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1 Introduction

This article is devoted to the comparison of the dynamics of the wave equation damped
in the interior of the domain Ω with the dynamics of the wave equation damped on the
boundary of Ω, when the interior damping converges to a Dirac distribution supported by
the boundary.
One of the physical motivation is the following. We consider a soundproof room, where
carpet covers all the walls. This situation is modeled as follows. Let Ω be a smooth
bounded domain of Rd (d = 1, 2 or 3) and let γ be a non-negative function in L∞(∂Ω) (the
effective dissipation of the carpet at a point of the wall). The propagation of waves in the
room is modeled by the wave equation damped in the boundary







utt(x, t) = (∆ − Id)u(x, t) + f(x, u(x, t)) , (x, t) ∈ Ω × R+
∂u
∂ν

(x, t) + γ(x)ut(x, t) = 0 , (x, t) ∈ ∂Ω × R+

(u, ut)|t=0 = (u0, u1) ∈ H1(Ω) × L2(Ω)
(1.1)

Notice that, in this model, the waves are not dissipated in the interior of the room but
instantaneously damped at each rebound on the walls. This corresponds to a ponctual
dissipation of the form γ(x) ⊗ δx∈∂Ω, where δx∈∂Ω is the Dirac function supported by the
boundary. Of course, this is an approximation of the reality, as the carpet has some
thickness. Thus, we can model more precisely the propagation of waves in the soundproof
room by the equation







utt(x, t) + γn(x)ut(x, t) = (∆ − Id)u(x, t) + f(x, u(x, t)) , (x, t) ∈ Ω × R+
∂
∂ν
u(x, t) = 0 , (x, t) ∈ ∂Ω × R+

(u, ut)|t=0 = (u0, u1) ∈ H1(Ω) × L2(Ω)
(1.2)

where γn is a bounded function, which is positive on a small neighborhood of ∂Ω and
vanishes elsewhere.
The purpose of this paper is to study the relevance of the model equation (1.1), that is to
understand in which sense the dynamics of Equation (1.2) converge to the ones of Equation
(1.1) when γn converges to γ∞ = γ(x) ⊗ δx∈∂Ω in the sense of distributions. This paper
is also an opportunity to present in a different way some classical proofs on stability of
gradient Morse-Smale systems.

Both equations have been extensively studied, we cite for example [8], [10], [14], [23],
[40] and [45] for the wave equation with internal damping (1.2) ; and [9], [11], [29], [31],
[32], [44] and [46] for the wave equation with boundary damping (1.1). However, the con-
vergence of the dynamics of Equation (1.2) to these of Equation (1.1) has apparently not
yet been studied. The only work in this direction is the convergence of the internal control
of the wave equation towards boundary control in the one-dimensional case (see [13]). In
this paper, we have chosen to focus on the convergence of the compact global attractor of
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(1.2) to the one of (1.1), when they exist, and on the comparison of the respective dynamics
on them. Indeed, the compact global attractor, which consists of all the globally bounded
solutions on R, is somehow representative of the dynamics of the equation. We note that
the study of convergence of attractors for other less regular perturbations is classical ; the
main tools can be found for example in [19], [3], [4] and [41].
We introduce the spaces X = H1(Ω) × L2(Ω) and Xs = H1+s(Ω) × Hs(Ω) (s ∈ R). In the
general case, we are able to prove results similar to the following one.

Let Ω be a smooth bounded domain of R2, let γ∞ = δx∈∂Ω and γn(x) = n if dist(x, ∂Ω) <

1/n and 0 elsewhere. Let f ∈ C2(Ω × R,R) be such that supx∈Ω lim sup|u|→+∞
f(x,u)

u
< 0

and that there exist two constants C > 0 and p ∈ R+ so that |f ′′
uu(x, u)| + |f ′′

x,u(x, u)| <
C(1 + |u|p) for (x, u) ∈ Ω × R.

Theorem 1.1. Let Ω, γn, γ∞ and f be as described above. Then, Equations (1.1) and (1.2)
have compact global attractors A∞ and An respectively. Moreover, the union of the attrac-
tors (∪n∈N∪{+∞}An) is bounded in X and the attractors (An) are upper-semicontinuous at
A∞ in X−s, for any s > 0, that is,

sup
Un∈An

inf
U∞∈A∞

‖Un − U∞‖X−s −→ 0 .

If all the equilibrium points of (1.1) are hyperbolic, the attractors (An) are lower- semicon-
tinuous in X at A∞. Moreover, the upper and lower semicontinuity can be estimated in
the sense that there exists δ > 0 such that

max

(

sup
Un∈An

inf
U∞∈A∞

‖Un − U∞‖X−s ; sup
U∞∈A∞

inf
Un∈An

‖U∞ − Un‖X

)

≤ 1

nδ
.

In general, we cannot prove upper-semicontinuity in X because the perturbation is too
singular. Let An and A∞ be the linear operators associated respectively with the equations
(1.2) and (1.1). The perturbation is not regular in the sense that eAnt does not converge
to eA∞t in L(X). However, we can prove that, in general, A−1

n converges to A−1
∞ in L(X)

and that this convergence of the inverses implies convergence of the trajectories in X−s for
any initial data in X, and convergence of the trajectories in X if the initial data (u0, u1)
are bounded in a more regular space Xs (s > 0).
The proof of the lower-semicontinuity inX uses as main arguments the gradient structure of
(1.1) and (1.2), as well as the convergence of the local unstable manifolds of the equilibria.
To prove this property, we identify the local unstable manifolds with local strongly unstable
manifolds and show the continuity of these manifolds with respect to the parameter n.
Although our perturbation is irregular, we can prove lower-semicontinuity in X due to the
regularity of the local unstable manifolds of the equilibria of the limit problem.
The upper-semicontinuity instead cannot be shown in X in general. Indeed, we know that
the union ∪nAn is bounded in X, but we do not know if it is bounded in a more regular

3



space Xs. Thus, for initial data in ∪nAn, we are able to compare the trajectories only in
the norm of X−s.
To prove upper-semicontinuity in X, we need to bound ∪nAn in Xs for some s > 0. The
main way to prove this property is to show a uniform decay rate for the semigroups, that
is that there exist constants M > 0 and λ > 0 such that, for all U ∈ X and t ≥ 0, we have

∀n ∈ N, ‖eAntU‖X ≤Me−λt‖U‖X . (1.3)

Such estimate is well-known for fixed n. However, the methods for proving the exponential
decay for fixed n often give constants M and λ depending on ‖γn‖L∞, or are based on a
contradiction argument. Thus, they are not adaptable to the proof of a uniform estimate
in the case of our irregular perturbation, where ‖γn‖L∞ goes to +∞. In dimension two
and higher dimension, the uniform bound (1.3) is not known to hold, except for some very
particular examples presented here. In the one-dimensional case, we give necessary and
sufficient conditions for (1.3) to hold. The proof uses a multiplier method and is inspired
by [13] and [23] (other methods are also possible, see the result of [2] in the appendix).
Thus, in dimension one, we can show a more precise result, which is typically the following.

Let Ω =]0, 1[, γ∞ = 2δx=0 and γn(x) = 2n if x ∈]0, 1
n
[ and 0 elsewhere. Let f ∈

C2([0, 1]×R,R) be such that supx∈Ω lim sup|u|→+∞
f(x,u)

u
< 0. Notice that we do not choose

γ∞ = δx=0 because, with this dissipation, Equation (1.1) does not satisfy the backward
uniqueness property. Without backward uniqueness result, we cannot properly define the
Morse-Smale property (see [11] and the remarks preceding Theorem 2.12).

Theorem 1.2. Let Ω, γn, γ∞ and f be as described above. Then, Equations (1.1) and
(1.2) have compact global attractors A∞ and An respectively. Moreover, the union of the
attractors (∪n∈N∪{+∞}An) is bounded in Xs for s ∈]0, 1/2[. As a consequence, the attractors
An are upper-semicontinuous at A∞ in the space X.
If all the equilibrium points of (1.1) are hyperbolic, then the sequence of attractors (An) is
continuous in X in the sense that there exists δ > 0 such that

max

(

sup
Un∈An

inf
U∞∈A∞

‖Un − U∞‖X ; sup
U∞∈A∞

inf
Un∈An

‖U∞ − Un‖X

)

≤ 1

nδ
.

In dimension one, we can even go further and compare the dynamics on the attractors
An and A∞. A part of this comparison is described by the notion of equivalence of
phase-diagrams. Let S(t) be a gradient dynamical system which admits a compact global
attractor with only hyperbolic equilibrium points. If E and E ′ are two equilibrium points
of S(t), we say that E ≤ E ′ if and only if there exists a trajectory U(t) ∈ C0(R, X) such
that

lim
t→−∞

U(t) = E ′ and lim
t→+∞

U(t) = E .
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The phase-diagram of S(t) is the above oriented graph on the set of equilibria. Two phase-
diagrams are equivalent if there exists an isomorphism between the set of equilibria, which
preserves the oriented edges.
It is proved in [19], [37] and [38] that the stability of phase-diagrams is related to the
Morse-Smale property. We recall that a gradient dynamical system S(t) has the Morse-
Smale property if it has a finite number of equilibrium points which are all hyperbolic and
if the stable and unstable manifolds of these equilibria intersect transversally. The result
of [19] says that if S0(t) is a dynamical system, which satisfies the Morse-Smale property,
and if Sε(t) is a “regular” perturbation of S0(t) such that the compact global attractors
of Sε(t) are upper-semicontinuous at ε = 0, then Sε(t) satisfies the Morse-Smale property
for ε small enough and its phase-diagram is equivalent to the one of S0(t). Unfortunately,
our perturbation is not regular enough for a direct application of [19]. However, using the
smoothness of the attractors, we can adapt the proof of [19] to show the following result.

Theorem 1.3. Let Ω, γn, γ∞ and f be as in Theorem 1.2. If the dynamical system gen-
erated by (1.1) satisfies the Morse-Smale property, then, for n large enough, the dynamical
system generated by (1.2) satisfies the Morse-Smale property and its phase-diagram is equiv-
alent to the one of (1.1). Moreover, there exists a homeomorphism h defined from An into
A∞ which maps the trajectories of Sn(t)|An onto the trajectories of S∞(t)|A∞

preserving
the sense of time.

We notice that (1.1) satisfies the Morse-Smale property for a generic non-linearity f
(see [26]). We also enhance that we give a proof of Theorem 1.3 presented in a way, which
is different from [19], and, which extensively uses the gradient structure of (1.1) and (1.2).

Of course, in this paper, we do not only consider the particular situations of Theorems
1.2 and 1.1, but more general cases. The general frame, the main hypotheses and the
main results are stated in Section 2. The abstract result of convergence for semigroups
of contractions and the study of the convergence of the trajectories of Equation (1.1) to
those of Equation (1.2) are given in Section 3. Continuity of the local unstable manifolds
and of part of the local stable manifolds as well as stability of phase-diagrams are studied
in Sections 4 and 5 respectively. In Section 6, we give concrete conditions under which the
inequality (1.3) holds. In Section 7, we describe examples of applications. Finally, in the
Appendix, we state the above-mentionned result of [2] and study another one-dimensional
case.

Acknowledgements : I am very grateful to Geneviève Raugel for her teaching and her
help during the writing of this paper. I also thank Luc Robbiano, Marius Tucsnak and
Emmanuel Trélat for fruitful discussions.
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2 Setting of the problem and main results

In this section, we first introduce the notation. We immediately prove a first result of
convergence, without which nothing can be done. This leads to a condition, which will be
implicitely assumed in all what follows. Finally, in the last part of this section, we put
together the main hypotheses, which will be used, and state the most important results.

2.1 The abstract frame

We introduce an abstract frame for Equations (1.1) and (1.2). This has two purposes. The
first one is to give results, which concern a larger family of equations than (1.1) and (1.2)
(for example, other boundary conditions can be chosen). The second advantage of the
abstract setting is to gather Equations (1.1) and (1.2) into a common frame, which makes
the comparison easier.

Let Ω be a smooth bounded domain of Rd (d = 1, 2 or 3) and let ωN be a non-empty
smooth open subset of ∂Ω. We denote by ωD the largest open subset of ∂Ω \ ωN .
If ωD 6= ∅, we set B = −∆BC where ∆BC is the Laplacian with Neumann boundary
condition on ωN and Dirichlet condition on ωD. If ωN covers the whole boundary, we set
B = −∆N + Id where ∆N is the Laplacian with Neumann boundary condition. In all the
cases, B is a positive self-adjoint operator from D(B) into L2(Ω).
Let (λk, ϕk) be the set of eigenvalues of B and corresponding eigenvectors normalized in
L

2(Ω). We denote D(Bs/2) the Hilbert space

D(Bs/2) =
{

u =
∑

ckϕk / ‖u‖2
D(Bs/2) =

∑

|ck|2λs
k < +∞

}

.

We notice that for s ∈ [0, 1/2[, D(Bs/2) = Hs(Ω) and for s ∈]1/2, 5/4], D(Bs/2) = Hs(Ω)∩
{u ∈ Hs(Ω)/u|ωD

= 0} (see Proposition 2.1). For larger s, the domain of Bs/2 can be less
simple due to the regularity problem induced by mixed boundary conditions. We set

X = D(B1/2) × L
2(Ω) ,

endowed with the product topology. We also set Xs = D(B(1+s)/2) × D(Bs/2). Let γ be
a non-negative function in L∞(ωN), which is positive on an open subset of ωN . We set
γ∞(x) = γ(x)δx∈ωN

. Let (γn)n∈N be a sequence of non-negative functions in L
∞(Ω), which

are positive on an open subset of Ω and which converge to γ∞ in the sense of distributions,
that is that

∀ϕ ∈ C∞
0 (Rd),

∫

Ω

γnϕ −→
∫

γ∞ϕ =

∫

ωN

γϕ .

For each n ∈ N, we introduce the linear continuous operator Γn, defined from D(B1/2) into
D(B1/2) by Γn = B−1(γn.). We also introduce the operator Γ∞ defined from D(B1/2) into
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D(B1/2) by

∀u ∈ D(B1/2), Γ∞u is the solution of







(∆ − κId)Γ∞u = 0 on Ω
∂
∂ν

Γ∞u = γ(x)u on ωN

Γ∞u = 0 on ωD

, (2.1)

where κ = 1 if ωD = ∅ and κ = 0 if not. We remark that

∀n ∈ N, ∀ϕ, ψ ∈ D(B1/2), < Γnϕ|ψ >D(B1/2)=

∫

Ω

γnϕψ ,

and

∀ϕ, ψ ∈ D(B1/2), < Γ∞ϕ|ψ >D(B1/2)=

∫

∂Ω

γϕψ .

We set

s0 =

{

s0 = 1/2 for d = 1 or d = 2
s0 = 1/4 for d = 3

(2.2)

Proposition 2.1. For all ε > 0, s ∈ [0, s0[ and n ∈ N ∪ {+∞}, the operator Γn can be
extended to a continuous linear operator from D(Bε+1/4) into D(B(1+s)/2). In particular,
Γn is a compact non-negative selfadjoint operator from D(Bε+1/4) into D(B1/2).

Proof : The proposition follows from the regularity properties of the operator B. If
ωN ∩ ωD = ∅, then the regularity is clear since D(B(1+s)/2) = {u ∈ H1+s(Ω)/u|ωD

= 0}
if s < 1/2 for any d. If we have mixed boundary conditions with ωN ∩ ωD 6= ∅, then the
regularity is more difficult to obtain. In dimension d = 2 (resp. d = 3), we refer to [16]
(resp. [12]). �

For all n ∈ N ∪ {+∞}, let An be the unbounded operator defined on X by

∀
(

u
v

)

∈ X, An

(

u
v

)

=

(

v
−B(u+ Γnv)

)

,

D(An) =

{(

u
v

)

∈ X

/

v ∈ D(B1/2) and u+ Γnv ∈ D(B)

}

.

We enhance that, if n is finite, An is the classical wave operator

∀n ∈ N, An =

(

0 Id
−B −γn

)

, D(An) = D(B) ×D(B1/2) .

Using the Hille-Yosida theorem, one shows that the operator An generates a linear C0−se-
migroup eAnt of contractions (see [29] for n = +∞, see also [26] for a proof in the given
abstract frame). In particular, An is dissipative since

∀U = (u, v) ∈ D(An), < AnU |U >X= − < Γnv|v >D(B1/2)≤ 0 . (2.3)

7



For U = (u, v), we set

F (U) =

(

0
f(x, u)

)

. (2.4)

We are interested in the convergence of the following family of equations, when n goes to
+∞

{

Ut = AnU + F (U)
U|t=0 = U0 ∈ X

. (2.5)

We first introduce conditions so that the above equations are be well-posed.
In the whole paper, we assume that the non-linearity f satisfies the following hypothesis.

(NL) f ∈ C2(Ω × R,R) and if the dimension is

d=2 there exist C > 0 and α ≥ 0 such that

|f ′′
uu(x, u)| + |f ′′

ux(x, u)| ≤ C(1 + |u|α) .

d=3 there exist C > 0 and α ∈ [0, 1[ such that

|f ′′
uu(x, u)| ≤ C(1 + |u|α) and |f ′′

ux(x, u)| ≤ C(1 + |u|3+α) .

Since the regularity of f is not the main purpose of this paper, we choose to state Hypoth-
esis (NL) in a simple but surely too strong way. For example, the condition f ∈ C2 could
be relaxed to the condition f ∈ C1 with Hölder continuous derivatives. We can also assume
an exponential growth rate for the non-linearity if d = 2 (see [21] or [5]). We notice that,
for most of our results, weaker hypotheses on f are sufficient. For example, the critical
case of a cubic non-linearity in dimension d = 3 is studied in [27].
To obtain global existence of solutions and existence of a compact global attractor, we also
need to assume a dissipative condition for f , for example,

(Diss) sup
x∈Ω

lim sup
|u|→+∞

f(x, u)

u
< 0 .

Classical Sobolev imbeddings (see for example [1]) show that Hypothesis (NL) implies the
following properties (see Chapters 4.7 and 4.8 of [17] for a proof).

Lemma 2.2. Assume that Hypothesis (NL) holds. Then, there exists a positive number p
such that for any u, v in H1(Ω), we have

‖f(x, u) − f(x, v)‖L2 ≤ C(1 + ‖u‖p
H1 + ‖v‖p

H1)‖u− v‖H1 .

Moreover, if B is a bounded set of H1(Ω), then {f(x, u)|u ∈ B} and {f ′
u(x, u)v|(u, v) ∈ B2}

are bounded subsets of Hσ(Ω), where σ ∈]0, 1[ when d = 1 or d = 2 and σ ∈]0, 1−α
2

[ when
d = 3. In addition, we have

∀u ∈ B, ‖f(x, u)‖Hσ ≤ Cσ‖u‖H1 and ‖f ′
u(x, u)v‖Hσ ≤ Cσ‖v‖H1 ,
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where the constant Cσ depends on σ, except if d = 1.
In particular, F : (u, v) ∈ X 7→ (0, f(x, u)) is of class C1,1

loc (X,X) and is a compact and
Lipschitz-continuous function on the bounded sets of X.

Using a classical result of local existence (see [39], Chapter 6, Theorem 1.2), we de-
duce from Hypothesis (NL) that for each n ∈ N ∪ {+∞}, Equation (2.5) generates a local
dynamical system Sn(t) on X.

Proposition 2.3. If f satisfies (NL), then for all M > 0 and K > 0, there exists a time
T > 0 such that, for all n ∈ N ∪ {+∞} and U0 with ‖U0‖X ≤ M , Equation (2.5) has a
unique mild solution Un(t) = Sn(t)U0 ∈ C0([0, T ], X), which satisfies

∀t ∈ [0, T ], ‖Un(t)‖X ≤M +K .

Moreover, there exists a constant C > 0 such that for all U0 and U ′
0 with ‖U0‖X ≤M and

‖U ′
0‖X ≤ M we have

∀n ∈ N ∪ {+∞}, ∀t ∈ [0, T ], ‖Sn(t)(U0 − U ′
0)‖X ≤ CeCt‖U0 − U ′

0‖X .

The hypothesis (Diss) implies global existence of trajectories, that is that Sn(t) : X −→ X
are global dynamical systems.

Proposition 2.4. Assume that f satisfies (NL) and (Diss). Then, for any bounded set B
of X, for any n ∈ N ∪ {+∞} and for any U0 ∈ B, Sn(t)U0 (t ≥ 0) is a global mild solution
of (2.5) and is uniformly bounded in X with respect to t and U0.

Proof : For U = (u, v) ∈ X, we set

Φ(U) =
1

2
‖U‖2

X −
∫

Ω

∫ u

0

f(x, ζ)dζ . (2.6)

From (2.3) and the density of D(An) in X, we deduce that the functional Φ is non-
increasing along the trajectories of the dynamical systems Sn(t) (n ∈ N ∪ {+∞}). Indeed,
let U0 ∈ D(An) and U(t) = (u(t), v(t)) = Sn(t)U0, we have

Φ(U(t2)) − Φ(U(t1)) =

∫ t2

t1

< AnU(t)|U(t) >X dt = −
∫ t2

t1

< Γnv(t)|v(t) >D(B1/2)≤ 0 .

(2.7)
Hypothesis (Diss) implies that there exist two positive constants C and µ such that

f(x, u)u ≤ C − µu2 and

∫ u

0

f(x, ζ)dζ ≤ C − µu2 . (2.8)
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So, for any U0 ∈ B and any positive time t such that Sn(t)U0 exists, we have

1

2
‖Sn(t)U0‖2

X − C ≤ Φ(Sn(t)U0) ≤ Φ(U0) .

Sobolev imbeddings show that Φ(U0) is bounded uniformly with respect to U0 ∈ B. Thus,
the trajectories cannot blow up and are defined and bounded for all times. �

For U(t) ∈ C0([0, T ], X), we can also consider the trajectory Vn(t) = DSn(U)(t)V0 of
the linearized dynamical system DSn(U) along U , that is the solution of

{

∂tVn(t) = AnVn(t) + F ′(U(t))Vn(t)
Vn(0) = V0 ∈ X

(2.9)

Due to Lemma 2.2, W ∈ X 7−→ F ′(U)W is locally Lipschitzian and Proposition 2.3 is also
valid for DSn(U)(t). Moreover the trajectories DSn(U)(t)V0 exist for all t ∈ [0, T ] since
DSn(U)(t) is a linear dynamical system.

2.2 Convergence of the inverses

If the inverses A−1
n do not converge to A−1

∞ , then one cannot hope any convergence result,
since we cannot even ensure that a part of the spectrum of the operators is continuous when
n goes to +∞. That is why, we immediatly show that this convergence holds in natural
situations. In the rest of the paper, this convergence of the inverses will be assumed.
A simple calculation shows that An is invertible of compact inverse and that A−1

n is given
by

∀
(

u
v

)

∈ X, A−1
n

(

u
v

)

=

(

−Γnu−B−1v
u

)

. (2.10)

We present here a typical situation.
Let θ be a bounded open subset of Rd−1 with a boundary of class C∞. We set Ω̃ =]0, 1[×θ.
Let γ be a nonnegative function in L

∞(θ) and let γn be a sequence of nonnegative functions
in L∞(Ω̃), which converges to γ ⊗ δx=0 in the sense of distributions, that is that

∀ϕ ∈ C∞
0 (Rd),

∫

Ω̃

γn(x, y)ϕ(x, y)dxdy −→
∫

θ

γ(y)ϕ(0, y)dy .

We assume moreover that

sup
y∈θ

(
∣

∣

∣

∣

γ(y) −
∫ 1

0

γn(x, y)dx

∣

∣

∣

∣

+

∫ 1

0

γn(x, y)
√

|x|dx
)

−→ 0 . (2.11)

Notice that Hypothesis (2.11) is always fullfilled in the one-dimensional case d = 1. We
have the following result.
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Theorem 2.5. Let Ω be a bounded open subset of Rd. Assume that there exists a covering
Ω1,...,Ωp of Ω such that the description of the dissipations γn on Ωi is C1−diffeomorphic to
the typical situation described previously. Then, there exists a sequence of positive numbers
(cn) converging to zero such that

∀ϕ ∈ H
1(Ω), ‖(Γ∞ − Γn)ϕ‖D(B1/2) ≤ cn‖ϕ‖H1 . (2.12)

As a consequence, A−1
n converges to A−1

∞ in L(X).

Proof : We recall that, on D(B1/2), the norms ‖.‖D(B1/2) and ‖.‖H1 are equivalent. We

have to show that, for all ϕ and ψ in D(B1/2), there exists a sequence of positive numbers
(cn) converging to zero such that

< (Γ∞ − Γn)φ|ψ >D(B1/2)≤ cn‖ϕ‖H1‖ψ‖H1 ,

that is that
∫

ωN

γϕψ −
∫

Ω

γnϕψ ≤ cn‖ϕ‖H1‖ψ‖H1 . (2.13)

Clearly, it is sufficient to prove (2.13) in the typical situation introduced above and with
smooth functions. Let ϕ and ψ be two functions of C∞(Ω̃), and let

In =

∣

∣

∣

∣

∫

θ

γ(y)ϕ(0, y)ψ(0, y)dy −
∫

Ω̃

γn(x, y)ϕ(x, y)ψ(x, y)dxdy

∣

∣

∣

∣

.

We have In ≤ Jn +Kn, where

Jn =

∣

∣

∣

∣

∫

θ

ϕ(0, y)ψ(0, y)

(

γ(y) −
∫ 1

0

γn(x, y)dx

)

dy

∣

∣

∣

∣

and

Kn =

∣

∣

∣

∣

∫

Ω̃

γn(x, y)(ϕ(x, y)ψ(x, y)− ϕ(0, y)ψ(0, y))dxdy

∣

∣

∣

∣

.

Let

dn = sup
y∈θ

(
∣

∣

∣

∣

γ(y) −
∫ 1

0

γn(x, y)dx

∣

∣

∣

∣

+

∫ 1

0

γn(x, y)
√

|x|dx
)

.

Using the control of the norm L
2(θ) by the norm H

1(Ω̃), we obtain

Jn ≤ dn‖ϕ‖H1‖ψ‖H1 .

For the second term, we write

Kn ≤
∣

∣

∫

Ω
γn(x, y)ϕ(x, y)(ψ(x, y)− ψ(0, y))dxdy

∣

∣

+
∣

∣

∫

Ω
γn(x, y)ψ(0, y)(ϕ(x, y)− ϕ(0, y))dxdy

∣

∣ .
(2.14)
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We deal with the first term of (2.14) by using the Cauchy-Schwarz inequality

K1
n =

∣

∣

∣

∣

∫

Ω̃

γn(x, y)ϕ(x, y)(ψ(x, y)− ψ(0, y))dxdy

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Ω̃

γn(x, y)ϕ(x, y)

(
∫ x

0

∂ψ

∂x
(ξ, y)dξ

)

dxdy

∣

∣

∣

∣

≤
∫

Ω̃

γn(x, y)|ϕ(x, y)|√x
(

∫ x

0

∣

∣

∣

∣

∂ψ

∂x
(ξ, y)

∣

∣

∣

∣

2

dξ

)1/2

dxdy

≤
∫

θ

(

∫ 1

0

∣

∣

∣

∣

∂ψ

∂x
(ξ, y)

∣

∣

∣

∣

2

dξ

)1/2(

sup
ξ∈]0,1[

|ϕ(ξ, y)|
)

(
∫ 1

0

γn(x, y)
√
xdx

)

dy

≤ dn

∫

θ

(

∫ 1

0

∣

∣

∣

∣

∂ψ

∂x
(ξ, y)

∣

∣

∣

∣

2

dξ

)1/2(

sup
ξ∈]0,1[

|ϕ(ξ, y)|
)

dy .

Using the control of the L∞-norm by the H1-norm in the one-dimensional space, we find

K1
n ≤ dn

∫

θ

(

∫ 1

0

∣

∣

∣

∣

∂ψ

∂x
(x, y)

∣

∣

∣

∣

2

dx

)1/2 (

∫ 1

0

|ϕ(x, y)|2 +

∣

∣

∣

∣

∂ϕ

∂x
(x, y)

∣

∣

∣

∣

2

dx

)1/2

dy

≤ dn

(

∫

Ω̃

∣

∣

∣

∣

∂ψ

∂x
(x, y)

∣

∣

∣

∣

2

dxdy

)1/2 (

∫

Ω̃

|ϕ(x, y)|2 +

∣

∣

∣

∣

∂ϕ

∂x
(x, y)

∣

∣

∣

∣

2

dxdy

)1/2

≤ dn‖ϕ‖H1‖ψ‖H1 .

Applying the same argument to the second term of (2.14), we complete the proof of the
estimate (2.13).
Thus, we have shown that Γn converges to Γ∞ in L(D(B1/2)). From (2.10) and (2.12), we
deduce that A−1

n converges to A−1
∞ in L(X). �

To show that the natural Hypothesis (2.11) is necessary, we give a counter-example to
Theorem 2.5 when (2.11) is omitted.
Let Ω =]0, 1[×] − 1, 1[2. Let

γn(x, y) =







n if 0 ≤ x ≤ 1
n

n2 if 1
n
≤ x ≤ 1√

n
, |y| < 1

n

0 elsewhere.

We notice that γn converges to γ = δx=0 in the sense of the distributions. Let ϕn(x, y) be
the function with support in the ball B of center ( 1

2
√

n
, 0, 0) and of radius R = 1

2
√

n
with

12



ϕn(r, θ) = 1
2
n1/4 − rn3/4 in it, where r = ((x− 1

2
√

n
)2 + y2)1/2.

1/n

1/n

1/n

n

nγ=

γ=

φ=n

0φ=

1/2

1/4

2

In the support of ϕn, the norm of the gradient of ϕn is n3/4, so ‖ϕ‖H1 ∼ 1. We have
∫

γ∞|ϕn|2 = 0 and
∫

γn|ϕn|2 ∼
n2(n1/4)2

n2
√
n

∼ 1 .

So Γn does not converge to Γ∞ in L(D(B1/2)).

Using the same arguments as in the proof of Theorem 2.5, we obtain the following property.

Proposition 2.6. We assume that the same hypotheses as in Theorem 2.5 hold. Let
1
2
> s ≥ 0. There exists M independent of n such that

∀n ∈ N ∪ {+∞}, ∀U ∈ D(An), ‖U‖Xs ≤ M‖U‖D(An) .

Proof : Assume that the proposition is not satisfied. Then, there exists a sequence
Uk = (uk, vk) such that

‖Uk‖Xs = 1 and ‖Uk‖D(Ank
) −→ 0 .

This implies that vk −→ 0 in D(B1/2) and Buk + γnk
vk −→ 0 in L2(Ω). If we prove that

γnk
vk −→ 0 in D(B(−1+s)/2), then we will have uk −→ 0 in D(B(1+s)/2). But the properties

uk −→ 0 in D(B(1+s)/2) and vk −→ 0 in D(B1/2) contradict the fact that ‖Uk‖Xs = 1.
It remains to show that γnk

vk −→ 0 in D(B(−1+s)/2). Let ϕ ∈ D(B(1−s)/2), we have

∣

∣

∣

∣

∫

Ω

γnk
vkϕ

∣

∣

∣

∣

2

≤
∫

Ω

γnk
|vk|2

∫

Ω

γnk
|ϕ|2 . (2.15)
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As vk −→ 0 in D(B1/2), we have
∫

Ω
γnk

|vk|2 −→ 0 by Theorem 2.5. In order to prove that
∫

Ω
γnk

|ϕ|2 is bounded, we come back to the typical situation introduced before Theorem
2.5. We have

∫

θ

∫ 1

0

γnk
(x, y)|ϕ(x, y)|2dxdy ≤

(

sup
y∈θ

∫ 1

0

γnk
(x, y)dx

)

(

∫

θ

| sup
x∈[0,1]

ϕ(x, y)|2dy
)

.

We know that ϕ is bounded in D(B(1−s)/2) and so in H1−s(Ω). In the typical case
Ω̃ =]0, 1[×θ, and thus H1−s(Ω̃) →֒ L2(θ,H1−s(]0, 1[)). Using the fact that H1−s(]0, 1[)
is embedded in C0(]0, 1[), we obtain that

∫

θ
| supx∈[0,1] ϕ(x, y)|2dy < +∞. On the other

hand, (2.11) implies that supy∈θ

∫ 1

0
γnk

(x, y)dx < +∞, which implies the proposition. �

2.3 Main hypotheses and results

In this section, we put together all the main hypotheses and theorems.
We recall that Sn(t) denotes the local dynamical system generated by (2.5). In what
follows, we will assume that

εn = ‖A−1
∞ − A−1

n ‖L(X) −→ 0 . (2.16)

Moreover, we also assume in the whole article that f satisfies Hypothesis (NL). In addition,
Hypothesis (Diss) will be assumed when we deal with global results.
In Section 3, we show that the convergence of the inverses implies some weak convergence
for the trajectories. The convergence is weak in the sense that, in order to compare Sn(t)U0

with S∞(t)U0 in the space Xs, U0 has to belong to a more regular space Xs+ε. For example,
we will obtain the following results.

Proposition 2.7. Assume that Hypothesis (Diss) is satisfied. Let B be a bounded set of
X and s ∈ [0, 1], there exists a positive constant C such that

∀U ∈ B, ∀t ≥ 0, ‖S∞(t)U − Sn(t)U‖X−s ≤ CeCtεs/8
n . (2.17)

If Bs is a bounded set of Xs (s ∈]0, s0[), then there exists a positive constant C such that

∀U ∈ Bs, ∀t ≥ 0, ‖S∞(t)U − Sn(t)U‖X ≤ CeCtεβ
n , (2.18)

where β = s2

2
if d=1 or d=2, and β = min( s2

2
, 1−α

4
) if d=3.

To obtain existence of compact global attractors, we will have to assume that the linear
semigroups eAnt are exponentially decreasing :
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(ED) There exists a family of positive constants Mn and λn (n ∈ N ∪ {+∞}) such that

‖eAnt‖L(X) ≤Mne
−λnt .

As discussed in the introduction, we will need the uniform version of (ED) in order to
obtain uniform regularity of the attractors :

(UED) There exist two positive constants M and λ such that for any t ≥ 0 and U ∈ X,

∀n ∈ N, ‖eAntU‖X ≤Me−λt‖U‖X .

Finally, we introduce hypotheses on the dynamical systems.
The dynamical systems Sn(t) are gradient systems if we show that the function Φ intro-
duced in (2.6) is a strict Lyapounov function. We already know that Φ is not increasing
along the trajectories because of (2.7). To prove that Φ is a strict Lyapounov function, it
remains to show that, if, for some n ∈ N ∪ {+∞}, U0 satisfies Φ(Sn(t)U0) = Φ(U0) for all
t ≥ 0, then U0 is an equilibrium point, that is Sn(t)U0 = U0 for all t ≥ 0. We will assume
that this property is fulfilled :

(Grad) the dynamical systems Sn(t) (n ∈ N ∪ {+∞}) are all gradient.

Our last assumption is the following :

(Hyp) All the equilibrium points E of S∞(t) are hyperbolic, that is, that the spectrum of
DS∞(t)E does not intersect the unit circle of C.

A discussion about the hypotheses (ED), (UED) and (Grad) is given in Section 6. We
also enhance that Hypothesis (Hyp) is not very restrictive since it is satisfied for a generic
non-linearity f (see for example [43] and [7]) or a generic domain Ω (see [24]).

We introduce the distance between a point U ∈ X and a set S ⊂ X as

distX(U,S) = inf
V ∈S

‖U − V ‖X . (2.19)

We also define the Hausdorff distance of two sets S1 ⊂ X and S2 ⊂ X as

dX(S1,S2) = max

(

sup
U1∈S1

distX(U1,S2) ; sup
U2∈S2

distX(U2,S1)

)

, (2.20)

We denote distX−s and dX−s the same notions in the norm ‖.‖X−s. We have the following
theorem.
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Theorem 2.8. We assume that (Diss), (Grad) and (ED) hold. Then, the dynamical
system Sn(t), for n ∈ N ∪ {+∞}, has a compact global attractor An. Moreover, these
attractors are composed by the union of the equilibrium points (denoted by E) and the
complete bounded trajectories coming from E , that is that

An = {U0 ∈ X / ∃U(t) ∈ C0
b (R, X), solution of (2.5) such that

U(0) = U0 and lim
t→−∞

distX(U(t), E) = 0 } . (2.21)

The set (
⋃

n An) is bounded in X, and, for any s ∈]0, 1/2[, the attractors are upper-
semicontinuous in X−s, that is

sup
Un∈An

distX−s(Un,A∞) −→ 0 when n −→ +∞ .

Proof : The existence and boundedness of attractors for Equation (2.5) is classical, we
briefly recall the outline of the proof. According to Theorem 2.4.6 of [17], Sn(t) has a
compact global attractor if Sn(t) is asymptotically smooth and point-dissipative and if the
orbits of bounded sets are bounded. Proposition 2.4 implies that the orbits of bounded
sets are bounded. Since eAnt is exponentially decreasing and that the map F : X → X is
compact, Sn(t) is asymptotically smooth (see [17]). The property (2.8) implies that the
equilibria E = (e, 0) of (2.5) are bounded independently of n. By LaSalle’s principle (see
Lemma 3.8.2 of [17]), the gradient structure and the asymptotic smoothness imply that
any trajectory is attracted by the set of equilibrium points. Because of the boundedness of
the set of equilibria, Sn(t) is point dissipative. Thus Sn(t) has a compact global attractor,
which is bounded in X uniformly in n and which, due to the gradient structure, is described
by (2.21). For proofs or details about these notions, see [17].
Following the arguments of [18] (see also [41] or [3]), we prove the upper-semicontinuity in
X−s. Let ε > 0, as A∞ is a global attractor for S∞(t) and as the union

⋃

n An is bounded
in X, there exists a time T > 0 such that

∀U ∈
⋃

n

An, ∀t ≥ T, distX(S∞(t)U,A∞) ≤ ε/2 . (2.22)

As An is uniformly bounded in X, using (2.17), we have that, for n large enough,

∀Un ∈ An, ‖(Sn(T ) − S∞(T ))Un‖X−s ≤ ε

2
. (2.23)

The estimates (2.22) and (2.23) imply, for n large enough, that

sup
Un∈An

distX−s(Sn(T )Un,A∞) ≤ ε .

As Sn(T )An = An, this proves the upper-semicontinuity. �
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Remark : The existence of attractors for critical non-linearities (that is cubic-like non-
linearities ) has been studied in dimension d = 3, see for example [14] and [9]. We notice
that the above proof shows upper-semicontinuity in X−s for these attractors. See [27] for
the lower-semicontinuity.

If we assume a uniform exponential decay for the linear semigroups eAnt, we obtain the
upper-semicontinuity in X. Indeed, we have the following regularity result.

Proposition 2.9. Assume that (Diss), (Grad) and (UED) hold. Then, there exists a
constant M such that the attractors An of Sn(t), for n ∈ N ∪ {+∞}, satisfy

sup
n∈N∪{+∞}

sup
Un∈An

‖Un‖D(An) ≤M . (2.24)

In particular, the union ∪nAn is bounded in Xs (s ∈]0, 1/2[).

Proof : If (2.24) holds, then ∪nAn is bounded inXs as a direct consequence of Proposition
2.6. Thus, we only have to show that (2.24) is satisfied.
It is well-known that, for fixed n, An is bounded in D(An). We only have to show that
(UED) implies that An is bounded in D(An), uniformly with respect to n ∈ N ∪ {+∞}.
We already know that the attractors An are bounded in X by a constant K. Moreover,
they are a union of complete trajectories. Let U(t) = (u, ut) ⊂ An be such a trajectory,
we have

U(t) =

∫ t

−∞
eAn(t−s)F (U(s))ds .

Notice that this integral has a sense since (UED) holds. Let δ > 0, we write

U(t+ δ) − U(t) =

∫ t

−∞
eAn(t−s)(F (U(s+ δ)) − F (U(s)))ds .

And so, since (UED) is satisfied, there exist M and λ independent of n such that

‖(U(t+ δ) − U(t))‖X ≤M

∫ t

−∞
e−λ(t−s)‖f(x, u(s+ δ)) − f(x, u(s))‖L2ds . (2.25)

Due to the assumption (NL), there exists σ ∈]0, 1[ such that

‖f(x, u(s+ δ)) − f(x, u(s))‖
L2 ≤ C ‖u(s+ δ) − u(s)‖

Hσ

≤ C ‖u(s+ δ) − u(s)‖σ
H1 ‖u(s+ δ) − u(s)‖1−σ

L2

The Young inequality implies that, for any ε > 0, there exists a constant Cε such that

‖f(x, u(s+ δ)) − f(x, u(s))‖L2 ≤ ε‖u(s+ δ) − u(s)‖H1 + Cε‖u(s+ δ) − u(s)‖L2 .
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As ‖ut‖L2 is bounded by K, ‖δ−1(u(s+ δ)−u(s))‖L2 is uniformly bounded. So, combining
the above inequality with (2.25), we obtain, for any t ∈ R,

‖δ−1(U(t+ δ) − U(t))‖X ≤ ε
M

λ
sup
s∈R

‖δ−1(U(s + δ) − U(s))‖X +
M

λ
CεK .

Thus, for ε sufficiently small, we get

sup
s∈R

‖δ−1(U(s+ δ) − U(s))‖X ≤ C ,

where C does not depend on δ or on n. When δ converges to 0, we find that U(s) satisfies
sups∈R

‖Ut(s)‖X ≤ C. Finally, writing AnU = Ut − F (U), we obtain that U is bounded in
D(An) by a constant which does not depend on n. �

Thus, if we mimic the proof of Theorem 2.8, using (2.18) instead of (2.17), we show the
upper-semicontinuity in X.

Theorem 2.10. We assume that all the hypotheses of Proposition 2.9 hold. Then, the
attractors are upper-semicontinuous in X, that is

sup
Un∈An

distX(Un,A∞) −→ 0 when n −→ +∞ .

If we assume in addition that all the equilibria are hyperbolic, then we can prove the
lower-semicontinuity of attractors. In this case, we can give not only an estimate of the
rate of the lower-semicontinuity in X, but also of the upper-semicontinuity in X−s. Notice
that we do not need Hypothesis (UED) to obtain the lower-semicontinuity in X.

Theorem 2.11. We assume that (Diss), (Grad), (ED) and (Hyp) are satisfied. Then, the
attractors An are lower-semicontinuous in X.
Moreover, there exist two positive constants C and δ such that

sup
U∞∈A∞

distX(U∞,An) ≤ Cεδ
n . (2.26)

and

sup
Un∈An

distX−s(Un,A∞) ≤ Cεδ
n . (2.27)

Furthermore, if we assume in addition that Hypothesis (UED) holds, then the family of
attractors is continuous in X and there exist two positive constants C and δ such that, for
any n,

dX(A∞,An) ≤ Cεδ
n . (2.28)
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Our last theorem concerns the stability of the phase-diagrams. We have briefly recalled
the notion of phase diagrams and its link with the Morse-Smale property in the introduc-
tion. First, notice that, in dimension higher than one or if d = 1 and γ∞ = aδx=0 + bδx=1

with a = 1 or b = 1, the Morse-Smale property is not relevant. Indeed, in these cases,
eAnt is not a group (see [11] for d = 1 and [35] for d ≥ 2). Thus, we cannot ensure that
the backward uniqueness property is satisfied and that the stable sets of equilibria are
well-defined manifolds, which is needed to define the transversality (for more details, see
[19]). In the cases where we can define the Morse-Smale property, we prove the following
theorem in Section 5.

Theorem 2.12. We assume that d = 1, Ω =]0, 1[ and γ∞ = aδx=0 + bδx=1 with a 6= 1 and
b 6= 1. We also assume that (Diss) and (UED) are satisfied and that the dynamical system
S∞(t) satisfies the Morse-Smale property. Then, for n large enough, the dynamical system
Sn(t) satisfies the Morse-Smale property and its phase-diagram is equivalent to the one of
S∞(t).

We underline that Theorem 2.12 has applications since it is proved in [26] that, if
Ω =]0, 1[, γ∞ = aδx=0 + bδx=1 with a 6= 1 and b 6= 1, the Morse-Smale property holds for
S∞(t), generically with respect to the non-linearity f .

Remark : We can readely adapt the proof of Theorem 3.2 of [36] to show the existence
of a homeomorphism h defined from An to A∞ which maps the trajectories of Sn(t)|An

onto the trajectories of S∞(t)|A∞
preserving the sense of time. The properties needed to

adapt the proof of Theorem 3.2 of [36] are shown in Sections 4 and 5. They namely are
the isomorphism of phase-diagrams of Theorem 2.12, the comparison of the local stable
and unstable manifolds stated in Theorems 4.7 and 4.13 and the results of Section 5.1.

3 Convergence of the trajectories

3.1 Some abstract results of convergence

The difference between two linear semigroups of contractions can be estimated by the
difference between the inverses of the infinitesimal generators.

Proposition 3.1. Let X be a Hilbert space. Let A1 and A2 be two maximal dissipative
operators of bounded inverse in L(X). Then, the operator Ai generates a C0−semigroup
in X and we have, for all U ∈ D(A1) and t ∈ R+,

‖eA1tU − eA2tU‖X ≤ √
α
(√

α +
√
α + 4t

)

‖U‖D(A1) ,

where α = ||A−1
1 − A−1

2 ||L(X).
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Proposition 3.1 is a direct consequence of the next proposition. The stronger version,
where projections are added, is useful to prove convergence of stable and unstable mani-
folds of a hyperbolic equilibrium of the dynamical systems, or to estimate convergence of
semigroups, which are not defined on the same space.

Proposition 3.2. Let P1 and P2 be two continuous projections on a Hilbert space X. For
i = 1, 2, let Ai be a linear operator with D(Ai) ⊂ PiX and Ai ∈ L(D(Ai), PiX), which is
dissipative, invertible and of bounded inverse. Then, Ai generates a C0−semigroup eAit on
PiX and for all U ∈ D(A1) ⊂ P1X and t ∈ R+,

‖eA1tP1U − eA2tP2U‖X ≤
(

Cα+
√

α2 + 4C2t (α + β)
)

‖U‖D(A1) ,

where α = ||A−1
1 P1−A−1

2 P2||L(X), β = ‖A−1
1 ‖L(P1X)‖P1−P2‖L(X) and C = max

i=1,2
{‖Pi‖L(X)}.

Proof : As the operator Ai is invertible, it is onto PiX and thus Ai is a maximal operator.
Since it is also dissipative on PiX, it generates a C0−semigroup eAit on PiX, which satisfies

∀U ∈ X, t ∈ R+, ‖eAitPiU‖X ≤ ‖PiU‖X (3.1)

(see for example [39]). We write that

‖eA1tP1U − eA2tP2U‖X ≤ ‖eA1tP1U − eA2t(A−1
2 P2A1U)‖X

+ ‖eA2tP2(A
−1
2 P2 − A−1

1 P1)A1U‖X . (3.2)

Using (3.1), we easily bound the last term of (3.2) by Cα‖U‖D(A1). To estimate the
derivative of the first term of (3.2), we set

D =
1

2

d

dt
‖eA1tP1U − eA2t(A−1

2 P2A1U)‖2
X . (3.3)

Since U ∈ D(A1) and A−1
2 P2A1U ∈ D(A2), we have

D =< A1e
A1tP1U − A2e

A2t(A−1
2 P2A1U)|eA1tP1U − eA2t(A−1

2 P2A1U) >X ,

where < .|. >X is the scalar product associated with the norm ‖.‖X .
We set V = eA1tP1A1U ∈ P1X and W = eA2tP2A1U ∈ P2X. We have

D = < V −W |A−1
1 V − A−1

2 W >X

= < V −W |A−1
1 P1(V −W ) >X + < V −W |(A−1

1 P1 −A−1
2 P2)W >X .

Since P1V = V and P2W = W , we obtain

D =< P1(V −W )|A−1
1 P1(V −W ) >X + < (P1 − P2)W |A−1

1 P1(V −W ) >X
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+ < V −W |(A−1
1 P1 − A−1

2 P2)W >X .

As A1 is dissipative on P1X, the first scalar product is nonpositive. Since ‖V ‖X ≤
C‖U‖D(A1) and ‖W‖X ≤ C‖U‖D(A1), we obtain D ≤ 2C2(α + β)‖U‖2

D(A1)
, where α, β

and C are as in the statement of the proposition. The integration of (3.3) gives

‖eA1tP1U − eA2t(A−1
2 P2A1U)‖X ≤

√

α2 + 4C2t (α + β)‖U‖D(A1) ,

Coming back to the estimate (3.2), we finish the proof. �

Corollary 3.3. Let P1 and P2 be two continuous projections on a Hilbert space X. For
i = 1, 2, let Ai be a linear operator with D(Ai) ⊂ PiX and Ai ∈ L(D(Ai), PiX). We
assume that there exist a constant µ such that Ai − µId is dissipative, invertible and of
bounded inverse (which implies that Ai generates a C0−semigroup). Moreover, we assume
that there exist two positive constants M and λ such the semigroup generated by Ai satisfies

∀t ≥ 0, ‖eAit‖L(PiX) ≤Me−λt .

Then, for all η ∈]0, λ[, there exists Mη, independent of the operator Ai, such that for all
U ∈ D(A1) ⊂ P1X and t ∈ R+,

‖eA1tP1U − eA2tP2U‖X ≤ C(α +
√

α + β)Mηe
−ηt‖U‖D(A1) , (3.4)

where α = ||(A1−µId)−1P1−(A2−µId)−1P2||L(X), β = ‖(A1−µId)−1‖L(P1X)‖P1−P2‖L(X)

and C = max
i=1,2

{‖Pi‖L(X)}.

Proof : Changing Ai into Ai − µId and λ into λ + µ, we can assume that µ = 0. Let
p ∈ N

∗, U ∈ D(A1) and t ∈ R+. We have

‖eA1tP1U−eA2tP2U‖X ≤ ‖eA2(1− 1
p
)tP2(e

A1
t
pP1−eA2

t
pP2)U‖X

+‖eA2(1− 2
p
)tP2(e

A1
t
pP1−eA2

t
pP2)e

A1
t
pP1U‖X + ...+‖(eA1

t
pP1 −eA2

t
pP2)e

A1(1− t
p
)P1U‖X .

Using Proposition 3.2, we obtain

‖eA1tP1U − eA2tP2U‖X ≤ pMe−λ(1− 1
p
)t

(

Cα +

√

α2 + 4C2
t

p
(α + β)

)

‖U‖D(A1) .

Thus, for all η ∈]0, λ[ given, we can choose p and Mη large enough such that (3.4) holds.
�

Our fourth result concerns the convergence in a weaker norm than the norm of X.
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Proposition 3.4. Let X be a Hilbert space and let A1 and A2 be two maximal dissipative
operators of bounded inverse in L(X). Then, for all U ∈ X and t ∈ R+,

‖A−1
1 (eA1tU − eA2tU)‖X ≤ √

α
(

3
√
α+

√
α + 4t

)

‖U‖X ,

where α = ||A−1
1 − A−1

2 ||L(X).

Proof : We have

‖A−1
1 (eA1tU − eA2tU)‖X ≤ ‖(eA1t − eA2t)A−1

1 U‖X + ‖(A−1
1 − A−1

2 )eA2tU‖X

+ ‖eA2t(A−1
1 − A−1

2 )U‖X .

We finish the proof by applying Proposition 3.1. �

3.2 Convergence of the trajectories

We recall that εn = ‖A−1
∞ − A−1

n ‖L(X) is assumed to converge to zero. In this section, we
compare Sn(t)U0 with S∞(t)U0 on finite time intervals.
In the previous section, we have seen that the convergence of the linear semigroups eAnt

can be estimated if the initial data are in D(An), n ∈ N ∪ {+∞}. Using interpolation
arguments, we see that actually less regularity is needed. We recall that s0 is the positive
number defined by (2.2).

Proposition 3.5. For all s ∈]0, s0[, there exists C > 0 such that, for all time T > 0, for
all t ∈ [0, T ] and U0 ∈ Xs, we have

∀t ∈ [0, T ], ∀U0 ∈ Xs, ‖(eA∞t − eAnt)U0‖X ≤ C(1 + T s2/2)εs2/2
n ‖U0‖Xs . (3.5)

Moreover, if the initial data have zero as first component, we can improve the above estimate
as follows : for all s ∈ [0, 1/2[, there exists C > 0 such that, for all time T > 0, for all
t ∈ [0, T ] and (0, v0) ∈ Xs, we have

‖(eA∞t − eAnt)(0, v0)‖X ≤ C(1 + T s/2)εs/2
n ‖(0, v0)‖Xs . (3.6)

Proof : In this proof, C denotes a generic positive constant, which does not depend on n
or T .
If U0 = (u0, v0) ∈ D(A∞), then, using Proposition 3.1, we have

‖(eA∞t − eAnt)U0‖X ≤ C(1 + T 1/2)ε1/2
n ‖U0‖D(A∞)

≤ C(1 + T 1/2)ε1/2
n (‖u0 + Γ∞v0‖D(B) + ‖v0‖D(B1/2)) . (3.7)
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On the other hand, we have

‖(eA∞t − eAnt)U0‖X ≤ C‖U0‖X ≤ C(‖u0‖D(B1/2) + ‖v0‖L2) . (3.8)

Since Γ∞ is a bounded operator on D(B1/2), we have, if U0 ∈ D(B1/2) ×D(B1/2),

‖(eA∞t − eAnt)U0‖X ≤ C(‖u0‖D(B1/2) + ‖v0‖D(B1/2)) (3.9)

≤ C(‖u0 + Γ∞v0‖D(B1/2) + ‖v0‖D(B1/2)) . (3.10)

Interpolating between (3.7) and (3.10), we obtain

‖(eA∞t − eAnt)U0‖X ≤ C(1 + T s/2)εs/2
n (‖u0 + Γ∞v0‖D(B(1+s)/2) + ‖v0‖D(B1/2)) .

Due to Proposition 2.1, if s belongs to ]0, s0[, then Γ∞v0 is in D(B(1+s)/2) and we have
‖Γ∞v0‖D(B(1+s)/2) ≤ C‖v0‖D(B1/2). Thus,

‖(eA∞t − eAnt)U0‖X ≤ C(1 + T s/2)εs/2
n (‖u0‖D(B(1+s)/2) + ‖v0‖D(B1/2)) .

We interpolate again with (3.8) and we find that, for all U0 ∈ Xs,

‖(eA∞t − eAnt)U0‖X ≤ C(1 + T s2/2)εs2/2
n (‖u0‖D(B(1+s)/2) + ‖v0‖D(Bs/2))

≤ C(1 + T s2/2)εs2/2
n ‖U0‖Xs .

The proof of (3.6) is similar. Let (0, v0) ∈ D(A∞). Since Γ∞v0 ∈ D(B), we have that v0

vanishes on the part of the boundary {x ∈ ωN / γ(x) 6= 0}. Therefore, Γ∞v0 = 0 and (3.7)
gives that

‖(eA∞t − eAnt)(0, v0)‖X ≤ C(1 + T 1/2)‖v0‖D(B1/2) .

Interpolating with (3.8), we obtain that (3.6) holds for all (0, v0) ∈ D(A∞). If s < 1/2,
the set {(u, v) ∈ D(A∞) / u = 0} is dense in {(u, v) ∈ Xs / u = 0}. Using this density, we
conclude that (3.6) holds for all (0, v0) ∈ Xs. �

Remarks : As noticed in the previous section, if the semigroups eAnt have a uniform
exponential decay rate, then the constant C does not depend on T .

Of course, one can expect that the decay rate ε
s2/2
n can be replaced by ε

s/2
n , when s < s0.

To obtain this better decay rate, one has to show that Xs is the interpolated space between
X and D(A∞), which is not a so easy result.

Proposition 3.4 implies a result similar to the above one.
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Proposition 3.6. For any s ∈ [0, 1] and any positive time T , there exists a positive
constant C such that

∀t ∈ [0, T ], ∀U0 ∈ X, ‖(eA∞t − eAnt)U0‖X−s ≤ C(1 + T s/8)εs/8
n ‖U0‖X . (3.11)

Proof : Proposition 3.4 implies that

‖A−1
∞ ((eA∞t − eAnt)U0)‖X ≤ C(1 + T 1/2)ε1/2

n ‖U0‖X .

We set (ϕ, ψ) = (eA∞t − eAnt)U0. We have

‖Γ∞ϕ+B−1ψ‖D(B1/2) + ‖ϕ‖L2 ≤ C(1 + T 1/2)ε1/2
n ‖U0‖X . (3.12)

On the other hand, the dissipativeness of An implies that

‖ψ‖L2 + ‖ϕ‖D(B1/2) ≤ C‖U0‖X . (3.13)

Since ‖ϕ‖D(Bθ/2) ≤ ‖ϕ‖1−θ
L2 ‖ϕ‖θ

D(B1/2)
, (3.12) and (3.13) give

∀η ∈ [0, 1], ‖ϕ‖D(B(1−η)/2) ≤ C(1 + T η/2)εη/2
n ‖U0‖X . (3.14)

As Γ∞ is linear continuous from D(B(1−η)/2) into D(B1/2) for all η ∈ [0, 1/2[, (3.12) and
(3.14) imply that

‖ψ‖D(B−1/2) ≤ C(1 + T 1/2)ε1/2
n ‖U0‖X + ‖ϕ‖D(B(1−η)/2) ≤ C(1 + T η/2)εη/2

n ‖U0‖X .

As ‖ψ‖D(B−s/2) ≤ ‖ψ‖s
D(B−1/2)

‖ψ‖1−s
L2 , the above inequality and (3.13) yield that

‖ψ‖D(B−s/2) ≤ C(1 + T ηs/2)εηs/2
n ‖U0‖X .

The estimate (3.11) follows from the above result for η = 1/4 and (3.14) for η = s. �

The comparison of trajectories is based on the following lemma.

Lemma 3.7. Let B be a bounded set of Xs, s ∈]0, s0[. Let T > 0, M > 0 and n0 ∈ N be
such that, for all U ∈ B, n ≥ n0 (including n = +∞) and t ∈ [0, T ], the integral solution
Sn(t)U ∈ C0([0, T ], X) of (2.5) exists and satisfies

‖Sn(t)U‖X ≤M .

Then, there exists a constant C = C(M) such that

∀U ∈ B, ∀t ∈ [0, T ], ‖S∞(t)U − Sn(t)U‖X ≤ CeCT εβ
n , (3.15)

where β = s2

2
if d=1 or d=2, and β = min( s2

2
, 1−α

4
) if d=3.
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Proof : In this proof, C denotes a positive constant which does not depend on n or T ,
but may depend on M . We have

‖S∞(t)U − Sn(t)U‖X ≤ ‖(eA∞t − eAnt)U‖X +

∫ t

0

‖(eA∞(t−τ) − eAn(t−τ))F (S∞(τ)U)‖Xdτ

+

∫ t

0

‖eAn(t−τ)(F (S∞(τ)U) − F (Sn(τ)U))‖Xdτ . (3.16)

We bound the three terms of the previous inequality as follows.
Using Proposition 3.5, we have

‖(eA∞t − eAnt)U‖X ≤ C(1 + T s2/2)εs2/2
n .

As for τ ∈ [0, T ], S∞(τ)U is bounded in X, Lemma 2.2 and Proposition 3.5 imply that

∫ t

0

‖(eA∞(t−τ) − eAn(t−τ))F (S∞(τ)U)‖X ≤ C(M)(1 + T η)εη
n ,

with η < 1/4 if d = 1 or d = 2, and η = 1−α
4

if d = 3. As F is locally Lipschitzian, we have

∫ t

0

‖eAn(t−τ)F (S∞(τ)U) − F (Sn(τ)U)‖Xdτ ≤
∫ t

0

‖F (S∞(τ)U) − F (Sn(τ)U)‖Xdτ

≤ C(M)

∫ t

0

‖S∞(τ)U − Sn(τ)U‖Xdτ .

We finish the proof by applying Gronwall’s lemma to (3.16). �

Remark : In fact, we can show that, if U belongs to Xs for some s > 0, then S∞(t)U ∈
L
∞([0, T ], Xs2

). Thus, we can prove that (3.15) holds for all β ≤ s2/2, even if d = 3 and
if f is cubic-like (see [27]).

We deduce from Lemma 3.7 a stronger result.

Theorem 3.8. Let B be a bounded set of Xs, s ∈]0, s0[, and let T be a positive time.
There exists M > 0 such that, for all U ∈ B and t ∈ [0, T ], S∞(t)U exists and satisfies
‖S∞(t)U‖X ≤ M , if and only if there exists M ′ > 0 such that, for n large enough, U ∈ B
and t ∈ [0, T ], Sn(t)U exists and satisfies ‖Sn(t)U‖X ≤ M ′.
Moreover, if one of these equivalent properties is satisfied, then there exists a constant
C = C(M) such that, for n large enough,

∀U ∈ B, ∀t ∈ [0, T ], ‖S∞(t)U − Sn(t)U‖X ≤ CeCT εβ
n ,

where β = s2

2
if d=1 or d=2, and β = min( s2

2
, 1−α

4
) if d=3.
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Proof : Once the equivalence is proved, the estimate is a consequence of Lemma 3.7.
Assume that, for all U ∈ B and t ∈ [0, T ], S∞(t)U exists and satisfies

‖S∞(t)U‖X ≤M . (3.17)

Assume that there exist sequences Uk ∈ B, tk ∈ [0, T ] and nk −→ +∞ such that

∀t ∈ [0, tk[, ‖Snk
(t)Uk‖X < 2M and ‖Snk

(tk)Uk‖X = 2M .

We have
‖S∞(tk)Uk‖X ≥ ‖Snk

(tk)Uk‖X − ‖(Snk
(tk) − S∞(tk))Uk‖X .

For k large enough, applying Lemma 3.7 (with M replaced by 2M), we find that
‖S∞(tk)Uk‖X ≥ 3

2
M , which contradicts (3.17). Thus, for n large enough, for any U in B

and any t ∈ [0, T ], Sn(t)U exists and satisfies ‖Sn(t)U‖X ≤M ′ = 2M .
This proves the “only if” part. The “if” part is shown in the same way. �

The previous theorem together with the density of Xs in X imply the convergence of
the trajectories in X for any initial data U in X. However, the convergence is not uniform
on a bounded set of X.

Corollary 3.9. Let U be an initial datum in X and let T be a positive time. Then the
mild solution S∞(t)U ∈ C0([0, T ], X) of (2.5) with n = ∞ exists if and only if there exists
M such that, for n large enough, the mild solution Sn(t)U ∈ C0([0, T ], X) of (2.5) exists
and ‖Sn(t)U‖X ≤M for t ∈ [0, T ].
Moreover, if one of the equivalent properties is satisfied, then

sup
t∈[0,T ]

‖(S∞(t) − Sn(t))U‖X −→ 0 when n −→ +∞ . (3.18)

In the following theorem, we obtain the convergence of trajectories in X−s for initial
data in X. Notice that, contrary to Theorem 3.8, we cannot prove existence of trajectories
in C0([0, T ], X) for n large enough assuming only the existence of trajectories for the limit
case n = ∞.

Theorem 3.10. Let B be a bounded set of X. We assume that there exist T > 0, M > 0
and n0 ∈ N such that, for all U ∈ B, n ≥ n0 (and also n = ∞) and t ∈ [0, T ], the solution
Sn(t)U of (2.5) exists in C0([0, T ], X) and satisfies ‖Sn(t)U‖X ≤ M . Then, there exists a
constant C such that

∀U ∈ B, ∀t ∈ [0, T ], ‖A−1
∞ (S∞(t) − Sn(t))U‖X ≤ CeCT ε1/2

n . (3.19)

Moreover, for any s ∈ [0, 1], there exists a constant C ′ such that

∀U ∈ B, ∀t ∈ [0, T ], ‖(S∞(t) − Sn(t))U‖X−s ≤ C ′eC′T εs/8
n . (3.20)
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Proof : As usual, C denotes a generic positive constant, which may vary from line to line.
We recall that A−1

∞ is given by (2.10). We set Sn(t)U = (un(t), vn(t)). We write

‖A−1
∞ (S∞(t) − Sn(t))U‖X ≤ ‖A−1

∞ (eA∞t − eAnt)U‖X

+

∫ t

0

‖A−1
∞ (eA∞(t−τ) − eAn(t−τ))F (Sn(τ)U)‖Xdτ

+

∫ t

0

‖eA∞(t−τ)A−1
∞ (F (S∞(τ)U) − F (Sn(τ)U))‖Xdτ .

Using Proposition 3.4, we find

‖A−1
∞ (S∞(t) − Sn(t))U‖X ≤ C(1 +

√
T )ε1/2

n ‖U‖X

+

∫ t

0

C(1 +
√
T )ε1/2

n ‖f(x, un(x, τ))‖L2dτ

+

∫ t

0

‖B−1/2(f(x, u∞(x, τ)) − f(x, un(x, τ)))‖L2dτ .

Using (NL), we obtain that ‖f(x, un)‖L2 is bounded. We next show that

I = ‖B−1/2(f(x, u∞) − f(x, un))‖L2 ≤ C‖u∞ − un‖L2 . (3.21)

Indeed, if for example the dimension is equal to 3, we have

I = sup
‖ϕ‖

D(B1/2)
=1

∫

Ω

(f(x, u∞) − f(x, un))ϕdx

≤ sup
‖ϕ‖

D(B1/2)
=1

C

∣

∣

∣

∣

∫

Ω

(1 + |u∞|α + |un|α)|u∞ − un|ϕdx
∣

∣

∣

∣

≤ sup
‖ϕ‖

D(B1/2)
=1

C‖u∞ − un‖L2

(
∫

Ω

|ϕ|6
)1/6(∫

Ω

(1 + |u∞|α + |un|α)3

)1/3

Since H
1(Ω) (and thus D(B1/2)) is continuously imbedded in L

6(Ω), we obtain (3.21) and
we finish the proof of Inequality (3.19) by using Gronwall’s lemma .
We enhance that, to obtain (3.20), we cannot directly use Proposition 3.6. This is linked
to the fact that A∞ does not generate a semigroup on X−s. However, we can deduce (3.20)
from (3.19) with the same arguments as in the proof of Proposition 3.6. �

With the same arguments, we obtain similar results for the linearized dynamical system.
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Proposition 3.11. Let U(t) ∈ C0([0, T ], X). The conclusions of Theorems 3.8 and 3.10
are also valid if Sn(t) is replaced by DSn(U)(t), the linearized dynamical system defined by
(2.9). In particular, let B be a bounded set of Xs, s ∈]0, s0[, and T be a positive time, there
exists a positive constant C such that if U0 ∈ B and Un(t) ∈ C0([0, T ], X) is the solution of
(2.5) with initial data U0, then

∀t ∈ [0, T ], ‖DS∞(U∞)(t) −DSn(Un)(t)‖L(Xs,X) ≤ CeCT εβ
n ,

where β = s2

2
if d=1 or d=2, and β = min( s2

2
, 1−α

4
) if d=3.

4 Comparison of local stable and unstable manifolds

In the previous section, we have proved the convergence of trajectories for a given initial
datum. Theorem 3.8 shows that, if we want to study the convergence of orbits for ini-
tial data in a bounded set of X, this set must have compactness properties. Thus, it is
natural to wonder, in the case where Equation (2.5) has a compact global attractor An,
if the attractors An converge to A∞. The existence, boundedness, regularity and upper-
semicontinuity of the attractors have already been discussed in Theorem 2.8, Proposition
2.9 and Theorem 2.10. In this section, we study the convergence of the local unstable
manifolds and the convergence of regular parts of the local stable manifolds. Then, we de-
duce the lower-semicontinuity of the attractors from the convergence of the local unstable
manifolds. Notice that the convergence of regular parts of the local stable manifolds is not
needed to show the lower-semicontinuity.

We begin by recalling some classical notions. An equilibrium point E ∈ X is said to
be hyperbolic for the dynamical system S(t) if the spectrum of the linearization DS(E)(1)
does not intersect the complex unit circle. Let P u be the spectral projection onto the part
of the spectrum of modulus larger than 1, and P s = Id− P u the spectral projection onto
the part of the spectrum of modulus smaller than 1. If E is hyperbolic, there exist two
positive constants λu and λs and two positive constants Mu and Ms such that

∀t ≥ 0, ‖DS(E)(t)P s‖L(X) ≤Mse
−λst and ∀t ≤ 0, ‖DS(E)(t)P u‖L(X) ≤Mue

λut .

We set Bu(r) = P uX ∩ B(E, r) and Bs(r) = P sX ∩ B(E, r). The following theorem is
classical in the theory of dynamical systems (see for example the Appendix of [17]).

Theorem 4.1. We assume that S(t) is of class C1,1 from X into X and that E is a
hyperbolic equilibrium point of S(t). For r > 0 small enough, there exists a unique function
hs from Bs(r) into Bu(Msr), which is of class C1,1, satisfies hs(E) = E and Dhs(E) =
0. Moreover, its graph W s(E, r) (called the local stable manifold) satisfies the following
properties.
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i) W s(E, r) = {U ∈ B(E, 2Msr) | P sU ∈ Bs(r) and ∀t ≥ 0, S(t)U ∈ B(E, 2Msr)},
ii) if U ∈ W s(E, r) then

lim sup
t→+∞

1

t
ln ‖S(t)U − E‖X ≤ −λs .

There exists also a unique function hu from Bu(r) into Bs(Mur), which is of class C1,1,
satisfies hu(E) = E and Dhu(E) = 0. Moreover, its graph W u(E, r) (called the local
unstable manifold) satisfies the following properties.
iii) W u(E, r) = {U ∈ B(E, 2Mur) | P uU ∈ Bu(r) and there exists a negative trajectory

U(t) ∈ C0(] −∞, 0], X) such that ∀t ≤ 0, U(t) ∈ B(E, 2Mur)},
iv) if U ∈ W u(E, r) then there exists a unique negative trajectory U(t) ∈ C0(] −∞, 0], X)
such that U(t) ∈ B(2Mur) for any t ≤ 0, and

lim sup
t→−∞

1

|t| ln ‖U(t) − E‖X ≤ −λu .

We also introduce some classical definitions and the corresponding notations.

Definition 4.2. Let E be a hyperbolic equilibrium. The dimension of P uX, which is also
the one of W u(E, r), is called the Morse index of E and is denoted by m(E).
We also define the stable and unstable sets of E, which are not necessarily well-defined
manifolds, by W s(E) = {U ∈ X | limt→+∞ S(t)U = E} and W u(E) = {U ∈ X | ∃ a
negative trajectory U(t) ∈ C0(] −∞, 0], X) such that limt→−∞ U(t) = E} respectively.

4.1 Preliminary results and spectral study

In what follows, we use the notations of Theorem 4.1 with a subscript n for the dependance
with respect to n.
Let E = (e, 0) be an equilibrium point of (2.5). We set

∀n ∈ N ∪ {+∞}, Ãn = An +

(

0 0
f ′

u(x, e(x)) 0

)

.

Notice that the linearization of Sn(t) at the equilibrium point E is DSn(E)(t) = eÃnt. We
also set, for any U = (u, v) in X,

g(U) =

(

0
f(x, u) − f ′

u(x, e(x))u

)

.

Equation (2.5) becomes
Ut = Ãn + g(U) . (4.1)

When no confusion is possible, we denote f ′
u(x, e) by f ′

u. Hypothesis (NL) implies the
following properties.
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Lemma 4.3. The function g is a compact Lipschitz-continuous function on the bounded
sets of X. More precisely, we have

∀U,U ′ ∈ BX(E, r), ‖g(U) − g(U ′)‖X ≤ l(r)‖U − U ′‖X ,

where l(r) is a non-negative and non-decreasing function which tends to 0 when r goes to
0. In addition, g is of class C1,1 and if B is a bounded set of X, then there exists a positive
constant C = C(B) such that

∀U ∈ B, ∀V ∈ X, ‖g(U)‖Xσ ≤ C‖U‖X and ‖g′(U)V ‖Xσ ≤ C‖V ‖X , (4.2)

where σ ∈]0, 1[ when d = 1 or d = 2 and σ ∈]0, 1−α
2

[ when d = 3.

Moreover, Ãn and eÃn are compact perturbations of An and eAn respectively.

Proof : The first part of the Theorem is a consequence of Lemma 2.2 and of classical
Sobolev imbeddings. In particular, Lemma 2.2 shows that if u ∈ H1(Ω), then f ′

u(x, e)u ∈
Hσ(Ω). Thus, the map (u, v) 7→ (0, f ′

u(x, e)u) is compact from X into X and Ãn is a

compact perturbation of An. To show that eÃn is a compact perturbation of eAn, we
remark that if U0 ∈ X and (u(t), ut(t)) = eÃntU0, then

eÃnU0 = eAnU0 +

∫ 1

0

eAn(1−t)

(

0
f ′

u(x, e(x))u(t)

)

dt .

�

The behaviour of the spectrum of Ãn is described in the following proposition.

Proposition 4.4. Assume that Hypothesis (ED) holds. Let λ ∈ C be such that the operator
(Ã∞ − λId) ∈ L(X) is invertible. Then, for n large enough, (Ãn − λId) is also invertible
and there exists a positive constant Cλ such that

‖(Ã∞ − λId)−1 − (Ãn − λId)−1‖L(X) ≤ Cλεn .

As a consequence, the point spectrum of Ãn converges to the one of Ã∞ on every bounded
set of C. Moreover, if E is a hyperbolic equilibrium point of the dynamical system S∞(t),
then, for n large enough, it is a hyperbolic equilibrium point of the dynamical system Sn(t)
and there exists a positive constant C such that

‖P u
∞ − P u

n ‖L(X) ≤ Cεn . (4.3)

In addition, the part of the spectrum of Ãn (n ∈ N ∪ {+∞}) with non-negative real part is
composed by a finite number of real positive eigenvalues. Finally, the Morse index of E for
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Sn(t), which is the number of positive eigenvalues of Ãn is equal for n large enough to the
Morse index of E for S∞(t).

Proof : We denote by Kλ ∈ L(D(B1/2)) the operator Id+λ2B−1 −B−1f ′
u. A straightfor-

ward computation shows that (Ãn−λId) is invertible if and only if (Kλ +λΓn) is invertible
in L(D(B1/2)) and in this case

(Ãn − λId)−1

(

u
v

)

=

(

(Kλ + λΓn)
−1(−B−1v − λB−1u+B−1f ′

uu− Γnu)
(Kλ + λΓn)−1(−λB−1v + u)

)

.

If (Ã∞ − λId) is invertible, then (Kλ + λΓ∞) is invertible in L(D(B1/2)) and we have

(Kλ + λΓn) = (Kλ + λΓ∞)(Id− λ(Kλ + λΓ∞)−1(Γ∞ − Γn)) .

For n large enough, ‖λ(Kλ+λΓ∞)−1(Γ∞−Γn))‖L(D(B1/2)) ≤ 1
2
, and (Kλ+λΓn) is invertible.

Moreover,

(Kλ + λΓn)−1 − (Kλ + λΓ∞)−1 = λ(Kλ + λΓ∞)−1(Γ∞ − Γn)

×
(

∑

k≥0

λk((Kλ + λΓ∞)−1(Γ∞ − Γn))k

)

(Kλ + λΓ∞)−1 ,

and so, for n large enough,

‖(Kλ + λΓn)
−1 − (Kλ + λΓ∞)−1‖L(D(B1/2)) ≤ 2εn‖(Kλ + λΓ∞)−1‖2

L(D(B1/2)) .

This gives the first assertion of the proposition. It is well-known that this implies the
convergence of the point spectrum.
Assume that E is a hyperbolic equilibrium point for the dynamical system S∞(t), we want
to prove that for n large enough, it is also a hyperbolic equilibrium point for the dynamical
system Sn(t). As Hypothesis (ED) holds, the radius of the spectrum of eAn is strictly less

than one. Since, by Lemma 4.3, eÃn is a compact parturbation of eAn , the radius of the
essential spectrum of eÃn is strictly less than one. As a consequence, for each n, there exists
δn > 0 such that the spectrum of Ãn with real part greater than −δn is only composed by
a finite number of eigenvalues of finite multiplicity. We next prove that an eigenvalue of
Ãn with non-negative real part must be real. Then, the proof of the hyperbolicity of E for
Sn(t) is reduced to the proof that λ = 0 is not an eigenvalue of Ãn. The local convergence
of the spectrum of Ãn to the one of Ã∞, together with the hyperbolicity of E for S∞(t),
ensure that λ = 0 is not an eigenvalue of Ãn, for n large enough.
We finish the proof by showing that the eigenvalues of Ã∞ with non-negative real part are
real. The proof in the case of n <∞ is similar and even easier.
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Let λ be a non-real eigenvalue of Ã∞ with eigenvector (ϕ, λϕ) such that ‖ϕ‖L2 = 1. We
have







λ2ϕ = ∆ϕ− κϕ+ f ′
u(x, e)ϕ

∂ϕ
∂ν

+ λγϕ = 0 on ωN

ϕ = 0 on ωD

(4.4)

where ωN (resp. ωD) is the part of ∂Ω where B has Neumann (resp. Dirichlet) boundary
conditions, and where κ = 1 if ωD = ∅ and κ = 0 in the other case.
Multiplying the first equation by ϕ and integrating, we obtain

−‖−→∇ϕ‖2
L2 − κ‖ϕ‖2

L2 +

∫

Ω

f ′
u|φ|2 = λ2‖ϕ‖2

L2 + λ

∫

ωN

γ|ϕ|2 .

Taking the imaginary part and using the fact that Im(λ) 6= 0, we find

Re(λ) = −1

2

∫

ωN

γ|ϕ|2 . (4.5)

To prove that Re(λ) < 0, we argue by contradiction. Assume that
∫

ωN
γ|ϕ|2 = 0. There

exists an open subset ω of the boundary such that ϕ|ω ≡ 0 and Equation (4.4) shows that
∂ϕ
∂ν |ω ≡ ϕ|ω ≡ 0. Let θ be an open connected subset of Ω such that (ωN ∩ ωD) ∩ θ = ∅,
and θ ∩ ω 6= ∅. The set θ is defined such that it is distant from the points of the boundary
where the Neumann boundary condition meets the Dirichlet one. Regularity theorems for
problems with mixed boundary conditions imply that e belongs to H

2(θ) and so to L
∞(θ)

(see [16]). Thus, as ϕ is a solution of (4.4), ϕ satisfies in θ

{

λ2ϕ = ∆ϕ + hϕ
∂ϕ
∂ν

= ϕ = 0 on ω ∩ θ (4.6)

with some additional boundary conditions, where h = −κId+f ′
u(x, e(x)) belongs to L∞(θ).

The classical unique continuation property implies that ϕ identically vanishes on θ and thus
on Ω, which is absurd. �

Let E be a hyperbolic equilibrium point. Using the above proposition, we know that
there exist two constants µ and η with 0 < η < µ such that the spectrum of Ã∞ has the
following decomposition.

σ(Ã∞) =
(

σ(Ã∞) ∩ {z ∈ C/Re(z) < 0}
)

∪
(

σ(Ã∞) ∩ {z ∈ C/Re(z) ≥ µ+ 2η}
)

.

Proposition 4.4 implies that, for n large enough, we have

σ(Ãn) =
(

σ(Ãn) ∩ {z ∈ C/Re(z) < 0}
)

∪
(

σ(Ãn) ∩ {z ∈ C/Re(z) ≥ µ+ η}
)

. (4.7)
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For n ∈ N ∪ {+∞}, we denote by P u
n the spectral projection onto the space generated by

the eigenvectors corresponding to the part of the spectrum of Ãn with real part larger than
µ. We set P s

n = Id− P u
n .

Proposition 4.5. There exist two positive constants Mu and Ms such that

∀n ∈ N ∪ {+∞},
{

∀t ≥ 0, ‖eÃntP s
n‖L(X) ≤Mse

(µ−η)t

∀t ≤ 0, ‖eÃntP u
n ‖L(X) ≤Mue

(µ+η)t
(4.8)

The proof of the above result is based on the following equivalence.

Theorem 4.6. Let Hn be a sequence of Hilbert spaces. Let Dn be the generator of a
C0−semigroup of contractions eDnt on Hn, and let λ > 0. There exist two positive constants
ε and C such that

∀t ≥ 0, ‖eDnt‖L(Hn) ≤ Ce−(λ+ε)t (4.9)

if and only if there exists ε′ > 0 such that for all n ∈ N, the spectrum of Dn satisfies
σ(Dn) ⊂ {z ∈ C / Re(z) < −λ− ε′} and such that we have

∃M > 0 such that sup
n∈N

sup
ν∈R

‖(Dn + (λ+ iν)Id)−1‖L(Hn) ≤ M . (4.10)

This result is proved in [34]. Although the theorems given in [34] are stated less
precisely, it can be deduced from their proofs.
Proof of Proposition 4.5: First, notice that eÃnt is well-defined on P u

nX even if t ≤ 0

and that there exists M such that for any t ≤ 0, ‖eÃnt‖L(P u
n X) ≤ Me(µ+η)t, since P u

nX is

a subspace spanned by a finite number of eigenvectors of Ãn corresponding to eigenvalues
larger than µ + η, this number of eigenvectors being independent of n. Thus, the second
estimate of (4.8) is a direct consequence of the convergence of P u

n to P u
∞. Let Hn = P s

nX
and let D̃n be the restriction to Hn of the operator Ãn − ‖f ′

u‖∞Id. Notice that D̃n is

a dissipative operator on Hn and thus that eD̃nt is a semigroup of contractions. We set
λ = ‖f ′

u‖∞ − (µ− η). If we prove that (4.10) holds for D̃n, we will obtain that

‖eD̃nt‖L(X) ≤ Me−(‖f ′

u‖∞−(µ−η))t ,

and so that
‖eÃnt‖L(X) ≤ Me(µ−η)t .

Then the first estimate of (4.8) will be a direct consequence of the convergence of P s
n to

P s
∞.

The spectral condition of Theorem 4.6 is clear due to the definition of Hn and the fact that
µ − η is positive. To show that (4.10) holds, we argue by contradiction and assume that
there exist sequences (νk) and (nk) → +∞ such that

‖(D̃nk
+ (λ+ iνk)Id)

−1‖L(Hnk
) −→ +∞ . (4.11)
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As E is hyperbolic for S∞(t), Proposition 4.4 implies that |νk| −→ +∞.
Assume that νk −→ +∞ and that νk > 0 (the case νk −→ −∞ is similar). We set
Dn = An − ‖f ′

u‖∞Id. As eAnt is a semigroup of contractions, for all n ∈ N ∪ {+∞}, we
have that ‖eDnt‖L(X) ≤ e−‖f ′

u‖∞t and thus Theorem 4.6 show that

∃M > 0, sup
νk

‖(Dnk
+ (λ+ iνk)Id)

−1‖L(X) ≤ M . (4.12)

Let K be the compact operator (u, v) ∈ X 7→ (0, f ′
u(x, e(x))u). We have

(D̃nk
+ (λ+ iνk)) = (Id+K(Dnk

+ (λ+ iνk))
−1)(Dnk

+ (λ+ iνk)) . (4.13)

A straightforward calculus shows that if (ϕk, ψk) = (Dnk
+ (λ+ iνk))

−1(u, v), then

−ϕk + (λ+ iνk)Γnk
ϕk − (λ+ iνk)

2B−1ϕk = B−1v − (λ+ iνk)B
−1u+ Γnk

u .

Multiplying by Bϕk and integrating, we find

ν2
k‖ϕk‖2

L2 = < ϕk − (λ+ iνk)Γnk
ϕk + Γnk

u|ϕk >D(B1/2)

+ < v − (λ+ iνk)u|ϕk >L2 +(λ2 + 2iλνk)‖ϕk‖2
L2 .

So, there exists a positive constant C such that

νk
2‖ϕk‖2

L2 ≤ C(1 + νk)
(

‖(u, v)‖X + ‖ϕk‖D(B1/2)

)

‖ϕk‖D(B1/2) .

As (4.12) holds, we have ‖ϕk‖D(B1/2) ≤ M‖(u, v)‖X and so ‖ϕk‖L2 ≤ C√
νk
‖(u, v)‖X. Using

(NL), we find that there exists s ∈]0, 1/2[ such that

‖K(Dnk
+ (λ+ iνk))

−1(u, v)‖X = ‖f ′
u(x, e)ϕk‖L2 ≤ C

νs
k

‖(u, v)‖X ,

and so ‖K(Dnk
+ (λ+ iνk))

−1‖L(X) −→ 0 as k −→ +∞. Thus, (4.13) implies that D̃nk
+

(λ+ iνk) is invertible for k large enough and satisfies (4.10) with a constant M̃ independent
of νk. This contradicts the above assumption (4.11) and proves the proposition. �

4.2 Convergence of the local unstable manifolds

As above, we will use the notations of Theorem 4.1 with a subscript n for the dependance
with respect to n. In particular, we recall that Bu

n(r) = P u
nX ∩ BX(E, r) and Bs

n(r) =
P s

nX ∩ BX(E, r).
The whole section is devoted to the proof of the following theorem.
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Theorem 4.7. Let E be a hyperbolic equilibrium point of the dynamical system S∞(t). We
assume that the exponential decay (ED) holds. Then, E is a hyperbolic equilibrium point of
Sn(t) for n large enough and there exists a radius r > 0 such that the function hu

n and its
derivative Dhu

n are defined in Bu
n(r). In other words, the local unstable manifolds W u

n (E, r)
are defined for n large enough in a neighborhood of E independent of n. Moreover, the decay
rate λu of Property iv) of Theorem 4.1 and the Lipschitz-constants of hu

n and Dhu
n are

uniform in n. In addition, there exists a positive constant C such that, for all ξ ∈ Bu
∞(r),

‖hu
∞(ξ) − hu

n(P u
n ξ)‖X ≤ Cεβ

n and ‖Dhu
∞(ξ)P u

∞ −Dhu
n(P u

n ξ)P
u
n‖L(X,X) ≤ Cεβ

n , (4.14)

where β is any number in ]0, 1/8[ if d = 1 or d = 2 or any number in ]0,min( 1
32
, 1−α

4
)[ if

d = 3. In particular, we have that

dX(W u
n (E, r);W u

∞(E, r)) ≤ Cεβ
n .

Til the end of this section, we assume that (ED) holds. For sake of simplicity, we may
set without loss of generality that E = 0 and f(x, 0) = 0. We also assume that E = 0 is a
hyperbolic equilibrium of the dynamical system Sn(t) and that the spectral decomposition
(4.7) holds for any n ∈ N ∪ {+∞}.

The outline of the proof of Theorem 4.7 is as follows. We know that, for each n, there
exists a local unstable manifold W u

n (E, rn). We will construct, for each n ∈ N ∪ {+∞},
the local strongly unstable manifold W su

n (E, rn) in BX(0, rn), corresponding to the spec-
tral decomposition (4.7). This construction is done with a fixed point theorem, using the
method of Lyapounov-Perron (see [17]). We will show that this construction can be made
in a ball BX(0, r) independent of n. Next, we will compare W su

n (E, r) and W su
∞ (E, r), using

the continuity of the fixed point with respect to the parameter n. Finally, as E = 0 is
hyperbolic for each n, and as (4.7) holds, we know that the local strongly unstable manifold
W su

n (E, r) is in fact the local unstable manifold W u
n (E, r) defined in Theorem 4.1.

We introduce the space

Yµ = {U ∈ C0(] −∞, 0],C) / sup
t≤0

‖U(t)‖Xe
−µt < +∞} .

We endow Yµ with the norm ‖.‖µ defined by

‖U‖µ = sup
t≤0

‖U(t)‖Xe
−µt .

We set Bµ(R) = {U ∈ Yµ / ‖U‖µ ≤ R} . We recall that the integral equation associated
to Ut = ÃnU + g(U) is

U(t) = eÃn(t−t0)U(t0) +

∫ t

t0

eÃn(t−s)g(U(s))ds . (4.15)

We next prove the following result.
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Theorem 4.8. We assume that the hypotheses of Theorem 4.7 hold. For r > 0 small
enough, there exists a family (hu

n)n∈N∪{+∞} of functions of class C1, defined from Bu
n(r)

into Bs
n(Mur), such that hu

n(0) = 0. The graph W su
n (0, r) of hu

n satisfies

W su
n (0, r) = {U0 ∈ BX(0, 2Mur) / P

u
nU0 ∈ Bu

n(r) and there exists

U ∈ Bµ(2Mur) solution of (4.15) such that U(0) = U0} .
Moreover, there exists a positive constant C = C(β) such that

dX(W su
n (0, r),W su

∞ (0, r)) ≤ Cεβ
n ,

where β is any number in ]0, 1/8[ if d = 1 or d = 2 or any number in ]0,min( 1
32
, 1−α

4
)[ if

d = 3.

The proof of this theorem consists of several lemmas.
The solutions of (4.15) are characterized as follows.

Lemma 4.9. Let R > 0 and U ∈ Bµ(R). For any n ∈ N ∪ {+∞}, U is a negative
trajectory of (4.15) if and only if, for all t ≤ 0,

U(t) =

∫ t

−∞
eÃn(t−s)P s

ng(U(s))ds+ eÃntP u
n ξ −

∫ 0

t

eÃn(t−s)P u
n g(U(s))ds (4.16)

where ξ = U(0).

Proof : Since the proof is classical, we omit it (see [17]). �

Let ξ ∈ X, we introduce the functional T ξ
n defined from Yµ into Yµ by

(T ξ
nU)(t) =

∫ t

−∞
eÃn(t−s)P s

ng(U(s))ds+ eÃntP u
n ξ −

∫ 0

t

eÃn(t−s)P u
n g(U(s))ds . (4.17)

Lemma 4.9 shows that U(0) ∈ W su
n (E, r) if and only if T ξ

nU = U . It remains to prove that
T ξ

n is a contraction.

Lemma 4.10. There exists a positive constant r0, independent of n, such that for all
n ∈ N ∪ {+∞}, for all r ∈]0, r0[ and ξ ∈ X with ‖P u

n ξ‖X ≤ r, T ξ
n is defined from Bµ(2Mur)

into Bµ(2Mur). Moreover,

∀n ∈ N ∪ {+∞}, ∀U,U ′ ∈ Bµ(2r), ‖T ξ
nU − T ξ

nU
′‖µ ≤ 1

2
‖U − U ′‖µ .
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Proof : To see that T ξ
n maps Bµ(2Mur) into Bµ(2Mur), we bound the three terms of

(4.17). Let U ∈ Bµ(2Mur). We have

‖e−µt

∫ t

−∞
eÃn(t−s)P s

ng(U(s))ds‖Xds ≤
∫ t

−∞
e−µtMse

(µ−η)(t−s)l(2Mur)‖U(s)‖Xds

≤ Msl(2Mur)

∫ t

−∞
e−η(t−s)‖U‖µds

≤ Ms

η
l(2Mur)‖U‖µ

Using (4.8), we obtain ‖e−µteÃntP u
n ξ‖X ≤ Mu‖ξ‖X. To bound the last term, we write

‖e−µt

∫ 0

t

eÃn(t−s)P u
n g(U(s))ds‖X ≤

∫ 0

t

e−µte(µ+η)(t−s)Mul(2Mur)‖U(s)‖Xds

≤Mul(2Mur)

∫ 0

t

eη(t−s)‖U‖µds

≤ Mu

η
l(2Mur)‖U‖µ

Thus, using the fact that l(2Mur) −→ 0, we can choose r1 small enough so that

Mu +Ms

η
l(2Mur)2Mur ≤Mur ,

and thus T ξ
n is defined from Bµ(2Mur) into Bµ(2Mur). The fact that T ξ

n is a contraction
for r small enough is proved by the same way. We will choose r0 ∈]0, r1] so that T ξ

n is a
contraction with constant of contraction equal to 1/2. �

The previous lemma implies that, if r is small enough, for any n ∈ N ∪ {+∞} and any
ξ ∈ Bu

n(r) there exists a unique solution U ξ
n(t) ∈ Bµ(2Mur) of (4.15) such that P u

n ξ =
P u

nU
ξ
n(0). We define the function hu

n by

hu
n :

(

Bu
n(r) −→ P s

nX
ξ 7−→ P s

nU
ξ
n(0)

)

.

To be more precise, P s
nU

ξ
n(0) =

∫ 0

−∞ e−ÃnsP s
ng(U(s))ds and so, the choice of r in the

preceding proof implies that ‖P s
nU

ξ
n(0)‖X ≤Mur. Therefore, hu

n is defined from Bu
n(r) into

Bs
n(Mur). Moreover, using the same arguments as in the proof of Lemma 4.10, we can

show that hu
n is Lipschitzian. To finish the proof of Theorem 4.8, we show the following

two lemmas.
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Lemma 4.11. There exists a positive constant C such that for any U ∈ D(A∞) and t ≤ 0,
we have

∥

∥

∥

(

e(Ãn−µ)tP u
n − e(Ã∞−µ)tP u

∞

)

U
∥

∥

∥

X
≤ Cε1/2

n ‖U‖D(A∞) . (4.18)

There exists a positive constant C such that, for any U ∈ X and any t ≤ 0, we have

‖(eÃntP u
n − eÃ∞tP u

∞)g(U(s))‖X ≤ Ce(µ+η/2)tεβ
n‖U(s)‖X , (4.19)

with β as in Theorem 4.8, and for any t ≥ 0

‖(eÃn(t−s)P s
n − eÃ∞(t−s)P s

∞)g(U(s))‖X ≤ Ce−(µ−η/2)tεβ
n‖U(s)‖X . (4.20)

Proof : We notice that −Ãn is a bounded operator on P u
nX, since P u

nX is spanned
by a finite number of eigenvectors of −Ãn. This number and the associated eigenval-
ues being bounded with respect to n, there exists a positive constant C such that for all
n ∈ N ∪ {+∞}, −Ãn − C is a dissipative operator on P u

nX. We also remark that the op-
erators (Ãn − ‖f ′

u(x, 0)‖L∞Id) are dissipative on P s
nX.

Thus, (4.18) is a direct consequence of Corollary 3.3, Propositions 4.4 and 4.5. The esti-
mates (4.19) and (4.20) are proved in the same way, using the regularity property (4.2) of
g and interpolation arguments similar to the proof of Proposition 3.5. �

Lemma 4.12. Let r ∈]0, r0[, where r0 has been defined in Lemma 4.10, and let ξ ∈ X such
that ‖P u

∞ξ‖X ≤ r. There exists a positive constant C such that

‖U ξ
∞ − U ξ

n‖µ ≤ Cεβ
n , (4.21)

where β is given in Theorem 4.8. Moreover, if we set, for n ∈ N ∪ {+∞}, ξn = P u
n ξ, then

‖hu
∞(ξ∞) − hu

n(ξn)‖X ≤ Cεβ
n . (4.22)

Proof : We have

‖U ξ
∞ − U ξ

n‖µ = ‖T ξ
∞U

ξ
∞ − T ξ

nU
ξ
n‖µ

≤ ‖T ξ
nU

ξ
∞ − T ξ

nU
ξ
n‖µ + ‖T ξ

∞U
ξ
∞ − T ξ

nU
ξ
∞‖µ

≤ 1

2
‖U ξ

∞ − U ξ
n‖µ + ‖T ξ

∞U
ξ
∞ − T ξ

nU
ξ
∞‖µ ,

and thus,
‖U ξ

∞ − U ξ
n‖µ ≤ 2‖T ξ

∞U
ξ
∞ − T ξ

nU
ξ
∞‖µ . (4.23)

To simplify the notations, we set U = U ξ
∞. We have

T ξ
nU − T ξ

∞U = (eÃntP u
n − eÃ∞tP u

∞)ξ −
∫ 0

t
(eÃn(t−s)P u

n − eÃ∞(t−s)P u
∞)g(U(s))ds

+
∫ t

−∞(eÃn(t−s)P s
n − eÃ∞(t−s)P s

∞)g(U(s))ds

= K1 −K2 +K3 .

(4.24)
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To estimate the term ‖T ξ
nU −T ξ

∞U‖µ = supt≤0 e
−µt‖T ξ

nU −T ξ
∞U‖X , we proceed as follows.

e−µtK1 =
(

e(Ãn−µ)tP u
n − e(Ã∞−µ)tP u

∞

)

P u
∞ξ + e−µteÃntP u

n (P u
n − P u

∞)ξ . (4.25)

As P u
∞ is a projection on a finite number of eigenvalues, P u

∞ξ belongs to D(Ã∞) and
‖P u

∞ξ‖D(Ã∞) ≤ C‖ξ‖X. Thus, Lemma 4.11 implies that there exists a positive constant C
such that for any t ≤ 0,

∥

∥

∥

(

e(Ãn−µ)tP u
n − e(Ã∞−µ)tP u

∞

)

P u
∞ξ
∥

∥

∥

X
≤ Cε1/2

n ‖ξ‖X .

For the second term of (4.25), we use (4.8) and (4.3) to get

‖e−µteÃntP u
n (P u

n − P u
∞)ξ‖X ≤ Cεn‖ξ‖X ,

and thus, gathering the terms of (4.25), we obtain

‖K1‖µ ≤ Cε1/2
n ‖ξ‖X .

We bound the second term of (4.24) by using (4.19) as follows

‖e−µtK2‖X = ‖e−µt

∫ 0

t

(eÃn(t−s)P u
n − eÃ∞(t−s)P u

∞)g(U(s))ds‖X

≤
∫ 0

t

Ce
η
2
(t−s)e−µsεβ

n‖U(s)‖Xds

≤ Cεβ
n‖U‖µ

∫ 0

t

e
η
2
(t−s)ds ≤ 2C

η
εβ

n .

To bound the third term of (4.24), we use (4.20) :

‖e−µtK3‖X = ‖e−µt

∫ t

−∞
(eÃn(t−s)P s

n − eÃ∞(t−s)P s
∞)g(U(s))ds‖X

≤ Cεβ
n

∫ t

−∞
e−

η
2
(t−s)e−µt‖U(s)‖Xds

≤ Cεβ
n‖U‖µ

∫ t

−∞
e−

η
2
(t−s)ds ≤ 2C

η
εβ

n .

Due to the decomposition (4.24), the inequality (4.23) and the above bounds of ‖Ki‖µ

(i = 1, 2, 3) imply the estimate (4.21).
The inequality (4.22) is a direct consequence of (4.21) and of (4.3). �
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Proof of Theorem 4.7: Lemma 4.12 completes the proof of Theorem 4.8. By Propo-
sition 4.4, for n large enough, E is a hyperbolic equilibrium for Sn(t). Proposition 4.4 to-
gether with the decay property (4.8) also imply that there exists a local unstable manifold
W u

n (E, r) which is equal to the strong unstable manifold W su
n (E, r) we have constructed.

Thus, the estimate (4.22) of Lemma 4.12 implies the first estimate of (4.14).
It is well-known that, if g is of class Cp, then the mapping (ξ, U) 7−→ T ξ

nU is of class Cp

and the fixed point U ξ
n is a Cp-mapping from PnBX(0, r) into Yµ (see [17]). In particular,

we notice that, like in (4.16), we have

DU ξ
nζ = eÃntP u

n ζ +

∫ t

−∞
eÃn(t−s)P s

ng
′(U ξ

n(s))DU ξ
n(s)ζds

−
∫ 0

t

eÃn(t−s)P u
n g

′(U ξ
n(s))DU ξ

n(s)ζds .

Thus, arguing as in Lemma 4.10, one shows that DU ξ
n is defined in a ball P u

nBX(0, r),
where r does not depend on n. Arguing as in Lemma 4.12 and using property (4.3) several
times, one shows the convergence of DU ξ

n towards DU ξ
∞ as well as the second estimate in

(4.14).
Finally, the proof of the fact that the Lipschitz-constants of Dhu

n is uniform with respect
to n is similar to the proof of Lemma 4.10. �

4.3 Convergence of the regular part of the local stable manifolds

We can also study the convergence of the local stable manifolds. Notice that this theorem
is not needed for the convergence of the attractors An but will be required for the proof of
stability of phase-diagrams (see Theorem 2.12).

Theorem 4.13. Assume that the uniform exponential decay property (UED) holds. Let
E be a hyperbolic equilibrium point of the dynamical system S∞(t). Then E is also a
hyperbolic equilibrium point of Sn(t) for n large enough. Moreover, there exists n0 ∈ N,
such that, for n ≥ n0, the local stable manifold W s

n(E, r) satisfies the properties i) and
ii) of Theorem 4.1 with positive constants r, Ms and λs independent of n and such that,
for n ≥ n0, W

s
n(E, r) is the graph of a function hs

n which is of class C1,1(Bs
n(r), P u

nX).
Furthermore, the Lipschitz-constants of Dhs

n is bounded uniformly with respect to n.
In addition, if B is a bounded set of Xσ (σ ∈]0, s0[), there exists a positive constant C =
C(B, β) such that

∀ξ ∈ Bs
∞(r) ∩ B, ‖hs

∞(ξ) − hs
n(P s

nξ)‖X ≤ Cεβ
n , (4.26)

and
∀ξ ∈ Bs

∞(r) ∩ B, ‖Dhs
∞(ξ)P s

∞ −Dhs
n(P s

nξ)P
s
n‖L(Xσ ,X) ≤ Cεβ

n , (4.27)
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where β is any number in ]0, σ2

2
[ if d = 1 or d = 2 or any number in ]0,min(σ2

2
, 1−α

4
)[ if

d = 3. In particular, the regular part of the local stable manifold converges in the following
sense :

dX(W s
n(E, r) ∩ B;W s

∞(E, r) ∩ B) ≤ Cεβ
n . (4.28)

Proof : We underline that the important point is the independance of r and λs with
respect to n. This property is closely linked to Hypothesis (UED). Indeed, assuming the
uniform exponential decay (UED), we can improve the estimates (4.8) as follows : there
exist positive constants Ms, λs and η such that

∀n ∈ N ∪ {+∞}, ∀t ≥ 0, ‖eÃntP s
n‖L(X) ≤Mse

−(λs+η)t . (4.29)

The outline of the proof is exactly the same as Theorem 4.7, but here, instead of Yµ, we
consider the space

Zµ̃ = {U ∈ C0([0,+∞[,C) / sup
t≥0

‖U(t)‖Xe
µ̃t < +∞} ,

where 0 < µ̃ < λs and we remplace T ξ
n by the functional

Rξ
n : U ∈ Zµ̃ 7−→

∫ ∞

t

eÃn(t−s)P u
n g(U(s))ds+ eÃntP s

nξ −
∫ t

0

eÃn(t−s)P s
ng(U(s))ds .

We would like to insist on the modifications in the proof of Lemma 4.12. In this proof, we
used the fact that, for all ξ ∈ X, P u

∞ξ belongs to D(Ã∞), which is not the case of P s
∞ξ.

As a consequence, we cannot prove the convergence of the whole local stable manifold
W s

n(E, r). Fortunately, we only need the convergence of the subset W s
n(E, r) ∩ B. If we

choose ξ ∈W s
n(E, r)∩ B, P s

∞ξ = ξ − P u
∞ξ is bounded in Xσ and the arguments of Lemma

4.12 are valid in our case. In the same way, we can only prove the convergence of the
regular part of the tangent spaces and this convergence is shown with the same arguments
as the convergence of the tangent spaces of the local unstable manifolds. Finally, notice
that the Lipschitz-constants of hs

n and Dhs
n are uniform in n because of Estimate (4.29).

�

4.4 Lower-semicontinuity and estimates of the convergence.

Proof of Theorem 2.11: The lower-semicontinuity of the attractors follows from the
convergence of the local unstable manifolds proved in the previous section. In fact, we
can be more precise and prove Estimate (2.26). Proofs of such an estimate of the lower-
semicontinuity can be found in [20] and [3]. Although the presentation of these proofs is
different, the ideas are the same, in particular the gradient structure is strongly used. We
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also underline that the proof of the estimate for the lower-semicontinuity can be made, by
using the notion of chain of equilibria that we introduce in Section 5.2.
Hypothesis (Hyp) allows us to prove estimates for the upper-semicontinuity due to the
following result. If all the equilibria of S∞(t) are hyperbolic, then any bounded set B of
X is exponentially attracted by A∞, that is that there exist positive constants M and λ
such that

∀t ≥ 0, sup
U∈B

distX(S∞(t)U,A∞) ≤Me−λt . (4.30)

The proof of this property, and the fact that it implies an estimate of the upper-semiconti-
nuity can be found in [30], [22] or [41]. Once again, the proof of this exponential attraction
strongly uses the gradient structure of the dynamical system.

To obtain an estimate of the upper-semicontinuity from (4.30), we modify the proof of
Theorem 2.8 as follows. The attracting property (2.22) is replaced by the stronger property

∀U ∈
⋃

n

An, distX(S∞(t)U,A∞) ≤Me−λt . (4.31)

On the other hand, Theorem 3.10 and the fact that ∪An is bounded in X imply that

∀Un ∈ An, ‖(Sn(t) − S∞(t))Un‖X−s ≤ CeCtεs/8
n . (4.32)

Replacing t by − s
16C

ln εn in (4.32), which is positive for n large enough, we deduce from
(4.31) and (4.32), that

sup
Un∈An

distX−s(Sn(t)Un,A∞) ≤Me−λt + CeCtεs/8
n = Mε

λs
16C
n + Cε

s
16
n

This concludes the proof of the inequality (2.27) since Sn(t)An = An. �

5 Stability of phase-diagrams

In this section, we prove Theorem 2.12. We assume in the whole section that Ω =]0, 1[
and γ∞ = aδx=0 + bδx=1, with a 6= 1 and b 6= 1. We recall that these hypotheses imply
that eAnt is a group of operators for all n ∈ N ∪ {+∞} and that Sn(t) and DSn(t) are one
to one. Thus, if E is a hyperbolic equilibrium of Sn(t), then the stable and unstable sets
W s

n(E) and W u
n (E), introduced in Definition 4.2, are well-defined global manifolds of X.

We also assume that the hypotheses of Theorem 2.12 hold, that is that Hypotheses (Diss)
and (UED) and the Morse-Smale property for S∞(t) are satisfied.
Let E− and E+ be two equilibria of the dynamical systems Sn(t), we say that Sn(t) admits
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a connecting orbit between E− and E+ if there exists a complete trajectory Un(t) (t ∈ R),
solution of Equation (2.5) such that Un(t) converges to E− (resp. E+) when t goes to −∞
(resp. +∞). This orbit is said to be transversal if at any point of it, the manifolds W u

n (E−)
and W s

n(E+) intersect transversally, that is that at each point Un of the trajectory, the tan-
gent space TUnW

s
n(E+) has a closed complement and TUnW

u
n (E−) + TUnW

s
n(E+) = X.

The proof of Theorem 2.12 can be split into the following two lemmas.

Lemma 5.1. We assume that Ω =]0, 1[, γ∞ = aδx=0 + bδx=1, with a 6= 1 and b 6= 1,
that S∞(t) satisfies the Morse-Smale property and that Hypotheses (Diss) and (UED) hold.
Let E− and E+ be two hyperbolic equilibria of the dynamical systems Sn(t). If W u

∞(E−) ∩
W s

∞(E+) is a manifold of dimension r then, for n large enough, W u
n (E−) ∩W s

n(E+) is a
manifold of dimension r.

Lemma 5.2. Assume that the hypotheses of Lemma 5.1 hold. If On is a sequence of
connecting orbits for Sn(t) between E− and E+, then

i) S∞(t) admits a connecting orbit between E− and E+,

ii) there exists a subsequence Oϕ(n) of On such that, for n large enough, the orbits Oϕ(n)

are transversal.

Remark : We underline that the proof of i) of Lemma 5.2 gives an interesting result even
if S∞(t) is not a Morse-Smale system. Indeed, the proof shows that there exists a chain of
equilibria E− = E0, E1...Ep = E+ such that S∞(t) admits a connecting orbit between Ei

and Ei+1. The Morse-Smale property is only used to prove that this implies the existence
of a connecting orbit between E− and E+.

Proof of Theorem 2.12: Lemmas 5.1 and 5.2 imply Theorem 2.12, that is the stability
of phase-diagram and the Morse-Smale property. Indeed, the number of equilibrium points
of S∞(t) (and thus of Sn(t)) is finite since they are bounded in D(A∞) and are hyperbolic.
Thus, Lemmas 5.1 and 5.2 clearly imply the stability of phase-diagrams. The hyperbolicity
of equilibria for Sn(t), for n large enough, has been proved in Proposition 4.4. Finally,
assume that Sn(t) is not a Morse-Smale system for n large enough, then we can find
a sequence of complete bounded trajectories for Sn(t) which are not transversal. Since
the number of equilibria is finite, we can assume that the trajectories connect the same
equilibria and this contradicts Lemma 5.2. Thus, Sn(t) has the Morse-Smale property for
n large enough. �
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5.1 Proof of Lemma 5.1

Let E− and E+ be two equilibria of S∞(t). In Theorems 4.7 and 4.13, we have shown that
there exist two radii r− and r+ such that the local manifolds W u

n (E−, r−) and W s
n(E+, r+)

are well-defined. We denote P u+
n (resp. P u−

n ) the projection onto the unstable part of the
spectrum of the linearization Ãn at the equilibrium point E+ (resp.E−). Similarly, P s±

n

are the projections onto the stable part. We set Bu
n(E±, r±) = B(E±, r±) ∩ P u±

n X and
Bs

n(E±, r±) = B(E±, r±) ∩ P s±
n X. We denote

hu
n : Bu

n(E−, r−) −→ Bs
n(E−,M−r−) and hs

n : Bs
n(E+, r+) −→ Bu

n(E+,M+r+)

the functions given in Theorem 4.1, whose graphs are W u
n (E−, r−) and W s

n(E+, r+) respec-
tively.
For any time T ≥ 0, we introduce the map

Ψn
T :

(

Bu
∞(E−, r−) −→ X

ξ 7−→ Sn(T ) ◦ [Id+ hu
n(.)]P u−

n ξ

)

.

The union of the ranges
⋃

T≥0R(Ψn
T ) is equal to the unstable manifold W u

n (E−). Assume
that S∞(t) admits a connecting orbit between E− and E+, and let U0 be a point of this
trajectory such that P u−

∞ U0 belongs to Bu
∞(E−, r−). There exists a neighborhood θ of

P u−
∞ U0 in Bu

∞(E−, r−) such that Ψ∞
T (θ) ⊂ B(E+, r+) for some T large enough. For n = ∞

and for any n large enough, we set

Φn :

(

θ −→ Bu
∞(E+, r+)

ξ 7−→ P u+
∞ ◦ [P u+

n − hs
n(P s+

n .)] ◦ Ψn
T (ξ)

)

.

Since, for n large enough, P u+
∞ is an isomorphism from P u+

n X onto P u+
∞ X, it follows that,

by construction, the equality Φn(ξ) = 0 is equivalent for n large enough to the existence of
a trajectory for Sn(t) between E− and E+, which intersects the subset [Id+ hu

n(.)]P u−
n (θ)

of the unstable manifold W u
n (E−, r−).

Using Proposition 3.11 and Theorems 4.7 and 4.13, we obtain the following properties.

Lemma 5.3. The function Φn and the derivatives DΨn
T and DΦn are well-defined for n

large enough. Moreover, Ψn
T , Φn, DΨn

T and DΦn are continuous with respect to ξ ∈ θ,
uniformly in n ∈ N ∪ {+∞} and converge respectively to Ψ∞

T , Φ∞, DΨ∞
T and DΦ∞, when

n goes to +∞, uniformly in ξ ∈ θ.

We recall that m(E±) is the Morse index of E±, that is the dimension of the linear
unstable space P u+

∞ X. As S∞(t) and DS∞(t) are one-to-one, Ψ∞
T (θ) is an open subset

of dimension m(E−) of W u
∞(E−). By assumption, it has a non-empty transversal inter-

section with W s
∞(E+, r+). The classical λ−lemma (see [38] and [19]) implies that for all

ε > 0, we can find T large enough and a submanifold θ̃ of θ, which contains P u−
∞ U0 and
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which is of dimension m(E+), such that ψ∞
T (θ̃) is ε − C1−close to Bu

∞(E+, r+). Thus,
P u+
∞ ◦Dψ∞

T (P u−
∞ U0) is onto P u+

∞ X, and by Lemma 5.3, if θ is choosen small enough, then
for any ξ ∈ θ, P u+

∞ ◦Dψ∞
T (ξ) is onto P u+

∞ X. As Dhs
∞(E+) = 0, if r+ is small enough, Dhs

∞
is small and DΦ∞(ξ) is onto P u+

∞ X, that is that Φ∞ is a submersion. Using Theorem 2.8
of Chapter one of [15], we see that Φ∞ is an open function, ie Φ∞(θ) is a neighborhood of
0. Lemma 5.3 implies that Φn(θ) is also a neighborhood of 0 for n large enough and that
Φn is also a submersion. Theorem 2.8 of chapter one of [15] implies that (Φn)−1(0) is a
submanifold of θ of dimension m(E−) −m(E+). Since S∞(t) and DS∞(t) are one-to-one,
the dimension of the intersection W u

n (E−) ∩W s
n(E+) is m(E−) −m(E+).

5.2 The notion of chain of equilibria

We introduce in this section the notion of chain of equilibria. The ideas behind it are not
really new since this notion is close to the one of family of combined limit trajectories given
in [3] and [4], which was used to show lower-semicontinuity of attractors.
This notion enables us to give a proof of Lemma 5.2, which is different from [19]. In
particular, we do not need any result of convergence of the local stable manifolds to prove
the property i) of Lemma 5.2. On the other hand, we extensively use the gradient structure,
that is that the Lyapounov function Φ given by (2.6) is non-increasing along the trajectories
of Sn(t) and that,

if, for any t ≥ 0, Φ(S∞(t)U) = Φ(U), then U is an equilibrium point. (5.1)

In the proof of Lemma 5.2, we will use several times the following result. We recall that
the upper-semicontinuous in X of the attractors has been shown in Theorem 2.10.

Lemma 5.4. Assume that the attractors An are upper-semicontinuous in X at n = +∞.
For any positive time T and any sequence (Un)n∈N, such that Un ∈ An, there exists U∞ ∈
A∞ and a subsequence (Unk

) of (Un) satisfying

sup
t∈[0,T ]

‖Snk
(t)Unk

− S∞(t)U∞‖X −→ 0 when n −→ +∞ .

Proof : Due to the upper-semicontinuity of the attractors, there exists a sequence of points
Vn ∈ A∞ such that ‖Un − Vn‖X → 0. As A∞ is compact, we can extract a subsequence
Vnk

which converges to U∞ ∈ A∞. Proposition 2.3 implies that supt∈[0,T ] ‖Snk
(t)Unk

−
Snk

(t)U∞‖X −→ 0. On the other hand, Theorem 3.8 and the regularity of A∞ imply that
supt∈[0,T ] ‖Snk

(t)U∞ − S∞(t)U∞‖X −→ 0 and the proof is complete. �

To avoid heavy notations, we do not reindex subsequences in what follows. We recall
that E denotes the set of all equilibria. We choose a small enough radius r such that the

45



balls B(E, 2r) (E ∈ E) are disjoint and such that the local stable and unstable manifolds
W s

∞(E, 2r) and W u
∞(E, 2r) are well-defined. Let E− and E+ be two equilibrium points.

Assume that for n large enough, Sn(t) has a connecting orbit between E− and E+. There
exist U0

n in the local unstable manifold W u
n (E−, rn) (rn ≤ r) and tn such that U0

n converges
to E−, Sn(tn)U0

n belongs to W s
n(E+, r

′
n) (r′n ≤ r) and Sn(tn)U0

n converges to E+. We
introduce the following notion.

Definition 5.5. Let On be an orbit of Sn(t). A sequence of equilibria E− = E0, E1,...,
Ep = E+ is called a chain of equilibria of length p for the sequence (On) if there exist
U0

n ∈ On and p + 1 sequences of times 0 = t0n < t1n < ... < tpn = tn such that, if we set
Un(t) = Sn(t)U0

n, then
Un(tin) −→ Ei , as n −→ +∞

and for all n ∈ N and i < p, there exists t ∈]tin, t
i+1
n [ such that Un(t) does not belong to

∪E∈EB(E, r).

If Ei is a chain of equilibria, Un(tin) ∈ B(Ei, r) for n large enough and we can assume that
this holds for all n. For i > 0, we denote the time of entrance in B(Ei, r)

σi
n = sup{t ≤ tin | Un(t) 6∈ B(Ei, r)} ,

and for i < p, we denote the time of exit of B(Ei, r)

τ i
n = inf{t ≥ tin | Un(t) 6∈ B(Ei, r)} .

Un(σ1

n
)

Un(τ0

n
)

E1

E2

E0

Un(τ1

n
)

Un(t1
n
)

Un(σ2

n
)

Un(tn)

U0

n

We obtain the following result.

Lemma 5.6. There exist Vi ∈ ∂B(Ei, r) ∩ W s
∞(Ei, 2r) ∩ A∞ and Wi ∈ ∂B(Ei, r) ∩

W u
∞(Ei, 2r) such that, extracting subsequences, we have

Un(σi
n) −→ Vi and Un(τ i

n) −→Wi .

Proof : We use Lemma 5.4 with T = 0 to show that there exists a point Wi ∈ A∞ such
that Un(τ i

n) −→ Wi. Due to the definition of τ i
n, it is clear that Un(τ i

n) ∈ ∂B(Ei, r) and thus
Wi ∈ ∂B(Ei, r). Assume that there exist a time T and W̃i ∈ X such that S∞(T )W̃i = Wi

46



and W̃i 6∈ B(Ei, r). Using Lemma 5.4, we find that Un(τ i
n − T ) −→ W̃i, otherwise we

contradict the backward uniqueness of S∞(t), and thus Un(τ i
n − T ) 6∈ B(Ei, r) for n large

enough. If i = 0, this contradict the fact that U0
n ∈ W u

n (E−, rn). If i ≥ 1, we must have
τ i
n − T < tin < τ i

n, so we can assume that tin − (τ i
n − T ) −→ s. Lemma 5.4 shows that

S∞(s)W̃i = Ei, which is absurd. We have thus proved that Wi ∈W u
∞(E, r).

The arguments are similar for σi
n. �

The length of a chain of equilibria is bounded, since the number of equilibria is finite
and we have the following property.

Lemma 5.7. If (Ei) is a chain of equilibria, then i < j implies Ei 6= Ej.

Proof : Since the Lyapounov function Φ does not increase along the trajectories of S∞(t)
and that (5.1) holds, we must have Φ(Vj) > Φ(Ej) and Φ(Wi) ≤ Φ(Ei). Lemma 5.6 and
the decay of Φ along the trajectories of Sn(t) imply that Φ(Ei) > Φ(Ej). �

Of course, the set of chains of equilibria corresponding to the trajectories Sn(t)U0
n is

not empty as (E−, E+) is a trivial chain. So, we can choose a chain of equilibria (Ei) of
maximal length since the number of equilibria is finite and since Lemma 5.7 holds.

Lemma 5.8. If (Ei) is a chain of equilibria of maximal length p, then there exists a finite
time T such that

∀i = 0, .., p− 1, sup
n∈N

{σi+1
n − τ i

n} ≤ T .

Proof : Assume that σi+1
n − τ i

n −→ +∞. Let Tn =
√

σi+1
n − τ i

n. There exists a sequence
of times sn ∈]τ i

n, σ
i+1
n − Tn[ such that Φ(Un(sn)) − Φ(Un(sn + Tn)) −→ 0. Indeed, if

not, there exists ε > 0 such that for all s ∈]τ i
n, σ

i+1
n − Tn[ and n large enough, we have

Φ(Un(s))−Φ(Un(s+Tn)) > ε. If we denote ⌊Tn⌋ the largest integer less than Tn, this implies
that Φ(Un(τ i

n))−Φ(Un(σi+1
n )) > ⌊Tn⌋ε −→ +∞, which is absurd. Using Lemma 5.4, we find

that Un(sn) converges to U ∈ A∞ and that for all t ≥ 0, we have Φ(U) − Φ(S∞(t)U) = 0.
This means that U is an equilibrium point which contradicts the fact that the length of
the chain of equilibria E1, ..., Ep is maximal. �

We conclude with the following result.

Lemma 5.9. If (Ei) is a chain of equilibria of maximal length p between E− and E+, then,
for all i < p, S∞(t) admits a connecting orbit between Ei and Ei+1.
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Proof : We can assume that σi+1
n − τ i

n −→ Ti. Using the notation of Lemma 5.6, we have
Wi ∈W u

∞(Ei) and Vi+1 ∈W s
∞(Ei+1). We obtain

‖S∞(Ti)Wi − Vi+1‖X ≤ ‖S∞(Ti)Wi − S∞(σi+1
n − τ i

n)Wi‖X

+ ‖S∞(σi+1
n − τ i

n)Wi − Sn(σi+1
n − τ i

n)Wi‖X

+ ‖Sn(σi+1
n − τ i

n)Wi − Sn(σi+1
n − τ i

n)Un(τ i
n))‖X

+ ‖Un(σi+1
n ) − Vi+1‖X .

Taking the limit when n goes to +∞, we find that S∞(Ti)Wi = Vi+1, which yields a
connecting orbit for S∞(t) between Ei and Ei+1. �

5.3 Proof of Lemma 5.2

We use the notations of Section 5.2. Assume that there exists a sequence of connecting
orbits On for Sn(t) between E− and E+. As noticed in the previous section, up to an
extraction of a subsequence, there exists a chain of equilibria of maximal length E− =
E0, E1, ..., Ep = E+ associated with our sequence (On) of trajectories. Lemma 5.9 shows
that S∞(t) admits a connecting orbit between Ei and Ei+1 (0 ≤ i ≤ p−1). Thus, Property
i) of Lemma 5.2 is a direct consequence of the classical cascading property : if S(t) is
a Morse-Smale dynamical system which admits a connecting orbit between Ei and Ei+1

(0 ≤ i ≤ p− 1), then it has a connecting orbit between E0 and Ep (see for example [38] or
[19]).
Next, we prove Property ii). Let θ1 and θ2 be two open sets of a Banach space X. We
say that two C1−manifolds i1 : θ1 → X and i2 : θ2 → X are ε − C1−close if there
exists a C1−diffeomorphism ϕ : θ1 → θ2, such that i1 : θ1 → X and i2 ◦ ϕ : θ1 → X
are ε − C1−maps, that is that ‖i1 − i2 ◦ ϕ‖L∞(θ1,X) < ε and the same for the derivative
‖Di1 −D(i2 ◦ ϕ)‖L∞(θ1,X) < ε . We define similarly the C1−convergence of C1−manifolds.
The classical local λ−lemma can be extended as follows in our particular frame.

Proposition 5.10. Let E be a hyperbolic equilibrium point with Morse index m(E). Let
B be a bounded set of Xσ (σ > 0). Let q∞ be a point of W s

∞(E, r) ∩ B and let D∞ ⊂ B be
a disk of center q∞, which is transversal to W s

∞(E, r) and whose dimension is m(E). Let
(Dn)n∈N be a family of disks with center qn, bounded in B, and such that Dn C1−converges
to D∞.
Then, for all ε > 0, there exist N ∈ N and T > 0 such that for all n ≥ N and t ≥ T , the
connected component of Sn(t)Dn ∩ BX(E, r), to which Sn(t)qn belongs, is ε − C1−close to
W u

∞(E, r).

Proof : The proof of the proposition is a straightforward adaptation of the proof of the
classical λ−lemma (see for example [37] or [38]). Notice that the proof crucially uses
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Hypothesis (UED), which implies that Property ii) of Theorem 4.1 holds uniformly with
respect to n, and the fact that the family of disks belongs to a bounded set B of Xσ (σ > 0).
�

We recall that limUn(σi
n) = Vi ∈ ∂B(Ei, r) ∩W s

∞(Ei, 2r) ∩ A∞ and limUn(τ i
n) = Wi ∈

∂B(Ei, r) ∩W u
∞(Ei, 2r). Due to the convergence of the local unstable manifolds proved in

Theorem 4.7, there exist a neighborhood N 0
∞ of W0 in W u

∞(E0, 2r) and a sequence of neigh-
borhoods (N 0

n) of Un(τ 0
n) in W u

n (E0, 2r) such that N 0
n C1−converges to N 0

∞. As, by Lemma
5.8, σ1

n − τ 0
n is bounded, we can assume that σ1

n − τ 0
n −→ T0. Notice that the sequence of

manifolds (N 0
n) is bounded in Xσ for some positive σ and that N 0

n is finite-dimensional.
Thus, Proposition 3.11 implies that the manifold Sn(σ1

n − τ 0
n)N 0

n , which contains Un(σ1
n),

C1−converges inX to the manifold S∞(T0)N 0
∞, which contains V1. As S∞(t) has the Morse-

Smale property, we can find a submanifold θ0 of S∞(T0)N 0
∞ of dimension m(E1) which is

tranversal to W s
∞(E1) and which contains V1. Thus, we can find a submanifold N 1

n of N 0
n

of dimension m(E1), which contains Un(τ 0
n) and is such that Sn(σ1

n − τ 0
n)N 1

n C1−converges
to θ0. Using the generalized λ−lemma of Proposition 5.10, we find that there exists a
neighborhood N 1

∞ of W1 in W u
∞(E1, 2r) such that Sn(τ 1

n − τ 0
n)N 1

n C1−converges to N 1
∞.

E0

θ0

N 1
n

Sn(τ1
n − τ0

n)N 1
n

W0

W u
∞(E0)

W s
∞(E0)

N 0
∞

W u
∞(E1)

W s
∞(E1)

E1

N 1
∞

W1

V1

Sn(σ1
n − τ0

n)N 0
n

S∞(T0)N 0
∞

N 0
n

Un(τ0
n)

By a finite number of iterations of this process, we obtain that there exists a sub-
manifold N p−1

n of N 0
n of dimension m(Ep−1) such that Sn(σp

n − τ 0
n)N p−1

n C1−converges to
S∞(Tp−1)N p−1

∞ , a neighborhood of Vp in W u
∞(Ep−1). As the union of the attractors ∪An is

bounded in Xs for some positive s, there exists a ball B of Xs such that Sn(σp
n−τ 0

n)N p−1
n ⊂

B for all n. The convergence of the regular part of the local stable manifolds (see The-
orem 4.13) implies that W s

n(Ep, 2r) ∩ B C1−converges to W s
∞(Ep, 2r) ∩ B. Thus, for n

large enough, the dimension of W s
n(Ep, 2r) ∩ Sn(σp

n − τ 0
n)N p−1

n is less than the dimension
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of W s
∞(Ep, 2r)∩ S∞(Tp−1)N p−1

∞ . By assumption, S∞(Tp−1)N p−1
∞ and W s

∞(Ep, 2r) intersect
tranversally and so, a dimensional argument implies that W s

n(Ep, 2r) and Sn(σp
n − τ 0

n)N p−1
n

intersect tranversally. As Sn(σp
n − τ 0

n)N p−1
n is a submanifold of W u

n (E0), this shows that
the orbit On is transversal.

6 Study of the hypotheses

6.1 The one-dimensional case

First, we notice that Hypotheses (ED) and (Grad) are always satisfied in dimension one.
Indeed, we have assumed that γn 6= 0 in the space of the measures, which is well-known to
imply (ED) and (Grad), even for the case n = ∞. Concerning Hypothesis (ED), we refer
to [23], [8] and [10] for n ∈ N ; and [11], [29], [32], [44] and [45] for n = +∞. Concerning
Hypothesis (Grad), we respectively refer to [21] and [31].
Hypothesis (UED) is the only assumption that we have to verify in dimension one. There
exist many methods to prove the exponential decay property for Equation (1.2) when n is
fixed. However, the proof of uniform exponential decay for a family of dissipations (γn)n∈N

is more difficult, especially when the family is not bounded in L∞. In the one-dimensional
case, we are able to adapt an idea of Haraux (see [23]).

Definition 6.1. We say that a dissipation γ is effective on the free waves if the following
criterium is satisfied.

(EFW) There exist a time T and a positive constant C such that, for any (ϕ0, ϕ1) ∈ X, the
solution of the free wave equation

{

ϕtt +Bϕ = 0
(ϕ, ϕt)|t=0 = (ϕ0, ϕ1) ∈ X

(6.1)

satisfies
∫ T

0

∫

Ω

γ(x)|ϕt(x, t)|2dxdt ≥ C‖(ϕ0, ϕ1)‖2
X . (6.2)

The following implication is well-known for n fixed (see [23]). We extend it easily to
the case of a family of dissipations.

Proposition 6.2. If (UED) is satisfied, then the family of dissipations (γn)n∈N ⊂ L∞(Ω)
is uniformly effective on the free waves, that is that the property (EFW) is satisfied for
each γn, with T and C independent of n.
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Proof : Assume that (UED) is satisfied, then there exists a positive time T , independent
of n, such that ‖eAnT‖2

L(X) ≤ 1
2
. Thus, for any U0 = (ϕ0, ϕ1) ∈ X, we have,

∫ T

0

∫

Ω

γn|ut|2 =
1

2
(‖U0‖2 − ‖U(T )‖2) ≥ 1

4
‖U0‖2

X , (6.3)

where (u, ut)(t) = U(t) = eAntU0, For any U0 = (ϕ0, ϕ1), we denote (ϕ, ϕt) the solution of
the free wave equation (6.1). We set w = u− ϕ, which is the solution of the system

{

wtt + γnwt +Bw = −γnϕt

w(0) = 0
.

Multipliying by wt and integrating on [0, T ] × Ω, we obtain

1

2
‖w(T )‖2

X +

∫ T

0

∫

Ω

γn|wt|2 = −
∫ T

0

∫

Ω

γnϕtwt ,

and thus, using Cauchy-Schwartz inequality, we get
∫ T

0

∫

Ω

γn|wt|2 ≤
∫ T

0

∫

Ω

γn|ϕt|2 .

Finally, (6.3) implies that

‖(ϕ0, ϕ1)‖2
X ≤ 4

∫ T

0

∫

Ω

γn|ut|2 ≤ 4

(
∫ T

0

∫

Ω

γn|wt|2 +

∫ T

0

∫

Ω

γn|ϕt|2
)

≤ 8

∫ T

0

∫

Ω

γn|ϕt|2 .

�

Of course, the interesting question is to know if the uniform effectiveness on the free
waves implies (UED). We give here a way of obtaining this implication in dimension one,
by using a multiplier method inspired by [13]. This method is of course not the only one.
In the appendix, we recall a theorem of [2], which implies the same result. The crucial
point in the following results is to obtain the dependence of the constants on ‖γ‖L1 and
not on ‖γ‖L∞, since our family of dissipations (γn)n∈N is bounded in L1(]0, 1[) but not in
L∞(]0, 1[).
To simplify, we work here with B = −∆N + Id. The same results are true for other
boundary conditions with a similar proof.
First, we use the multipliers method to prove the following estimate.

Proposition 6.3. Let γ ∈ L1(]0, 1[) and h ∈ L1
t (R,L

2
x(]0, 1[)). Let u be the solution of







utt(x, t) − uxx(x, t) + u(x, t) = h(x, t) (x, t) ∈]0, 1[×R+

ux(0, t) = ux(1, t) = 0
(u, ut)|t=0 = (u0, u1) ∈ H1(]0, 1[) × L2(]0, 1[)

51



Then, for all T > 0, there exists a constant C = C(T, ‖γ‖L1) such that

∫ T

0

∫ 1

0

γ(x)(|ux|2+|u|2+|ut|2)dxdt ≤ C

(
∫ T

0

∫ 1

0

|h|(|ux| + |ut|)dxdt+ ‖u0‖2
H1 + ‖u1‖2

L2

)

.

Proof : We set

ρ =

{

∫ x

0
γ(ξ)dξ 0 ≤ x ≤ 1/2

2(1 − x)
∫ 1/2

0
γ(ξ)dξ 1/2 ≤ x ≤ 1

Notice that ‖ρ‖L∞ ≤ ‖γ‖L1 and ρ(0) = ρ(1) = 0. We have

∫ T

0

∫ 1

0

(utt − uxx + u)ρux =

∫ T

0

∫ 1

0

hρux .

Using integrations by parts, we find

1

2

∫ T

0

∫ 1

0

ρx(|ux|2+|ut|2) = −
[
∫ 1

0

ρutuxdx

]T

0

+

∫ T

0

∫ 1

0

hρux+
1

2

∫ T

0

∫ 1

0

ρx|u|2dxdt . (6.4)

The classical energy argument gives

∀t ∈ [0, T ],

∫ 1

0

(|ux|2 + |u|2 + |ut|2)(t)dx ≤ ‖u0‖2
H1 + ‖u1‖2

L2 +

∫ T

0

∫ 1

0

|h||ut|dxdt . (6.5)

As ρx is bounded in L1(]0, 1[) by ‖γ‖L1 and H1(]0, 1[) →֒ L∞(]0, 1[), we have

∫ T

0

∫ 1

0

ρx|u|2 ≤ CT‖γ‖L1 sup
t∈[0,T ]

‖u(t)‖2
H1

≤ CT‖γ‖L1

(
∫ T

0

∫ 1

0

|h||ut|dxdt+ ‖u0‖2
H1 + ‖u1‖2

L2

)

.

Moreover, ρ is bounded in L∞ by ‖γ‖L1 and so (6.5) gives

[
∫ 1

0

ρutuxdx

]T

0

≤ C‖γ‖L1

(
∫ T

0

∫ 1

0

|h||ut|dxdt+ ‖u0‖2
H1 + ‖u1‖2

L2

)

.

Using the above estimates in (6.4), we find

∫ T

0

∫ 1

0

ρx(|ux|2 + |u|2 + |ut|2)dxdt ≤ C

(
∫ T

0

∫ 1

0

|h|(|ux| + |ut|)dxdt+ ‖u0‖2
H1 + ‖u1‖2

L2

)

.

(6.6)
On the other hand, since ρx(x) = γ(x) for x ∈]0, 1/2] and since ρx(x) is bounded by ‖γ‖L1

for x ∈]1/2, 1[, we have

∫ T

0

∫ 1/2

0

γ(x)(|ux|2 + |u|2 + |ut|2)dxdt ≤
∫ T

0

∫ 1

0

ρx(|ux|2 + |ut|2 + |ut|2)dxdt
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+ ‖γ‖L1

∫ T

0

∫ 1

1/2

(|ux|2 + |ut|2 + |ut|2)dxdt . (6.7)

The estimates (6.5), (6.6) and (6.7) show that

∫ T

0

∫ 1/2

0

γ(x)(|ux|2 + |u|2 + |ut|2)dxdt

≤ C

(

‖u0x‖2
L2 + ‖u1‖2

L2 +

∫ T

0

∫ 1

0

|h|(|ux| + |ut|)dxdt
)

,

where C depends on ‖γ‖L1 and T only.

In order to estimate the integral
∫ T

0

∫ 1

1/2
γ(x)(|ux|2 + |u|2 + |ut|2)dxdt, we argue in the same

way with ρ taken as follows :

ρ =

{

2x
∫ 1

1/2
γ(ξ)dξ 0 ≤ x ≤ 1/2

∫ 1

x
γ(ξ)dξ 1/2 ≤ x ≤ 1

�

We obtain the following criterium for the exponential decay.

Theorem 6.4. Let γ be a nonnegative function of L∞(]0, 1[). Assume that (EFW) is
satisfied. Then, there exist two positive constants M and λ depending only on the constants
C, T introduced in (6.2) and ‖γ‖L1 such that, for each initial data (u0, u1) ∈ H1(]0, 1[) ×
L2(]0, 1[), the solution u of







utt(x, t) + γ(x)ut(x, t) = uxx(x, t) − u(x, t) , (x, t) ∈]0, 1[×R+

ux(0, t) = ux(1, t) = 0
(u, ut)|t=0 = (u0, u1) ∈ H1(]0, 1[) × L2(]0, 1[)

(6.8)

satisfies
‖u(t)‖2

H1 + ‖ut(t)‖2
L2 ≤ M(‖u0‖2

H1 + ‖u1‖2
L2)e−λt .

Proof : We denote the energy E(t) = 1
2
(‖u(t)‖2

H1 + ‖ut(t)‖2
L2). We know that

E(0) − E(T ) =

∫ T

0

∫ 1

0

γ(x)|ut(x, t)|2dxdt . (6.9)

Let ϕ be the solution of the wave equation (6.1) with ϕ0 = u0 and ϕ1 = u1. We set
v = u− ϕ, which is the solution of















vtt − vxx + v = −γut

vx(0, t) = vx(1, t) = 0
v(x, 0) = 0
vt(x, 0) = 0
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Using Proposition 6.3, we obtain

∫ T

0

∫ 1

0

γ(x)(|vx|2 + |v|2 + |vt|2)dxdt ≤ C

(
∫ T

0

∫ 1

0

γ(x)|ut|(|vx| + |vt|)dxdt
)

,

where C depends on T and ‖γ‖L1 only. Thus,

(
∫ T

0

∫ 1

0

γ(x)(|vx|2 + |v|2 + |vt|2)dxdt
)2

≤ C

∫ T

0

∫ 1

0

γ(x)|ut|2dxdt ×
∫ T

0

∫ 1

0

γ(x)(|vx| + |vt|)2dxdt ,

and also, by the Young inequality,

∫ T

0

∫ 1

0

γ(x)(|vx|2 + |v|2 + |vt|2)dxdt ≤ C

∫ T

0

∫ 1

0

γ(x)|ut|2dxdt = C(E(0)−E(T )) . (6.10)

Finally, using (6.9), (6.10) and the hypothesis (EFW), we obtain

E(T ) ≤ E(0) ≤ C

∫ T

0

∫ 1

0

γ(x)|ϕt(x, t)|2dxdt

≤ C

(
∫ T

0

∫ 1

0

γ(x)|ut(x, t)|2dxdt+

∫ T

0

∫ 1

0

γ(x)|vt(x, t)|2dxdt
)

≤ C(E(0) − E(T )) .

The exponential decay of the energy follows from this inequality (see for example [23]). �

In the last part of this section, we give concrete conditions implying the criterium
(EFW) uniformly in n. Thus, we obtain examples of one dimensional equations satisfying
the Hypothesis (UED). Notice that our method also gives higher dimensional examples
where (EFW) is satisfied uniformly in n, but in these cases, we have no proof that (EFW)
implies the uniform exponential decay (UED).
We wonder when Hypothesis (UED) is satisfied for the family of equations







utt(x, t) + γn(x)ut(x, t) = uxx(x, t) − u(x, t) + f(x, u) (x, t) ∈]0, 1[×R+

ux(0, t) = ux(1, t) = 0
(u, ut)|t=0 = (u0, u1) ∈ H1(]0, 1[) × L2(]0, 1[)

(6.11)

Remark that Proposition 6.2 and Theorem 6.4 imply that, if the semiflow generated
by (6.11) satisfies (UED) for a sequence of dissipations γn, then the property (UED) also
holds for any sequence of dissipations γ̃n ≥ γn. Thus, we may restrict our study to dis-
sipations of the form γn(x) = nχ]an;an+1/n[. Next, we show the following lemma, which
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replaces the criterium (EFW), concerning the solutions of the free waves, by a criterium
on the eigenfunctions of the free waves operator.
We denote by λ2

k (λk > 0, k ∈ N
∗) the eigenvalues of B and ϕk the corresponding eigen-

functions normalized by ‖ϕk‖L2 = 1.

Lemma 6.5. We assume that γ∞ is effective on the free waves, that is that (EFW) holds for
γ∞. We also assume that there exist a family of complex numbers (αk) and an application
h defined from N

∗ × N
∗ into {0, 1} such that

∀k, k′ ∈ N
∗,

∫

Ω

γ∞ϕkϕk′ = αkαk′h(k, k′) .

If h(k, k′) = 0 implies
∫

γnϕkϕk′ = 0 for all n ∈ N and if

inf
n∈N

inf
k∈N∗

1

|αk|2
∫

Ω

γn|ϕk|2 > 0 , (6.12)

then the family of dissipation (γn) is uniformly effective on the free waves, that is that
(EFW) holds uniformly in n.

Proof : For k ∈ N∗, we set λ−k = −λk and ϕ−k = ϕk. A solution of (6.1) can be
decomposed as follows.

(

ϕ
ϕt

)

=
∑

k∈Z∗

cke
iλkt 1√

2

(

1
iλk
ϕk

ϕk

)

where ‖(ϕ, ϕt)|t=0‖2
X =

∑

k∈Z∗

|ck|2 .

As (6.2) holds for γ∞, we have that
∫ T

0

∫

Ω
γ∞|ϕt|2 ≥ C‖(ϕ, ϕt)|t=0‖2

X , that is that

∑

k,k′

ckck′

ei(λk−λ′

k)T − 1

λk − λk′

αkαk′h(|k|, |k′|) ≥ C
∑

k∈Z∗

|ck|2 , (6.13)

where by convention ei(λk−λ′

k)T −1
λk−λk′

= T when λk = λ′k. Concerning the dissipation γn, we

have

∫ T

0

∫

Ω

γn|ϕt|2 =
∑

k,k′

ckck′

ei(λk−λ′

k)T − 1

λk − λk′

∫

Ω

γnϕkϕk′

=

∫

Ω

∑

k,k′

(
ck
αk

√
γnϕk)(

ck′

αk′

√
γnϕk′)

ei(λk−λ′

k)T − 1

λk − λk′

αkα
′
kh(|k|, |k′|) .
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Notice that (6.13) implies that inf |αk| > 0. Moreover, choosing (ϕ, ϕt)|t=0 in Xs for s
large enough, we have that

∑

( ck

αk
‖ϕk‖L∞)2 is finite. Thus, due to the inequality (6.13), we

obtain
∫ T

0

∫

Ω

γn|ϕt|2 ≥
∫

Ω

C
∑

k∈Z∗

|ck|2
|αk|2

γn|ϕk|2 ≥ C
∑

k∈Z∗

|ck|2
|αk|2

∫

Ω

γn|ϕk|2 .

Using (6.12) we find that (6.2) holds uniformly in n for any initial data (ϕ, ϕt)|t=0 in Xs.
The density of the space Xs in X then concludes. �

We apply Lemma 6.5 to obtain the following result.

Proposition 6.6. Let (an) ⊂ [0, 1[ be a sequence such that an −→ 0 when n −→ +∞. We
set

γn(x) =

{

n if an ≤ x ≤ an + 1
n

0 elsewhere .

Then the family of equations (6.11) satisfies (UED) if and only if sup{nan} < +∞.

Proof : We have to verify the hypotheses of Lemma 6.5. In our case, we have γ∞ = δx=0,
λk =

√
k2 + 1 and ϕk =

√
2 cos(kπx). Thus,

∫

Ω
γ∞ϕkϕk′ = 2, and we can set αk =

√
2

and h ≡ 1. It is well-known that Equation (6.8) with γ = γ∞ generates an exponentially
decaying semigroup. So, the criterium (EFW) is satisfied by γ∞.
To apply Lemma 6.5, it remains to show (6.12). If (6.12) does not hold, then it is clear
that (EFW) cannot be satisfied uniformly. Thus, we have to prove that sup{nan} < +∞
is equivalent to the existence of ε > 0 such that

inf
n∈N

inf
k∈N∗

n

∫ an+ 1
n

an

| cos(kπx)|2dx ≥ ε . (6.14)

We have

n

∫ an+ 1
n

an

| cos(kπx)|2dx =
1

2

(

1 +
n

kπ
sin(π

k

n
) cos(πk(2an +

1

n
))

)

.

Assume that (6.14) is not true, then there exist two sequences (kp) and (np) such that

np

kpπ
sin(π

kp

np
) cos(πkp(2anp +

1

np
)) −→ −1 .

This implies that kp

np
→ 0 and 2kpanp −→ 1 mod(2), and so |npanp| → +∞.

Assume now that there exists a subsequence satisfying |npanp | → +∞. Let kp be the
smallest integer strictly larger than np

2npanp+1
. We have

np

kpπ
sin(π

kp

np
) cos(πkp(2anp +

1

np
)) −→ −1 ,
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and thus (6.14) is not satisfied. �

Remark : The same result obviously holds when the Neumann boundary condition at
x = 1 is replaced by the Dirichlet condition.
We will come back to the case supn{nan} = +∞ in the appendix A.2.

6.2 The two and three-dimensional cases

In dimension higher than one, our hypotheses are less easy to verify. First, Hypotheses
(ED) and (Grad) do not always hold. The hypothesis (ED) is equivalent to geometrical
conditions on the support of γn, which are now well-understood. The case of Hypothesis
(UED) is much more difficult and its study in dimension two or higher is still mostly open.

6.2.1 Hypothesis (ED)

It is now well-known that the following geometric condition is equivalent to (ED), see [6].
For each n ∈ N ∪ {+∞}, there is a length Ln such that all geodesics on Ω associated to the
operator ∂2

tt +B and of length greater than Ln meet the support of γn. In dimension one,
the condition is trivially satisfied. In the higher dimensional case, the condition is more
restrictive, since, for some examples, there exist geodesics of infinite length, which do not
meet the support of γn.

nγ

(ED) not satisfied(ED) satisfied

support of 

6.2.2 Hypothesis (Grad)

Let n ∈ N ∪ {+∞} be given. Let U0 ∈ X be such that for all t ≥ 0, we have Φ(Sn(t)U0) =
Φ(U0). If U(t) = Sn(t)U0 = (u(t), v(t)), we thus have

ut(t) = v(t) and utt +B(u+ Γnut) = f(x, u) .
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We know that

∀t ≥ 0,
∂

∂t
Φ(U(t)) =< AnU |U >= −

∫

Ω

γn|v|2 = 0 .

Hence, v = ut satisfies

∀t ≥ 0, vtt +Bv = f ′
u(x, u)v and







v = 0 on supp(γn) if n ∈ N

or
v = 0 and ∂v

∂ν
= 0 on supp(γ∞)

. (6.15)

To prove that Hypothesis (Grad) holds, we must show that (6.15) implies that ut = v = 0
on Ω × R+. This unique continuation argument holds under geometrical conditions.

• If the support of γn contains a neighborhood of the boundary ∂Ω for n ∈ N and if
the support of γ∞ is equal to ∂Ω, then (Grad) is satisfied (see [42]).

• Assume that supp(γ∞) = ωN , that the support of γn contains a neighborhood of ωN

and that there exists a point x0 ∈ Rd such that

{x ∈ ∂Ω / (x− x0).ν > 0} ⊂ ωN ,

then (Grad) holds (see [28]).

0x

Dirichlet B.C.

• Let Ω be a domain with a boundary of class C1. We assume that the support of γn

includes a neighborhood of supp(γ∞) and that the boundary conditions on the whole
boundary ∂Ω are of Neumann type, that is that ωD = ∅. In this case, [33] gives many
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sufficient conditions for (Grad) to hold. In particular, if Ω is a disk, the fact that the
support of γ∞ covers slightly more than a half circle is sufficient. Other examples are
given.

less than a quarter turnsine graph
straight line

Neumann B.C.

Remark : For all the examples that we give here, one notices that (ED) is satisfied.
However, there is no reason that (Grad) implies (ED) in general.

6.2.3 Hypothesis (UED)

The methods, which were used in the one-dimensional case, cannot be generalized to
dimensions two or three. For these dimensions, using an energy method, we obtain here a
criterium equivalent to the property (UED). However, except for the particular cases where
γn is uniformly bounded away from 0, it is very difficult to exhibit examples satisfying this
criterium.
The following equivalence is very classical. The property (UED) is satisfied if and only if
there exist two positive constants T and C such that, for all U0 ∈ X and n ∈ N, if we set
U(t) = (u, ut)(t) = eAntU0, then we have

∫ T

0

∫

Ω

γn|ut|2 ≥ C‖U0‖2
X . (6.16)

We can weaken this criterium as follows.

Proposition 6.7. The uniform exponential decay property (UED) is satisfied if and only
if there exist two positive constants T and C, independent of n, such that, for all U0 ∈ X
and n ∈ N, if we set U(t) = (u, ut)(t) = eAntU0, then we have

∫ T

0

∫

Ω

γn|ut|2 ≥ C

∫ T

0

∫

Ω

|ut|2 . (6.17)

Proof : The “only if” part is a direct consequence of the classical criterium (6.16). Indeed,
the property (UED) implies that there exist two positive constants T and C such that, for
all U0 ∈ X and n ∈ N,

∫ T

0

∫

Ω

γn|ut|2 ≥ C‖U0‖2
X =

C

T

∫ T

0

‖U0‖2
Xdt ≥

C

T

∫ T

0

‖U(t)‖2
Xdt ≥ C

∫ T

0

∫

Ω

|ut|2 .
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In order to prove the “if” part of the equivalence, we introduce the following functional.
Let α be a positive number to be chosen. For all U = (u, v) ∈ X, we set

F (U) =
1

2

∫

Ω

(|u|2 + 2uv + α|v|2 + α|B1/2u|2)dx . (6.18)

For α large enough, the functional F is clearly equivalent to the energy in the sense that
there exists a positive constant µ such that

∀U ∈ X,
1

µ
‖U‖2

X ≤ F (U) ≤ µ‖U‖2
X . (6.19)

Let U0 ∈ D(An) and n ∈ N, we set U(t) = (u, ut)(t) = eAntU0. As U(t) ∈ C1(R+, X), we
can write

∂tF (U(t)) =

∫

Ω

(uut + uutt + |ut|2 + αututt + α(B1/2u)(B1/2ut))dx

=

∫

Ω

(uut − γnuut − (Bu)u+ |ut|2 − αγn|ut|2

− αut(Bu) + α(B1/2u)(B1/2ut))dx .

Thus, for all ε > 0, we have that

∂tF (U(t)) ≤
∫

Ω

ε(1 + γn)|u|2 +
1

ε
(1 + γn)|ut|2 − |B1/2u|2 + |ut|2 − αγn|ut|2 .

As Γn converges to Γ∞ in L(D(B1/2)), we know that there exists a positive constant C,
independent of n, such that, for all u ∈ D(B1/2),

∫

Ω
γn|u|2 ≤ C‖u‖2

D(B1/2)
. Therefore, for ε

small enough and α large enough, (6.17) implies the existence of a time T and a positive
constant C such that

∫ T

0

∂tF (U(t)) ≤ −C
∫ T

0

F (t) .

Thus, using the density of D(An) in X, we obtain that, for all U0 ∈ X,

F (U0) − F (eAnTU0) ≥ C

∫ T

0

F (eAntU0)dt .

The inequalities (6.19) and the fact that eAnt is a contraction imply that, for all U0 ∈ X
and k ∈ N,

‖U0‖2
X ≥ C

µ2

∫ kT

0

‖eAntU0‖2
Xdt ≥

C

µ2
kT‖eAnkTU0‖2

X .

For k large enough, we obtain a time T ′, independent of n, such that ‖eAnT ′

U0‖X ≤ 1
2
‖U0‖2

X .
This is well-known to imply the uniform exponential decay (UED). �
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It is difficult to find examples satisfying the criterium (6.17). Indeed, opposite to the cri-
terium (EFW) obtained in the one-dimensional case, (6.17) involves functions U(t), which
are solutions of an equation which depends of n. However, Proposition 6.7 gives some very
particular examples where (UED) is satisfied in dimension higher than one. This corollary
is stated in a way so that it can be applied to a general sequence of dissipations, which
satisfies (6.20) only.

Corollary 6.8. Let (γ0
n)n∈N be a sequence of non-negative functions in L∞(Ω). Assume

that there exists a positive constant C independent of n such that

∀u ∈ D(B1/2), ∀n ∈ N,

∫

Ω

γ0
n(x)|u(x)|2dx ≤ C‖u‖2

D(B1/2) . (6.20)

Then, for all η > 0, the uniform exponential decay property (UED) is satisfied for the
sequence of dissipations γn = η + γ0

n.

Notice that this result in not a priori trivial, since, as the sequence (γ0
n) is not neces-

sary bounded in L∞(Ω), overdamping phenomenas may occur. The fact that γn ≥ η > 0
seems slightly artificial from a mathematical point of view. However, it is not from the
physical point of view since γn never really vanishes in the concrete cases. For example,
η can be seen as the resistance of air when (2.5) models the propagation of waves in a room.

7 Examples

In this section, we give some examples illustrating our results. For each example, we define
Ω, B and γn and say if the convergence of the attractors holds in the space X or only in
X−s (s > 0). Saying that the convergence holds in X−s does not mean that there is no
convergence in X. It only means that we are not able to prove it for the moment. Here
we do not give explicit non-linearities for which Hypothesis (Hyp) is satisfied.
We recall that we denote by ∆N the Laplacian with Neumann boundary conditions.

Example 1 :

0 1/n 1

nα Ω =]0, 1[, B = Id− ∆N , α > 0

γn(x) =

{

αn, x ∈]0, 1
n
[

0, elsewhere
, γ∞ = αδx=0 .

Convergence in X.
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Example 2 :

α
1/n

1/21/n

n

10

Ω =]0, 1[, B = Id− ∆N , α > 0

γn(x) =

{

αn, x ∈] 1√
n
, 1√

n
+ 1

n
[

0, elsewhere
, γ∞ = αδx=0 .

Convergence in X−s.

Example 3 :
Ω is the disk of R2, B = Id− ∆N ,
ω is an open subset of ∂Ω which covers
strictly more than half of the circle

γn(x) =

{

n, dist(x, ω) < 1
n

0, elsewhere
, γ∞ = δx∈ω .

Convergence in X−s.

Example 4 : Ω ⊂ R2, η > 0, ω is any subset of ∂Ω
B = Id− ∆N

γn(x) =

{

n, dist(x, ω) < 1
n

η, elsewhere
, γ∞ = η + δx∈ω .

Convergence in X.

Example 5 : For sake of simplicity, the abstract frame of this paper has not been defined
so that this example fits in it. However, all the results given here are valid for this case.
Notice that we need the additional dissipation g, since the singular internal dissipation
δx=a is not sufficient to obtain exponential decay (see [25]), or the gradient structure. We
denote by ∆D the Laplacian with Dirichlet boundary conditions.
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g(x)

a

1/n
n

10

Ω =]0, 1[, a ∈]0, 1[ and g is a nonnegative function,
in L∞(]0, 1[) which is positive on an open subset,
B = −∆D

γn(x) =

{

g(x) + n, x ∈]a− 1
2n
, a+ 1

2n
[

g(x), elsewhere

γ∞(x) = g(x) + δx=a .

Convergence in X.

A Appendix

A.1 A result of Ammari and Tucsnak

We have proved in Section 6.1 that if Ω =]0, 1[ and if the dissipations γn satisfy uniformly
the property (EFW), then (UED) is satisfied. We show here how to obtain the same
implication with a different method, which has been introduced in [2]. To simplify the
notation, we state the results of [2] in our frame.
Let γ be a function in L∞(Ω). We introduce the following hypothesis

(H) If β > 0 is fixed and Cβ = {λ ∈ C/Re(λ) = β}, then the function

H(λ) =
√
γ λ(λ2Id+B)−1√γ

defined from Cβ into L(L2) is bounded and we set

Mβ = sup
λ∈Cβ

‖H(λ)‖L(L2) <∞ .

In our case, Theorem 2.2 of [2] can be stated as follows.

Theorem A.1. Assume that the hypothesis (H) holds and that γ is effective on the free
waves, i.e. that (EFW) is satisfied. Then, there exist two positive constants M and λ
depending only on the constants C, T introduced in (6.2) and on the family of constants
Mβ introduced in (H) such that, for any initial data (u0, u1) ∈ X, the solution u of

{

utt + γ(x)ut +Bu = 0
(u, ut)|t=0 = (u0, u1) ∈ X

(A.1)

satisfies
‖(u, ut)(t)‖X ≤M‖(u0, u1)‖Xe

−λt .
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The idea of the proof of Theorem 2.2 of [2] is to replace the multipliers method by a
Laplace transform argument to obtain a result similar to Proposition 6.3.
Theorem 6.4 is then a direct consequence of Theorem A.1 and of the following property.

Proposition A.2. Let Ω =]0, 1[ and B = −∆N + Id. For γ ∈ L
∞(]0, 1[), Hypothesis (H)

is satisfied and the bound Mβ depends on ‖γ‖L1 only.

Proof : We notice that
√
γ is bounded in L2(]0, 1[) by ‖γ‖1/2

L1 . So, the operator of
multiplication by

√
γ is bounded in L(L2,L1) and in L(L∞,L2). It remains to show that,

on Cβ, the operator λ(λ2Id+B)−1 is uniformly bounded in L(L1,L∞).
Let f ∈ L

1(]0, 1[) and u be the solution of

−uxx + u+ λ2u = f , ux(0) = ux(1) = 0 . (A.2)

We set θ = (−λ2 − 1)1/2. The solution of (A.2) is given by

u(x) = C cos(θx) − sin(θx)

∫ x

0

cos(θs)

θ
f(s)ds+ cos(θx)

∫ x

0

sin(θs)

θ
f(s)ds , (A.3)

where

C = −
∫ 1

0

sin(θs)

θ
f(s)ds− cotg(θ)

θ

∫ 1

0

cos(θs)f(s)ds .

A direct computation shows that, if λ = β + iµ, then

Im(θ) = −
(

(µ2 − β2 − 1)2 + (2µβ)2
)1/4

sin

(

1

2
arctg

(

2µβ

µ2 − β2 − 1

))

.

Thus, Im(θ) −→ ∓β 6= 0 when µ −→ ±∞. This implies that sin(θ), cos(θ), cotg(θ) and
1
θ

are uniformly bounded on Cβ. Since f ∈ L1(]0, 1[), (A.3) proves that u ∈ L∞ and so
λ(λ2Id+B)−1 is uniformly bounded in L(L1,L∞). �

Unfortunately, Theorem A.1 is not applicable in dimension higher than one. Indeed,
it is shown in [2] that property (H) implies the following fact. For all T > 0, there exists
C > 0 such that all the solutions ϕ of the free wave equation (6.1) satisfy

∫ T

0

∫

Ω

γ(x)|ϕt|2dxdt ≤ C‖(ϕ0, ϕ1)‖2
X . (A.4)

Let γ∞ = δx∈ω be a dissipation on a part of the boundary. In dimension higher than one,
we can imagine a wave travelling along the curve ω for which the left-hand side of the
inequality (A.4) is infinite. If (A.4) does not hold for the boundary dissipation, we cannot
hope that it holds uniformly for the family (γn)n∈N when γn converges to γ∞. The following
counter-example illustrates this remark.
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Proposition A.3. Let Ω =]0, 1[2, B = −∆N + Id. For all time T > 0, there exists
a sequence of initial data (ϕn

0 , ϕ
n
1 ) ∈ X, with ‖(ϕn

0 , ϕ
n
1)‖X = 1, such that the solutions

ϕn(x, y, t) of the free wave equation (6.1) satisfy

∫ T

0

∫ 1

0

| ∂
∂t
ϕn(0, y, t)|2dydt −→ +∞ ,

when n −→ +∞.

Proof : We choose the decomposition of the initial data on the eigenvectors of the free
wave operator as follows. Let

(

ϕn
0

ϕn
1

)

=
n−1
∑

k=0

√

2

n

( 1
i
√

n6+k2+1
cos(n3πy) cos(kπx)

cos(n3πy) cos(kπx)

)

.

Notice that ‖(ϕn
0 , ϕ

n
1 )‖X = 1. A straightforward calculus gives

∫ T

0

∫ 1

0

| ∂
∂t
ϕn(0, y, t)|2dydt = 2

n−1
∑

k=0

n−1
∑

k′=0

1

n

sin(
√
n6 + k2 + 1 −

√

n6 + k′2 + 1)T
√
n6 + k2 + 1 −

√

n6 + k′2 + 1
.

Since
∣

∣

∣

√
n6 + k2 + 1 −

√

n6 + k′2 + 1
∣

∣

∣
≤ |k2 − k′2|

2
√
n6

≤ 1

n
,

for n large enough, there exists ε > 0 such that

sin(
√
n6 + k2 + 1 −

√

n6 + k′2 + 1)T
√
n6 + k2 + 1 −

√

n6 + k′2 + 1
≥ ε > 0 .

And thus,
∫ T

0

∫ 1

0

| ∂
∂t
ϕn(0, y, t)|2dydt ≥ 2nε .

�

A.2 An example of convergence of the attractors in X, when

(UED) does not hold

To show the convergence of the attractors An in X, we had to show Proposition 2.9 that
is that

∃M ≥ 0, ∀n ∈ N, sup
Un∈An

‖Un‖D(An) ≤M . (A.5)
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We have shown that Hypothesis (UED) implies the above bound, but, of course, it is not
necessary. The purpose here is to give examples where (UED) is not satisfied but where
(A.5) holds.
We set Ω =]0, 1[ and B = −∆N + Id. Let α > 0 and f ∈ C2([0, 1] × R,R). We study the
family of equations







utt(x, t) + γnut(x, t) = uxx(x, t) − u(x, t) + f(x, u(x, t)) (x, t) ∈]0, 1[×R+

ux(0, t) = ux(1, t) = 0 t ≥ 0
(u, ut)|t=0 = (u0, u1) ∈ H1(]0, 1[) × L2(]0, 1[)

(A.6)

where, if n ∈ N

γn(x) =

{

n if 1
nα ≤ x ≤ 1

nα + 1
n

0 elsewhere .

and γ∞(x) = δx=0.
In Proposition 6.6, we proved that (UED) holds if and only if α > 1. The purpose of this
section is the proof of the following result.

Proposition A.4. We assume that f satisfies Hypothesis (Diss). The dynamical systems
generated by (A.6) admit a compact global attractor An. Moreover, if α > 16

17
then (A.5)

holds and the conclusions of Theorem 2.10 are valid.

In what follows, we assume that α ∈]16
17
, 1[, the case α ≥ 1 has already been considered

in Proposition 6.6. The proof of Proposition A.4 is a consequence of the following two
lemmas.

Lemma A.5. There exist a time T and a constant C such that, for any (ϕ0, ϕ1) ∈ X, the
solution of the free wave equation

{

ϕtt +Bϕ = 0
(ϕ, ϕt)|t=0 = (ϕ0, ϕ1)

(A.7)

satifies for all n ∈ N ∪ {+∞}
∫ T

0

∫

Ω

γn(x)|ϕt(x, t)|2dxdt ≥ C‖(ϕ0, ϕ1)‖2
X1−1/α . (A.8)

Proof : Using the same arguments as those of Lemma 6.5, we see that (A.8) is satisfied
uniformly with respect to ε if there exists a positive constant C such that

∀n ∈ N, ∀k ∈ N,

∫

Ω

γn| cos(kπx)|2dx = n

∫ n−α+1/n

n−α

| cos(kπx)|2 ≥ C

k2/α−2
, (A.9)
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that is that
1

2

(

1 +
n

kπ
sin(π

k

n
) cos(kπ(

2

nα
+

1

n
)

)

≥ C

k2/α−2
.

Assume that the above inequality does not hold. Then, there exist two sequences (kp) and
(np) such that

(

1 +
np

kpπ
sin(π

kp

np
) cos(kpπ(

2

np
α

+
1

np
)

)

k2−2/α
p −→ 0 . (A.10)

We must have kp

np
−→ 0 and

2kp

nα
p

−→ 1 mod 2 . (A.11)

Thus, for p large enough, we have 0 ≤ np

kpπ
sin(π kp

np
) ≤ 1 − 1

6

(

kp

np

)2

. This shows that

1 +
np

kpπ
sin(π

kp

np
) cos(kpπ(

2

np
α

+
1

np
) ≥ 1

6

(

kp

np

)2

.

Using (A.11), we obtain that, for p large enough, 1
np
> 1

(4kp)
1
α
, and thus

1 +
np

kpπ
sin(π

kp

np

) cos(kpπ(
2

np
α

+
1

np

) ≥ 1

6(4)
2
α

(

1

(kp)
1
α
−1

)2

.

This is a contradiction to the assumption that (A.9) does not hold. �

The second lemma is a direct adaptation of a theorem of [2].

Lemma A.6. If α > 16
17

, there exist λ > 1, s ∈]0, 1/2[ and M > 0 such that

∀U0 ∈ X, ∀n ∈ N, ‖eAntU0‖X ≤ M

(1 + t)λ
‖U0‖Xs .

Proof : The outline of the proof is exactly the same as the one of Theorem 2.4 of [2].
First, notice that we have proved in Proposition A.2 that Hypothesis (H) introduced in
Section A.1 is satisfied uniformly in n. Arguing as in [2], with some slight modifications,
we show that Lemma A.5 and Proposition 2.6 imply that, for all σ ∈]0, 1/2[,

∀t ≥ 0, ‖U(t)‖X ≤ M

(1 + t)
1

2(1/θ−1)

‖U0‖D(An) ,
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where θ = σ
σ+1−1/α

. With the same interpolation methods as in Proposition 3.5, we obtain

∀t ≥ 0, ‖U(t)‖X ≤ M

(1 + t)
s2

2(1/θ−1)

‖U0‖Xs .

We end the proof by noticing that we can find s ∈]0, 1/2[ and σ ∈]0, 1/2[ such that
λ = s2

2(1/θ−1)
> 1 is equivalent to α > 16

17
. �

We are now able to prove the proposition.
Proof of Proposition A.4: All we have to prove is that the inequality (A.5) holds. The
proof is exactly the same as the one of Proposition 2.9. The only change is the estimate of
eAn(t−τ)(F (U(τ + δ))−F (U(τ))) for τ ≤ t. Lemma A.6 implies that there exist s ∈]0, 1/2[
and λ > 1 such that

∥

∥eAn(t−τ)(F (U(τ + δ)) − F (U(τ)))
∥

∥

X
≤ C

(1 + t− τ)λ
‖F (U(τ + δ)) − F (U(τ)))‖Xs .

Hypothesis (NL) implies that there exists η ∈]0, 1[ such that

‖F (U(τ + δ)) − F (U(τ)))‖Xs ≤ ‖u(τ + δ) − u(τ)‖Hη .

Thus,

∥

∥eAn(t−τ)(F (U(τ + δ)) − F (U(τ)))
∥

∥

X

≤ C

(1 + t− τ)λ
‖u(τ + δ) − u(τ)‖η

H1‖u(s+ δ) − u(s)‖1−η
L2 .

Using the fact that
∫ t

−∞
dτ

(1+t−τ)λ is finite, we conclude with the same arguments as in
Proposition 2.9. �
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