem I1.3.8 in [ENO00]), we now
deduce the following result about the propagator of A. It ensures in particular that for
F € Dom(.A) the problem (2.4) has a unique solution defined for all non-negative times.

Proposition 2.3. The operator —iA generates a C°-semigroup on H. Moreover for
v > 0 there exists C, = 0 such that for allt = 0 we have

||efl't./4 < Cyetl/‘

LH)

By Proposition 2.2 we know that any z € C, belongs to the resolvent set of A. As
usual we are interested in the behavior of (A — z)~! at the limit Im(z) — 0. In fact,
with a strong decay, the spectrum away from 0 is really under the real axis.

Theorem 2.4. Any 7 € R\ {0} belongs to the resolvent set of A. Moreover there exists
C > 0 such that for all T € R\[—1,1] we have

[(A= 7)Y g5y < C- (2.5)
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For the proof of this result we refer to [BJ16] (notice that w = 1 in [BJ16], but this
does not play any crucial role in this high-frequency analysis).

The first statement about a fixed frequency holds under the general assumption that
all the points in R? are in some suitable sense uniformly close to the damping region (see
Theorem 1.3 and Section 4 in [BJ16]). It is not difficult to check that this is always the
case in our asymptotically periodic setting, even without the damping condition (1.7).

Since the resolvent (A —7)~! is continuous on R\ {0}, it is clear that an estimate like
(2.5) holds for 7 in a compact subset. However this resolvent may blow up when || goes
to +00. The fact that we have a uniform estimate even at the high-frequency limit relies
on the damping condition (1.7) on classical trajectories (see Theorem 1.2 and Section
3 in [BJ16]). As explained in the introduction, we would have a weaker estimate with
loss of regularity without this assumption.

The proof of Theorem 2.4 relies on semiclassical analysis. This is why we need some
regularity for the coefficients of the problem. Notice that [BJ16] requires uniform conti-
nuity for a. This is indeed the case here for our continuous and asymptotically periodic
absorption index.

Remark 2.5. All the estimates of the main theorems are given in H or its weighted
analogs. However, for the energy of a wave it would be more natural to work in the
energy space &, defined as the Hilbert completion of § x S for the norm defined by

p@P?

a w(x)

2 = r)Vu(x) - Vul(x)dx
w03 = [ Gla)Vate) - Vata)ao + |

We observe that & is equal to the standard energy space H? (RY) x L?(R?%) with equivalent
norm, and if u is the solution of (1.1) then its energy is exactly

E(t) = | (u(t), wopu(t)) |

Moreover we could check that the operator A would define on & a maximal dissipative
operator, so that (e_”A)t;O would be a contractions semigroup on &.

Working in & instead of H means that we are not interested in the size of the solution
u itself but only in the size of its first derivatives. And the estimates should not depend
on ug but only on Vg (see [Royl6] for a discussion on this question). However for the
heat equation it is natural to take into account the size of ug. Thus, since our wave
behaves like a solution of the heat equation, it is relevant to give all the estimates in H
instead of &.

3. REDUCTION TO A LOW FREQUENCY ANALYSIS

In this section we show how we can use the resolvent estimate of Theorem 2.4 to
reduce the time decay properties of Theorems 1.1 and 1.4 to the contributions of low
frequencies. By density, it is enough to consider initial data in & x S.

Let ¢ € C*(R,[0,1]) be equal to 0 on (—0, 1] and equal to 1 on [2, +0). Fore € (0, 1]
and t € R we set ¢.(t) := ¢(L), and then
U.(t) := ¢o(t)e ™A, (3.1)
Let FeS xS and pe (0,1]. For 7 € R we have

J e MU (t)Fdt = —i(A— (7 + iﬂ))_lFE(T + i),
R

where for z € C we have set

2e
F.(2)= | ¢Lt)e A2 Fdt. (3.2)

€
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The map 7 +— (A— (7 + i,u))_ng(T + ip) belongs to S so the Fourier inversion formula
yields, for all t € R,

1 - _
e U F e (A= (T +ip) ng(T + i) dr,
" 2im R
or
1 .
U.)F = — e (A= 2) E(2) dz. 3.3
OF =5 | s Re (33)

Let C' > 0 be given by Theorem 2.4 and v € (0, 20) Then the resolvent (A — 2)7! is
well defined if |Re(2z)| = 1 and Im(z) > —~, and we have

< 2C. (3.4)

[(A= (=)~ L2(R4))

We consider 0, € C°(R, R) such that §,(s) = pif [s| <1, —y < 0,(s) < pif |s| € [1, 2]
and 6,(s) = —vy if |s| = 2. Then we set (see Figure 1)

I'yi={r+10,(7), 7 e R}. (3.5)

Re(z) = =2 Re(z) = -1 Re(z) =1 Re(z) =2

S

_~included in the
resolvant set of A

Iy

N 7
/ 0 \ Im(z) = —

FIGURE 1. The curve I',.

Since the integrand in (3.3) is holomorphic and decays rapidly at infinity we can write

1

HF = —
UE( ) 2m F;L

e (A — 2) T FL(2) dz.

Notice that, by holomorphy of the integrand, the right-hand side does not depend on
€ (0,1]. Then we separate the contributions of low and high frequencies. For this

we consider x € C°(R, [0,1]) supported in (-3,3) and equal to 1 on a neighborhood of

[-2,2]. For F eS8 x S we set

Ve (OF = —— | x(Re(2)e (A — ) Fu(z) d=

i r,

and
1

20T FM

Ukiign (1) F' = (1= x)(Re(2))e ™" (A — 2) "' Fx(2) dz.

Again, these quantities do not depend on y (this is clear for Uy, (¢)F, for Ug  (1)F
it follows from the holomorphy of the integrand in the region where |[Re(z)| < 2). We
begin with the contribution of high frequencies:

Proposition 3.1. There exists C = 0 such that for Fe S xS, p€ (0,1], e € (0,1] and

t = 0 we have
- Ce_%t
|Ukign ) F[,, < —=1Fl3 -
NG
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Proof. Let F€ S xS. For e € (0,1] and ¢t € R we set
I(t) := " U, () F. (3.6)
We have
1

L(t) = 5~ R(l = X)()e™ (A~ (7 —iy)) T Fu(T — iv) dr.

By the Plancherel equality (twice) and (3.4) we have
N\ N
[ il de< | 0= 0@ A== R -l

2 2
HF!H J 562'yt dt
€ g

< JR |Fe(r — i) [3, dr < fR |l (t)e tAevtFHH dt <

2
P

- (3.7)

Let to,t € R with ¢ty < t. For s € [to,t] we have

d —i(t—s —i(t—s 1 —itT —i(t—s :
E(e (t >A15(s)):ye AL (s) + 5 (1= tre=it=9AFR (1 _ i) dr,

so as above we can check that

2 2
. F
d (e—z(t—s)AIE(s)) ’ ds < H ”’H )

J‘t
to |l ds ” €

Then, by the Cauchy-Schwarz inequality,

0[]

% <e_i(t_5)“4[E (s)) ‘ dt

0 H

[ ']l
< [ Le(o)lly + Vi - =75

By (3.7) we have

, [l
£ L (to)],, < 1K
Lt ety 5 2
so fort>1
t
=@l 5 \@Fm
With (3.6), this concludes the proof. O

We now turn to the contribution of low frequencies. The smooth cut-off ¢, introduced
in (3.1) was useful to analyse the contribution of high frequencies (if U, is smooth then
F.(z) is small at infinity). For low frequencies we could also estimate U, for some fixed
€, but in order to obtain the sharp result of Theorem 1.3 we have to work with the initial
data F' and not its perturbed version F;. In the following lemma we let £ go to 0. Since
—¢L somehow converges to the Dirac mass at ¢ = 0, we obtain that we can replace F.
by F in the expression of UY (). We set

1

=5 | x(Re(2))e (A~ 2) 7 dz. (3:8)
s Ty

Ilow(t) :

As above, this does not depend on € (0, 1].

Proposition 3.2. There exists C = 0 such that for F € S x S, e € (0,1] and t = 0 we
have

[Utow () F = hhow (1) Fll3; < Ce [ Flly, -
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Proof. Let € € (0,1]. For z € C; we have

+00 )
(A—2)"tF =i f e A= P s,
0
On the other hand
+00 ) +00 )
A—2)F() = [ ol(s)(A—2) le AR g — zf bo(3)e— A P s,
0 0

SO
2¢e

(A—2)"Y(F - F.(2)) = ijo (1- d)e(s))e*is(A*Z)F ds.

Let € (0,1]. This equality between holomorphic functions on C, can be extended to
any z € I',. Moreover, since we only integrate over a compact subset of I';, we can write

Ui (OF = Liow ()F 3y < sup e (A= 2)"H(F = Fu(2)) |, < e | Fly, -
zE
IRe(2)|<3

Since the left-hand side does not depend on p € (0,1], we can let p go to 0, which
concludes the proof. O

By Proposition 3.1 and Lemma 3.2 applied with ¢ = ef%, we finally obtain the
following result:

Proposition 3.3. There exists C = 0 such that fort = 0 and F € H we have
e ™AF — o () F |, < Ce™ % | Fly.

The rest of the paper is devoted to the analysis of I}y (t)F'.

4. LOW FREQUENCY ANALYSIS IN THE PERIODIC SETTING

Let

Lo(t) = 2% X(Re(2)e (A = 2) (4.1)

This coincides with Iy (%) (see (3.8)) in the particular case of a purely periodic setting.
In this case the result of Proposition 3.3 gives

|42 F — I(t)F|,, < Ce™ % |y, . (4.2)

In this section we analyse Ip(f). With (4.2), this will prove Theorem 1.3, and hence
Theorem 1.1.

4.1. Floquet-Bloch decomposition of the periodic problem. If G(z) = Gp(x),
a(xz) = ap(x) and w(z) = wp(z), then the medium in which our wave propagates is
exactly Z%periodic. However, the initial data and the solution itself are not periodic,
so we cannot see our problem as a problem on the torus. We will use the Floquet-Bloch
decomposition to write a function in L?(R%) as an integral of Z%periodic contributions.

We denote by Li the space of L|2oc and Z%periodic functions on R%. Tt is endowed
with the natural norm defined by

fulfy = | Juta)* do
T

Then we set L4 = Li X Li. For k € N we also define H ;1 as the space of Z%periodic
and H {ZC functions, endowed with the obvious norm.
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The Floquet-Bloch decomposition is standard in this kind of context. We begin this
section by recording the definitions and properties which we are going to use in this
paper. For ue S, o € R? and z € R? we set

ul(r) = Z u(z + n)e @), (4.3)
neZzd

For all o € R% the function ug belongs to Li.

Proposition 4.1. Let u,v e S.
(i) For x € R we have

1 o, o
) = (g7 ] e RO O

(ii) For ) € L%E and o € R? we have

(ug, ¢>L§# = f e~y (x))(z) de.

zeR4

(i) We have
2 1 o (12
”U”L2(Rd) = (27r)d J— Hu#HLi do

or, more generally,

1 o g
0020 = G | D 7

Proof. For the first statement we only have to write

f em'au;;(x) do = Z u(x + n)f e do = (2m)u(z).
oe2n T d oe2n T

neZ
The second property follows from

(pthss = [ Xm0 Gy
Y

€T pezd

D J uly + e G ) dy
ye

nezZd
= j u(z)e” @ Y(x) d.
zeR4

In particular

u%, vJ, do = f f e Ty (x o(z + n)e' @t 4o do
fcr€27r'ﬂ‘< # #>Li oe2nT JzeR4 ( ) Z ( )

nezd
- f u(z) Z v(x +n) f ™% do dx
zeR4 neZd oe2nT
= (2m)¢ f u(x)v(x) de.
xeRd
The proof is complete. O
If ue L'(R?) and ¢ € Li N L®(R%) then by Proposition 4.1 we have for all o € R?
<U§¢7¢>Li < Jul pr ey 191 poo (may -

If v is not assumed to be in L® but u € L*9 for some § > % (then L*9 = L') we have
a similar estimate. More generally, we have the following result.
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Corollary 4.2. Let k > 1. Let s € [0, g] and p = dg‘és € [2,+00]. Then there exists

C = 0 such that forue S and 1, € Lgo(27r’]I‘,L%£) we have

<U%,¢U>L§# <C ”u”LZ“S(Rd) H¢UHL‘;@(2N’H‘,L§#) :

LE(2xT)
Proof. The case s = 0, p = 2, simply follows from the Cauchy-Schwarz inequality and
Proposition 4.1. For the case s = ¢ and p = o0 we use again Proposition 4.1 and the

2
Cauchy-Schwarz inequality to write

<UU#7 ¢0>L2#

<[ @ 1@ @) ¥ ale)] da

<l g ( |1 3 o+ dy>

nezd

D=

S lull2oosg 1o llra, -

The general case follows by interpolation (we recall that for 6 € [0, 1] we have L>05d/2 —

(L%, L?#4/2) g and (L%, L) = L with 1/p = (1 —6)/2)). O

Remark 4.3. Notice that it is usual (see for instance Theorem 4.3.1 in [BLP78]) to
decompose directly ug, with respect to the basis of L%& given by the eigenfunctions for
the (selfadjoint) periodic problem under study (the Bloch waves). This strategy is used
in [OZP01] for the wave equation with constant damping. In this case, the eigenfunctions
of the wave operator are related to those of the Laplacian operator, which form a Hilbert
basis. The same strategy cannot be used here with a non-constant absorption index.

Let

0 wg!
— P
Ap (Pp —iap) (4.4)
(notice that all the results of Section 2 hold in particular when G = Gp, a = ap and
w = wp). For u e S and x € R? we can write

1 ix-o, 0 1 -0 po, o
Pyu(x) = 2n)d LG%T Ppe™7uly(z) do = 2n)i LE%T e o U () do, (4.5)

where for o € R? we have set

Py = e T Pae™? = —(div +ioT)Gp(x)(V + io).

Now let U = (u,v) € S x S. For 0 € R? and = € R? we set Ug(z) = (u‘;&(m),vf’;(x))
Then we write

1 )
AU = —— f e A US do, 4.6)
P (27T)d oe2nT # (

~1
Ay = < 0 wp )
Py —iap

The interest of the decomposition (4.6) of the operator Ap is that each A, has a
compact resolvent, hence its spectrum is given by a sequence of isolated eigenvalues of
finite algebraic multiplicities:

where

Proposition 4.4. Let o € R,

(i) Then A, defines an operator on H# X L%E with domain Hi X H# Moreover, it
has a compact resolvent.
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(i) Let z€ C. Then (A, —z) € X(Hi X H;};HH;/: X Li) has a bounded inverse if and
only if (Pg —izbp — z*wp) € Z(Hi,Lf%) has a bounded inverse, which we denote
by R,(z), and in this case we have

)l Ro(2)(ibp + zwp) Ro(z)
(Ar=2)"" = <wp + Ry (2)(izbp + 2%wp) 2R, (2) )" (4.7)
In particular, (A, —2z)~" estends to a bounded operator from Li X H#l to H;é X Li.
(i1i) Any z € Cy belongs to the resolvent set of A,.

Proof. e The operator Pg with domain H;é is selfadjoint on Li. As in the proof of
Proposition 2.1, we can check that for z € C the operator (Pg —izbp — 2?wp) indeed
has a bounded inverse, and that when R,(z) is well defined in .& (L%7 Hi) it extends
to a bounded operator from H;; to H#

o Let z € C. If Ry(2) is well defined, then we can check by direct computation that the
right-hand side of (4.7) defines a bounded inverse for (A, — 2)~!. Conversely, assume
that z belongs to the resolvent set of A,. Then for g € Liﬁ we set

=) ()

Ry(z)g=ue Hi

This defines a bounded operator from L;& to H;E Moreover, we compute (A, — z)U and
get,

and

(Py —izbp — Z2wp)u = g,
which proves that R,(2) is an inverse for (Pg —izbp — 22wp).
e Finally we observe that Hi X H# is compactly embedded in H# X Li, so A, has a
compact resolvent, and the proof is complete. O
For FeS xS and z € C, we have
1 .
-1 1T0 —1 o
_ F = — Fo d
o =278 = (o | "o = T i

where (A, — z)7! is as given by (4.7). The equality remains valid for any z in the
resolvent sets of A, and A, for all o € 27T.

4.2. Reduction to the contributions of small ¢ and of the first Bloch wave.
With the Floquet-Bloch decomposition we have somehow reduced the spectral analysis
of Ap to an eigenvalue problem for the family of operators A,, o € 27T. Because of
the non-selfadjointness of these operators, the corresponding sequences of eigenfunc-
tions do not form an orthogonal basis (and, in fact, not even a Riesz basis), but we
can show that the decay of I,(t)F is only governed by the contribution of ¢ close to
0 and of the “first” eigenvalue of the operator A,. This is the purpose of this paragraph.

We first observe that for ¢ €e R4, A e C and U = (u,v) € H;E X H;# we have

{(Pg — iAbp — A2wp)u = 0,

AU = \U
v = Awpu.

Proposition 4.5. The following assertions hold.

(i) If € Sp(Ay) for some o € 21T, then Im(\) <0 or A = 0.

(i) There exist v > 0, v2 > 0 and v € (0,min(1,72)) such that for o € B(r) (the
ball of radius r centered in 0) the operator A, has a unique eigenvalue \, with
|1A\o| <71 and all the other eigenvalues with real part in [—3, 3] have an imaginary
part smaller than —vys. Moreover the eigenvalue A, is algebraically simple.
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(iii) There exists o € (0,71) such that for o € 2rT\B(r) and X € Sp(A,) with |Re(\)| <
3 we have Im(\) < —vp.

Without loss of generality we can assume that the constant v > 0 used in the definition
of 'y, (see (3.5)) is smaller than ~.

Proof. @ Let o € 27T, A € Sp(A,) and let U = (u,v) € H;E X H;‘L# be a corresponding
eigenvector. By (4.8) we have

((Pg = iAbp — Nwp)u, u) =0 (4.9)
Taking the real and imaginary parts gives
(Pgu,u) +1m(X) (bpu,u) + (Im(A)? — Re(A\)?) (wpu, u) =0 (4.10)
and
— Re(\) (bpu, u) — 2Re(A)Im(X) (wpu, u) = 0. (4.11)

Assume that Re(A) # 0 and Im(\) > 0. By (4.11) we have bpu = 0, which implies in
particular that Pju — )\2wpu = 0. Since by is not identically zero, this also implies that
u vanishes on an open subset of R, Thus @ : & — €*®u(x) vanishes on an open subset
of R% and is a solution of Py — )\2wp22 = (0. By unique continuation we have @ = 0 and
hence v = 0. Then v = 0 and U = 0, which gives a contradiction. If Re(A) = 0 and
Im(A) > 0 then all the terms in (4.10) are non-negative. Again, we have bpu = 0 and
we get a contradiction. This proves the first statement and the fact that 0 is the only
possible real eigenvalue.

e Now assume that A = 0, so that A,U = 0. By (4.8) we have v = 0 and

(Gp(x)(V +io)u, (V + ia)u)Li = (PJu, U>L§¢ =0,

so (V +io)u = 0. Since u is periodic and non-zero, this is only possible if ¢ = 0 and
u is constant. Conversely, if u is constant we indeed have U = (u,0) € Hi X H# and
AsU = 0. This proves that 0 is an eigenvalue of A, if and only if ¢ = 0, and that 0 is a
geometrically simple eigenvalue of Agy. Since Ag is not selfadjoint, it may have Jordan
blocks, so we also have to prove that ker(A3) < ker(Ap). Let U = (u,v) € Dom(A3) be
such that A3U = 0. Since AoU € ker(Ag) there exists a € C such that AgU = (a,0),

which gives
-1, _
wy v = a,
Pyu —iapv = 0.

Then, since u is periodic, we have

0:J Ppu:iafbp.
T T

This implies that a = 0, and hence U € ker(Ap). Finally, 0 is an algebraically simple
eigenvalue of Ajg.

e The family of operators (As),cre 0n Ly is analytic of type B in the sense of Kato
(see [Kat80]) with respect to each oj, j € {1,...,d}. Since 0 is a simple and isolated
eigenvalue of Ap, there exist » > 0 and y; > 0 such that for ¢ € B(r) the operator
A, has a unique eigenvalue A\, in the disk D(0,v;) of C. Moreover, this eigenvalue is
algebraically simple. Let o € B(r). There exists 7, > 0 and a neighborhood V, of ¢
such that if s € V, and A € Sp(A5)\ {\s} with Re()\) € [-3,3] then Im(\) < —~,. Since
B(r) is compact, we can find oy,...,04 € B(r) such that B(r) c U?:l Vo;- Then we
set y2 = min {’ygj, 1<j5< k} Choosing r and 7; smaller if necessary we have o > 71,
which gives the second statement.

e Using the same continuity and compactness argument we can check that there exists
70 > 0 such that for o € 2rT\B(r) and X € Sp(A,) with |Re(\)| < 3 we have Im()\) <
—~0- This concludes the proof of the proposition. O




THE ASYMPTOTICALLY PERIODIC DAMPED WAVE EQUATION 19
For o € B(r) we set in .Z(H# X Liﬁ)

M= [ (-0 td

um \§|:’Yl

It is known (see for instance [Kat80]) that II,, is the projection on the line spanned by the
eigenfunctions corresponding to the eigenvalue A\, and along the subspace spanned by all
the generalized eigenfunctions corresponding to all the other eigenvalues. In particular,

Ran(Ilp) = {(a,0),a € C}.

Moreover it is a holomorphic function of o; for all j € {1,...,d} and maps H;# X Li to

H ;;H x H ;‘;E for all k € N. It also extends to a bounded operator on £4. We denote by
®( the constant function
1
. (0>.

Choosing r > 0 smaller if necessary, we can assume that II,®y # 0 for all o € B(r).
Then for o € B(r) we set

I1,®o

B, = 220

Then HCDUHE# =1 and A,P, = \;®, for all 0 € B(r). By (4.8), there exists ¢, € Hi
such that

_( o
o, = (Aawp%> . (4.12)

Moreover g = 1 and ¢, is a smooth function of o.

In the following proposition we show that in Ip(¢)F the important contribution is
given by A, for o small. For ¢t > 0 and F € § x § we set

~ 01(t)F 1 J —ithg iz
I,(t)F = = Ao T, FY, do. 4.1
o0 = (G05) = o [y RO (619
Proposition 4.6. There exists C' = 0 such that fort >0 and F € S x § we have
LOF-LOF| <ce|F|,.

Proof. Let F € S x § and p € (0,1]. We have

Oy — f f x(Re(2))e e (Ay — 2) L FG dodz.  (4.14)
) zel'y, Joe2nT

~ 2ir (2w

We write Ip(t)F = Li(t)F + I(t)F + I3(t)F, where I3(t)F is defined as the right-
hand side of (4.14) but with the integral over o € 27T replaced by an integral over
o € 2rT\B(r). For I (t)F and I>(t)F the integral is taken over o € B(r). In I;(¢)F (in
I5(t)F, respectively), the function Fg isreplaced by I, I (by (1 —HU)F;, respectively).

Given o € 27T, the integrand in (4.14) is a meromorphic function of z with |[Re(z)| < 2
(since x(Re(z)) = 1 in this region), and the poles are the eigenvalues of A,. Thus we
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can change the contour I';, in this region. By Propositions 4.5 and 4.1 we get

2
2

IO Fl5 <

f e J x(Re(2))e (A, — z)_ngE dzdo
oe2xT\B(r) Im(z)=—v

H
2

<

~

do

1 2
H#XL#

f x(Re(2))e™(Ay — 2)"LF dz
Im(z)=—v

~[7€27rT\B('r)

<o | |FgI2, do
oe2nT\B(r) #*
< e EZ
We have used the fact that the resolvent (A, —z)~! is uniformly bounded as an operator

from L4 to H # X Li. This is due to the continuity of this resolvent with respect to z and

o, by the compactness of the contour of integration, and the compactness of 27T\ B(r).
We similarly have

2
|LOF|3, <

f J x(Re(2))e e (A, — 2) 71 (1 — ly)Fg dodz
Im(2)=—~ JoeB(r)

H
<e | FI2.

Now let ¢ € CP(R, (—y2, —y]) be such that ¢(r) = — if |7| = 2 and ¢(7) € (=2, —71)
if |7| < 1. We set (see Figure 2)

= {T—i—i(ﬁ(T),TeR}.

Then by the residue theorem we have
1 1 o
LOF = ——f f x(Re(2))e e (N, — 2 “MI,F% dodz
( ) 2im (27T)d o€B(r) Jzel ( ( )) ( ) #
~ 1 1 Lo
=Ip,(t)F + —— f f x(Re(2))e e (N, — 2) I, F3 do dz.
i 2im (277)d oeB(r) Jzel #
We estimate the last term as above, and the proof is complete. O

Re(z) = —2 Re(z) = —1 Re(z) =1 Re(z) =2

Location of Ao for smeﬂl o

~

Location of the spectrum for large o
Location of spectrum for small o except Ao

FIGURE 2. The location of the spectrum of A, and the curve I.
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4.3. Analysis of the first Bloch wave for o small. Our purpose is now to estimate
Tp(t)F. For this we describe more precisely the properties of the eigenvalue A\, and the
corresponding eigenvector @, and eigenprojection Il, for o small. We recall that the
symmetric matrix Gy, was defined in (1.15).

Proposition 4.7. The symmetric matriz Gy, is positive and when o goes to 0 we have

7
Ao = o (Gno,0)ga + | |O0 ( o|? ). (4.15)
Moreover
soa=soo+i¢a+| 90(|a|2), (4.16)

where 1), € Li N L™ is a linear function of o which satisfies (1.13).

Proof. We first recall that A\, and ¢, are smooth functions of o, respectively in C and
in H;;E for any k£ € N. Moreover A\g = 0 and @9 = 1. For o € B(r) we have

— (div +ioT)Gp(z)(V +i0) 9o — iAsbpps — Aowpps = 0. (4.17)
Taking the inner product with ¢, gives
(Gp(@)(V +i0)pg, (V +i0)ps) = iAg (bpPo, 9o) = Ao (Wppes Po) = 0. (4.18)

We take the derivatives of (4.18) with respect to o, j € {1,...,d}, at point o = 0. Since
(bpwo, po) > 0 we see that the first derivatives of A, vanish. Thus, by Taylor expansion,
there exists a matrix () such that

Ao = —i (Qo,0) +O(|a?).

Since o — ¢, is smooth, we can define 1), € Li so that (4.16) holds. This defines a
linear function of o. Taking the linear part in (4.17) gives

—idiv Gp () (Ve + o) = 0.
This proves in particular that ¢, is a solution of (1.13). Similarly, (4.18) gives
(Gp(2) (Vb + 00). (Vi + 00)) — 5 (Q0,0) (b, ) = O(lo]*),

and we deduce

1
bn

(Qo,0) = (Gp(2) (Vg + 0), (Vips + 0)) = (Gno,0) .

Finally, since 1), is periodic its gradient cannot be the constant and non-zero function
—o. Therefore Vi, + 0 # 0 and hence (Gno, o) > 0. This concludes the proof. O

Corollary 4.8. There exist Ao > A1 > 0 such that for o € B(r)
Ay |o]* < Re(—idg) < Az of?,

and
<Gh07 U>Rd
bn

Now we describe more precisely the projection II,.

Arlo)? < < Agol?.

Proposition 4.9. There exists ¥, € L4 which depends smoothly on o € B(r) and such
that for o € B(r) and F € Ly we have

,F = (F, )., ®.

Ty = blh (bZ.P) . (4.19)

Moreover
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Proof. Let o € B(r). Since II, is the projection on the line spanned by ®, we have, for
all F'e Ly,

II,F = (II,F, ®,) ®,.
Since F — (II, F, ®,) Ly is a continuous linear form on L4 which depends smoothly on
o, the first statement follows from the Riesz representation theorem.

The adjoint of Ag in L4 is
0 P
AS = < -1 . p> .
w, iap
For F € Hi X H;# we have

(AoF, Wo) ., @ = Tl AgF = ApllF = 0.
This proves that ¥y € Dom(Af) and A5¥y = 0. We can check by direct computation
that this implies that there exists « € C such that Vg = « <b;)>. Since

1= <q)07\IJ0> = af bpa
T
we have o = by 1 and the proof is complete. O

Remark 4.10. Since F'— (Il F, ®5) ;- is also a smooth function in L(L5 x H#l, Ly)

we can also see ¥, as a smooth function of ¢ in Li X H;#

4.4. Comparison between the periodic wave equation and the heat equation.
In this paragraph we prove Theorem 1.3. Given F = (ug,iwuy) € S x S, we denote
by up(t) the solution of the heat problem (1.16)-(1.17). Our purpose is to compare the
solution up(t) of (1.9) with up (). We set
bpuo + wpur
Vo=
bn

and we denote by 0y the Fourier transform of vg. We first recall that the decay of uy(t)
is also governed by the contribution of low frequencies.

Lemma 4.11. Let r > 0 be given by Proposition 4.5. Then there exists ¥ > 0 such that
fort =1 we have in L?(R?)

1 i€~ (GnéEpa ~ 5t
wm(t) = G550 LGB(T)G €™ One 5 (6 de + (1) ool o gay
1 .t -
_ . 1,1;-5 <Gh£=§> d ~ —At
Vug(t) = @n)i LGB(T) ite*te tn B0 (€) d€ + O(e™) lvoll 2R -

) W . <tha§>Rd — 2 (Gn&)pa ~ —At
iwpOpup (t) = ——> f e E AT R T o RSy (£) dE + O (e [vol 2 gy -
i (2m)d &eB(r) bn ( ) FED
Proof. We prove for instance the second estimate. The others are similar. For ¢t > 1 and

z € R? we have
tPy 1

Py N
Vup(t) = Ve *n vy = (27r)dL Rd ice e G (¢) de.
€

By Corollary 4.8 we have

1£€ZI§€7i<Gh&£>1}b(§) df

2 A~
f < f €M |36 de.
£eRIN\B(r) £eRA\B(r)

The estimate then follows from the Cauchy-Schwarz inequality and the Plancherel equal-
ity. O
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Theorem 1.3 is a consequence of Propositions 3.3 and 4.6 together with the following
estimates. We recall that 6;(¢) and 62(t) were defined in (4.13). Moreover, we recall
that by density it is enough to prove Theorem 1.3 for Uy = FF € S x S.

Proposition 4.12. Let s1,s9 € [0, 2] and k > 1. Then there exists C = 0 which does
not depend on F € S x S and such that for t = 1 we have

1
101 F — un(t)| p2.nsy < C(t) 2~
IVOL()F — WV un(t)] ooy < C{t)”

1+2

IIF I s s

and

3
AOF — it Ol e < €107

Proof. For j e {1,2} we set p; = 72— € [2,+00]. Then pg € [1, +0] is defined by

28

1 1 1

—+—+—=1

bo pP1 P2

We begin with the last estimate. By Propositions 4.7 and 4.9, and (4.12), we have
1 ; L ((Gnoo)+0(ol*))
O2(t)F = f % n Fg, v Ao Wp Py do.
(2m)4 JoeB(r) (3 U>£# 7opTe

1 - GhO'G'
v1(t)=J 7T Fg, Ao Wppo do.
(27r)d oeB(r) < # U> pre
For g € § we have by Proposition 4.1
<€im.awp90ff’g>L2(Rd) = <wP(PU’gg‘#>L; ’

SO

‘(62(15)F —v1(t), 9) oz

1 — 4 (Gpo,0) ol3 - Y
- WLGB(” Aye tn' B (et(’)(l ") _ 1) <F#,\I’g>£# <wpgpg,g#>Li do

<[ ol ]| (55, )| (o) |
oeB(r)

< [ o eI O (kg )| o)
oeB(r)

Choosing r > 0 smaller if necessary we obtain
1i\ol
‘(92(75)17 = v1(t), 9) r2ray| < JGB( )t|"| | (Fg o) [ (wpes, 9% ) | do.
g T

By the Holder inequality we have

‘(GQ(t)F - vl(t):9>L2(le)

5 _thglol? o
o (T e IR CRPAT N )
If po = 0 (i.e. if 81 + s = 0) then
Aqlo|?
(tloyie ™, S L
Lo" (B(r))
And if pg < o0,
1
o2 2 Po s1ts
H(t’(ﬂ )g _tAq]o] ) _ tgf |m5p0 e,poA%\nI dn <t 22@ _ 1+ 2'
L& (B(r)) B(\/tr)
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By Corollary 4.2 we finally get in both cases

(0200 F = 01(8),9) 12 g
In L4 we have ¥, = ¥y + O(|o]) so, if we set
1 iv.c — 7 (Gno,o)
va(t) = J e % ‘’n TAFS, Uy AoWp o do,
( ) (27T)d oeB(r) < # >E# P

then we similarly obtain

s1+

52
2 Nglpzmss [Fl zrss -

< ()73

<U1(t) — Uz(t),g>L2(Rd) < JEB( : ’0'|2 e_tAﬂUP ’<wp(,’00’7g;é>| ‘<Fg£, U, — \Ifo>‘ do

- o o o \IIU -V
S J ’0"36 tAl‘ ‘2 ’<wp90g,g#>“<F#,O>‘ dU
oeB(r) |O-‘

_3_s1t

3 S2
S22 lglpamey [Fllgess -

Similarly,
i

™ (Gno,0) wp + O( |U|3)7

AcWpPo =

SO
3_51 +s9

S22 gl gz [F] grss

[(02(8) = v3(8), 9) 2 me

where we have set

i 1 o T L (Gno,0o) o
R b
vs(t) by (2m)4 LeB(r) coer (Gno, o) wp (Ff, Vo) do.

Finally, by (4.19) and Proposition 4.1 we have

(P %0) = 5o ({(w0)by) + (i(wp)5. 1)

_ blh . o—iT0 (bp(z)uo(z) + wpui () da
= G0(0).

With Lemma 4.11 we have |v3(t) — iwpdrun(t)| = O(e™7*|F| ), which concludes the
proof of the third estimate. For the first estimate, we proceed similarly except that
AsWp s is replaced by ¢,. For the second we start from

V0L (1) F — (271r)d LEB(T) pivo i ((Guo0)+0(lo ) (Fg. W5, (i095 + Vi) do.
By Proposition 4.7 and (1.14) we have
109y + Vo, =io + iV, + O(|o]*) = iW(z)o + O(|o]*), (4.20)
so we can proceed as above to get the second estimate and conclude the proof. O

5. LOW FREQUENCY ANALYSIS IN THE PERTURBED SETTING

In this section we prove Theorem 1.4. By Proposition 3.3, it is enough to estimate
the difference between Ijoy (t) and Ip(t) (defined by (3.8) and (4.1), respectively). Since
the perturbation breaks the periodic structure, it is no longer possible to reduce the
analysis to a family of problems on the torus. Here, we will deduce the time decay from
resolvent estimates. We recall that the contour I';, was defined in (3.5).

We start from

(Liow (t) — Ip(t))F = JR x(1)e IR (7 406, (7)) F dr,
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where .
%((.A — )t - (Ap — z)_l).
By partial integrations we obtain, for all k£ € N,

(Tow 1) = Tp()F = i

R(z) :=

JR efit(TJriGM(T))LZ (X(T)R( + i0,(7))) F d,

where

L= ;i1-+i2’(7)
o

We recall that (Lo (t) — Ip(t))F does not depend on p € (0,1]. However, if we assume
that the derivatives of 6, are bounded uniformly in p, the estimates given by this equality
are of the form

ut )

|(Tow (t) — Ip(t))F| < e—k sup sup HR(])(T + iGu(T))H )

% |r1<3 0<j<k
In .2 (L?(R%)), the resolvents blow up near 0, so we cannot simply let 1 go to 0 to get rid
of the exponential factor. However, it is standard in this kind of contexts that in suitable
weighted spaces some derivatives of these resolvents can be uniformly bounded. In this
section, we prove uniform estimates for the derivatives of R in weighted spaces. Then,
at the limit p — 0, this will give polynomial decay for the difference (Ijow (t) — Ip(t))F,
hence for the difference u(t) — up(t) as in Theorem 1.4.

For (3, € N¢ we set

. (3 0 0 0 10
@g :=<O 0>, @(1]::<0 1) and @8:=(0 0).

We recall that the solution e =AU of (2.4) is of the form (u(t), iwdyu(t)) where u(t) is

the solution of (1.1). Thus, for § € R, 3; € {0,1} and 3, € N¢ such that B; + [, < 1 we
have

e, = sbatu

L2,—6(Rd)

(recall that the £~%—norm is defined in Section 1.3). For 3, € N% we also set

~ [0 0 ~ 10
@Bw = 651 0 and @0 = |d£= 0o 1)

This odd notation will prove to be useful in the sequel.

5.1. Resolvent estimates in the periodic case. In order to prove estimates on the
derivatives of (A — 2)~! and of the difference (A — z)~! — (A, — 2)~!, we need more
information about the resolvent of Ap.

Proposition 5.1. Let 3 € {0,1} and B, B € N with B; + |8.] <1 and |B.| < 1. Let
$1,89 € [O, 2) and k > 1. Then there exist a neighborhood U of 0 in C and C' = 0 such
that for z€e Cy nU and m € N we have

O (Ap — )78,

‘ﬁ'E‘ B’D S S
<C(1+|z|5+ el el 4 ﬁQ(“mv.

Bﬂc j(LKaQ L~ n.sl)

Proof. We set & = /k. Without loss of generality we can assume that « is so close to
1 that K max(sy, s2) < %. We follow the same ideas as for the propagator. For this we
can still use the Floquet-Bloch decomposition. Thus, for o € R? we set

Gg: (o) = e_im'”@gf e,
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We similarly define éBa: (o). Let F,G €S x S. We can write

<@51(Ap ) FG>

@BI )(As — 2 “1=mg . (g F7, G, do
dLeQﬂI ) Bz( 4 #>£#

© I, @ Fj.GY, d B(z)F,G
= ot | Do e (OE OB, (FE, G do+ (BIE.G),
where B € £ (L) is holomorphic in a neighborhood of 0 in C and

<@§;(U)H0é5z(a)Fg,G;>£# - <Fgé,éﬁ~m (a)*\p(,>£# <@§j (a)cpg,G;;>£# .

By Proposition 4.7 and the fact that Im(z) > 0 we have
1 1
< 5 :
|)\O'_Z‘ A |O'| +|Z|

By Remark 4.10 and the expression of ¥ in Proposition 4.9 we have
- () _ B
Heﬁl(a) W, = o(\oH |).
And we recall from (4.12), Corollary 4.8 and (4.20) that

_ O( ‘0.’26t+|ﬁx| )

H@ﬁx

For j € {1,2} we set p; = (2d)/(d — 2ks;). Then we consider pg € [1,400] such that

1 1 1
—+ —+—=1.
Po D1 D2

By the Hélder inequality and Corollary 4.2 (applied with & instead of k) we get

‘<@§; (Ap —2) "0 F, G>£‘

_|_poppseviseieiae (Fg.85,(0)%,)|  [(0f(0)2,,65)
S 2 3
(Al |U| _|_|z|)1+m Lo |O-||/5z| L§2 |U|2ﬁt+|ﬁz‘ L{"l
|O_|26t+‘6w‘+|[§x|
< [El L2ms2 ey [ Gl L2ms1 ey
< 5 L2552 (R L4+®s1(R
Aol + =DM o ey v o
We have
’J|2ﬁt+|ﬁz|+‘51‘ 25t+|ﬁz‘+‘éz|_(1+m)

sup <1+ |7 2 )

oen(r) (A1]ol* + |21+

so the proposition is proved if s; = so = 0 and pyg = 0. Now assume that s; + so > 0.
Using polar coordinates in o we can write
|U|2Bt+|ﬁx|+|5~$|

> 04t do.
(Axfo]” + [z[)t+m

Po T 9(2Bs+1Bs|+|Bz)po
<
<, G

Lg"(B(r))
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If (28 + |Ba| + 1B2] —2(1 + m))po +d—1> —1 then this quantity is bounded uniformly
in z € C4 close to 0. Otherwise, the change of variables § = 1/|z|0 gives

|0.‘2/3t+‘/31‘+|6m| po

(Atlol* + |z])m

L5®(B(r))

<zzat+|ﬁz|+|zaz\>po+d (1+m)p \ﬁ 0(2B:+|Bz|+1Bz )po+d—1
<z

A1«92 + 1)(1+m)p0

In any case we can write the rough estimate

2/Bt+|/3m|+|333| 284 +|Ba|+1Bz|
‘O—’ 5 - 1+|Z‘ 1+m)+t7 2;0_5
m
(Al |U‘ + |Z’) LgO(B(T))
where _—
82(&— )(281+52)>0
(in fact we can take e = 0 if (26; + |Bz| + 1Bz — 2(1 + m))po +d —1 < —1). Since
d/po = K(s1 + s2), the conclusion follows. O

5.2. Resolvent estimates in the perturbed setting. In this paragraph we use the
estimate of the derivatives of (A, —2z)~! for z € Cy close to 0 to obtain (better) estimates
for the difference (A—2)~!—(Ap—2)~1. This will prove that we have the same estimates
for (A—2z)"! as for (Ap —2)" L.

Proposition 5.2. Let 8; € {0,1} and B, € N% with B; + |B.| < 1. Let 51,59 € [0, %) and
k> 1. Let n > 0. Assume that

d
kmax(sy, S2) + k1 < min <2,pg,pa + 1> . (5.1)
Then there exists C' = 0 such that for z € C with |z| <1 we have

0% (A= )71m — (A —5)71™)

Z(LK‘S27L‘,7N31)
<c(1+ o] 30+ 4R (tem).
We split the proof of this proposition into several intermediate results. We begin with
a remark which will be used several times in the proofs. It is based on the fact that in

the expression of the resolvent in Proposition 2.2 the lower row is, up to a term w, equal
to zw times the upper row.

Remark 5.3. Let v1,19 € L®. Then for z € C, we have

0 a1 (nw 0 riw 0 -1
<0 V2> (A—2)" = <1/2w 0> +z <V2w O> (A—2)"". (5.2)
This also holds with A replaced by Ap. In particular for §; e R and U € § x S we have

(0 2)a-a - p-aw

0 1y

L%
< HUHL*‘H + ‘Z| H( A - z) ! ( Z) 1)UH£—51 :

Now if we take the derivatives of (5.2) with respect to z we get for m > 1

(6 1) (a-am = a2y mp

0 1%}
S H((A —2)"" = (Ap — Z)_m)UHc—él
2l [(A=2)71" = (Ap = 2) 7)) U s, -

L7901
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We can apply this remark in particular to the operator © which select the component
iwdyu(t) in the solution of (2.4):

Lemma 5.4. Assume that the result of Proposition 5.2 holds when By = 0. Then it also
holds when B; = 1.

Proof. Assume that m > 1. By Remark (5.3) we have in £ (L£5%2, L7F51)
[01((A=2)77" = (Ap = 2) 7 ) | < [O5((A = 2)7" = (Ap —2) )]
+ 12l |05 (A = 2) 7™ — (Ap —2) 77|,

and the conclusion for 8; = 1 follows from the case B; = 0. We conclude similarly if
m = 0. O

After Lemma 5.4 it is enough to consider the case f; = 0. For this we will use
perturbation arguments. We set

Po = —div Go(l‘)v

Then we write

0 0 0 wl—w:t
= — p
Po- (9 0) wa my= (3 )

Notice that w=! — w;l has the same decay property as wg in (1.4).

where

We begin with the contribution of Py. For this we set
Notice that all the general results proved for A in Section 2 also apply for A

Lemma 5.5. In the setting of Proposition 5.2, if B, € N is such that |8, < 1 then
there exists C = 0 such that for z € C4 with |z| < 1 we have

~ ~ |Bz|+Ba|+s1+s
H@gz(A—z)—l@B ey 2—1).

3 <C’<1+|z|

$(£K527£7N51)
Proof. For z € C, we set
. -1
Rp(2) = (Pp — izbp(x) — 2*wp(2))

and
Ro(z) = (P — izbp(x) — ZQUJP(:U))_I

We observe from Proposition 2.2 that

OF(A-2)7'8;, = ()™ 0 Ro(2)0 ()™ . (53)

Z(L*(R%))

$(£n52’£71151)
We have a similar estimate with A and Ry (z) replaced by Ap and Rp(2), respectively.
Let 01,09 € [O,%). Let By, B2 € N¢ with |31 < 1 and |B2| < 1. For ¢ € S we have

HVR0(2)652 ()" 2

L2(R%)
S <G($)VRO(Z)5§2 (z)"2 ¢, VRo(2)0%2 (a) " ¢>
< (PaRo(2)0f ()" 6, Ro(2)08* () 7 6)

<¢, (x)~"72 0 Ro(2) 022 () "7 ¢>‘

+|( (b + 2Pwp) Ro(2)0 (2) 7 6, Ro(2)0 () "7 6 )

A
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hence

|V Ro(=)05 {a) "

Z(L*(R%))
3
L(L2(Rd
On the other hand, the resolvent identity gives

() "7 07 Ro(2) 02 (x) " = ()" O Rp (2) 072 () ™"
— (&)™ 9 Ry (2) PyRo(2)82 ()2

< | (@) 7" 0 Ro (205 ()~ Ro(2)05* ()~

1
+ 22
)

. (5.4)

Z(L*(R?))

Let 61,09 € [O, %) be such that ko1 + k62 < pg. We have

| (@)™ 08 Ry (=) PoRo(2)052 (@) ™

< | (@) 7 0 Rp () ()

‘<x>_”&1 VRo(2)0% ().

By (5.3) and Proposition 5.1 we obtain
| (@)™ 08 Ro(2)22 ()™

|81 +|B2|+o1+0 |B1|+o1+59—1 _
(1 ) (L) [ wRgoa 7]
(5.5)

We first choose a2 € (0,1) and 61 = 0. We apply this estimate with 8; = 82 and o1 = 09
on the one hand, with §; = 0 and o1 = 0 on the other hand. This gives

H ()72 0% Ry (2) 022 () ~H

|62‘+o'271

s(1+|z|ﬂ2|+°21)+(1+|z| z >Hv1~zo(z)agz<x>“2

and

HRO(Z)agz ()~

|82+ Go—
< (1+|zy E 2—1> (1412175 ) | VRo ()02 ()

Then (5.4) gives

1
2

|V Ro(2)35 ()"

|B2]|+02—1 |B2|+02—1
S <1+ En >+ (1+ Fs )‘VRo(z)ﬁfz () "oz

VRo(2)0%2 (z) "2 | .

oY
+ 2]

For z small enough this gives

|V Ro(2)02 ()"

‘B2|+o'271
< (1 + ’Z‘ 2 ) . (5.6)

Now we turn to the proof of

H ()" agz Ro(z)@fz ()2

|Bz]+1Bx|+s1+s
< <1 + z|+2“+“>. (5.7)

With (5.3), this will conclude the proof of the lemma. Notice that it is enough to
prove (5.7) when s; < 2 — |3,|. Indeed, the right-hand side does not really depend on
s1 =2 —|Bzl, so if (5.7) is proved for s; = 2 — || it remains true for greater values of
s1. Similarly, it is enough to consider the case | Bx| + s < 2.

First assume that |85 + s1 < 1. Then (5.7) follows from (5.5) applied with ¢; = 0
and &5 = max(0, |B,| + s2 —1). Then for |, + s1 € [1,2] we can apply (5.5) with &o = 0
and 61 = |fz] + s1 — 1 € [0,1]. The proof is complete. O
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Lemma 5.6. If 5, = 0 then the result of Proposition 5.2 holds with A replaced by A.
Proof. We begin with the case m = 0. The resolvent identity between A and Ap reads
(A=2) = (Ap = 2)7 = —(Ap — 2 Po(A - )"
= —(A—2)"Py(Ap — 2)7L.

= Go.jk(x) 0Y Le
730 _ Z @ej< Oyjbk( ) 0) ®0k7

1<j,k<d

(5.8)

We can write

where (e1, ..., eq) is the canonical basis in R?. For o1, 09 € [O, 4) such that ko + koo <

2
pG we obtain by Lemma 5.5

H@gw((ﬁ_ 2)7h = (Ap — z)_l)Hiﬂ(ﬁmQ . < <1 + ]z\W> (1 I |Z,”1+§2_1> .

If |Bz| +s1 =1 and sy > 1 we can apply this inequality with o1 = o9 = 0 to conclude.
If |Bz] + s1 = 1 we can take 09 = 0 and 01 = [Bz| +s1 — 1 +n. If s5 = 1 we can take
o1 = 0 and 092 = so — 1 + 7. Finally, if |8;] + s1 < 1 (then |Bz] = 0) and s2 < 1 we
choose o1 € [0,1 — s3] and 09 € [0,1 — s1] in such a way that
o1 + 09 = min(2 — 51 — s2,7).
This gives the case m = 0.
Then we proceed by induction on m. With (5.8) we can check that

(A=2) 17" = (1= (A= 2)7Po ) (Ap — 2) (A - 2)7™,

and
(A= = (g =2 = 3 (g — ) FPo(A— 2,
This gives =
(A=)t = (1 —(A- z)*lPo) ((Ap — )l i (Ap — 2) 1Py (A — Z)km1>
and hence -

(A=2)7"" = (Ap = 2) 7" = (A= 2)  Po(Ap —2)

(5.9)
The interest of this decomposition is that we only have factors for which we can use the
inductive assumption. We choose k € {1,...,m} and estimate

Ti(2) = (A= 2)7"Po(Ap — 2) 1Py (A — 2)F—m~ L,
We have

|Bz|+s1+o9—1 o1+59 F1+s9—1
@BIT H s 14+ T 1+ 5 —k 1+ ) —m+k
SOl P— 2 (L 12 7)1+ |2 )

where 01,09,61,09 € [0, %) are such that koy + koo < pg and k61 + k62 < pg. Then
we play the same game as above, except that we have four parameters to choose.

Assume that |3;| + s1 = 2k + 1. Then we can take o9 = 0, 01 = 2k, 62 = 0 and
o1 = |Bz| + 51 — 1 — 2k + n. Similarly, if so > 2(m + 1) — 1 we take 61 = 0, 9 = 2k,
o1 =0and02=32—2(m+1)+1+7].

Now assume that [8y| +s1 < 2k + 1 and so < 2(m + 1) — 1. If || + s1 < 1 (then
|Bz| = 0) then we take o9 = min(1—s1,n) and o1 = n—o9. If |5, +s1 = 1 then we take
o9 =0and o1 = |By| +s1—1+n. If s5 <1 we take 61 = min(1 — s9,n) and 69 = n—7.
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Finally, if so > 1 then we take 61 = 0 and 62 = so — 1 + 7. We can check that in any
case we have

|Ba|+s1+so+n
<1+ |7 2 (1+m)

H 0 m,kz(z) P52 L1

The other terms in (5.9) are estimated similarly. O

Remark 5.7. With Lemma 5.5 and Lemma 5.4 applied with ag = wyg = 0 we obtain
H(,Z - z)*I*mH <C (1 a7 <1+m>) . (5.10)

g(ﬁnsgVC—KSl)
It remains to add the contribution of Dy. We begin with an estimate of the powers

of (A—2)~L

Lemma 5.8. In the setting of Proposition 5.2 there exists C' = 0 such that for z € C;
with |z| < 1 we have

[(A—=2)"1 ),

q (£m327£—m31) < C <1 + ‘

Proof. The resolvent identity between A and A reads
(A—2)t=(A=2)" = (A—2)""Dy(A—-2)"". (5.11)

We can apply Remark 5.3 to the operator Dy. Moreover its coefficients decay according
o (1.4). Thus, if o € [O, %) and £ > 1 are such that ko < p,, we have by (5.10)

) 7" (A = 2) 7 () " (5.12)
<H@>“wﬁ—zrlwr“2

12 (@) 7 (A= )7 (@)

< (1) (1l + 12 ) A )72

If s1 = 0 we apply this inequality with some ¢ > 0. This gives the required estimate for
z small enough (which is enough since we know that the resolvent is uniformly bounded
outside some neighborhood of 0). Then we rewrite (5.12) with ¢ = 0 to deduce the case
s1 > 0. The lemma is proved when m = 0.

Then we proceed by induction on m. With (5.11) we can check that

—KS2 H

(A=2)" 1"~ (A-2 Z (A= 2) 7 Dy(A — )1 rE, (5.13)
k=0
For me N and k € {0,...,m} we set
T i(2) i= (A= 2)77FDy(A — 2)~17mFk, (5.14)

If Kk = m we obtain by Remark 5.3

H () ka( —Kso

H /-cs1 "’ ) 1-m <x>*1€52

2] () (A = 2) 71 (@) 7R

)™ (A = 2)7 )72

where 01,09 € [0, %) are such that
Kol + Koo < pg. (5.15)

If s < 2 we choose 09 = 0 and 07 = max(0,s1 — 2 — 2m). If s3 > 2 we choose 01 = 0
and o9 = s9 — 2. In both cases (5.1) implies (5.15) and we obtain by (5.10) and the
inductive assumption

H —KS1 ka ><x> KS2

<14 |o| e m) (5.16)
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For k € {0,...,m — 1} we use Remark 5.3 to write

H ()= Tm,k ()2

< @) (A=) T (@)

el | (@) 78 (A= 2) 71 ()

(5.17)

()5 (A = 2) T ()

‘<x>—mal (.A o z)—l—m+k <$>—H82

i

where, again, 01,09 € [O, 2) satisfy (5.15). If k€ {1,...,m — 1} we obtain (5.16) with
(5.10) and the inductive assumption as above (if sy < 2m — 2k we choose 09 = 0 and
o1 = max(0,s; — 2 — 2k), if s5 > 2m — 2k we choose 01 = 0 and o3 = s9 — 2m + 2k).
For k = 0 we get

(@)™ Tono(2) ()2

< (1 N ’2‘51252—(1-‘4-777, > <|Z| + |Z 2 ) H m71 Z)flfm <$>—K,82H ]
Finally,
[y (A= 2y ) e
< <1 N |Z‘s1;52—(1+m ) <|Z| + |Z 2 ) H m71 Z)flfm <x>fn32H )

If s; = 0 we conclude as for the case m = 0 with o7 = 0 and o9 > 0. Then if
s9 = 2 + 2m we conclude with 01 = 0 and 09 = sy — 2 — 2m. Now assume that
so < 2+ 2m. We choose o9 = 0. If s7 < 2 we conclude with o1 = 0. Then we proceed
by induction on the integer part of 3. If s; € (2j,2(j + 1)] for some j > 1, then we
choose 01 = 51 — 2 € (2(j — 1), 2j] to conclude. O

Finally the following lemma will conclude the proof of Proposition 5.2.
Lemma 5.9. The result of Proposition 5.2 holds if By = 0.

Proof. We start again from (5.13) and use the notation (5.14). We consider the case
ke {0,...,m — 1}. By an estimate analogous to (5.17) we obtain
—(m—k))

< <1-+!z“@”+?+ﬂ2_(LH0> (
—(1+m—k)>

|Bxl+s1+og
e (L o 20 (1

where &1, 09,01,09 € [0, g) are such that k61 + ko2 < p, and ko1 + Koy < pg. Choosing
suitably these coefficients in the same spirit as above we get the estimates for the con-
tributions of Ty, x(2) for k € {0,...,m — 1}. The case k = m is similar, and the proof is
complete. O

@) O Ty (=) ()™

9

5.3. Energy decay. In this final paragraph we use the resolvent estimates of Propo-
sition 5.2 to prove Theorem 1.4. We recall from [MR] the following lemma. See also
[Dew16].

Lemma 5.10. Let K be a Hilbert space and let I be an open bounded interval of R. Let
v=0,v9>vand C >0. Let p € CF(I,K) and ¢p € C*(1,C). Assume that for m e N
with m < vy + 1 and 7 € I we have

Hw(m)(T)H’C <C (1 I |T’y0_1_m>

pr)|<C and (0] =

Ql~
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Then there exists ¢ = 0 which only depends on I, v, vy and C such that for all t = 0 we
have

Now we can finish the proof of Theorem 1.4.

J efitw(T)cp(T) dr
I

<c(t)Vexp <t sup Im(¢)> .

K

Proof of Theorem 1.4. It is enough to prove the result for s close to 1, so without loss
of generality we can assume that (5.1) holds. By density it is enough to prove the result
for Fe S xS. Let pe (0,1]. By Proposition 3.3 it is enough to estimate the difference
between Ijoy (t) and Ip(t). We recall that Iioy(t), Ip(t) and I'), were defined in (3.8),
(4.1) and (3.5), respectively. We have

05 (Tow(t) — Ip(t))F
1

=57 ). X(r)e TN (A — (1 +i0,(7)) ™ = (Ap — (7 + i, (7)) ") Fdr.

We can assume that the derivatives of 6, are uniform in p € (0,1]. Then, by Lemma
5.10 and the estimates of Proposition 5.2 (with n replaced by 7 > n which still satisfies
(5.1)) there exists ¢ = 0 which does not depend on F' € § x S, p e (0,1] or ¢ = 0 such
that

|Bx| _s1+s2 _n

|05 (o (1) — L) E| ., < celt ()5 =524 ),

Then we let © go to 0, and the conclusion follows. (|
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