Convergence of the wave equation damped
on the interior to the one damped on the
boundary

Romain JOLY

Université Paris Sud,
Analyse Numérique et EDP, UMR 8628
Batiment 425,
F-91405 Orsay Cedex, France

Romain.Joly@normalesup.org

Abstract : In this paper, we study the convergence of the wave equation with variable
internal damping term v, (x)u; to the wave equation with boundary damping v(x) ® dzcoqts
when (v,(x)) converges to y(x) ® dzeoq in the sense of distributions. When the domain
Q in which these equations are defined is an interval in R, we show that, under natural
hypotheses, the compact global attractor of the wave equation damped on the interior con-
verges in X = H'(Q) x L2(Q) to the one of the wave equation damped on the boundary, and
that the dynamics on these attractors are equivalent. We also prove, in the higher dimen-
sitonal case, that the attractors are lower-semicontinuous in X and upper-semicontinuous

in H'=5(Q) x H*(Q).

Keywords : damped wave equation, boundary damping, attractor, stability,

perturbation, Morse-Smale property
AMS Codes (2000) : 35B25, 35B30, 35B37, 35B41, 35L05, 37B15.



1 Introduction

This article is devoted to the comparison of the dynamics of the wave equation damped
in the interior of the domain 2 with the dynamics of the wave equation damped on the
boundary of €2, when the interior damping converges to a Dirac distribution supported by
the boundary.

One of the physical motivation is the following. We consider a soundproof room, where
carpet covers all the walls. This situation is modeled as follows. Let €2 be a smooth
bounded domain of R? (d = 1,2 or 3) and let v be a non-negative function in L>°(99) (the
effective dissipation of the carpet at a point of the wall). The propagation of waves in the
room is modeled by the wave equation damped in the boundary

ug(x,t) = (A = Id)u(x,t) + f(x,u(x, b)), (x,t) € QxR
Qu (2, t) +y(x)u(z, 1) = 0, (x,t) € 00 x Ry (1.1)
(w, ug)jmo = (ug, u1) € H(Q) x L*(Q)

Notice that, in this model, the waves are not dissipated in the interior of the room but
instantaneously damped at each rebound on the walls. This corresponds to a ponctual
dissipation of the form ~y(z) ® dycaq, Where d,coq is the Dirac function supported by the
boundary. Of course, this is an approximation of the reality, as the carpet has some
thickness. Thus, we can model more precisely the propagation of waves in the soundproof
room by the equation

(2, 1) + Yo (2)ug(2,t) = (A — Id)u(z, t) + f(z,u(z, b)), (x,t) € Q xRy
Lu(z,t)=0, (r,t) €00 xR, (1.2
(w, ug) =0 = (ug, u1) € H'(Q) x L*(Q)

where v, is a bounded function, which is positive on a small neighborhood of 92 and
vanishes elsewhere.

The purpose of this paper is to study the relevance of the model equation (1.1), that is to
understand in which sense the dynamics of Equation (1.2) converge to the ones of Equation
(1.1) when 7, converges to Yoo = V() ® dzecoqn in the sense of distributions. This paper
is also an opportunity to present in a different way some classical proofs on stability of
gradient Morse-Smale systems.

Both equations have been extensively studied, we cite for example [8], [10], [14], [23],
[40] and [45] for the wave equation with internal damping (1.2) ; and [9], [11], [29], [31],
[32], [44] and [46] for the wave equation with boundary damping (1.1). However, the con-
vergence of the dynamics of Equation (1.2) to these of Equation (1.1) has apparently not
yet been studied. The only work in this direction is the convergence of the internal control
of the wave equation towards boundary control in the one-dimensional case (see [13]). In
this paper, we have chosen to focus on the convergence of the compact global attractor of



(1.2) to the one of (1.1), when they exist, and on the comparison of the respective dynamics
on them. Indeed, the compact global attractor, which consists of all the globally bounded
solutions on R, is somehow representative of the dynamics of the equation. We note that
the study of convergence of attractors for other less regular perturbations is classical ; the
main tools can be found for example in [19], [3], [4] and [41].

We introduce the spaces X = H}(Q) x L?(Q) and X* = H!™*(Q) x H*(Q2) (s € R). In the

general case, we are able to prove results similar to the following one.

Let 2 be a smooth bounded domain of R?, let Vo = deco0 and v, (x) = n if dist(x, 9Q) <
1/n and 0 elsewhere. Let f € C3(Q2 x R,R) be such that sup,.q, lim SUD|y|—too @ <0
and that there exist two constants C' > 0 and p € Ry so that [f,(z,u)| + [f,(z,u)] <
C(1+ |ulP) for (z,u) € Q x R.

Theorem 1.1. Let Q, v, Yo and f be as described above. Then, Equations (1.1) and (1.2)
have compact global attractors Ao, and A, respectively. Moreover, the union of the attrac-
tors (Unenuftoo}An) s bounded in X and the attractors (A,) are upper-semicontinuous at
Ao in X%, for any s > 0, that is,

inf ||U, — Usl|x-s 0.
e, et 10 = b =

If all the equilibrium points of (1.1) are hyperbolic, the attractors (A,) are lower- semicon-
tinuous in X at An,.. Moreover, the upper and lower semicontinuity can be estimated in
the sense that there exists § > 0 such that

1
max (Uilelgln Uoirel-aoo [Un — Usol| x5 ; Uoiléaoo Uirelgn |Uso — UnHX) < o
In general, we cannot prove upper-semicontinuity in X because the perturbation is too
singular. Let A, and A, be the linear operators associated respectively with the equations
(1.2) and (1.1). The perturbation is not regular in the sense that e»! does not converge
to e=! in £(X). However, we can prove that, in general, A-1 converges to Al in £L(X)
and that this convergence of the inverses implies convergence of the trajectories in X ~° for
any initial data in X, and convergence of the trajectories in X if the initial data (ug,u)
are bounded in a more regular space X* (s > 0).
The proof of the lower-semicontinuity in X uses as main arguments the gradient structure of
(1.1) and (1.2), as well as the convergence of the local unstable manifolds of the equilibria.
To prove this property, we identify the local unstable manifolds with local strongly unstable
manifolds and show the continuity of these manifolds with respect to the parameter n.
Although our perturbation is irregular, we can prove lower-semicontinuity in X due to the
regularity of the local unstable manifolds of the equilibria of the limit problem.
The upper-semicontinuity instead cannot be shown in X in general. Indeed, we know that
the union U,.4, is bounded in X, but we do not know if it is bounded in a more regular



space X*®. Thus, for initial data in U,.4,, we are able to compare the trajectories only in
the norm of X%,

To prove upper-semicontinuity in X, we need to bound U,A,, in X* for some s > 0. The
main way to prove this property is to show a uniform decay rate for the semigroups, that
is that there exist constants M > 0 and A > 0 such that, for all U € X and t > 0, we have

vn €N, |e'U|x < Me™M||U]x - (1.3)

Such estimate is well-known for fixed n. However, the methods for proving the exponential
decay for fixed n often give constants M and A\ depending on ||7,||L=, or are based on a
contradiction argument. Thus, they are not adaptable to the proof of a uniform estimate
in the case of our irregular perturbation, where ||v,||L~ goes to +00. In dimension two
and higher dimension, the uniform bound (1.3) is not known to hold, except for some very
particular examples presented here. In the one-dimensional case, we give necessary and
sufficient conditions for (1.3) to hold. The proof uses a multiplier method and is inspired
by [13] and [23] (other methods are also possible, see the result of [2] in the appendix).
Thus, in dimension one, we can show a more precise result, which is typically the following.

Let Q =]0,1[, 700 = 20,—0 and v,(z) = 2n if 2 €]0, L[ and 0 elsewhere. Let f €
C*([0,1] x R, R) be such that sup,cq limsup,,_ ., @ < 0. Notice that we do not choose
Yoo = O0z—o because, with this dissipation, Equation (1.1) does not satisfy the backward
uniqueness property. Without backward uniqueness result, we cannot properly define the

Morse-Smale property (see [11] and the remarks preceding Theorem 2.12).

Theorem 1.2. Let Q, v,, Yoo and f be as described above. Then, Equations (1.1) and
(1.2) have compact global attractors A, and A, respectively. Moreover, the union of the
attractors (UpenuitooyAn) is bounded in X* for s €]0,1/2[. As a consequence, the attractors
A, are upper-semicontinuous at A in the space X.

If all the equilibrium points of (1.1) are hyperbolic, then the sequence of attractors (A,,) is
continuous in X in the sense that there exists 6 > 0 such that

1
max(sup inf ||U, —Usx|lx; sup inf HUOO—UHHX) <.
n n

Un€An Uo€Ax Uso€As Un€A

In dimension one, we can even go further and compare the dynamics on the attractors
A, and A,. A part of this comparison is described by the notion of equivalence of
phase-diagrams. Let S(¢) be a gradient dynamical system which admits a compact global
attractor with only hyperbolic equilibrium points. If E and E’ are two equilibrium points
of S(t), we say that £ < E’ if and only if there exists a trajectory U(t) € C°(R, X) such
that

lim U(t)=FE" and lim U(t)=F .

t——o00 t—+00



The phase-diagram of S(t) is the above oriented graph on the set of equilibria. Two phase-
diagrams are equivalent if there exists an isomorphism between the set of equilibria, which
preserves the oriented edges.

It is proved in [19], [37] and [38] that the stability of phase-diagrams is related to the
Morse-Smale property. We recall that a gradient dynamical system S(t) has the Morse-
Smale property if it has a finite number of equilibrium points which are all hyperbolic and
if the stable and unstable manifolds of these equilibria intersect transversally. The result
of [19] says that if Sy(¢) is a dynamical system, which satisfies the Morse-Smale property,
and if S.(¢) is a “regular” perturbation of Sy(¢) such that the compact global attractors
of Sc(t) are upper-semicontinuous at ¢ = 0, then S.(t) satisfies the Morse-Smale property
for € small enough and its phase-diagram is equivalent to the one of Sy(t). Unfortunately,
our perturbation is not regular enough for a direct application of [19]. However, using the
smoothness of the attractors, we can adapt the proof of [19] to show the following result.

Theorem 1.3. Let Q, Vu, Yoo and f be as in Theorem 1.2. If the dynamical system gen-
erated by (1.1) satisfies the Morse-Smale property, then, for n large enough, the dynamical
system generated by (1.2) satisfies the Morse-Smale property and its phase-diagram is equiv-
alent to the one of (1.1). Moreover, there exists a homeomorphism h defined from A, into
Aso which maps the trajectories of S,(t)a, onto the trajectories of Soo(t)|a.. preserving
the sense of time.

We notice that (1.1) satisfies the Morse-Smale property for a generic non-linearity f
(see [26]). We also enhance that we give a proof of Theorem 1.3 presented in a way, which
is different from [19], and, which extensively uses the gradient structure of (1.1) and (1.2).

Of course, in this paper, we do not only consider the particular situations of Theorems
1.2 and 1.1, but more general cases. The general frame, the main hypotheses and the
main results are stated in Section 2. The abstract result of convergence for semigroups
of contractions and the study of the convergence of the trajectories of Equation (1.1) to
those of Equation (1.2) are given in Section 3. Continuity of the local unstable manifolds
and of part of the local stable manifolds as well as stability of phase-diagrams are studied
in Sections 4 and 5 respectively. In Section 6, we give concrete conditions under which the
inequality (1.3) holds. In Section 7, we describe examples of applications. Finally, in the
Appendix, we state the above-mentionned result of [2] and study another one-dimensional
case.

Acknowledgements : I am very grateful to Genevieve Raugel for her teaching and her
help during the writing of this paper. I also thank Luc Robbiano, Marius Tucsnak and
Emmanuel Trélat for fruitful discussions.



2 Setting of the problem and main results

In this section, we first introduce the notation. We immediately prove a first result of
convergence, without which nothing can be done. This leads to a condition, which will be
implicitely assumed in all what follows. Finally, in the last part of this section, we put
together the main hypotheses, which will be used, and state the most important results.

2.1 The abstract frame

We introduce an abstract frame for Equations (1.1) and (1.2). This has two purposes. The
first one is to give results, which concern a larger family of equations than (1.1) and (1.2)
(for example, other boundary conditions can be chosen). The second advantage of the
abstract setting is to gather Equations (1.1) and (1.2) into a common frame, which makes
the comparison easier.

Let © be a smooth bounded domain of R? (d = 1,2 or 3) and let wy be a non-empty
smooth open subset of 9Q2. We denote by wp the largest open subset of 9 \ wy.
If wp # 0, we set B = —Apc where Apc is the Laplacian with Neumann boundary
condition on wy and Dirichlet condition on wp. If wy covers the whole boundary, we set
B = —Ap + Id where Ay is the Laplacian with Neumann boundary condition. In all the
cases, B is a positive self-adjoint operator from D(B) into L?((2).
Let (Mg, px) be the set of eigenvalues of B and corresponding eigenvectors normalized in
L%(Q2). We denote D(B*?) the Hilbert space

D(B2) = {u="3"cupn / [ullyperey = 3 lenlPAt < +o0}

We notice that for s € [0,1/2[, D(B*/?) = H*(Q) and for s €]1/2,5/4], D(B*/?) = H*(Q) N
{u € H*(Q)/uy,,, = 0} (see Proposition 2.1). For larger s, the domain of B*/? can be less
simple due to the regularity problem induced by mixed boundary conditions. We set

X = D(BY?) x L3(Q) ,

endowed with the product topology. We also set X* = D(B(*%)/2) x D(B*?). Let v be
a non-negative function in L*°(wy), which is positive on an open subset of wy. We set
Yoo () = Y(x)0zewy- Let (7n)nen be a sequence of non-negative functions in L°°(£2), which
are positive on an open subset of {2 and which converge to 7., in the sense of distributions,

that is that
Vo € C°(RY), /%90—>/%o<p=/ Yo .
Q WN

For each n € N, we introduce the linear continuous operator I',,, defined from D(B'/2) into
D(BY?) by I, = B7}(v,.). We also introduce the operator I's, defined from D(B'/2) into



D(B'?) by

(A —kld)Twu=0 onf
Yu € D(BY?), T'wu is the solution of 2T u = y(z)u on wy
I'ou=20 on wp

where k = 1 if wp = 0 and x = 0 if not. We remark that
Y €N, Yo, u € DB, < Tugld >pvm= [ 1m0
Q
and
Voo, € D(B'?), < Totplth >p(p/2)= / Yo .
a0
We set

[ so=1/2 ford=1ord=2
07 1 so=1/4 ford=3

(2.1)

(2.2)

Proposition 2.1. For alle > 0, s € [0, s0[ and n € NU {+oc}, the operator T, can be
extended to a continuous linear operator from D(B*tY4) into D(B+2)/2). In particular,

T, is a compact non-negative selfadjoint operator from D(BTY/4) into D(BY/?).

Proof : The proposition follows from the regularity properties of the operator B. If
Wy NWp = 0, then the regularity is clear since D(BUF9/2) = {u € H'**(Q)/u,,, = 0}
if s < 1/2 for any d. If we have mixed boundary conditions with Wy Nwp # 0, then the
regularity is more difficult to obtain. In dimension d = 2 (resp. d = 3), we refer to [16]

(resp. [12]).

For all n € NU {+o0}, let A,, be the unbounded operator defined on X by

(e ()= (onlinn )

D(An):{<:)eX/ v € D(B'?) andu+anED(B)} .

We enhance that, if n is finite, A,, is the classical wave operator

0 Id

Vn € N, A":<—B N

) , D(A,)) = D(B) x D(BY?) .

OJ

Using the Hille-Yosida theorem, one shows that the operator A,, generates a linear C°—se-

migroup e4n?

abstract frame). In particular, A, is dissipative since

VU = (u,v) € D(A,), <AUU >x=— <Tpolv >ppys<0.

of contractions (see [29] for n = 400, see also [26] for a proof in the given

(2.3)



For U = (u,v), we set

Pﬂ0:<ﬂ£m). (2.4)

We are interested in the convergence of the following family of equations, when n goes to
400

{M:AJ+FW) (25)

U|t:0 =Uye X

We first introduce conditions so that the above equations are be well-posed.
In the whole paper, we assume that the non-linearity f satisfies the following hypothesis.

(NL) f €C*(Q x R,R) and if the dimension is
d=2 there exist C' > 0 and « > 0 such that
| (W)l + [l (, 0)| < O+ Jul®) -
d=3 there exist C' > 0 and « € [0, 1] such that
[z, w)] < C(L+ [ul®) and | £, (2, w)] < C(1+ [ul**) .

Since the regularity of f is not the main purpose of this paper, we choose to state Hypoth-
esis (NL) in a simple but surely too strong way. For example, the condition f € C? could
be relaxed to the condition f € C* with Holder continuous derivatives. We can also assume
an exponential growth rate for the non-linearity if d = 2 (see [21] or [5]). We notice that,
for most of our results, weaker hypotheses on f are sufficient. For example, the critical
case of a cubic non-linearity in dimension d = 3 is studied in [27].

To obtain global existence of solutions and existence of a compact global attractor, we also
need to assume a dissipative condition for f, for example,

(Diss) sup lim sup f(z,u)
=9 |u‘~>+oo (%

<0.

Classical Sobolev imbeddings (see for example [1]) show that Hypothesis (NL) implies the
following properties (see Chapters 4.7 and 4.8 of [17] for a proof).

Lemma 2.2. Assume that Hypothesis (NL) holds. Then, there exists a positive number p
such that for any u, v in HY(2), we have

1f (2, w) = f(@,0)[lee < OO+ [lullgn + vl [l = vlla -

Moreover, if B is a bounded set of HY(Q), then {f(z,u)|u € B} and {f!(x,u)v|(u,v) € B>}
are bounded subsets of H?(2), where o €]0,1[ when d =1 or d = 2 and o €]0, 52 when
d = 3. In addition, we have

Vu € B, ||f(z, u)llae < Collullm and || £ (z, w)vllas < Collvllrr



where the constant C, depends on o, except if d = 1.
In particular, F : (u,v) € X + (0, f(x,u)) is of class CoN(X, X) and is a compact and
Lipschitz-continuous function on the bounded sets of X.

Using a classical result of local existence (see [39], Chapter 6, Theorem 1.2), we de-
duce from Hypothesis (NL) that for each n € NU {+o0}, Equation (2.5) generates a local
dynamical system S,,(t) on X.

Proposition 2.3. If f satisfies (NL), then for all M > 0 and K > 0, there ezists a time
T > 0 such that, for all n € NU {400} and Uy with ||Up||x < M, Equation (2.5) has a
unique mild solution U, (t) = S, (t)Uy € C°([0,T], X), which satisfies

Vi e [0,T], |U.(t)]lx <M+ K .

Moreover, there exists a constant C' > 0 such that for all Uy and Uf with |Up||lx < M and
Ul x < M we have

Vn € NU {400}, Vt € [0,T], ||Sn(t)(Uy — U |lx < Ce||Us — Uj|lx -

The hypothesis (Diss) implies global existence of trajectories, that is that S, (t) : X — X
are global dynamical systems.

Proposition 2.4. Assume that f satisfies (NL) and (Diss). Then, for any bounded set B
of X, for anyn € NU{+oo} and for any Uy € B, S,,(t)Uy (t > 0) is a global mild solution
of (2.5) and is uniformly bounded in X with respect to t and Uy.

Proof : For U = (u,v) € X, we set

o) = 5101~ [ [ rw.cac. (2.6)

From (2.3) and the density of D(A,) in X, we deduce that the functional ¢ is non-
increasing along the trajectories of the dynamical systems S, (t) (n € NU {+oc}). Indeed,
let Uy € D(A,) and U(t) = (u(t),v(t)) = S,(t)Uy, we have

to

O(U(ts)) — BU(H)) = / L A UMD U >x dt = — / < Too(8)[0(t) > prsiy< 0 .

t1 t1
(2.7)
Hypothesis (Diss) implies that there exist two positive constants C' and p such that

f(z,u)u < C — pu® and /u f(z,Q)d¢ < C — pu? . (2.8)
0



So, for any Uy € B and any positive time ¢ such that S,,(¢)U, exists, we have
1
§||Sn(t)UO||§( — C < 9(S,(t)Uo) < 2(Vo) -

Sobolev imbeddings show that ®(Uj) is bounded uniformly with respect to Uy € . Thus,
the trajectories cannot blow up and are defined and bounded for all times. 0

For U(t) € C°([0,T], X), we can also consider the trajectory V,(t) = DS, (U)(t)V, of
the linearized dynamical system DS, (U) along U, that is the solution of

{ OV (t) = AV, (t) + F'(U(t))Va(t)

Vo (0) = Vp € X (2.9)

Due to Lemma 2.2, W € X —— F'(U)W is locally Lipschitzian and Proposition 2.3 is also
valid for DS, (U)(t). Moreover the trajectories DS, (U)(t)Vy exist for all ¢ € [0,T] since
DS, (U)(t) is a linear dynamical system.

2.2 Convergence of the inverses

If the inverses A, ' do not converge to AZ!, then one cannot hope any convergence result,
since we cannot even ensure that a part of the spectrum of the operators is continuous when
n goes to +00. That is why, we immediatly show that this convergence holds in natural
situations. In the rest of the paper, this convergence of the inverses will be assumed.

A simple calculation shows that A, is invertible of compact inverse and that A ! is given

by
v(lf)ex, An1<z>:(_P"“;Blv) . (2.10)

We present here a typical situation. .
Let 6 be a bounded open subset of R9~! with a boundary of class C>. We set Q =]0, 1[x6.
Let v be a nonnegative function in .°°(#) and let ~,, be a sequence of nonnegative functions

in L°°(Q2), which converges to v ® d,—¢ in the sense of distributions, that is that

Vi € C*(RY), /Qvn(w,y)so(x,y)dxdy — /ev(y)w(O,y)dy-

We assume moreover that

sup (”y(y) - /Olvn(x,y)dw

y€eoh

+/01%(;,;,y)\/mdx) —0. (2.11)

Notice that Hypothesis (2.11) is always fullfilled in the one-dimensional case d = 1. We
have the following result.

10



Theorem 2.5. Let Q be a bounded open subset of R%. Assume that there exists a covering
D1,...,Q, of Q such that the description of the dissipations v, on Q; is C*—diffeomorphic to
the typical situation described previously. Then, there exists a sequence of positive numbers
(¢n) converging to zero such that

Vi € H'(Q), [|(Too = L)l paiz) < callllen - (2.12)
As a consequence, At converges to ALl in L(X).

Proof : We recall that, on D(B'/?), the norms ||.||pgi/2) and ||.[[m are equivalent. We
have to show that, for all ¢ and 1 in D(B/?), there exists a sequence of positive numbers
(¢n) converging to zero such that

< (Too = Tn)@lY > p(prrz) < callollan 9l |

that is that
/ ot — / ot < callila [l - (2.13)
WN Q

Clearly, it is sufficient to prove (2.13) in the typical situation introduced above and with

smooth functions. Let ¢ and ¢ be two functions of C*(2), and let

I, =

[rwe0. w004 - [ %<x,y>so<x,y>¢<az,y>dasdy' |

0 Q

We have I, < J, + K,,, where

o= | [0 (200 - [t )

and
K, =

[ et ).~ 00,0000, )y

Let

+/017n(x,y)\/mdl“) :

Using the control of the norm IL?() by the norm H!((2), we obtain

d, = sup ('v(y) - /Ol%(x,y)dx

y€eo

In < dlplm || ][gr -

For the second term, we write

Ky < | fo (@ y)e(z,y)(@(,y) = $(0,y))dxdy| .10
+ [ Jo w(@, 1)1 (0, 9) (p(x, y) — (0, ))dady] . '

11



We deal with the first term of (2.14) by using the Cauchy-Schwarz inequality

K, Q%(w,y)w(x,y)(@/}(x,y) - w(O,y))dxdy’

T oY

Q%(ﬂc,y)w(x,y) (

0

55 & y)dS) d:vdy'
z

< [l v ( | |5 2d§>1/2dxdy
< | ( / 124 2d5>1/2 (;‘fop o€, y)|> ( / 1%<x,y>ﬁdx) dy
gdn/e</0 2d€>1/2 <§21]101?1[|90(£,y)|> dy .

Using the control of the L>°-norm by the H!-norm in the one-dimensional space, we find

i)

K w/(/ ?ﬁ(x,yfdx)m </1go(x,y>2+)aj<x,y>2da:>l/2dy
<d, (/Q g—i(%y) dwdy) (/wayl2 ' (2,9) dxdy>1/2

< dullpllm [l -

Applying the same argument to the second term of (2.14), we complete the proof of the
estimate (2.13).

Thus, we have shown that I',, converges to I's, in £(D(B'?)). From (2.10) and (2.12), we
deduce that A1 converges to AZ! in £(X). O

To show that the natural Hypothesis (2.11) is necessary, we give a counter-example to
Theorem 2.5 when (2.11) is omitted.
Let Q =]0,1[x] — 1,1[%. Let

n ifo<z<i
Yolz,y) = n? 1f1<x< 1 |y|<—

0 elsewhere

We notice that -, converges to v = d,—o in the sense of the distributions. Let ¢, (z,y) be
the function with support in the ball B of center (2 NG 0,0) and of radius R = 2\1/5 with

12



on(r,0) = %nl/‘l —rn

=0

=N
/ ™ Un'2 Y

y=n

Un
In the support of ¢,, the norm of the gradient of ¢, is n%*, so ||¢|m ~ 1. We have
J Yool ion]® = 0 and
[t~
So I',, does not converge to 'y, in £(D(B/?)).
Using the same arguments as in the proof of Theorem 2.5, we obtain the following property.

Proposition 2.6. We assume that the same hypotheses as in Theorem 2.5 hold. Let
% > s > 0. There exists M independent of n such that

Vn € NU {+oo}, YU € D(A,), ||U|xs < M||U||pca,) -

Proof : Assume that the proposition is not satisfied. Then, there exists a sequence
Ui = (ug,vy) such that

1 U]

xs =1 and [|Ul[pea,,) — 0.

This implies that vy — 0 in D(BY?) and Buy, + v, vx — 0 in L2(2). If we prove that
Y, Uk — 0 in D(BH9/2) then we will have uy, — 0 in D(B1+)/2). But the properties
ur — 0 in D(B1*#)/2) and v, — 0 in D(BY/?) contradict the fact that ||Ug|xs = 1.

It remains to show that ~, vy — 0 in D(B149/2). Let p € D(B1~/2) we have

2
' / | < / 002 / il (2.15)
Q Q Q
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As v, — 0 in D(BY?), we have Jo Ynelvk]> — 0 by Theorem 2.5. In order to prove that
fQ Y, l|? 18 bounded, we come back to the typical situation introduced before Theorem
2.5. We have

1
// Yo (2, 9) (2, y) Pdady < (sup/ %k(fc,y)dfc) ( | sup @(x,y)lzdy> :
yeo 0 xz€[0,1]

We know that ¢ is bounded in D(B!~9/2) and so in H'™*(Q). In the typical case
Q =]0,1[x0, and thus H*%(Q) — L2(0,H'*(]0,1[)). Using the fact that H'~*(]0, 1[)
is embedded in C°(]0,1[), we obtain that [,|sup,cp ¢(z,y)[?dy < +o00. On the other
hand, (2.11) implies that sup,, fol Yy, (2, y)dx < 400, which implies the proposition. [J

2.3 Main hypotheses and results

In this section, we put together all the main hypotheses and theorems.
We recall that S, (t) denotes the local dynamical system generated by (2.5). In what
follows, we will assume that

en = AL — A51||£(X) — 0. (2.16)

Moreover, we also assume in the whole article that f satisfies Hypothesis (NL). In addition,
Hypothesis (Diss) will be assumed when we deal with global results.

In Section 3, we show that the convergence of the inverses implies some weak convergence
for the trajectories. The convergence is weak in the sense that, in order to compare S,,(¢)Uy
with S (t)Up in the space X*, Uy has to belong to a more regular space X*. For example,
we will obtain the following results.

Proposition 2.7. Assume that Hypothesis (Diss) is satisfied. Let B be a bounded set of
X and s € [0,1], there ezists a positive constant C' such that

YU € B, ¥t >0, ||Soo(t)U — S, ()U]|x—+ < Ceted/® (2.17)
If B® is a bounded set of X* (s €0, so[), then there exists a positive constant C' such that

VU € B, Wt > 0, |Su(t)U — Su(t)U|lx < CeCte?

n )

(2.18)

where 3 = £ if d=1 or d=2, and 3 = min(%, I’T") if d=3.

2
To obtain existence of compact global attractors, we will have to assume that the linear
semigroups e’ are exponentially decreasing :
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(ED) There exists a family of positive constants M,, and A, (n € NU {+o00}) such that

le® " llexy < Mue™™" .
As discussed in the introduction, we will need the uniform version of (ED) in order to

obtain uniform regularity of the attractors :

(UED) There exist two positive constants M and A such that for any ¢ > 0 and U € X,

vn €N, |le*U|x < Me™|U]||x -

Finally, we introduce hypotheses on the dynamical systems.

The dynamical systems S, (¢) are gradient systems if we show that the function ® intro-
duced in (2.6) is a strict Lyapounov function. We already know that & is not increasing
along the trajectories because of (2.7). To prove that ® is a strict Lyapounov function, it
remains to show that, if, for some n € NU {+o00}, Uy satisfies ®(S,(t)Uy) = ®(Uy) for all
t >0, then Uy is an equilibrium point, that is S, (t)Uy = Uy for all ¢ > 0. We will assume
that this property is fulfilled :

(Grad) the dynamical systems S, (t) (n € NU {+o00}) are all gradient.
Our last assumption is the following :

(Hyp) All the equilibrium points E of S (t) are hyperbolic, that is, that the spectrum of
DS (t)E does not intersect the unit circle of C.

A discussion about the hypotheses (ED), (UED) and (Grad) is given in Section 6. We
also enhance that Hypothesis (Hyp) is not very restrictive since it is satisfied for a generic
non-linearity f (see for example [43] and [7]) or a generic domain 2 (see [24]).

We introduce the distance between a point U € X and a set S C X as
distx (U, S) = érgsHU —Vlx . (2.19)

We also define the Hausdorff distance of two sets S; C X and S; C X as

dx (81, 82) = max ( sup distx (U, S2) ; sup diStX(U2781>) , (2.20)
U181 UseS2

We denote distx-s and dx-s the same notions in the norm ||.||x-s. We have the following
theorem.

15



Theorem 2.8. We assume that (Diss), (Grad) and (ED) hold. Then, the dynamical
system Sy (t), for n € NU {400}, has a compact global attractor A,. Moreover, these
attractors are composed by the union of the equilibrium points (denoted by £) and the
complete bounded trajectories coming from &, that is that

A, ={Uy € X / 3U(t) € C)(R, X), solution of (2.5) such that
U(0) =U, and tlir_n distx(U(t),E€) =0 } . (2.21)

The set (U, An) is bounded in X, and, for any s €]0,1/2[, the attractors are upper-
semicontinuous i X %, that is

sup distx-s(Up, As) — 0 when n — +00 .
Un€An

Proof : The existence and boundedness of attractors for Equation (2.5) is classical, we
briefly recall the outline of the proof. According to Theorem 2.4.6 of [17], S,(t) has a
compact global attractor if S,,(t) is asymptotically smooth and point-dissipative and if the
orbits of bounded sets are bounded. Proposition 2.4 implies that the orbits of bounded
sets are bounded. Since et is exponentially decreasing and that the map F': X — X is
compact, Sy, (t) is asymptotically smooth (see [17]). The property (2.8) implies that the
equilibria F = (e, 0) of (2.5) are bounded independently of n. By LaSalle’s principle (see
Lemma 3.8.2 of [17]), the gradient structure and the asymptotic smoothness imply that
any trajectory is attracted by the set of equilibrium points. Because of the boundedness of
the set of equilibria, S,(t) is point dissipative. Thus S,,(¢) has a compact global attractor,
which is bounded in X uniformly in n and which, due to the gradient structure, is described
by (2.21). For proofs or details about these notions, see [17].

Following the arguments of [18] (see also [41] or [3]), we prove the upper-semicontinuity in
X% Let € > 0, as A is a global attractor for S, (¢) and as the union J, A, is bounded
in X, there exists a time 7" > 0 such that

VU €| JAn, ¥t > T, distx(Seo(t)U, Ax) < /2 . (2.22)

As A, is uniformly bounded in X, using (2.17), we have that, for n large enough,
VU € Ans [(Su(T) = SoclT)Unllx+ < 5 - (2.23)

The estimates (2.22) and (2.23) imply, for n large enough, that

sup distx—s (S (T)Up, As) < € .
Un€An

As S, (T)A, = A,, this proves the upper-semicontinuity. O
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Remark : The existence of attractors for critical non-linearities (that is cubic-like non-
linearities ) has been studied in dimension d = 3, see for example [14] and [9]. We notice
that the above proof shows upper-semicontinuity in X ~* for these attractors. See [27] for
the lower-semicontinuity.

Ant

If we assume a uniform exponential decay for the linear semigroups e”»*, we obtain the

upper-semicontinuity in X. Indeed, we have the following regularity result.

Proposition 2.9. Assume that (Diss), (Grad) and (UED) hold. Then, there exists a
constant M such that the attractors A, of S,(t), for n € NU{+oo}, satisfy

sup  sup ||Uy|lpa,) <M . (2.24)
neENU{+o0} Un€A,

In particular, the union U,.A,, is bounded in X* (s €]0,1/2]).

Proof : 1f (2.24) holds, then U,.4,, is bounded in X* as a direct consequence of Proposition
2.6. Thus, we only have to show that (2.24) is satisfied.

It is well-known that, for fixed n, A,, is bounded in D(A,). We only have to show that
(UED) implies that A, is bounded in D(A,,), uniformly with respect to n € NU {+o0}.
We already know that the attractors A, are bounded in X by a constant K. Moreover,
they are a union of complete trajectories. Let U(t) = (u,u;) C A, be such a trajectory,
we have

U(t) = /t I E(U(s))ds

—00

Notice that this integral has a sense since (UED) holds. Let § > 0, we write

Ut +0)—-U(t) = /t A (F(U(s +0)) — F(U(s)))ds .

—00

And so, since (UED) is satisfied, there exist M and X independent of n such that

Ut +0) =U®)llx < M/ M fayuls +6)) = fla,u(s)lnads . (2.25)

Due to the assumption (NL), there exists o €]0, 1| such that

1f (2, uls +0)) = fz,uls))ll. < Clluls +0) — u(s)llgo
< O lluls +0) — u(s)llgn llus +0) — u(s)l|2”

The Young inequality implies that, for any € > 0, there exists a constant C. such that

1f (2, u(s +0)) = [z, u(s))lle < elluls +0) — uls)|lar + Cclluls +0) — uls)|ez .
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As ||ug||L2 is bounded by K, ||~ (u(s+ &) —u(s))||L2 is uniformly bounded. So, combining
the above inequality with (2.25), we obtain, for any t € R,

57 U+ ) U0 < 25 sup 167U (s + 8) — U(s)) + -CoF

seR )\

Thus, for e sufficiently small, we get

sup [|61(U(s +0) = U(s))lx < C,

seR
where C' does not depend on ¢ or on n. When § converges to 0, we find that U(s) satisfies

supser || Ue(s)|lx < C. Finally, writing A,U = U; — F(U), we obtain that U is bounded in
D(A,,) by a constant which does not depend on n. O

Thus, if we mimic the proof of Theorem 2.8, using (2.18) instead of (2.17), we show the
upper-semicontinuity in X.

Theorem 2.10. We assume that all the hypotheses of Proposition 2.9 hold. Then, the
attractors are upper-semicontinuous in X, that is

sup distx (U, As) — 0 when n — 400 .
Un€An

If we assume in addition that all the equilibria are hyperbolic, then we can prove the
lower-semicontinuity of attractors. In this case, we can give not only an estimate of the
rate of the lower-semicontinuity in X, but also of the upper-semicontinuity in X ~°. Notice
that we do not need Hypothesis (UED) to obtain the lower-semicontinuity in X.

Theorem 2.11. We assume that (Diss), (Grad), (ED) and (Hyp) are satisfied. Then, the
attractors A,, are lower-semicontinuous in X.
Moreover, there exist two positive constants C' and § such that

sup  disty (Uso, An) < Ce° . (2.26)
U €A
and
sup distx—s(Up, Ass) < Ce° . (2.27)
UncAn,

Furthermore, if we assume in addition that Hypothesis (UED) holds, then the family of
attractors is continuous in X and there exist two positive constants C' and 6 such that, for
any n,

dx (Ase, An) < Ce° . (2.28)
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Our last theorem concerns the stability of the phase-diagrams. We have briefly recalled
the notion of phase diagrams and its link with the Morse-Smale property in the introduc-
tion. First, notice that, in dimension higher than one or if d = 1 and v, = ad,—g + bd,—1
with a = 1 or b = 1, the Morse-Smale property is not relevant. Indeed, in these cases,
e/nt is not a group (see [11] for d = 1 and [35] for d > 2). Thus, we cannot ensure that
the backward uniqueness property is satisfied and that the stable sets of equilibria are
well-defined manifolds, which is needed to define the transversality (for more details, see
[19]). In the cases where we can define the Morse-Smale property, we prove the following
theorem in Section 5.

Theorem 2.12. We assume that d =1, Q =|0, 1] and Voo = ady—0 + bdp—1 with a # 1 and
b# 1. We also assume that (Diss) and (UED) are satisfied and that the dynamical system
Seo(t) satisfies the Morse-Smale property. Then, for n large enough, the dynamical system
Sn(t) satisfies the Morse-Smale property and its phase-diagram is equivalent to the one of

Sec(t).

We underline that Theorem 2.12 has applications since it is proved in [26] that, if
Q =]0,1[, Yoo = ady—0 + bdz—1 with a # 1 and b # 1, the Morse-Smale property holds for
Seo(t), generically with respect to the non-linearity f.

Remark : We can readely adapt the proof of Theorem 3.2 of [36] to show the existence
of a homeomorphism h defined from A, to A, which maps the trajectories of S, ()4,
onto the trajectories of Sy ()4, preserving the sense of time. The properties needed to
adapt the proof of Theorem 3.2 of [36] are shown in Sections 4 and 5. They namely are
the isomorphism of phase-diagrams of Theorem 2.12, the comparison of the local stable
and unstable manifolds stated in Theorems 4.7 and 4.13 and the results of Section 5.1.

3 Convergence of the trajectories

3.1 Some abstract results of convergence

The difference between two linear semigroups of contractions can be estimated by the
difference between the inverses of the infinitesimal generators.

Proposition 3.1. Let X be a Hilbert space. Let Ay and As be two mazimal dissipative
operators of bounded inverse in L(X). Then, the operator A; generates a C°—semigroup
in X and we have, for allU € D(A;) andt € Ry,

U — e*Ulx < Va (Va+ Va+42) [Ullpeay -

where o = HAII — A;lHE(X).
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Proposition 3.1 is a direct consequence of the next proposition. The stronger version,
where projections are added, is useful to prove convergence of stable and unstable mani-
folds of a hyperbolic equilibrium of the dynamical systems, or to estimate convergence of
semigroups, which are not defined on the same space.

Proposition 3.2. Let P, and P, be two continuous projections on a Hilbert space X. For
i=1,2, let A; be a linear operator with D(A;) C P,.X and A; € L(D(4;), P,X), which is

dissipative, invertible and of bounded inverse. Then, A; generates a C'—semigroup e on

P,X and for allU € D(A;) C PLX andt € R,,

et P — M Py < <Ca +1/a2 +4C% (a + ﬁ)) 1Ulpeary
where o = ||A1_1P1 —A2_1P2||£(X); p= ||A1_1||E(P1X)||P1_P2||£(X) and U = ?:l?}é{HPiHL(X)}

Proof : As the operator A; is invertible, it is onto P;.X and thus A; is a maximal operator.
Since it is also dissipative on P,X, it generates a C’—semigroup e on P, X, which satisfies

VU € X,t € Ry, e PU|x < |PU||x (3.1)
(see for example [39]). We write that
e PU — e PU||x < |leM™'PU — e (AP, A U)|| x

+ "€A2tp2<A51P2 - A;lpl)AlUHX . (32)

Using (3.1), we easily bound the last term of (3.2) by Ca|U||pa,).- To estimate the
derivative of the first term of (3.2), we set

14
24t
Since U € D(A;) and A;'P,A,U € D(A5), we have

et PLU — e (A7 P AU % (3.3)

D =< AleAltplU — AQGAQt(AglpgAlU”eAltPlU — 6A2t(A2_1P2A1U) >x

where < .|. >x is the scalar product associated with the norm ||.| x.
We set V = eA*P AU € PLX and W = e P, AU € P,X. We have

D = <V -WIAT'V — AJ'W >x
= <V-WIA'PL(V —=W)>x + <V - W|[(A['P, — A'P)W >x .

Since P,V =V and P,W = W, we obtain

D=<P(V-WA'P(V W) >x + < (P — PR)W|A['P(V - W) >x
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+ <V -WIA'P, — AJ'PY)W >x .

As A, is dissipative on P, X, the first scalar product is nonpositive. Since ||[V]x <
Cl\Ullpcayy and |[W|x < C||U||peay), we obtain D < 2C*(« +ﬁ)||U||%(AI), where «a, 3
and C' are as in the statement of the proposition. The integration of (3.3) gives

e PLU — e (A7 P AU || x < Va2 + 402t (a + B)|U || peay

Coming back to the estimate (3.2), we finish the proof. O

Corollary 3.3. Let P, and P, be two continuous projections on a Hilbert space X. For
i = 1,2, let A; be a linear operator with D(A;) C P,X and A; € L(D(A;), PX). We
assume that there exist a constant p such that A; — pld is dissipative, invertible and of
bounded inverse (which implies that A; generates a C°—semigroup). Moreover, we assume
that there exist two positive constants M and X\ such the semigroup generated by A; satisfies

vt >0, |let!

L(PX) S Me ™.

Then, for all n €]0, N[, there exists M,, independent of the operator A;, such that for all
UeD(A) C PX andt € Ry,

[P — e PUx < Cla+v/a+ B)Mye ™ [Ullpay | (3.4)

where v = |[(Ay—pld) ™ Py — (Ap = pld) " Po|| £ (xy, B = 1(Ar—pdd) " o) 1P = Poll 2 (x)
and C' = max{|| B[l x) }-

Proof : Changing A; into A; — pld and A into A + p, we can assume that © = 0. Let
p e N* U € D(A;) and t € R,.. We have

leM U — e PU|x < [l Py(e5 Py — ™5 P)U|x

t t

+ ([0 D Py (e Py — 25 Py)e h PLU||x + ...+ || (€17 Py — €225 Py)e™ R PU | x

Using Proposition 3.2, we obtain

t
| PU — e PU | x < pMe )" (Ca + \/oﬂ + 402~ (a + ﬁ)) IUT1pea,) -
p

Thus, for all n €]0, \[ given, we can choose p and M, large enough such that (3.4) holds.
O

Our fourth result concerns the convergence in a weaker norm than the norm of X.
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Proposition 3.4. Let X be a Hilbert space and let Ay and As be two maximal dissipative
operators of bounded inverse in L(X). Then, for allU € X andt € Ry,

AT (e — ) < Va (3va+ Va4t U] x

where o = ||A7! — A3 2ox).-
Proof : We have
IAT (MU — e U)lIx < |(e™ = e AT Ullx + (AT = Ay De Ul

+ e (AT = AU x -
We finish the proof by applying Proposition 3.1. U

3.2 Convergence of the trajectories

We recall that e, = [|[A} — A, !||z(x) is assumed to converge to zero. In this section, we
compare S, (t)Uy with So.(t)Up on finite time intervals.

In the previous section, we have seen that the convergence of the linear semigroups e
can be estimated if the initial data are in D(A,), n € NU{+o00}. Using interpolation
arguments, we see that actually less regularity is needed. We recall that sq is the positive
number defined by (2.2).

Ant

Proposition 3.5. For all s €]0, 5[, there ezists C > 0 such that, for all time T > 0, for
allt € [0,T] and Uy € X*, we have

vt € [0,T],VUy € X, |[(e*=t — e Up|lx < C(1+ T/ 2| Usllxs . (3.5)

Moreover, if the initial data have zero as first component, we can improve the above estimate
as follows : for all s € [0,1/2], there exists C > 0 such that, for all time T > 0, for all
t €10,7] and (0,v) € X*, we have

(e = )0, w)llx < C(1+T*2)e/(0,v0) | x- - (3.6)

Proof : In this proof, C' denotes a generic positive constant, which does not depend on n
orT.
If Uy = (ug,v) € D(Aw), then, using Proposition 3.1, we have

(et — e Usllx < C(1+T*)er?(|Usll p(as)

< C(l + T1/2)8111/2(HUO + FooUOHD(B) + ”UQHD(31/2)) . (37)
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On the other hand, we have
I — e Usllx < CllUollx < Clluoll pisrrzy + llvollez) - (3.8)
Since 'y, is a bounded operator on D(B/?), we have, if Uy € D(B'/?) x D(B'?),

(e~ —e*)Wllx < Cllluollpsrrzy + lvoll pesrrz)) (3.9)
< ClJuo + Tocvoll psrrzy + voll pesrrz)) - (3.10)

Interpolating between (3.7) and (3.10), we obtain
(e = eA)UhlLx < C(L+ TY2)e5(o + Pactt Lot + toll e -

Due to Proposition 2.1, if s belongs to ]0, so[, then T'vg is in D(BU+)/2) and we have
ITcvoll p(pa+arszy < Cllvol peprszy- Thus,

(et — e Uollx < O+ T%2)es(luoll pepasorzy + voll psirz)) -
We interpolate again with (3.8) and we find that, for all Uy € X*,

(et — AN Upllx < CL+T/)es *(|luoll pesasarz + 0ol piserm))
< CA+ TP |Up|lxs -

The proof of (3.6) is similar. Let (0,v9) € D(Aw). Since I'wovy € D(B), we have that vy
vanishes on the part of the boundary {x € wy / v(x) # 0}. Therefore, I'y;ug = 0 and (3.7)

gives that
I(e”=* — e)(0,v0)llx < C(L+T"*)wollpprr) -

Interpolating with (3.8), we obtain that (3.6) holds for all (0,v9) € D(Aw). If s < 1/2,
the set {(u,v) € D(A) / u =0} is dense in {(u,v) € X* / u = 0}. Using this density, we
conclude that (3.6) holds for all (0,v9) € X°*. O

Remarks : As noticed in the previous section, if the semigroups e“"* have a uniform
exponential decay rate, then the constant C' does not depend on 7.

Of course, one can expect that the decay rate 622/ ® can be replaced by e/ 2, when s < sg.
To obtain this better decay rate, one has to show that X? is the interpolated space between

X and D(A.), which is not a so easy result.

Proposition 3.4 implies a result similar to the above one.
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Proposition 3.6. For any s € [0,1] and any positive time T, there exists a positive
constant C' such that

Vt € [0,T], YUy € X, ||(e?>=" — e Upl|x—s < C(1+ T3 Uyl x (3.11)
Proof : Proposition 3.4 implies that
1AL (e — e Uo)[lx < CL+T2)e/?||Uollx -
We set (o, 1)) = (eA=t — eAn!)Uy. We have
ITecte + B4l pegrrzy + llpllie < C(L+T2)e,/2(|Uollx - (3.12)
On the other hand, the dissipativeness of A, implies that
19l + [l psrrzy < CllUol|x - (3.13)
Since [lellprrzy < IPILE 1% gureys (3:12) and (3.13) give
v € [0,1], [l@llppa-mrmy < C(L+T)el2|Us| x - (3.14)

As T, is linear continuous from D(BY~7/2) into D(BY?) for all n € [0,1/2[, (3.12) and
(3.14) imply that

[l ps-1r2y < CA+TY2)e2Uollx + ol pso-nrzy < C(L+T")el?|[Ugllx -

As (|9l pp-sr2y < Hz/1|]j)(3,1/2)||1pHi;s, the above inequality and (3.13) yield that

1l ps-sr2y < COL+T™2)l 2| Vo x -

The estimate (3.11) follows from the above result for n = 1/4 and (3.14) for n = s. O

The comparison of trajectories is based on the following lemma.

Lemma 3.7. Let B be a bounded set of X®, s €]0,s0[. Let T >0, M >0 and ng € N be
such that, for allU € B, n > ng (including n = +00) and t € [0,T], the integral solution
S,()U € C([0,T], X) of (2.5) exists and satisfies

[Sn()Ulx < M .
Then, there exists a constant C' = C(M) such that
YU € B, ¥t €[0,T], ||Ss(t)U — S, ()U||x < CeCTel (3.15)

2

where 3 = < if d=1 or d=2, and § = min(%, 5%) if d=3.

2
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Proof : In this proof, C' denotes a positive constant which does not depend on n or T,
but may depend on M. We have

t
1S (T = Su(O)UIx < [l(e?" — e*)U]|x +/ (et — e B (S (1)U) | x
0

+/0 e (F(Sae(T)U) — F(S,(1)U))||xdT . (3.16)

We bound the three terms of the previous inequality as follows.
Using Proposition 3.5, we have

(11 = AU |x < OO+ T2

As for 7 € [0,T], Seo(7)U is bounded in X, Lemma 2.2 and Proposition 3.5 imply that

[0 — M B0l < CONa+ T

withnp < 1/4ifd=1ord =2, and n = I*Ta if d = 3. As F is locally Lipschitzian, we have

/0HeA"(tT)F(Soo(T)U)—F(Sn(T)U)deT S/O [E(Soo(T)U) = E(Sn(7)U) || xdT

< C(M) 0 1Soe (T)U = Sn(7)U || xdr .
) ]

We finish the proof by applying Gronwall’s lemma to (3.16).

Remark : In fact, we can show that, if U belongs to X* for some s > 0, then S..(t)U €
L>([0, 7], X**). Thus, we can prove that (3.15) holds for all 3 < s?/2, even if d = 3 and
if f is cubic-like (see [27]).

We deduce from Lemma 3.7 a stronger result.

Theorem 3.8. Let B be a bounded set of X*, s €]0,s0[, and let T be a positive time.
There exists M > 0 such that, for allU € B and t € [0,T], Sx(t)U exists and satisfies
1900 (t)U||x < M, if and only if there exists M' > 0 such that, for n large enough, U € B
and t € [0,T], S,(t)U exists and satisfies ||Sp,(t)U||x < M.

Moreover, if one of these equivalent properties is satisfied, then there exists a constant
C = C(M) such that, for n large enough,

VU € B, Yt € [0,T], |S()U = Su(t)U||x < CeTe

2

where 3 = < if d=1 or d=2, and § = min(%, 5%) if d=3.

2
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Proof : Once the equivalence is proved, the estimate is a consequence of Lemma 3.7.
Assume that, for all U € B and t € [0,T], Sx(t)U exists and satisfies

[See(®)UlIx < M . (3.17)
Assume that there exist sequences Uy, € B, t;, € [0,T] and ny — +o0o such that
Vt € [0,t[, [|Sn, (O)Ukllx < 2M and ||Sy, (tx)Ukl|lx = 2M .

We have
S0 (tr) Usllx = 1S, (tk)Ukllx — [[(Sn, (t£) — Soo (1)) Usllx -

For k large enough, applying Lemma 3.7 (with M replaced by 2M), we find that
|Soo(tx) Uk |lx > M, which contradicts (3.17). Thus, for n large enough, for any U in B
and any ¢ € [0,T], S, (¢t)U exists and satisfies ||.S,(t)U||x < M’ = 2M.

This proves the “only if” part. The “if” part is shown in the same way. O

The previous theorem together with the density of X* in X imply the convergence of
the trajectories in X for any initial data U in X. However, the convergence is not uniform
on a bounded set of X.

Corollary 3.9. Let U be an initial datum in X and let T be a positive time. Then the
mild solution S (t)U € C°([0,T), X) of (2.5) with n = oo exists if and only if there exists
M such that, for n large enough, the mild solution S, (t)U € C°([0,T],X) of (2.5) exists
and |S,()U]|x < M fort € [0,T].

Moreover, if one of the equivalent properties is satisfied, then

sup ||(Seo(t) — Sn(t))U|lx — 0 when n — +o0 . (3.18)
t€[0,T]

In the following theorem, we obtain the convergence of trajectories in X ~* for initial
data in X. Notice that, contrary to Theorem 3.8, we cannot prove existence of trajectories
in C°([0,T], X) for n large enough assuming only the existence of trajectories for the limit
case n = 00.

Theorem 3.10. Let B be a bounded set of X. We assume that there exist T > 0, M > 0
and ng € N such that, for allU € B, n > ng (and also n = o0) and t € [0,T], the solution
S,(OU of (2.5) exists in C°([0,T), X) and satisfies ||S,(t)U||x < M. Then, there exists a
constant C' such that

YU € BVt € 0,T), [|AZN(Ss(t) — Sp(t))U||x < CeCTel/? (3.19)
Moreover, for any s € [0,1], there exists a constant C" such that

YU € B,Yt € [0,T], ||(Soc(t) = Sn(t))U]|x-+ < C"e“Tes/® . (3.20)
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Proof : As usual, C denotes a generic positive constant, which may vary from line to line.

We recall that A is given by (2.10). We set S,,(t)U = (u,(t),v,(t)). We write
IAZ (S (t) = Su®)Ullx - < AL (e — MU x
t
4 [ A — M B (S, (1))
0

+/0 =D AF (Soo(r)U) = F(Su(1)U))||xdr .

Using Proposition 3.4, we find
1A (Soe(t) = SuM)Ulx < C(L+VT)e,?|U x
t
i / CL+ Va2 | f (@, un(w, 7)) lp2dr
0

+/0 1B™Y2(f (2, uoo(, 7)) = f (0, un(2,7)))l|2d7 .

Using (NL), we obtain that || f(z,u,)||L2 is bounded. We next show that
I=|B72(f(x,uce) = f@,un))lliz < Clluse — unlpz - (3.21)

Indeed, if for example the dimension is equal to 3, we have

1= s [ (o) = fe)eds

H<P||D(B1/2)=1

< sup C
”‘:OHD(BI/2):1

1/6 1/3
< sw cnuoo—unnm(/ w) (/ <1+|uoo|a+|un|a>3)
el ppr/zy=1 Q Q

Since H'(€2) (and thus D(B/?)) is continuously imbedded in L5(©2), we obtain (3.21) and
we finish the proof of Inequality (3.19) by using Gronwall’s lemma .

We enhance that, to obtain (3.20), we cannot directly use Proposition 3.6. This is linked
to the fact that A, does not generate a semigroup on X ~*. However, we can deduce (3.20)
from (3.19) with the same arguments as in the proof of Proposition 3.6. O

/ (14 fuool® + [tn]®)tts0 — tnlipda
Q

With the same arguments, we obtain similar results for the linearized dynamical system.
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Proposition 3.11. Let U(t) € C°([0,T], X). The conclusions of Theorems 3.8 and 3.10
are also valid if S,,(t) is replaced by DS, (U)(t), the linearized dynamical system defined by
(2.9). In particular, let B be a bounded set of X*, s €]0, so[, and T be a positive time, there
exists a positive constant C' such that if Uy € B and U,(t) € C°([0,T], X) is the solution of
(2.5) with initial data Uy, then

vt € [0,7], |DSec(Uso)(t) = DSu(U) (1)l cixs.x) < Ce“Tel?

n

2

where 3 = % if d=1 or d=2, and 3 = min(%;, 1770‘) if d=3.

4 Comparison of local stable and unstable manifolds

In the previous section, we have proved the convergence of trajectories for a given initial
datum. Theorem 3.8 shows that, if we want to study the convergence of orbits for ini-
tial data in a bounded set of X, this set must have compactness properties. Thus, it is
natural to wonder, in the case where Equation (2.5) has a compact global attractor A,
if the attractors A,, converge to A,. The existence, boundedness, regularity and upper-
semicontinuity of the attractors have already been discussed in Theorem 2.8, Proposition
2.9 and Theorem 2.10. In this section, we study the convergence of the local unstable
manifolds and the convergence of regular parts of the local stable manifolds. Then, we de-
duce the lower-semicontinuity of the attractors from the convergence of the local unstable
manifolds. Notice that the convergence of regular parts of the local stable manifolds is not
needed to show the lower-semicontinuity.

We begin by recalling some classical notions. An equilibrium point £ € X is said to
be hyperbolic for the dynamical system S(¢) if the spectrum of the linearization DS(E)(1)
does not intersect the complex unit circle. Let P* be the spectral projection onto the part
of the spectrum of modulus larger than 1, and P® = Id — P" the spectral projection onto
the part of the spectrum of modulus smaller than 1. If E is hyperbolic, there exist two
positive constants A\, and A, and two positive constants M, and M, such that

Yt >0, [[DS(E)(t)P®|lx) < Mse ™" and ¥t <0, [|[DS(E)(t)P"||cixy < Mye' .

We set BY(r) = P*X N B(E,r) and B*(r) = P*X N B(F,r). The following theorem is
classical in the theory of dynamical systems (see for example the Appendix of [17]).

Theorem 4.1. We assume that S(t) is of class Ct' from X into X and that E is a
hyperbolic equilibrium point of S(t). Forr > 0 small enough, there ezists a unique function
h® from B*(r) into B“(M,r), which is of class C'', satisfies h*(E) = E and Dh*(E) =
0. Moreover, its graph W*(E,r) (called the local stable manifold) satisfies the following
properties.
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i) W3(E,r)={U € B(E,2M,r) | P°U € B*(r) and ¥Vt > 0, S(t)U € B(E,2M,r)},
ii) if U € W*(E,r) then

limsupllnHS(t)U— Ellx <—=Xs.

t—-+o0 t
There exists also a unique function h* from B*(r) into B*(M,r), which is of class C1!,
satisfies h*(E) = E and Dh*(E) = 0. Moreover, its graph W*“(E,r) (called the local
unstable manifold) satisfies the following properties.
iii) WY(E,r)={U € B(E,2M,r) | P*U € B"(r) and there exists a negative trajectory

U(t) € C°(] — 00,0], X) such that Vt <0, U(t) € B(E,2M,r)},

w) if U € WYE,r) then there exists a unique negative trajectory U(t) € C°(] — 0o,0], X)
such that U(t) € B(2M,r) for any t <0, and

i 1
1m sup —
o ]

In [U(t) = Bllx < —Au -

We also introduce some classical definitions and the corresponding notations.

Definition 4.2. Let E be a hyperbolic equilibrium. The dimension of P*X, which is also
the one of W“(E, 1), is called the Morse index of E and is denoted by m(E).

We also define the stable and unstable sets of E, which are not necessarily well-defined
manifolds, by W*(E) = {U € X | lim;_10 St)U = E} and WYE) ={U € X | F a
negative trajectory U(t) € C°(] — 00,0], X) such that lim,_,_., U(t) = E} respectively.

4.1 Preliminary results and spectral study

In what follows, we use the notations of Theorem 4.1 with a subscript n for the dependance

with respect to n.
Let E = (e,0) be an equilibrium point of (2.5). We set

Vn € NU {400}, A, = A, + ( f;(x,oe(x)) 8) :

Notice that the linearization of S, (t) at the equilibrium point E is DS, (E)(t) = et We
also set, for any U = (u,v) in X,

g(U) = ( flx,u) — J(‘)L(a:,e(x))u ) '

Equation (2.5) becomes .
Uy =A,+9). (4.1)

When no confusion is possible, we denote f/(x,e) by f,. Hypothesis (NL) implies the
following properties.
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Lemma 4.3. The function g is a compact Lipschitz-continuous function on the bounded
sets of X. More precisely, we have

VU, U" € Bx(E,r), [lg(U) = g(U)|lx <I(r)|U=U"|x ,

where l(r) is a non-negative and non-decreasing function which tends to 0 when r goes to
0. In addition, g is of class Ct' and if B is a bounded set of X, then there exists a positive
constant C' = C(B) such that

VU € BYV € X, |lg(U)llxs < C|[U]x and [|g'(U)Vx- < C[[V]x, (4.2)

where o €]0,1[ when d =1 or d =2 and o €]0, 5% when d = 3.
Moreover, A,, and e’ are compact perturbations of A, and e’ respectively.

Proof : The first part of the Theorem is a consequence of Lemma 2.2 and of classical
Sobolev imbeddings. In particular, Lemma 2.2 shows that if v € H*(2), then f!(z,e)u €
H (). Thus, the map (u,v) — (0, f/(z,e)u) is compact from X into X and A, is a
compact perturbation of A,. To show that e is a compact perturbation of e, we
remark that if Uy € X and (u(t), us(t)) = Uy, then

1
i 0
ey = e, +/ eA”(l_t)< )dt.
’ " (e, e(x))ult)

The behaviour of the spectrum of A, is described in the following proposition.

Proposition 4.4. Assume that Hypothesis (ED) holds. Let A\ € C be such that the operator
(A — Ad) € L(X) is invertible. Then, for n large enough, (A, — Al d) is also invertible
and there exists a positive constant C such that

[(Ase — Md) ™" — (A, — Md) | £x) < Chrén -

As a consequence, the point spectrum of A, converges to the one of A on every bounded
set of C. Moreover, if E is a hyperbolic equilibrium point of the dynamical system Ss(t),
then, for n large enough, it is a hyperbolic equilibrium point of the dynamical system S, (t)
and there exists a positive constant C' such that

1P — Pillecx) < Cey (4.3)

In addition, the part of the spectrum of A, (n € NU {+oc}) with non-negative real part is
composed by a finite number of real positive eigenvalues. Finally, the Morse index of E for
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Sy (t), which is the number of positive eigenvalues of A, is equal for n large enough to the

Morse index of E for S (t).

Proof : We denote by K € £(~D(Bl/2)) the operator Id+ A *B~! — B7!f/. A straightfor-
ward computation shows that (A, — AId) is invertible if and only if (K + AL',,) is invertible
in £(D(BY?)) and in this case

~ afu\ [ (Kx+A0,) (=B v —AB'u+ B 'flu—T,u)
(An_)\[d) 1<,U ) — ( A (KA{»)\Pn)il(_)\Bilv‘I»u) ) .

If (Ao — M d) is invertible, then (K + Al') is invertible in £(D(B/?)) and we have
(Ky +AL) = (Ky + A0o)(Id — MK\ + M) ' (Toe — ) .

For n large enough, [[A(Kx+Alo) ' (Too =)l c(n(mr/2y) < 3. and (Kx+AT,) is invertible.
Moreover,

(Ky +A00) 7 = (K + Al) P = MKy 4+ Aloo) (T — )

X (Z MKy 4 Aloo) (T — Fn))k> (Ky + Al) ™

k>0

and so, for n large enough,
1K+ AL) ™ = (B4 ATo) ™ Loy < 2all(Bn + ATo0) ™ 2 pinrey

This gives the first assertion of the proposition. It is well-known that this implies the
convergence of the point spectrum.

Assume that E is a hyperbolic equilibrium point for the dynamical system S, (t), we want
to prove that for n large enough, it is also a hyperbolic equilibrium point for the dynamical
system S, (t). As Hypothesis (ED) holds, the radius of the spectrum of e is strictly less
than one. Since, by Lemma 4.3, e is a compact parturbation of e, the radius of the
essential spectrum of e is strictly less than one. As a consequence, for each n, there exists
6, > 0 such that the spectrum of A, with real part greater than —4, is only composed by
a finite number of eigenvalues of finite multiplicity. We next prove that an eigenvalue of
A,, with non-negative real part must be real. Then, the proof of the hyperbolicity of E for
S, (t) is reduced to the proof that A = 0 is not an eigenvalue of A,. The local convergence
of the spectrum of A, to the one of A, together with the hyperbolicity of E for S, (1),

ensure that A = 0 is not an eigenvalue of A,, for n large enough.

We finish the proof by showing that the eigenvalues of Ao with non-negative real part are
real. The proof in the case of n < oo is similar and even easier.
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Let A be a non-real eigenvalue of A, with eigenvector (¢, \g) such that [|p||2 = 1. We
have
Mo = Ap —rp + fi(x,e)p
g—f +Mp=0 onwy (4.4)
p=0 onuwp

where wy (resp. wp) is the part of 92 where B has Neumann (resp. Dirichlet) boundary
conditions, and where x = 1 if wp = () and x = 0 in the other case.
Multiplying the first equation by  and integrating, we obtain

H
WVM%—WM@+LﬂWW:WM@+A/WWW

N

Taking the imaginary part and using the fact that Im(\) # 0, we find

1

fMMZ—i/WWF- (4.5)

To prove that Re(\) < 0, we argue by contradiction. Assume that wa vlpl? = 0. There

exists an open subset w of the boundary such that ¢, = 0 and Equation (4.4) shows that
O¢

ov |w
and @ Nw # 0. The set 6 is defined such that it is distant from the points of the boundary
where the Neumann boundary condition meets the Dirichlet one. Regularity theorems for
problems with mixed boundary conditions imply that e belongs to H?(#) and so to L°°(6)
(see [16]). Thus, as ¢ is a solution of (4.4), ¢ satisfies in 6

= ¢j» = 0. Let 6 be an open connected subset of €2 such that (Wy NWp) N 0 =0,

N =Ap+hp
{g—f:ga:o onwnN@ (4.6)

with some additional boundary conditions, where h = —xld+ f|(z, e(x)) belongs to L>(0).
The classical unique continuation property implies that ¢ identically vanishes on 6 and thus
on €2, which is absurd. O

Let E be a hyperbolic equilibrium point. Using the above proposition, we know that
there exist two constants p and n with 0 < 7 < p such that the spectrum of A, has the
following decomposition.

0(Aw) = (0(Aw) {2 € C/Re(2) < 0}) U (0(Ac) N {z € C/Re(2) = i+ 2n}) .
Proposition 4.4 implies that, for n large enough, we have

o(A,) = <0(An) N{z € C/Re(z) < 0}) U (U(An) N{z € C/Re(z) > pu+ n}) .4
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For n € NU {+o00}, we denote by P, the spectral projection onto the space generated by
the eigenvectors corresponding to the part of the spectrum of A,, with real part larger than
. We set P> = 1Id— Py.

Proposition 4.5. There exist two positive constants M, and M such that

VE>0, et Py < Moelrm

4.8
V¢ S O, ||6AntP:||L(X) S Mue(“Jrn)t ( )

Vn € NU {+o0}, {

The proof of the above result is based on the following equivalence.

Theorem 4.6. Let H, be a sequence of Hilbert spaces. Let D, be the generator of a
C°—semigroup of contractions eP on H,, and let X > 0. There exist two positive constants
e and C' such that

vt >0, |7 ooy < Ce et (4.9)

if and only if there exists € > 0 such that for all n € N, the spectrum of D, satisfies
(D) C{z€C [/ Re(z) < =X —¢€'} and such that we have

IM > 0 such that sup sup ||(D, + (A +v)Id) | cm,y) < M . (4.10)
neN  veR

This result is proved in [34]. Although the theorems given in [34] are stated less

precisely, it can be deduced from their proofs. i
Proof of Proposition 4.5: First, notice that e/»! is well-defined on P*X even if t < 0
and that there exists M such that for any ¢ < 0, ||e!|| zpux) < MeD! since PYX is
a subspace spanned by a finite number of eigenvectors of A, corresponding to eigenvalues
larger than p + 7, this number of eigenvectors being independent of n. Thus, the second
estimate of (4.8) is a direct consequence of the convergence of P" to P¥. Let H, = P’ X
and let D,, be the restriction to H, of the operator A, — ||f’||d. Notice that D, is
a dissipative operator on H, and thus that e’ is a semigroup of contractions. We set
A=l llsc = (1t — 1). If we prove that (4.10) holds for D,,, we will obtain that

”eDntHL(X) < Me—UFilloo=(n=m))t :

and so that i

el < Mt
Then the first estimate of (4.8) will be a direct consequence of the convergence of P? to
P
The spectral condition of Theorem 4.6 is clear due to the definition of H,, and the fact that
w — n is positive. To show that (4.10) holds, we argue by contradiction and assume that
there exist sequences (v,) and (ny) — —+oo such that

(D, + (A + i) 1d) M| 2o, ) — +00 - (4.11)
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As F is hyperbolic for So.(t), Proposition 4.4 implies that |vz| — +o0.

Assume that v, — +o0o0 and that v, > 0 (the case v, — —oo is similar). We set
D, = A, — ||fllleeId. As €' is a semigroup of contractions, for all n € NU {+oc}, we
have that [|eP||z(x) < e”Ifull=t and thus Theorem 4.6 show that

M >0, sup |[|(Dn,, + (A + i) Id) H coo) < M . (4.12)

k

Let K be the compact operator (u,v) € X + (0, f(x,e(x))u). We have

(D, + (At i) = (Id + K(Dy, + (A +iv)) ") (Do + (A +i13)) (4.13)
A straightforward calculus shows that if (g, ¥x) = (Dp, + (A + k) " (u, v), then

—op + A+ iv)Chon — AN+ i)’ B lop = B — (A + i) B lu+ T u
Multiplying by Bp, and integrating, we find

vellollfz = < or — (A + i) Tk + Doy ulr >pipre)

So, there exists a positive constant C' such that

vi?llenllte < C(1+wi) (1w, v)llx + ekl ngsizy) lerllpesiz) -

As (4.12) holds, we have ||| p(prr2) < M||(u,v)||x and so |l¢x[lL: < \/_%kH(u,v)HX Using
(NL), we find that there exists s €]0, 1/2[ such that

- C
1K (D + (A i)™ (w,0) [ x = [ fu(, €)nlliz < — 1w, 0)1x
k
and so || K(Dy, + (A +ivg)) Hzx) — 0 as k — 4o0. Thus, (4.13) implies that D, +
(A+1ivy) is invertible for k large enough and satisfies (4.10) with a constant M independent
of v. This contradicts the above assumption (4.11) and proves the proposition. O

4.2 Convergence of the local unstable manifolds

As above, we will use the notations of Theorem 4.1 with a subscript n for the dependance
with respect to n. In particular, we recall that B} (r) = P*X N Bx(E,r) and B;(r) =
P:X N Bx(E,r).

The whole section is devoted to the proof of the following theorem.
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Theorem 4.7. Let E be a hyperbolic equilibrium point of the dynamical system Soo(t). We
assume that the exponential decay (ED) holds. Then, E is a hyperbolic equilibrium point of
Sn(t) for n large enough and there exists a radius r > 0 such that the function hY and its
derivative DR are defined in B! (r). In other words, the local unstable manifolds W*(E,r)
are defined for n large enough in a neighborhood of E independent of n. Moreover, the decay
rate A, of Property iv) of Theorem 4.1 and the Lipschitz-constants of hY and DhY are
uniform in n. In addition, there ezists a positive constant C' such that, for all & € BY (r),

1h5.(&) = ha(Py&)llx < Cepp and || Dhi,(§)PY — Dhyy(PrE)Pyllecxx) < Ceyy - (4.14)

where 3 is any number in 0,1/8[ if d =1 or d = 2 or any number in ]0, min(z5, 152)[ if
d = 3. In particular, we have that

dx (W (E,r); W (E,r)) < CeP

)
Til the end of this section, we assume that (ED) holds. For sake of simplicity, we may
set without loss of generality that £ = 0 and f(x,0) = 0. We also assume that F =0 is a
hyperbolic equilibrium of the dynamical system S,,(¢) and that the spectral decomposition
(4.7) holds for any n € NU {+o00}.

The outline of the proof of Theorem 4.7 is as follows. We know that, for each n, there
exists a local unstable manifold W*(E,r,). We will construct, for each n € NU {+oo},
the local strongly unstable manifold W*“(E, r,) in Bx(0,r,), corresponding to the spec-
tral decomposition (4.7). This construction is done with a fixed point theorem, using the
method of Lyapounov-Perron (see [17]). We will show that this construction can be made
in a ball Bx (0, ) independent of n. Next, we will compare W *(E,r) and W2*(E,r), using
the continuity of the fixed point with respect to the parameter n. Finally, as £ = 0 is
hyperbolic for each n, and as (4.7) holds, we know that the local strongly unstable manifold
W2 (E,r) is in fact the local unstable manifold W*(E, r) defined in Theorem 4.1.

We introduce the space

={U €C’(] — ,0,C) / sup IU@)]|xe™" < +o0} .

We endow Y, with the norm ||.||,, defined by
Ul = sup [U(#)[|lxe™" .
<0

We set B,(R) ={U €Y, / |U|, < R} . We recall that the integral equation associated
to Uy = A U+g(U)is

t

U(t) = e;‘”(t’tO)U(to) —i—/ eA"(t’s)g(U(s))ds : (4.15)

to

We next prove the following result.
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Theorem 4.8. We assume that the hypotheses of Theorem 4.7 hold. For r > 0 small
enough, there exists a family (h%)nenoitooy Of functions of class C, defined from B (r)
into Bi(M,r), such that h*(0) = 0. The graph W:*(0,7) of h* satisfies

W2 (0,r) ={Uy € Bx(0,2M,r) /| PiUy € By (r) and there exists
U € B,(2M,r) solution of (4.15) such that U(0) = Uy} .
Moreover, there exists a positive constant C' = C(3) such that

dx (W20, 7), W0, 7)) < CeP

n

where 3 is any number in 0,1/8[ if d =1 or d = 2 or any number in ]0, min(5;5, 152)[ if

d=3.

The proof of this theorem consists of several lemmas.
The solutions of (4.15) are characterized as follows.

Lemma 4.9. Let R > 0 and U € B,(R). For any n € NU{+oo}, U is a negative
trajectory of (4.15) if and only if, for all t <0,

t ~ _ 0 _
U(t) = / M=) psg(U(s))ds 4 et PU¢ — / A=) pug(U(s))ds (4.16)
—00 t

where & = U(0).
Proof : Since the proof is classical, we omit it (see [17]). O

Let € € X, we introduce the functional 7% defined from Y, into Y, by

o - [

—00

t

~ ~ 0 e
(=9 ps g (U ())ds + et PUe — / A= pug(U(s))ds . (4.17)
t

Lemma 4.9 shows that U(0) € W%(E,r) if and only if T5U = U. It remains to prove that
T¢ is a contraction.

Lemma 4.10. There exists a positive constant ro, independent of n, such that for all
n € NU {+oc}, for allr €]0,7o and & € X with |[P*¢||x < r, TS is defined from B, (2M,r)
into B,,(2M,r). Moreover,

1
¥n € NU {+00},YU,U’ € B,(2r), | TSU — TSU'||,, < 51\(] U, -
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Proof : To see that TS maps B,(2M,r) into B,(2M,r), we bound the three terms of
(4.17). Let U € B,,(2M,r). We have

t ¢
||e_“t/ eA"(t_s)Prfg(U(s))dsHde §/ e_“tMse(“_”)(t_S)l(ZMur)||U(s)||de
¢
< MSZ(QMU’I“)/ e_”(t_s)HUHMds

—00

M
< L2Mr) (U],
n
Using (4.8), we obtain ||e e Pu¢||x < M,||€|x. To bound the last term, we write
0 0
||e_“t/ M= pug(U(s))ds||x < / e MM =) Nr 1(2M,1)||U (s)|| x ds
t t
0
< M,I(2M,1) / ||| ds
t
M,
< TZ(QMJ)HUHM

Thus, using the fact that [(2M,r) — 0, we can choose r; small enough so that

M, + M,

[2M,r)2Mr < M,r |
n

and thus 7% is defined from B,(2M,r) into B,(2M,r). The fact that TS is a contraction
for 7 small enough is proved by the same way. We will choose 7y €]0, 7] so that T is a
contraction with constant of contraction equal to 1/2. O

The previous lemma implies that, if r is small enough, for any n € NU {+o00} and any
¢ € BY(r) there exists a unique solution US(t) € B,(2M,r) of (4.15) such that P =
PUS(0). We define the function h? by

i (Bl —  BiX
e — rUs)

To be more precise, PsUS(0) = ffoo e 4nsPsg(U(s))ds and so, the choice of r in the
preceding proof implies that || PSUS(0)||x < M,r. Therefore, h" is defined from BY(r) into
B:(M,r). Moreover, using the same arguments as in the proof of Lemma 4.10, we can
show that A is Lipschitzian. To finish the proof of Theorem 4.8, we show the following
two lemmas.
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Lemma 4.11. There exists a positive constant C' such that for any U € D(A) andt <0,
we have i i
H<6V%—uﬂfg-AAw—uﬁp;)zJHX;g<3d/ﬂunthw). (4.18)

There exists a positive constant C such that, for any U € X and any t < 0, we have
(e Py — "= PL)g(U(s))l|x < Cer el (s)]lx . (4.19)
with B as in Theorem 4.8, and for any t > 0
(3= Ps — A== P2 )g(U(s)) | x < Ce0TDBU(s) | . (4.20)

Proof : We notice that —A, is a bounded operator on P'X, since P'X is spanned
by a finite number of eigenvectors of —A,. This number and the associated eigenval-
ues being bounded with respect to n, there exists a positive constant C' such that for all
n € NU {+o0}, —A, — C is a dissipative operator on P*X. We also remark that the op-
erators (A, — || f(x,0)||L~Id) are dissipative on PX.

Thus, (4.18) is a direct consequence of Corollary 3.3, Propositions 4.4 and 4.5. The esti-
mates (4.19) and (4.20) are proved in the same way, using the regularity property (4.2) of
g and interpolation arguments similar to the proof of Proposition 3.5. O

Lemma 4.12. Let r €]0,7¢[, where ro has been defined in Lemma 4.10, and let £ € X such
that || PL&||x < r. There exists a positive constant C' such that

|US, = US|l < Cel (4.21)
where 3 is given in Theorem 4.8. Moreover, if we set, forn € NU {400}, &, = P¥, then
1 (€e) = P (&a)llx < Cep - (4.22)
Proof : We have
% = Uil = ITSUS = TRUR

< TRUS = TEUR | + 1T US — TrUS lu
1
< §||U§o - UEHM + ||T§oU§o - TEUgoHu )

and thus,
1U% = Uslly < 201TLUS = TiU&, - (4.23)
To simplify the notations, we set U = US,. We have
TSU —TSU = (Mt Py — et P )¢ — [P(eAnt=9) pu — eA=(t=5) PU ) (U (s))ds
+ [ (eI Py — A= P )g(U(s))ds (4.24)
- Kl - KQ —+ Kg .
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To estimate the term | TSU — TS U ||, = sup,<q e || T5U — TS, Ul x, we proceed as follows.

eHIC, = (e@n*wtp,g - e@w*wtpgo) PUE 4 e et pu(py _ pUe (4.25)

As P! is a projection on a finite number of eigenvalues, P%¢ belongs to D(As) and
1Péllpiigy < CllEllx. Thus, Lemma 4.11 implies that there exists a positive constant C
such that for any ¢ < 0,

For the second term of (4.25), we use (4.8) and (4.3) to get

(et py — et ) pr

| < Cellelx
X

le™ et PPy — PL)Ellx < Cenlléllx
and thus, gathering the terms of (4.25), we obtain
1Kl < Cer?éllx -

We bound the second term of (4.24) by using (4.19) as follows
(U -
le™" Kallx = ||€“t/ (et By — A= Pl ) g (U (s))ds||x
t

0
S/ Cet™Ie me|[U(s) | xds
t

0
2C
<celful, [ eivas < e
t n

To bound the third term of (4.24), we use (4.20) :

t _ .
e Rally = le [ (IR A P (s)dslx

—00

t
s%/é%wwwwm

[e.e]

t 2C
s&mmfeﬂwﬁé—#
n

—00

Due to the decomposition (4.24), the inequality (4.23) and the above bounds of || K|,
(1 =1,2,3) imply the estimate (4.21).
The inequality (4.22) is a direct consequence of (4.21) and of (4.3). O
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Proof of Theorem 4.7: Lemma 4.12 completes the proof of Theorem 4.8. By Propo-
sition 4.4, for n large enough, E is a hyperbolic equilibrium for S, (¢). Proposition 4.4 to-
gether with the decay property (4.8) also imply that there exists a local unstable manifold
W"(E,r) which is equal to the strong unstable manifold W*“(E,r) we have constructed.
Thus, the estimate (4.22) of Lemma 4.12 implies the first estimate of (4.14).

It is well-known that, if ¢ is of class CP, then the mapping (£,U) —— TSU is of class CP
and the fixed point U is a CP-mapping from P,Bx(0,7) into Y, (see [17]). In particular,
we notice that, like in (4.16), we have

- t -
DU = entpic 4 / A=) Pog! (US(5)) DUS (5)Cds

— 00

0
— [ e Py U5 DUSs)cds
t
Thus, arguing as in Lemma 4.10, one shows that DUS is defined in a ball P*Bx(0,r),
where r does not depend on n. Arguing as in Lemma 4.12 and using property (4.3) several
times, one shows the convergence of DU towards DUS, as well as the second estimate in
(4.14).

Finally, the proof of the fact that the Lipschitz-constants of DA} is uniform with respect
to n is similar to the proof of Lemma 4.10. O

4.3 Convergence of the regular part of the local stable manifolds

We can also study the convergence of the local stable manifolds. Notice that this theorem
is not needed for the convergence of the attractors A4, but will be required for the proof of
stability of phase-diagrams (see Theorem 2.12).

Theorem 4.13. Assume that the uniform exponential decay property (UED) holds. Let
E be a hyperbolic equilibrium point of the dynamical system So(t). Then E is also a
hyperbolic equilibrium point of S,(t) for n large enough. Moreover, there exists ng € N,
such that, for n > ng, the local stable manifold W?(E,r) satisfies the properties i) and
i1) of Theorem 4.1 with positive constants r, My and \s independent of n and such that,
for n > ng, WE(E,r) is the graph of a function hi which is of class C'(B:(r), P'X).
Furthermore, the Lipschitz-constants of Dh; is bounded uniformly with respect to n.

In addition, if B is a bounded set of X7 (0 €]0,s0[), there exists a positive constant C =
C(B,3) such that

VE € B (r) N B, [[h5(€) — hy(Pé)llx < Cep (4.26)

and
Vé € B, (r) N B, || DR (§)P5, — Dhi(P6) Pl cixe x) < Cel) (4.27)

n ?
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where 3 is any number in |0, 0—22[ if d =1 ord =2 or any number in ]O,min((’Q—Q, =9 if

d = 3. In particular, the regular part of the local stable manifold converges in the following
sense :

dx(WE(E,r)NB;WE(E,r)NB) < Cel . (4.28)

Proof : We underline that the important point is the independance of r and Ay with
respect to n. This property is closely linked to Hypothesis (UED). Indeed, assuming the
uniform exponential decay (UED), we can improve the estimates (4.8) as follows : there
exist positive constants My, A; and 7 such that

Vn € NU {+00},Vt > 0, ||e™P?||px) < Mye™ Qs (4.29)

The outline of the proof is exactly the same as Theorem 4.7, but here, instead of Y, we
consider the space

Z;={U € C°([0,+c[,C) / sup ||U(t)||xe" < +o0} ,
>0
where 0 < ji < A\, and we remplace T¢ by the functional
oo - t
RS :U € Z;— / M=) pug(U(s))ds + et P3¢ —/ e =) psg(U(s))ds .
t 0

We would like to insist on the modifications in the proof of Lemma 4.12. In this proof, we
used the fact that, for all ¢ € X, P“¢ belongs to D(As), which is not the case of PS¢,
As a consequence, we cannot prove the convergence of the whole local stable manifold
W2 (E,r). Fortunately, we only need the convergence of the subset W;(E,r) N B. If we
choose £ € WE(E,r)N B, P3¢ =€ — PY¢ is bounded in X7 and the arguments of Lemma
4.12 are valid in our case. In the same way, we can only prove the convergence of the
regular part of the tangent spaces and this convergence is shown with the same arguments
as the convergence of the tangent spaces of the local unstable manifolds. Finally, notice
that the Lipschitz-constants of A and DA are uniform in n because of Estimate (4.29).

0

4.4 Lower-semicontinuity and estimates of the convergence.

Proof of Theorem 2.11: The lower-semicontinuity of the attractors follows from the
convergence of the local unstable manifolds proved in the previous section. In fact, we
can be more precise and prove Estimate (2.26). Proofs of such an estimate of the lower-
semicontinuity can be found in [20] and [3]. Although the presentation of these proofs is
different, the ideas are the same, in particular the gradient structure is strongly used. We
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also underline that the proof of the estimate for the lower-semicontinuity can be made, by
using the notion of chain of equilibria that we introduce in Section 5.2.
Hypothesis (Hyp) allows us to prove estimates for the upper-semicontinuity due to the
following result. If all the equilibria of S (t) are hyperbolic, then any bounded set B of
X is exponentially attracted by A.,, that is that there exist positive constants M and A
such that

Vt >0, supdisty (S (t)U, As) < Me ™ . (4.30)

UeB

The proof of this property, and the fact that it implies an estimate of the upper-semiconti-
nuity can be found in [30], [22] or [41]. Once again, the proof of this exponential attraction
strongly uses the gradient structure of the dynamical system.

To obtain an estimate of the upper-semicontinuity from (4.30), we modify the proof of
Theorem 2.8 as follows. The attracting property (2.22) is replaced by the stronger property

VU € | JAn, distx(Se(t)U, Ase) < Me™ (4.31)

On the other hand, Theorem 3.10 and the fact that UA,, is bounded in X imply that

VU, € Apn, ||(Sp(t) = Soo(t)) U x—s < Cee/® (4.32)

Replacing t by —455 Ine, in (4.32), which is positive for n large enough, we deduce from

(4.31) and (4.32), that

As s
sup dist x— (S (£)Up, Ase) < Me ™ 4 Ceted/® = Melo® 4 Cels
Un€An

This concludes the proof of the inequality (2.27) since S, (t).A, = A,. O

5 Stability of phase-diagrams

In this section, we prove Theorem 2.12. We assume in the whole section that 2 =]0, 1|
and Yoo = aly—g + bd,—1, with a # 1 and b # 1. We recall that these hypotheses imply
that e/t is a group of operators for all n € NU {400} and that S, (t) and DS, (t) are one
to one. Thus, if F is a hyperbolic equilibrium of S, (¢), then the stable and unstable sets
Ws(E) and WY(E), introduced in Definition 4.2, are well-defined global manifolds of X.
We also assume that the hypotheses of Theorem 2.12 hold, that is that Hypotheses (Diss)
and (UED) and the Morse-Smale property for So.(t) are satisfied.

Let E_ and E, be two equilibria of the dynamical systems S, (t), we say that S,(¢) admits
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a connecting orbit between E_ and F. if there exists a complete trajectory U,(t) (¢t € R),
solution of Equation (2.5) such that U, (t) converges to E_ (resp. E,) when ¢ goes to —oo
(resp. +00). This orbit is said to be transversal if at any point of it, the manifolds W}*(E_)
and W?(E,) intersect transversally, that is that at each point U, of the trajectory, the tan-
gent space Ty, W?(E,) has a closed complement and Ty, WY(E_) + Ty, Wi (E,) = X.

The proof of Theorem 2.12 can be split into the following two lemmas.

Lemma 5.1. We assume that Q =]0,1[, Yoo = @0g—o + b0y—1, with a # 1 and b # 1,
that Su(t) satisfies the Morse-Smale property and that Hypotheses (Diss) and (UED) hold.
Let E_ and E, be two hyperbolic equilibria of the dynamical systems S, (t). If W (E_) N
Ws (E,) is a manifold of dimension r then, for n large enough, W*(E_) N W3(Ey) is a
manifold of dimension r.

Lemma 5.2. Assume that the hypotheses of Lemma 5.1 hold. If O, is a sequence of
connecting orbits for S,(t) between E_ and E,, then

i) Seo(t) admits a connecting orbit between E_ and E.,

i) there exists a subsequence Oyumy of O, such that, for n large enough, the orbits Oy,
are transversal.

Remark : We underline that the proof of i) of Lemma 5.2 gives an interesting result even
if Soo(t) is not a Morse-Smale system. Indeed, the proof shows that there exists a chain of
equilibria £_ = Ey, E;...E, = E, such that S (t) admits a connecting orbit between E;
and E;,1. The Morse-Smale property is only used to prove that this implies the existence
of a connecting orbit between F_ and E.

Proof of Theorem 2.12: Lemmas 5.1 and 5.2 imply Theorem 2.12, that is the stability
of phase-diagram and the Morse-Smale property. Indeed, the number of equilibrium points
of Soo(t) (and thus of S,,(t)) is finite since they are bounded in D(A,) and are hyperbolic.
Thus, Lemmas 5.1 and 5.2 clearly imply the stability of phase-diagrams. The hyperbolicity
of equilibria for S,,(t), for n large enough, has been proved in Proposition 4.4. Finally,
assume that S, (t) is not a Morse-Smale system for n large enough, then we can find
a sequence of complete bounded trajectories for S, (¢) which are not transversal. Since
the number of equilibria is finite, we can assume that the trajectories connect the same
equilibria and this contradicts Lemma 5.2. Thus, S, (¢) has the Morse-Smale property for
n large enough. ([l
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5.1 Proof of Lemma 5.1

Let E_ and E, be two equilibria of Sy (¢). In Theorems 4.7 and 4.13, we have shown that
there exist two radii r_ and 7, such that the local manifolds W*(E_,r_) and W2(E,,ry)
are well-defined. We denote P"* (resp. P"~) the projection onto the unstable part of the
spectrum of the linearization A, at the equilibrium point E+ (resp.E~). Similarly, Ps*
are the projections onto the stable part. We set BY(Ey,ry) = B(Ey,ry) N P**X and
Bi(Ey,ry) = B(Ey,ry) N P*X. We denote

hy:BWE_,r_) — By(E_,M_r_)and h) : Bi(E,,ry) — B (E, Myry)

the functions given in Theorem 4.1, whose graphs are W*(E_,r_) and W (FE.,,r,) respec-
tively.
For any time T' > 0, we introduce the map

w [ B (E_,r.) — X
e < ¢ — Sn(T)o[Id+hz(-)]P#‘§) '

The union of the ranges J;~, R(¥}) is equal to the unstable manifold W}*(E_). Assume
that S..(t) admits a connecting orbit between E_ and E., and let Uy be a point of this
trajectory such that P% U, belongs to BY(E_,r_). There exists a neighborhood 6 of
P Uy in BY(E_,r_) such that U3°(0) C B(F,,r,;) for some T large enough. For n = co
and for any n large enough, we set

o" - ( 0 — Bgo<E+7T+) )
T\ § = P o [BrT = hi (PRt )le Wp(S) )

Since, for n large enough, P“" is an isomorphism from P*"X onto P X it follows that,
by construction, the equality ®"(£) = 0 is equivalent for n large enough to the existence of
a trajectory for S, (t) between E_ and F., which intersects the subset [Id + h¥(.)|P*~(6)
of the unstable manifold W*(E_,r_).

Using Proposition 3.11 and Theorems 4.7 and 4.13, we obtain the following properties.

Lemma 5.3. The function ®" and the derivatives DV} and D®" are well-defined for n
large enough. Moreover, Wi, ®" DL and DP" are continuous with respect to £ € 0,
uniformly in n € NU {400} and converge respectively to V¥, & DVX and DP>, when
n goes to +oo, uniformly in & € 6.

We recall that m(FL) is the Morse index of E., that is the dimension of the linear
unstable space PXtX. As So(t) and DSy (t) are one-to-one, ¥ (f) is an open subset
of dimension m(FE_) of W% (FE_). By assumption, it has a non-empty transversal inter-
section with W2 (E,,ry). The classical A—lemma (see [38] and [19]) implies that for all
e > 0, we can find T large enough and a submanifold 6 of 0, which contains PYU, and
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which is of dimension m(FE,), such that ¢3°(f) is ¢ — C'—close to B%(E,,r,). Thus,
Pt o DY (P Up) is onto PXt X, and by Lemma 5.3, if 6 is choosen small enough, then
for any £ € 6, Pt o Dy$(€) is onto P4 X. As Dhi (Ey) = 0, if v is small enough, DhS_
is small and D®*>(¢) is onto Pt X, that is that > is a submersion. Using Theorem 2.8
of Chapter one of [15], we see that > is an open function, ie () is a neighborhood of
0. Lemma 5.3 implies that ®"(0) is also a neighborhood of 0 for n large enough and that
®" is also a submersion. Theorem 2.8 of chapter one of [15] implies that (®")~1(0) is a
submanifold of 6 of dimension m(E_) —m(E,). Since Sy (t) and DS (t) are one-to-one,
the dimension of the intersection W*(E_) NW2(Ey) is m(E_) — m(E).

5.2 The notion of chain of equilibria

We introduce in this section the notion of chain of equilibria. The ideas behind it are not
really new since this notion is close to the one of family of combined limit trajectories given
in [3] and [4], which was used to show lower-semicontinuity of attractors.

This notion enables us to give a proof of Lemma 5.2, which is different from [19]. In
particular, we do not need any result of convergence of the local stable manifolds to prove
the property i) of Lemma 5.2. On the other hand, we extensively use the gradient structure,
that is that the Lyapounov function ® given by (2.6) is non-increasing along the trajectories

of S,,(t) and that,
if, for any ¢ > 0, ®(Sx(t)U) = ®(U), then U is an equilibrium point. (5.1)

In the proof of Lemma 5.2, we will use several times the following result. We recall that
the upper-semicontinuous in X of the attractors has been shown in Theorem 2.10.

Lemma 5.4. Assume that the attractors A, are upper-semicontinuous in X at n = +o00.
For any positive time T and any sequence (U, )nen, such that U, € A, there exists Uy, €
Ao and a subsequence (U, ) of (Uy,) satisfying

sup |[Sn, (6)Un, — Soc(t)Uss||x — 0 when n — +o0 .
t€[0,T]

Proof : Due to the upper-semicontinuity of the attractors, there exists a sequence of points
Vo € A such that ||U, — V,|]|lx — 0. As A, is compact, we can extract a subsequence
Vn, which converges to Uy, € Ax. Proposition 2.3 implies that sup,ey [|Sn, (£)Un, —
S (1)Uso|lx — 0. On the other hand, Theorem 3.8 and the regularity of A, imply that
SUPe(0.7] |9, (1) Use — Soo(t)Usol|x — 0 and the proof is complete. O

To avoid heavy notations, we do not reindex subsequences in what follows. We recall
that £ denotes the set of all equilibria. We choose a small enough radius r such that the
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balls B(E,2r) (E € £) are disjoint and such that the local stable and unstable manifolds
Ws (E,2r) and WX (FE,2r) are well-defined. Let E_ and E, be two equilibrium points.
Assume that for n large enough, S,,(¢) has a connecting orbit between E_ and E,. There
exist U? in the local unstable manifold W*(E_,r,) (r, <r) and t, such that U° converges
to E_, S,(t,)U? belongs to Ws(E_,r") (r! < r) and S,(t,)U° converges to E,. We
introduce the following notion.

Definition 5.5. Let O, be an orbit of S,(t). A sequence of equilibria E_ = Ey, F,...,
E, = E, is called a chain of equilibria of length p for the sequence (O,,) if there exist
Ul € O, and p + 1 sequences of times 0 = 10 < tl < ... < 2 =t, such that, if we set
U,(t) = S, (t)U?, then

Un(t) — E; , asn — 400

and for allm € N and i < p, there exists t €]t!,t*"[ such that U,(t) does not belong to
UEGEB<E7 T)'

If E; is a chain of equilibria, U,(t}) € B(FE;,r) for n large enough and we can assume that
this holds for all n. For i > 0, we denote the time of entrance in B(E;, )

o, =sup{t <1, | Un(t) & B(Ei,7)}

and for i < p, we denote the time of exit of B(E;,r)

t=inf{t > t' | U,(t) € B(E;,7)} .

We obtain the following result.

Lemma 5.6. There exist V; € OB(E;,r) N W2 (E;,2r) N Ay and W; € 0B(E;,r) N
WY (E;, 2r) such that, extracting subsequences, we have

Un(0l) — Vi and U, (7}) — W; .

n

Proof : We use Lemma 5.4 with T'= 0 to show that there exists a point W; € A, such
that Uy (7;,) — W;. Due to the definition of 7., it is clear that U, (7) € dB(FE;, r) and thus
W; € OB(E;,r). Assume that there exist a time 7" and W; € X such that S (T)W; = W;
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and W; ¢ B(E;,r). Using Lemma 5.4, we find that U,(r: — T) — W;, otherwise we
contradict the backward uniqueness of Sy (), and thus U,(7! — T) & B(E;,r) for n large
enough. If i = 0, this contradict the fact that U? € W*(E_,r,). If i > 1, we must have
78 —T < 1t < 71 so we can assume that t! — (78 — T) — s. Lemma 5.4 shows that
Sso(8)W; = E;, which is absurd. We have thus proved that W; € W (E, ).

The arguments are similar for o?. 0

The length of a chain of equilibria is bounded, since the number of equilibria is finite
and we have the following property.

Lemma 5.7. If (E;) is a chain of equilibria, then i < j implies E; # E;.

Proof : Since the Lyapounov function ® does not increase along the trajectories of Sy (%)
and that (5.1) holds, we must have ®(V;) > ®(E;) and ®(W;) < ®(E;). Lemma 5.6 and
the decay of ® along the trajectories of S,(¢) imply that ®(E;) > ®(E;). O

Of course, the set of chains of equilibria corresponding to the trajectories S, (¢)U? is
not empty as (F_, F) is a trivial chain. So, we can choose a chain of equilibria (E;) of

maximal length since the number of equilibria is finite and since Lemma 5.7 holds.

Lemma 5.8. If (E;) is a chain of equilibria of mazimal length p, then there exists a finite
time T' such that ‘ '
Vi=0,.,p—1, sup{ottt -7} <T.

n
neN

Proof : Assume that o™ — 77 — 4o00. Let T), = y/oit! — 7i. There exists a sequence
of times s, €7, — T,[ such that ®(U,(s,)) — ®(U.(s, + T,)) — 0. Indeed, if

not, there exists € > 0 such that for all s €]7¢, 0" — T,,[ and n large enough, we have
O(U,(5))—P(U,(s+T,)) > e. If we denote |T,,] the largest integer less than 7},, this implies
that ®(U,(71))—®(U,(c""")) > |T,,]e — +oo, which is absurd. Using Lemma 5.4, we find
that U,(s,) converges to U € A, and that for all ¢ > 0, we have ®(U) — &(S.(t)U) = 0.
This means that U is an equilibrium point which contradicts the fact that the length of

the chain of equilibria Ei, ..., F, is maximal. O

We conclude with the following result.

Lemma 5.9. If (E;) is a chain of equilibria of mazimal length p between E_ and E. , then,
for alli < p, Seo(t) admits a connecting orbit between E; and Fi,q.
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Proof : We can assume that o’t! — 7! — T;. Using the notation of Lemma 5.6, we have

W; € WY(E;) and Vi1 € W2 (E;41). We obtain
[Soe(T)Wi = Vigallx < 1Seo(T)Wi = Sa(0)," — 7)) Wil x

+ [|1So (03" = 7o) Wi = Sl = T)Willx
+[18n (0" = T)Wi = Su(0," — 1) Un(70)) [

+ | Un(o™) = Viga | x -

Taking the limit when n goes to 400, we find that S.(7;)W; = Vi1, which yields a
connecting orbit for S, (¢) between E; and E; ;. O

5.3 Proof of Lemma 5.2

We use the notations of Section 5.2. Assume that there exists a sequence of connecting
orbits O,, for S,(t) between E_ and E;. As noticed in the previous section, up to an
extraction of a subsequence, there exists a chain of equilibria of maximal length £ =
Ey, Ey, ..., E, = E, associated with our sequence (O,,) of trajectories. Lemma 5.9 shows
that S, (t) admits a connecting orbit between E; and F;,; (0 < i < p—1). Thus, Property
i) of Lemma 5.2 is a direct consequence of the classical cascading property : if S(¢) is
a Morse-Smale dynamical system which admits a connecting orbit between FE; and FE;,,
(0 <7 <p-—1), then it has a connecting orbit between E, and E, (see for example [38] or
[19]).

Next, we prove Property ii). Let #; and 6y be two open sets of a Banach space X. We
say that two C!—manifolds i, : §; — X and iy : 05 — X are ¢ — C'—close if there
exists a C!'—diffeomorphism ¢ : #; — 65, such that i; : ;, — X and is0¢p : 6, — X
are ¢ — C'—maps, that is that [|i; — i3 0 ¢||Le,,x) < € and the same for the derivative
|Diy — D(ig 0 @)L, x) < € . We define similarly the C'—convergence of C'—manifolds.
The classical local A—lemma can be extended as follows in our particular frame.

Proposition 5.10. Let E be a hyperbolic equilibrium point with Morse index m(FE). Let
B be a bounded set of X7 (o0 > 0). Let qx be a point of W2 (E,r)NB and let Dy, C B be
a disk of center qu, which is transversal to W2 (E,r) and whose dimension is m(E). Let
(Dy)nen be a family of disks with center q,, bounded in B, and such that D,, C*—converges
to Dy

Then, for all € > 0, there exist N € N and T > 0 such that for alln > N andt > T, the
connected component of S,(t)D,, N Bx(E,r), to which S,(t)q, belongs, is e — Ct—close to
Wu(E,r).

Proof : The proof of the proposition is a straightforward adaptation of the proof of the
classical A—lemma (see for example [37] or [38]). Notice that the proof crucially uses
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Hypothesis (UED), which implies that Property ii) of Theorem 4.1 holds uniformly with
respect to n, and the fact that the family of disks belongs to a bounded set B of X7 (¢ > 0).
O

We recall that lim U, (¢") = V; € OB(E;,r) N W (E;,2r) N Ay and lim U, (7)) = W; €
OB(E;,r) N WY (E;,2r). Due to the convergence of the local unstable manifolds proved in
Theorem 4.7, there exist a neighborhood N2 of Wy in W (Ejy, 2r) and a sequence of neigh-
borhoods (N?) of U,(7?) in W“(FEy, 2r) such that N'? C' —converges to N2. As, by Lemma
5.8, o) — 70 is bounded, we can assume that o} — 79 — Tj,. Notice that the sequence of
manifolds (N?) is bounded in X for some positive o and that N is finite-dimensional.
Thus, Proposition 3.11 implies that the manifold S, (! — 79)N?, which contains U, (o}),
C!—converges in X to the manifold S, (Ty)N2, which contains V;. As S (t) has the Morse-
Smale property, we can find a submanifold 6y of S (Tp)N2 of dimension m(F;) which is
tranversal to W2 (E;) and which contains Vi. Thus, we can find a submanifold N, of N
of dimension m(E}), which contains U, (7?) and is such that S, (o} — 79N} C'—converges
to 6y. Using the generalized A—lemma of Proposition 5.10, we find that there exists a

neighborhood N1 of Wy in W (Ey, 2r) such that S, (7! — 72)N.} C'—converges to NL.

WS (Eo)

W (Eo)

Ep »

; W (Er)
0o
Wi (Er)

By a finite number of iterations of this process, we obtain that there exists a sub-
manifold NP~ of N of dimension m(E,_1) such that S, (o2 — 79)NP~! C'—converges to
Seo(Tp—1)NZ1 a neighborhood of V,, in WY (E,_1). As the union of the attractors UA,, is
bounded in X* for some positive s, there exists a ball B of X* such that S, (¢2 —70)NP~ C
B for all n. The convergence of the regular part of the local stable manifolds (see The-
orem 4.13) implies that W2 (E,,2r) N B C'—converges to W2 (FE,,2r) N B. Thus, for n
large enough, the dimension of W?*(E,, 2r) N S,(c? — 79)NP~! is less than the dimension
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of W2, (E,,2r) N Seo(Ty—1)NE . By assumption, Sy (T,—1)NEZ ! and W (E,, 2r) intersect
tranversally and so, a dimensional argument implies that W3 (E,, 2r) and S,,(c? — 70)NP™!
intersect tranversally. As S,(c? — 72)NP~! is a submanifold of W*(Ep), this shows that
the orbit O,, is transversal.

6 Study of the hypotheses

6.1 The one-dimensional case

First, we notice that Hypotheses (ED) and (Grad) are always satisfied in dimension one.
Indeed, we have assumed that 7, # 0 in the space of the measures, which is well-known to
imply (ED) and (Grad), even for the case n = co. Concerning Hypothesis (ED), we refer
to [23], [8] and [10] for n € N ; and [11], [29], [32], [44] and [45] for n = 4+00. Concerning
Hypothesis (Grad), we respectively refer to [21] and [31].

Hypothesis (UED) is the only assumption that we have to verify in dimension one. There
exist many methods to prove the exponential decay property for Equation (1.2) when n is
fixed. However, the proof of uniform exponential decay for a family of dissipations (7, )nen
is more difficult, especially when the family is not bounded in IL.*°. In the one-dimensional
case, we are able to adapt an idea of Haraux (see [23]).

Definition 6.1. We say that a dissipation 7y is effective on the free waves if the following
criterium is satisfied.

(EFW) There ezist a time T and a positive constant C' such that, for any (o, 1) € X, the
solution of the free wave equation

{¢u+B¢:0

(@, @) jt=0 = (o, 1) € X (6.1)

satisfies

[ [A@hate s = Clt el (©2)

The following implication is well-known for n fixed (see [23]). We extend it easily to
the case of a family of dissipations.

Proposition 6.2. If (UED) is satisfied, then the family of dissipations (Vn)neny C L°(Q2)
is uniformly effective on the free waves, that is that the property (EFW) is satisfied for
each v,, with T and C independent of n.
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Proof : Assume that (UED) is satisfied, then there exists a positive time 7', independent
of n, such that ||6A"T||% x < 1. Thus, for any Uy = (o, ¢1) € X, we have,

/ [ bl = STl = W@ 2 F101E (63)

where (u,u;)(t) = U(t) = e?'Uy, For any Uy = (0, 1), we denote (i, ¢;) the solution of
the free wave equatlon (6.1). We set w = u — ¢, which is the solution of the system

Wy + VoW + Bw = —7,04
w(0) =0

Multipliying by w; and integrating on [0, T] x €, we obtain

1 T T
@B+ [ [l == [ [ i
0 Q 0 Q

and thus, using Cauchy-Schwartz inequality, we get

T T
| [oalal < [ [l
0o Jo o Jo
Finally, (6.3) implies that

T T T T
oo el <4 [ [ %|ut|2s4(/ [odwi+ [ [ wtﬁ)ss [ [lat.
0 Q 0 Q 0 Q 0 Q
]

Of course, the interesting question is to know if the uniform effectiveness on the free
waves implies (UED). We give here a way of obtaining this implication in dimension one,
by using a multiplier method inspired by [13]. This method is of course not the only one.
In the appendix, we recall a theorem of [2], which implies the same result. The crucial
point in the following results is to obtain the dependence of the constants on ||y||.: and
not on ||y|| e, since our family of dissipations (7, )nen is bounded in L'(]0, 1[) but not in
L>(]0, 1).

To simplify, we work here with B = —Apy + Id. The same results are true for other
boundary conditions with a similar proof.
First, we use the multipliers method to prove the following estimate.

Proposition 6.3. Let v € L'(]0,1]) and h € L}(R,L2(]0,1[)). Let u be the solution of

Ut (T, 1) — Uz (2, 1) +ulx,t) = h(z,t) (x,t) €]0,1[xR,
uz(0,t) = u,(1,6) =0
(u, ug) =0 = (ug, u1) € H'(]0, 1[) x L2(]0,1])
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Then, for all T > 0, there exists a constant C' = C(T, ||y||L1) such that

T 1
/l/ |%MW4HWUMﬁ<C(/(/VMWA+MMM&+M$Q+WM@).
0 0

Proof : We set
_{ Jo 1(&)d¢ 0<x<1/2
T 20 -a) [ ede 12<a<

Notice that [|p|lL=~ < ||v||L: and p(0) = p(1) = 0. We have

T 1 T 1
0 0 0 0

Using integrations by parts, we find

1 T 1 1 T T 1 . T .
5/0 /0 /)m(|um\2+\m|2) = — [/0 putumda:} +/0 /0 hpux+§/0 /0 Px\u\Qd:cdt. (6.4)
0

The classical energy argument gives

1 T 1
vt € 0,7, / (Tl + [uf + [u?) (O)dz < ol + ur P + / / Bl dedt . (6.5)
0 0 0

As p, is bounded in L1(]0, 1[) by [|v|lr: and H(]0, 1[) — L°°(]0, 1[), we have

T 1
/ / plul? < Tl sup lul®)]
0 0 tG[O,T}

T 1
< Oyl (/ / |l ue| dedt + [|uol [ + ||ullliz) :
0 0

Moreover, p is bounded in L>° by ||7v||L: and so (6.5) gives
T

1 T 1
[ / putuxdx] < Cllu ( / / |huut|d:cdt+Huouﬁmuulué) -
0 0 0 0

Using the above estimates in (6.4), we find

T T
[ ot st fupyasar < ([ [ a1l + ubdode + uols + sl )
o Jo o Jo
(6.6)
On the other hand, since p,(z) = v(z) for z €]0,1/2] and since p,(x) is bounded by ||7v||L:
for x €]1/2,1], we have

/,/ mﬁ+mﬁ+mmma</’/pﬂw|+mF+MHMﬁ
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T 1
e [ (ul? o+ fol? 4 Py ©.7)
o Ji/2

The estimates (6.5), (6.6) and (6.7) show that

/ / ) ([ua]? + [ul? + ug|?)derdt

T 1
SC(HUOJ;HEQﬂLHmHEzﬂL / / |h|(|um\+\ut\)dazdt) |
0 0

where C' depends on ||7||L: and 7" only.
In order to estimate the integral fOT f11/2 (@) (|ug]® + |ul? + |u|*)dzdt, we argue in the same
way with p taken as follows :

ol nede o< <12
. i (€)de 1/2<z<1

We obtain the following criterium for the exponential decay.

Theorem 6.4. Let v be a nonnegative function of L>°(]0,1[). Assume that (EFW) is
satisfied. Then, there exist two positive constants M and A depending only on the constants
C, T introduced in (6.2) and ||v||L1 such that, for each initial data (ug,u;) € H'(]0,1[) x
L2(]0,1[), the solution u of

(2, ) + y(X)u(x, t) = uge(x,t) — u(z,t) , (z,t) €0, 1[xR;
u.(0,8) = ug(1,¢) =0 (6.8)
(w, ug)jp—o = (g, u1) € H*(J0, 1[) x L2(]0, 1])

satisfies
lu(@) e + @) < M(Jluollfn + lluallF2)e™ .

Proof : We denote the energy E(t) = $(|Ju(t)||Z: + ||u(t)||?2). We know that

E(0 / / )|y (w, )| 2dzdt . (6.9)

Let ¢ be the solution of the wave equation (6.1) with g = ug and ¢; = u;. We set
v = u — ¢, which is the solution of

Vgt — Ugg U = —YUt
v(0,1) = v (1,¢) =0
v(z,0) =0
vy(z,0) =0
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Using Proposition 6.3, we obtain

/ / V(o2 + V]2 + [on]? )d:cdt<C(/ / ) ( \vm\+\vt\)dazdt) |

where C' depends on T" and ||7y||L1 only. Thus,

2
</ / Y(|vg > 4 |v? + |y )dxdt)
<C/ / x)|u|Pdwdt % / / )(|vz| + |ve])2dzdt |

and also, by the Young inequality,

// V([oa ]+ |02+ |oo?) d:cdt<C// ) ug2dzdt = C(E(0)— E(T)) . (6.10)

Finally, using (6.9), (6.10) and the hypothesis (EFW), we obtain

E(T) ) < C’/ / 7| (z,t)|*dwdt

<C</ / |utazt2dazdt+/ / \vtxt|da:dt)

The exponential decay of the energy follows from this inequality (see for example [23]). O

In the last part of this section, we give concrete conditions implying the criterium
(EFW) uniformly in n. Thus, we obtain examples of one dimensional equations satisfying
the Hypothesis (UED). Notice that our method also gives higher dimensional examples
where (EFW) is satisfied uniformly in n, but in these cases, we have no proof that (EFW)
implies the uniform exponential decay (UED).

We wonder when Hypothesis (UED) is satisfied for the family of equations

Ut (2, 1) + Y (2)ur(2, t) = uge(x, t) — u(z, t) + f(z,u) (x,t) €]0, 1[xR4
uz(0,t) = u,(1,t) =0 (6.11)
(u, ug) =0 = (ug, ur) € H'(]0, 1[) x L2(]0, 1)

Remark that Proposition 6.2 and Theorem 6.4 imply that, if the semiflow generated
by (6.11) satisfies (UED) for a sequence of dissipations ,, then the property (UED) also
holds for any sequence of dissipations 7, > ,. Thus, we may restrict our study to dis-
sipations of the form 7,(x) = nXjanian+1/n[- Next, we show the following lemma, which
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replaces the criterium (EFW), concerning the solutions of the free waves, by a criterium
on the eigenfunctions of the free waves operator.

We denote by A7 (A\x > 0, k € N*) the eigenvalues of B and ¢y, the corresponding eigen-
functions normalized by ||¢g||L2 = 1.

Lemma 6.5. We assume that v, is effective on the free waves, that is that (EFW) holds for
Yoo We also assume that there exist a family of complex numbers (ay) and an application
h defined from N* x N* into {0,1} such that

Vk, = N*, / Yoo PP = a;ﬁk/h(k, k’,) .
0
If h(k, k') = 0 implies [ vnoxPp =0 for alln € N and if

1
inf inf ak|2/%|¢’“|2 >0, (6.12)

neN keN*

then the family of dissipation (v,) is uniformly effective on the free waves, that is that
(EFW) holds uniformly in n.

Proof : For k € N*, we set A\ = —\; and ¢_ = . A solution of (6.1) can be
decomposed as follows.

1
Y\ _ inet 1 ( g Pk ) 2 2
= E cpe Mt — where , - = E ckl” -

ICGZ* ICGZ*

As (6.2) holds for 74, we have that fOT Jo, vooleel? = Cl (@, 1) i=oll%, that is that

GiOR=A)T _

chaﬁ,ﬁ aawh(k], [K]) > C Y lal”, (6.13)
ke K/ kT AR keZ*
where by convention % = T when \; = A,. Concerning the dissipation ~,, we
have
T OR=NIT _
Ynl e ROy / VK P
/0 /Q % M= Jo *
etA=2A)T _
= [ S e () Sk, )
k!
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Notice that (6.13) implies that inf |ay| > 0. Moreover, choosing (¢, ¢;)ji—o in X for s
large enough, we have that Z(;—’;||S0k||Loo)2 is finite. Thus, due to the inequality (6.13), we

obtain .
C
0

keZ* keZx*

Using (6.12) we find that (6.2) holds uniformly in n for any initial data (p, @)= in X°.
The density of the space X* in X then concludes. 0

We apply Lemma 6.5 to obtain the following result.

Proposition 6.6. Let (a,) C [0, 1] be a sequence such that a,, — 0 when n — +o00. We
set .
(@) = { 0 elsewhere .

Then the family of equations (6.11) satisfies (UED) if and only if sup{na,} < +oo.

Proof : We have to verify the hypotheses of Lemma 6.5. In our case, we have v,, = d,—o,
M = VE2+1 and ¢, = v/2cos(knz). Thus, fQ Yook P = 2, and we can set ap = /2
and h = 1. It is well-known that Equation (6.8) with 7 = ~,, generates an exponentially
decaying semigroup. So, the criterium (EFW) is satisfied by 7u..

To apply Lemma 6.5, it remains to show (6.12). If (6.12) does not hold, then it is clear
that (EFW) cannot be satisfied uniformly. Thus, we have to prove that sup{na,} < +oo
is equivalent to the existence of € > 0 such that

an+
inf inf n/ | cos(kmz)|*dx > € . (6.14)

neN keN*

We have

/%;' (ko) Pde = 3 (14 - sin(r™) cos(rh(2a, + )
n . COS T T = kjﬂ' Sln 7Tn COS\ T an n .

Assume that (6.14) is not true, then there exist two sequences (k,) and (n,) such that

n k. 1
k: I;T 51n(7rn—p) cos(mky,(2an, + —)) — —1.

P My
This implies that :—” — 0 and 2kpa,, — 1 mod(2), and so |n,a,,| — +oo.
P
Assume now that there exists a subsequence satisfying |n,a,,| — +oo. Let k, be the

smallest integer strictly larger than T We have
p

1
IZ)—’;T sin(ﬁn—p) cos(mky(2a,, + n_p)> — -1,
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and thus (6.14) is not satisfied. O

Remark : The same result obviously holds when the Neumann boundary condition at
x = 1 is replaced by the Dirichlet condition.
We will come back to the case sup,{na,} = +0oo in the appendix A.2.

6.2 The two and three-dimensional cases

In dimension higher than one, our hypotheses are less easy to verify. First, Hypotheses
(ED) and (Grad) do not always hold. The hypothesis (ED) is equivalent to geometrical
conditions on the support of 7,, which are now well-understood. The case of Hypothesis
(UED) is much more difficult and its study in dimension two or higher is still mostly open.

6.2.1 Hypothesis (ED)

It is now well-known that the following geometric condition is equivalent to (ED), see [6].
For each n € NU {400}, there is a length L,, such that all geodesics on 2 associated to the
operator 92 + B and of length greater than L,, meet the support of ,. In dimension one,
the condition is trivially satisfied. In the higher dimensional case, the condition is more
restrictive, since, for some examples, there exist geodesics of infinite length, which do not
meet the support of ,,.

(‘ support of y;,

(ED) satisfied (ED) not satisfied

6.2.2 Hypothesis (Grad)

Let n € NU {400} be given. Let Uy € X be such that for all ¢ > 0, we have ®(S,,(t)Uy) =
O(Up). L U(t) = Sp(t)Up = (u(t),v(t)), we thus have

w(t) = v(t) and uy + B(u+ Thuy) = fx,u) .
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We know that

0
W20, ZOU) =< AU =~ [ e =0
Q

Hence, v = u; satisfies

v =0 on supp(y,) if n € N
Vt >0, vy + Bv = fl(z,u)v and { or . (6.15)
v=0and 2 = 0 on supp(7e)

To prove that Hypothesis (Grad) holds, we must show that (6.15) implies that u; = v =0
on ) x Ry. This unique continuation argument holds under geometrical conditions.

e If the support of v, contains a neighborhood of the boundary 0f2 for n € N and if
the support of 7., is equal to 0€2, then (Grad) is satisfied (see [42]).

e Assume that supp(7s) = wy, that the support of v, contains a neighborhood of wy
and that there exists a point zy € R? such that

{r € dQ /[ (x—x9)v >0} Cwy,

then (Grad) holds (see [28]).

Dirichlet B.C.

e Let  be a domain with a boundary of class C'. We assume that the support of v,
includes a neighborhood of supp(7s) and that the boundary conditions on the whole
boundary 92 are of Neumann type, that is that wp = (). In this case, [33] gives many
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sufficient conditions for (Grad) to hold. In particular, if 2 is a disk, the fact that the
support of 7., covers slightly more than a half circle is sufficient. Other examples are
given.

straight line / sinegraph less than aquarter turn

/

)

Remark : For all the examples that we give here, one notices that (ED) is satisfied.
However, there is no reason that (Grad) implies (ED) in general.

6.2.3 Hypothesis (UED)

The methods, which were used in the one-dimensional case, cannot be generalized to
dimensions two or three. For these dimensions, using an energy method, we obtain here a
criterium equivalent to the property (UED). However, except for the particular cases where
vy is uniformly bounded away from 0, it is very difficult to exhibit examples satisfying this
criterium.

The following equivalence is very classical. The property (UED) is satisfied if and only if
there exist two positive constants 1" and C' such that, for all Uy € X and n € N, if we set
U(t) = (u, us)(t) = etUp, then we have

T
/ / aluwl? = CIUI% - (6.16)
0

We can weaken this criterium as follows.

Proposition 6.7. The uniform exponential decay property (UED) is satisfied if and only
if there exist two positive constants T and C, independent of n, such that, for all Uy € X
and n € N, if we set U(t) = (u, us)(t) = e Uy, then we have

T T
/ /7n|ut|2 > C’/ /|ut|2 ) (6.17)
0 Q 0 Q

Proof : The “only if” part is a direct consequence of the classical criterium (6.16). Indeed,
the property (UED) implies that there exist two positive constants 7" and C' such that, for
all Uy € X and n € N,

g 2 2 ¢ ’ 2 ¢ g 2 g 2
| [l z oot =7 [ wilar= 2 [ jw@igazc [ [ b
0 Q T 0 T 0 0 Q
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In order to prove the “if” part of the equivalence, we introduce the following functional.
Let a be a positive number to be chosen. For all U = (u,v) € X, we set

1
FU) = §/Q(|u|2+2uv+a|v\2+a\31/2u\2>dx. (6.18)

For a large enough, the functional I is clearly equivalent to the energy in the sense that
there exists a positive constant p such that

1
VU € X, EHU!@ <FU) < p|Ulx - (6.19)

Let Uy € D(A,) and n € N, we set U(t) = (u,u;)(t) = en'Uy. As U(t) € CH(R,, X), we

can write

oF(U(t) = /(uut + uty + | + auguy + o BY?u)(BY?u,))dx
Q

= /(uut — Yputy — (Bu)u 4 |u]? — ary,|ug]?
Q
— auy(Bu) 4+ o BY?u)(BY?u,))dx .

Thus, for all € > 0, we have that

1
O F(U(t) < / e(1+ yu)lul® + - + ) uwef® = [BY2ul? + |ug* — anuluf? .
Q

As T, converges to I'y, in £(D(BY/?)), we know that there exists a positive constant C,
independent of n, such that, for all u € D(BY?), [, va|ul* < CHUH%(BI/Q). Therefore, for e

small enough and « large enough, (6.17) implies the existence of a time 7" and a positive

constant C such that . .
/ O F(U(t)) < —C/ F(t) .
0 0

Thus, using the density of D(A,,) in X, we obtain that, for all Uy € X,
F(UO) . A TU > C/ A tU

The inequalities (6.19) and the fact that e“"! is a contraction imply that, for all Uy € X
and k € N,

C [k C
0l = / e Uolfede > ST Ul

For k large enough, we obtain a time 7", independent of n, such that |le?"”" Up||x < £|Up]%.
This is well-known to imply the uniform exponential decay (UED). O
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It is difficult to find examples satisfying the criterium (6.17). Indeed, opposite to the cri-
terium (EFW) obtained in the one-dimensional case, (6.17) involves functions U(t), which
are solutions of an equation which depends of n. However, Proposition 6.7 gives some very
particular examples where (UED) is satisfied in dimension higher than one. This corollary
is stated in a way so that it can be applied to a general sequence of dissipations, which
satisfies (6.20) only.

Corollary 6.8. Let (72),en be a sequence of non-negative functions in 1L°(Q). Assume
that there exists a positive constant C' independent of n such that

Vu € D(BY?), Vn € N, /Q'yg(x)|u(:p)|2dx < C||u||%(31/2) . (6.20)

Then, for all n > 0, the uniform exponential decay property (UED) is satisfied for the
sequence of dissipations vy, =1+ 0.

Notice that this result in not a priori trivial, since, as the sequence (7°) is not neces-
sary bounded in L.>°(€2), overdamping phenomenas may occur. The fact that v, >n > 0
seems slightly artificial from a mathematical point of view. However, it is not from the
physical point of view since 7, never really vanishes in the concrete cases. For example,
7 can be seen as the resistance of air when (2.5) models the propagation of waves in a room.

7 Examples

In this section, we give some examples illustrating our results. For each example, we define
), B and 7, and say if the convergence of the attractors holds in the space X or only in
X~* (s > 0). Saying that the convergence holds in X ~* does not mean that there is no
convergence in X. It only means that we are not able to prove it for the moment. Here
we do not give explicit non-linearities for which Hypothesis (Hyp) is satisfied.

We recall that we denote by Ay the Laplacian with Neumann boundary conditions.

Example 1 :
“n Q=]0,1[, B=1d— An,a >0
~ [ an, x€0,%] B
() = { 0, elsewhere ’ Yoo = @0z -
Convergence in X.
0 1n {
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Example 2 :

1 Q=]0,1, B=Id—An,a>0

an, z €]-=, -+ +1]
_ ) T a — b
() { 0, elsewhere » Yoo = (=0

Convergence in X 7.

0 Un12 1

Example 3 :
Q) is the disk of R?, B = Id — Ay,
w is an open subset of 92 which covers
strictly more than half of the circle

[ n, dist(z,w) < 1 B

(@) = { 0, elsewhere » Yoo = Oz -
Convergence in X °.

Example 4 : Q CR?% n>0,wis any subset of 0

B=1d—- Ay

n, dist(z,w) < *

n, elsewhere
Convergence in X.

Example 5 : For sake of simplicity, the abstract frame of this paper has not been defined
so that this example fits in it. However, all the results given here are valid for this case.
Notice that we need the additional dissipation g, since the singular internal dissipation
dz—a 18 not sufficient to obtain exponential decay (see [25]), or the gradient structure. We
denote by Ap the Laplacian with Dirichlet boundary conditions.
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Q2 =]0,1[, a €]0,1] and g is a nonnegative function,
in L*°(]0, 1[) which is positive on an open subset,
B=—Ap

_ [ 9@ +n, ze€la—ga+ 5]
M(T) = { g(x), elsewhere

Yoo (%) = g(2) + Oz -

Convergence in X.

A Appendix

A.1 A result of Ammari and Tucsnak

We have proved in Section 6.1 that if 2 =]0, 1] and if the dissipations -, satisfy uniformly
the property (EFW), then (UED) is satisfied. We show here how to obtain the same
implication with a different method, which has been introduced in [2]. To simplify the
notation, we state the results of [2] in our frame.

Let v be a function in L*>°(€2). We introduce the following hypothesis

(H) If 8 > 0 is fixed and Cy = {\ € C/Re(\) = 3}, then the function
H(\) =y AX\Id+ B) 'y
defined from Cjy into £(IL?) is bounded and we set

Mg = sup ||H(N)| g2y < 00 .
AeCp

In our case, Theorem 2.2 of [2] can be stated as follows.

Theorem A.l. Assume that the hypothesis (H) holds and that ~y is effective on the free
waves, i.e. that (EFW) is satisfied. Then, there exist two positive constants M and X
depending only on the constants C, T introduced in (6.2) and on the family of constants
Mjg introduced in (H) such that, for any initial data (ug,uy) € X, the solution u of

{ uy + y(x)uy + Bu =0

(w, up) =0 = (uo,u1) € X (A.1)

satisfies
1w, we) (t)l|x < Ml|(uo, wr) | xe™" .
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The idea of the proof of Theorem 2.2 of [2] is to replace the multipliers method by a
Laplace transform argument to obtain a result similar to Proposition 6.3.
Theorem 6.4 is then a direct consequence of Theorem A.1 and of the following property.

Proposition A.2. Let Q =|0,1[ and B = —Ay + Id. For v € L>=(]0,1[), Hypothesis (H)
is satisfied and the bound Mg depends on ||y|L1 only.

Proof : We notice that /4 is bounded in L*(]0,1[) by ny”i/f So, the operator of
multiplication by /7 is bounded in £(L* L') and in £(L>,L?). It remains to show that,
on Cj, the operator A(A\*Id + B)~! is uniformly bounded in £(L!, L>).

Let f € L'(]0,1]) and u be the solution of

~Ugy FUFNu=F, uy(0) =u,(1)=0. (A.2)
We set § = (—A? — 1)1/2. The solution of (A.2) is given by

u(z) = C cos(bx) — sin(fz) /ﬂ»‘ %@f(s)ds + cos(0x) /ﬂ»‘ %fs)f(s)ds , (A.3)

0 0

where

C = —/0 %fs)f(s)ds — %%(9)/0 cos(fs) f(s)ds .

A direct computation shows that, if A = 3 + iu, then

1 2
Im(f) = — ((u* — B> — 1) + (2#6)2)1/4 sin (iarctg (%)) :
Thus, Im(f) — F06 # 0 when u — £oo. This implies that sin(f), cos(f), cotg(f) and
% are uniformly bounded on Cg. Since f € L'(]0,1[), (A.3) proves that v € L> and so
A(A%Id + B)~! is uniformly bounded in £(L',1L>). O

Unfortunately, Theorem A.1 is not applicable in dimension higher than one. Indeed,
it is shown in [2] that property (H) implies the following fact. For all 7" > 0, there exists
C > 0 such that all the solutions ¢ of the free wave equation (6.1) satisfy

/0 / V(@) euPdadt < Cll (2o, o) 1% - (A4)

Let Yo = dzew be a dissipation on a part of the boundary. In dimension higher than one,
we can imagine a wave travelling along the curve w for which the left-hand side of the
inequality (A.4) is infinite. If (A.4) does not hold for the boundary dissipation, we cannot
hope that it holds uniformly for the family (v, ),en When 7, converges to ... The following
counter-example illustrates this remark.
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Proposition A.3. Let Q =|0,1[*, B = —Ay + Id. For all time T > 0, there exists
a sequence of initial data (g, ¢7) € X, with ||(vf, ¢7)|lx = 1, such that the solutions
on(x,y,t) of the free wave equation (6.1) satisfy

T 1 o
| [ 15eu0pPaya — +o0
0 0 t

when n — +00.

Proof : We choose the decomposition of the initial data on the eigenvectors of the free
wave operator as follows. Let

©op \/7 - n6+k2 cos(n my) cos(kmx)
"l cos(nmy) cos(kmx) '

Notice that [[(¢f, ¢1)|lx = 1. A straightforward calculus gives

n—1 n—1
Lsin(vnb + k2 +1—/nb+Ek?*+
[ [ 1aouipan=23" 31 e
o=t VnS+E2+1—-vVnb+E +1

Since
k2 — k| 1
VAT F T = Vs 4 k1| < E <
2v/nb n
for n large enough, there exists € > 0 such that
in(vnS +k2+1—vVnS+ &>+ 1)T
sin(vnS + k2 + nb + +>Z€>0-

nb+k2+1—/nb+k>+1
And thus,

T 1 o
0 0

A.2 An example of convergence of the attractors in X, when
(UED) does not hold

To show the convergence of the attractors A, in X, we had to show Proposition 2.9 that
is that
IM >0, YneN, sup |Unllpa,y <M . (A.5)

Un€Ay,
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We have shown that Hypothesis (UED) implies the above bound, but, of course, it is not
necessary. The purpose here is to give examples where (UED) is not satisfied but where
(A.5) holds.

We set Q =|0,1[ and B = —Ay + Id. Let « > 0 and f € C*([0,1] x R,R). We study the
family of equations

Ut (2, 1) + Yo (2, 1) = g (2, ) —ulz, t) + f(x,u(z,t) (x,t) €0, 1[ xR
uz(0,t) = u,(1,¢) =0 t>0
(u, ug) =0 = (ug, ur) € H'(]0, 1[) x L2(]0,1])

(A.6)

where, if n € N

=" if - <z<—5+1
)= 0 elsewhere .

and ’700(1‘) = 51‘:0'
In Proposition 6.6, we proved that (UED) holds if and only if o« > 1. The purpose of this
section is the proof of the following result.

Proposition A.4. We assume that [ satisfies Hypothesis (Diss). The dynamical systems
generated by (A.6) admit a compact global attractor A,. Moreover, if a > 1 then (A.5)
holds and the conclusions of Theorem 2.10 are valid.

In what follows, we assume that o EH—?, [, the case av > 1 has already been considered

in Proposition 6.6. The proof of Proposition A.4 is a consequence of the following two
lemmas.

Lemma A.5. There exist a time T and a constant C' such that, for any (pg, 1) € X, the
solution of the free wave equation

Y+ Bp =0
{ (©, ¢1)jt=0 = (@0, 1) (A.7)

satifies for allm € NU {400}

T
/ / (@), OPdzdt > Cl(0n 1) Porsye (A8)
0

Proof : Using the same arguments as those of Lemma 6.5, we see that (A.8) is satisfied
uniformly with respect to ¢ if there exists a positive constant C' such that

n=*41/n

Vn e N, Vk e N, / Y| cos(kmz)|Pdx = n/ | cos(kmx)|? >
Q n

- k2/a—2"

(A.9)

—a
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that is that | " ) . o
— (1 + = sin(m—) cos(km(— + 5)) >

2 kr n no = k2/a-2 "

Assume that the above inequality does not hold. Then, there exist two sequences (k,) and
(n,) such that

k 2 1
(1 FRCE sin(m—2) cos(kpm(— + —)) kﬁ’wo‘ — 0. (A.10)
k,m ny npy® Ny
We must have i_f, — 0 and
2k
—L — 1mod?2. (A.11)
/rLOé
P
2
Thus, for p large enough, we have 0 < IZ—’; sin(wi—’;) <1- % (Z—’;) . This shows that

2 1.1 ?
1+ ;—p sin(ﬂﬁ) cos(kpm(— +—) > 5 (ﬁ) :

pT Tp p

Using (A.11), we obtain that, for p large enough, nip > WC%’ and thus

v

2

2 1 1 1

14+ 2 sin(ﬂﬁ) cos(k,m(— + —) 5 - :
k,m Ny n,*  n, 6(4)a \ (kp)ot

This is a contradiction to the assumption that (A.9) does not hold. 0J

The second lemma is a direct adaptation of a theorem of [2].

Lemma A.6. If a > 12, there exist A > 1, s €]0,1/2[ and M > 0 such that

M
Ant
VU € X, Vn €N, [le""Upllx < mHUOHXS .

Proof : The outline of the proof is exactly the same as the one of Theorem 2.4 of [2].
First, notice that we have proved in Proposition A.2 that Hypothesis (H) introduced in
Section A.1 is satisfied uniformly in n. Arguing as in [2], with some slight modifications,
we show that Lemma A.5 and Proposition 2.6 imply that, for all o €]0,1/2],

M
Ve >0, |[U®)]x £ —————IUollpa,)

(1 + t) 2(1/6—1)
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where 0 = . With the same interpolation methods as in Proposition 3.5, we obtain

g
ot+1-1/«

M
vt >0, |Ut)x £ ————IUo|

(1+ t)7D

XS.

We end the proof by noticing that we can find s €]0,1/2[ and o €]0,1/2[ such that
A= ﬁ;l) > 1 is equivalent to a > }—g. U

We are now able to prove the proposition.

Proof of Proposition A.4: All we have to prove is that the inequality (A.5) holds. The
proof is exactly the same as the one of Proposition 2.9. The only change is the estimate of
e (F(U(T+0)) — F(U(1))) for 7 < t. Lemma A.6 implies that there exist s €]0,1/2]
and A > 1 such that

O \FW(r+ )~ FUM)

HeAn(t—T)(F(U(T +0)) — F(U(T)))HX S m

Xs -

Hypothesis (NL) implies that there exists n €]0, 1] such that

I1FU(T +0)) = F(U(7)))|

o < Ju(r +8) = u() oo
Thus,

e (EU T +6)) = FUM))||

1—

< 7<1 PR |u(T +6) — u(T) || [lu(s + 8) —u(s)||2" -
Using the fact that ffoo OJNC%T)A is finite, we conclude with the same arguments as in
Proposition 2.9. O]
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