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For nonlinear parabolic systems of the form

∂tw(x, t) = ∂2
xw(x, t)−∇V

(
w(x, t)

)
,

the following conclusions are proved to hold generically with respect to the
potential V : every travelling front invading a minimum point of V is bistable,
there is no standing front, every standing pulse is stable at infinity, the profiles
of these fronts and pulses approach their limits at ±∞ tangentially to the
eigenspaces corresponding to the smallest eigenvalues of D2V at these points,
these fronts and pulses are robust with respect to small perturbations of
the potential, and the set of their profiles is discrete. These conclusions are
obtained as consequences of generic transversality results for heteroclinic
and homoclinic solutions of the differential systems governing the profiles of
such fronts and pulses. Among these results, it is proved that, for a generic
Hamiltonian system of the form

ü = ∇V (u) ,

every asymmetric homoclinic orbit is transverse and every symmetric homo-
clinic orbit is elementary.
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1 Introduction
The purpose of this paper is to address the generic properties of travelling fronts and
standing fronts/pulses of nonlinear parabolic systems of the form

(1.1) ∂tw(x, t) = ∂2
xw(x, t)−∇V

(
w(x, t)

)
,

where time variable t and space variable x are real, the spatial domain is the whole real
line, the function (x, t) 7→ w(x, t) takes its values in Rd with d a positive integer, and
the nonlinearity is the gradient of a potential function V : Rd → R, which is assumed
to be regular (of class at least C2). Travelling fronts and standing fronts/pulses are the
solutions of system (1.1) of the form w(x, t) = u(x− ct) that are stationary in a travelling
(c > 0) or standing (c = 0) frame and that approach critical points of V at the two ends
of space. An insight into the main results of this paper (Theorem 1.7, completed with
Theorem 1.8) is provided by the following corollary, illustrated by Figure 1.1. Its terms
are precisely defined in the following subsections.

Corollary 1.1. For a generic potential V the following conclusions hold:

1. every travelling front invading a minimum point of V is bistable;

2. there is no standing front, and every standing pulse is stable at infinity;

3. the set of all bistable travelling fronts and all standing pulses is discrete;

4. every travelling front and every standing pulse (considered individually) is robust
with respect to small perturbations of V ;

5. the profile of every bistable travelling front or standing pulse stable at infinity
approaches its limit at +∞ (−∞) tangentially to the eigenspace corresponding to
the smallest eigenvalue of D2V at this point.

1.1 Travelling fronts, standing fronts and standing pulses
Let c be a real quantity. A function

u : R→ Rd, ξ 7→ u(ξ)

is the profile of a wave travelling at speed c (if c is nonzero), respectively a stationary
solution (if c equals 0), for system (1.1) if the function w : (x, t) 7→ u(x− ct) is a solution
of this system, that is if u is a solution of the second order differential system

(1.2) ü = −cu̇+∇V (u) ,

where u̇ and ü denote the first and second derivatives of u. Up to applying the transform
(ξ, c) 7→ (−ξ,−c), which leaves system (1.2) unchanged, we may assume that that the
speed c is nonnegative (and will always do so). Let us recall that a critical point of the
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Figure 1.1: Illustration of Corollary 1.1. The coloured lines represent the profiles of
travelling fronts or standing fronts/pulses wi(x, t) = ui(x− cit) approaching a minimum
point e+ of a given potential at the right end of space. If this potential is generic, the
critical point ei,− approached at the left end of space by every such profile must be a
minimum point, and for the standing profile (speed c = 0) this minimum point must be
e+. In addition, these profiles (up to translation of the argument) are isolated from each
other, so that the set of such profiles (up to translation of the argument) is countable
with respect to both speed and profile, and robust with respect to small perturbations
of the potential. Additionally (conclusion 5), these profiles approach their limits e+
(ei,−) tangentially to the eigenspace corresponding to the smallest eigenvalue of D2V (e+)
(D2V (ei,−)), but this last feature is not displayed on the figure.

potential V is a point e of Rd such that ∇V (e) = 0, and that a non-degenerate local
minimum point of V is a critical point m of V such that D2V (m) is positive definite.
If e− and e+ are two critical points of V , and if u is a non-constant global solution of
system (1.2) such that the following limits hold

(1.3) u(ξ) −−−−→
ξ→−∞

e− and u(ξ) −−−−→
ξ→−∞

e+ ,

then the solution (x, t) 7→ u(x− ct) of (1.1) is said to connect e− to e+ and is called:

• a travelling front if c ̸= 0 and e− ̸= e+,

• a standing front if c = 0 and e− ̸= e+,

• a standing pulse if c = 0 and e− = e+.

In addition, a travelling or standing front connecting a critical point e− to a critical
point e+ is said to be bistable if both these critical points are non-degenerate (local or
global) minimum points of V . Accordingly, a standing pulse connecting a critical point
to itself is said to be stable at infinity if this critical point is a non-degenerate (local
or global) minimum point of V . Among standing pulses, it is relevant to distinguish
symmetric pulses, which are even with respect to some time (the solution goes back and
forth following the same path), from asymmetric pulses which are not.

Travelling fronts and standing fronts and pulses can be interpreted in terms of energy as
follows. Let us denote by Ṽ the opposite potential −V . Then, in system (1.2) (where the
argument ξ plays the role of a time), the speed plays the role of a damping coefficient, and
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the nonlinear conservative force derives from the potential Ṽ . In other words, the system
governs the motion of a ball rolling on the graph of Ṽ , submitted to the gravitational
force and to a friction force −cu̇. Its Hamiltonian energy is the function HV defined as:

(1.4) HV : R2d → R , (u, v) 7→ 1
2 |v|

2 − V (u) = 1
2 |v|

2 + Ṽ (u) ,

and, for every solution ξ 7→ u(ξ) of this system and every time ξ where this solution is
defined, the time derivative of HV along this solution reads

(1.5) d

dξ
HV

(
u(ξ), u̇(ξ)

)
= −c|u̇(ξ)|2 .

As a consequence, if such a solution satisfies the limits (1.3),

• if c is positive then e− and e+ must differ and V (e−) must be less than V (e+); then,
– from the point of view of the parabolic system (1.1), the travelling front will

be said to invade the “higher” (with respect to V ) critical point e+ (which is
“replaced” with the “lower” one e−);

– from the point of view of the Hamiltonian system (1.2) the damping “absorbs”
the positive lag Ṽ (e−)− Ṽ (e+) (the “higher” critical point with respect to Ṽ
is e− and the “lower” one is e+);

• and if c is zero then e− and e+ must belong to the same level set of V .

In addition, as explained on Figures 1.2 to 1.4, the mechanical interpretation provides an
intuitive explanation of Corollary 1.1.

1.2 Differential system governing the profiles of fronts and pulses
Keeping the previous notation, let us consider the vector field

(1.6) Fc,V : R2d → R2d,

(
u
v

)
7→
(

v
∇V (u)− cv

)
.

The second order differential system (1.2) is equivalent to the first order differential
system

(1.7)
{
u̇ = v

v̇ = ∇V (u)− cv
or equivalently U̇ = Fc,V (U) with U = (u, v) ∈ R2d .

A point E of R2d is an equilibrium point of system (1.7) if and only if there exists a
critical point e of V such that E equals (e, 0). Assume that e is non-degenerate, or in
other words that 0 is not in the spectrum of the symmetric matrix D2V (e). Let W s

c,V (E)
and W u

c,V (E) denote the stable and unstable manifolds of E for the differential system
(1.7). Recall that each of these manifolds is defined as the union of the images of the
solutions ξ 7→ U(ξ) that converge to E at an exponential rate as ξ goes to +∞/−∞,

3



e1
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Ṽ = −V e3 u(ξ)

Figure 1.2: Heteroclinic connections between critical points belonging to different level
sets of V for system (1.2) (dimension d equals 2). This system governs the motion of
a ball rolling on the surface u 7→ Ṽ (u) = −V (u), submitted to the gravitational force
and to a friction force −cu̇. The minimum points e1 and e3 of V are maximum points
for −V , whereas e2 denotes a saddle point. A travelling front connecting e1 or e2 to e3
corresponds to the ball leaving e1 or e2 with speed zero at time −∞, and rolling towards
e3 with the suitable damping c such that is reaches e3 at rest when time goes to +∞.
Roughly speaking, this asymptotic behaviour in the future requires two conditions: the
right direction (towards e3) and the right damping (to reach e3 and stop there). As
can be intuitively seen on the figure, starting from e1 provides two degrees of freedom
(direction and damping), whereas starting from e2 provides only one (damping). For
that reason, connections between e1 and e3 (bistable travelling fronts invading e3) are
expected to occur generically and to be a robust feature, by contrast with connections
between e2 and e3 (non bistable travelling fronts invading e3), which should occur only
for rare potentials. Conclusions 1, 3 and 4 of Corollary 1.1 above and Theorem 1.7 below
formally confirm these expectations. In addition, for a generic potential, such connections
approach their limits at both ends of R tangentially to the directions of smallest curvature
of the potential at these (maximum) points (conclusion 5 of Corollary 1.1 above and
Theorem 1.8 below).
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e

Figure 1.3: A symmetric standing pulse. A ball is dropped with speed zero at the same level of
V as the critical point e, and there is no damping. Because the Hamiltonian (energy) is conserved,
reaching e as time goes to +∞ only requires to adjust the “direction” towards e. If e is a minimum
point of V (a maximum point of −V ) as on the figure, this condition can be fulfilled by choosing
the adequate dropping point on the one-dimensional level set V −1(V (e)

)
. If by contrast e was

a saddle point, the dropping point should also lie on the one-dimensional stable manifold of e,
adding an additional condition. For that reason, symmetric standing pulses stable at infinity
are expected to be a generic and robust feature, whereas those not stable at infinity should not
occur but for rare potentials. Conclusions 2 to 4 of Corollary 1.1 above and Theorem 1.7 below
confirm these expectations. In addition, for a generic potential, such a symmetric standing pulse
approaches its limit e (at both ends of R) tangentially to the direction of the smallest curvature
of the potential at e (conclusion 5 of Corollary 1.1 above and Theorem 1.8 below).

u(ξ)

e

Figure 1.4: An asymmetric standing pulse. A ball “leaves” the critical point e with speed zero at
time −∞, and there is no damping. Because the Hamiltonian (energy) is conserved, going back
to e as time goes to +∞ only requires to adjust the “direction” towards e. If e is a minimum
point of V (a maximum point of −V ) as on the figure, this condition can be fulfilled by leaving e
in the adequate direction. If by contrast e was a saddle point, there would be no choice for the
direction of departure (nor for the direction of arrival). For that reason, asymmetric standing
pulses stable at infinity are expected to be a generic and robust feature, whereas those not stable
at infinity should not occur but for rare potentials. Conclusions 2 to 4 of Corollary 1.1 above and
Theorem 1.7 below confirm these expectations. In addition again, for a generic potential, such a
solution approaches its limit e (at both ends of R) tangentially to the direction of the smallest
curvature of the potential at e (conclusion 5 of Corollary 1.1 above and Theorem 1.8 below).
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tangentially to the stable/unstable linear space of this equilibrium (see section 2). The
following statement, proved in subsection 3.1, formalizes the correspondence between the
profiles of travelling fronts and standing fronts/pulses and the intersections between such
manifolds.
Proposition 1.2. Let e− and e+ be two (possibly equal) non-degenerate critical points of
V , let E− and E+ denote the corresponding equilibria for system (1.7), and let c denote a
real (zero or nonzero) quantity. For every profile ξ 7→ u(ξ) of a front/pulse connecting e−
to e+ and travelling at speed c (or standing if c equals zero), the image of the corresponding
solution ξ 7→

(
u(ξ), u̇(ξ)

)
of system (1.7) belongs to W u

c,V (E−) ∩W s
c,V (E+).

The meaning of this proposition is twofold. First, it states that the convergence of
u(ξ) towards e± at ±∞ yields the convergence of

(
u(ξ), u̇(ξ)

)
towards (e±, 0). In other

words, every profile of a travelling or standing front of the partial differential system (1.1)
corresponds to a heteroclinic orbit of system (1.7), and every profile of a standing pulse
corresponds to a homoclinic orbit of this system. Second, those convergences occur at an
exponential rate, thus not along a centre manifold (which exists for a non-degenerate
critical point which is not a minimum point when c vanishes, see subsection 2.1).

1.3 Transversality of fronts and pulses
Usually, the transversality of a heteroclinic orbit connecting two equilibria E− and E+
is defined as the transversality of the intersection between the unstable manifold of E−
and the stable manifold of E+. For travelling fronts, however, the freedom of moving the
speed c must be taken into account, and leads to the following definition.
Definition 1.3 (transversality of a travelling front). Let e− and e+ be two non-degenerate
critical points of V and let E− and E+ denote the corresponding equilibria for system
(1.7). A front with profile ξ 7→ u(ξ) travelling at a positive speed c and connecting e− to
e+ is said to be transverse if the intersection ⋃

c′>0
{c′} ×W u

c′,V (E−)

 ∩
 ⋃

c′>0
{c′} ×W s

c′,V (E+)


is transverse, in R2d+1, along the set {c} × U(R).

For a standing pulse (connecting a critical point e of V to itself) the speed c equals 0,
so that system (1.7) preserves the Hamiltonian HV defined in (1.4). As a consequence,
the stable and unstable manifolds of the equilibrium E corresponding to e belong to the
same level set of HV , so that the transversality between those manifolds cannot hold in
R2d, but only in this level set (which is a 2d− 1-manifold of class Ck+1 outside of the set
of equilibria). This leads to the following definition.
Definition 1.4 (transversality of a standing pulse). Let e denote a non-degenerate
critical point of V and let E = (e, 0). A standing pulse with profile ξ 7→ u(ξ) and
connecting e to itself is said to be transverse if the intersection

W u
0,V (E) ∩W s

0,V (E)
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is transverse, inside the level set H−1
V

(
−V (e)

)
deprived of E, along the trajectory U(R).

As mentioned above, standing pulses divide into two classes (symmetric and asymmetric,
see Figures 1.3 and 1.4), which will require separate treatments in the proofs. Here is a
more precise definition.

Definition 1.5 (symmetric standing pulse, turning time). Let e denote a non-degenerate
critical point of V . A standing pulse with profile ξ 7→ u(ξ) connecting e to itself is said
to be symmetric if there exists a time ξturn, called the turning time of the pulse, such
that u̇(ξturn) vanishes; or equivalently, such that U(ξturn) belongs to Rd × {0Rd}. This
subspace Rd×{0Rd}, often called the reversibility or symmetry subspace, will be denoted
by Ssym.

If such a turning time exists then it is unique and the profile of the pulse is indeed
symmetric with respect to this turning time, see Lemma 3.2. Note that in the scalar case
d = 1 every standing pulse is symmetric (the derivative u̇ must vanish if the solution
approaches the same limits at both ends of R). For symmetric standing pulses (for any
value of the dimension d), instead of the transversality defined in Definition 1.4, the
following weaker transversality property ([17, 23, 51]) will be required.

Definition 1.6 (elementary symmetric standing pulse). Assume that the standing pulse
ξ 7→ u(ξ) is symmetric with turning time ξturn. This pulse is said to be elementary if the
intersection

W u
0,V (E) ∩ Ssym

is transverse, in R2d, at the point U(ξturn). The feature of being elementary, for a standing
pulse, will be called elementarity.

Note that every transverse symmetric standing pulse is elementary: due to the time
reversibility when c is zero, a non-transverse intersection between W u

0,V (E) and Ssym
induces a non-transverse intersection between W u

0,V (E) and W s
0,V (E). But the converse

is false: for a symmetric standing pulse, the intersection W u
0,V (E)∩W s

0,V (E) may be non-
transverse in the sense of Definition 1.4 while this intersection still crosses transversally
the reversibility subspace Ssym. This may occur, for instance, if a symmetric standing
pulse is the limit of a one-parameter family of asymmetric ones.

1.4 The space of potentials
For the remaining of the paper, let us take and fix an integer k ≥ 1. Let us denote by
Ck+1

b (Rd,R) the space of functions Rd → R of class Ck+1 which are bounded, as well as
their derivatives of order less than or equal to k + 1, equipped with the norm

∥W∥Ck+1
b

= max
α multi-index, |α|≤k+1

∥∂|α|
uα
W∥L∞(Rd,R) .

Let us embed the larger space Ck+1(Rd,R) with the following topology: for V in this space,
a basis of neighbourhoods of V is given by the sets V +O, where O is an open subset of

7



Ck+1
b (Rd,R) embedded with the topology defined by ∥·∥Ck+1

b
. This topology (which can

be viewed as the one of an extended metric) is convenient, since local properties may be
studied in Banach spaces of the form

V +
(
Ck+1

b (Rd,R), ∥·∥Ck+1
b

)
,

with ∥·∥Ck+1
b

viewed as a classical norm. In this paper, the space Ck+1(Rd,R) will always

be embedded with this topology (if a topology is needed) and
(
Ck+1(Rd,R), ∥·∥Ck+1

b

)
will be denoted simply by Ck+1(Rd,R).

Let us recall that a subset A of a topological set B is said to be a generic subset of B
if it contains a countable intersection of dense open subsets of B; accordingly, a property
is said to hold for a generic potential if it holds for every potential in a generic subset
of Ck+1(Rd,R). It is important to notice that Ck+1(Rd,R) is a Baire space because it
is locally equal to the Baire space Ck+1

b (Rd,R). Thus, the notion of genericity provides
relevant definitions of “large” subsets and “almost everywhere satisfied” properties. Other
definitions exist and the results stated in this paper presumably still hold for those (the
interested reader may consider [2, 3, 25, 34]).

Actually, the results stated in this paper also hold with other natural topologies, such
as Whitney’s topology. However the space Ck+1(Rd,R) is not locally a metric space for
Whitney’s topology (which is not characterized by sequences) and this leads to technical
difficulties. The framework chosen above is thus convenient to state the main arguments
while avoiding unessential technicalities, but the choice of the topology is not a key issue.

To finish, let us recall that a function having only non-degenerate critical points is
commonly called a Morse function. According to a classical result (see for instance [24]),
the set of Morse functions is a generic subset of Ck+1(Rd,R). Since the intersection of two
generic subsets is still a generic subset, and since our purpose is to state results which
hold generically, assuming that the potential V under consideration is a Morse function
does not present any inconvenience. As a consequence, only nondegenerate critical points
will be considered in the following, and the potential V will often be assumed to be a
Morse function.

1.5 Main results
The following generic transversality statement is the main result of this paper.

Theorem 1.7 (generic transversality of fronts and pulses).
There exists a generic subset of Ck+1(Rd,R) such that, for every potential function V in
this subset, V is a Morse function and the following conclusions hold for the fronts and
pulses defined by V :

1. every travelling front invading a minimum point of V is transverse;

2. every symmetric standing pulse is elementary;

3. every asymmetric standing pulse is transverse;
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4. there is no standing front.

The core of this paper (sections 5 to 8) is devoted to the proof of this result among
potentials which are quadratic past some radius (see their definition in (4.2)). For such
potentials, conclusion 1 is proved by Proposition 5.1, conclusion 2, by Proposition 6.1,
conclusion 3 by Proposition 7.1, and conclusion 4 by Proposition 8.1. Sections 5 and 6
are devoted, respectively, to the proofs of these propositions. In section 9, the proof
of Theorem 1.7 is completed by extending these conclusions to general potentials of
Ck+1(Rd,R) (not necessarily quadratic past some radius), and the qualitative conclusions
1 to 4 of Corollary 1.1 are derived from Theorem 1.7.

Using the same techniques, the following extension of Theorem 1.7 (and of conclusions
1 to 4 of Corollary 1.1) is proved in section 10. The second conclusion of this extension
is nothing but the last conclusion 5 of Corollary 1.1.

Theorem 1.8 (generic asymptotics of the profiles of bistable travelling fronts and
standing pulses stable at infinity). There exists a generic subset of Ck+1(Rd,R) such
that, for every potential function V in this subset, in addition to the conclusions of
Theorem 1.7 (and to the conclusions 1 to 4 of Corollary 1.1), the following two additional
conclusions hold:

1. for every minimum point of V , the smallest eigenvalue of the Hessian D2V at this
minimum point is simple;

2. the profile of every bistable travelling front or standing pulse stable at infinity
approaches its limit at +∞ (−∞) tangentially to the eigenspace corresponding to
the smallest eigenvalue of D2V at this point.

As explained in subsection 1.1, conclusions 2 to 4 of Theorem 1.7 can be interpreted in
terms of homoclinic and heteroclinic orbits of the second order Hamiltonian system

(1.8)
{
u̇ = ∂vH(u, v)
v̇ = −∂uH(u, v)

where H(u, v) = 1
2 |v|

2 + Ṽ (u) and Ṽ = −V .

The following statement explicitly provides this interpretation (for conclusions 2 and 3
only, since conclusion 4 is actually elementary and well known, see section 8). No proof
is given since it is exactly a translation of these conclusions, with obvious meanings for
(a)symmetry and transversality/elementarity of homoclinic orbits.

Theorem 1.9 (generic transversality/elementarity of homoclinic orbits of second order
Hamiltonian systems). There exists a generic subset of Ck+1(Rd,R) such that, for every
potential function Ṽ in this subset,

1. every asymmetric homoclinic orbit of the Hamiltonian system (1.8) is transverse;

2. every symmetric homoclinic orbit of the Hamiltonian system (1.8) is elementary.
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1.6 Short historical review
Theorem 1.7 and its proof rely on transversality theorems, also known as Sard–Smale or
Thom’s theorems, and are closely related to classical transversality results for differential
systems, see for instance [1, 31, 36, 45, 48]. Significant differences with respect to previous
works still deserve to be mentioned.

First, genericity in Theorem 1.7 holds with respect to the sole potential function V ,
not general vector fields in R2d. Thus, perturbations of a given potential only provide a
partial control on the dynamics (in other words, differential systems of the form (1.7) do
not generate all possible flows in R2d). This constraint is balanced by the peculiarities of
the systems considered, which will have to be taken into account. To our best knowledge,
the first genericity result about the dynamics of a special class of differential systems
goes back to [45], and deals with polynomial flows.

Concerning Hamiltonian flows, homoclinic orbits play an important role, both from
theoretical and physical points of view, see for instance the reviews [12, 16] and articles
[4, 15, 23, 32, 50, 51]. The transversality/elementarity of such orbits has important
dynamical consequences, as the presence of Smale horseshoes associated to complex
dynamics. In [30, 50], the genericity of these properties is considered in a general
abstract framework, and obtained only under sufficient conditions corresponding to the
assumptions of the transversality Theorem 4.2. In [32], this genericity is proved, but in the
case of non-autonomous systems. Other references dealing with the generic transversality
of connecting orbits include [33, 37, 38, 46] and references therein. In [46], genericity
holds with respect to all Hamiltonian flows, and not only second order conservative
systems as (1.8). In [33, 37, 38], genericity holds with respect to the potential Ṽ only, in
a more general setting where the “kinetic energy” |v|2 /2 of the Hamiltonian in (1.8) is
replaced by a more general expression. But the transversality of homoclinic orbits is not
considered in these papers. In [33], the transversality of heteroclinic orbits is derived from
a perturbation result of [13]. The others results of [33, 37, 38] are concerned with closed
orbits. Thus, to the best of our knowledge, even Theorem 1.9 (the results concerning
standing pulses, in the language of Hamiltonian systems) is new.

Concerning the nonzero dissipation case (conclusion 1 of Theorem 1.7), the statement
differs from usual genericity properties. If c is fixed (and nonzero), heteroclinic connections
corresponding to travelling fronts invading a minimum point of V do generically not exist
for the flow of system (1.7). But the freedom provided by the parameter c ensures the
generic existence, transversality, and robustness of heteroclinic connections corresponding
to bistable travelling fronts. This parameter c will thus have to be taken into account in
the setting where transversality theorems will be applied, a significant difference with
classical genericity results about the flows of differential systems.

The initial motivation for this paper actually relates to parabolic systems of the form
(1.1). For such systems, the global dynamics of bistable solutions, that is solutions close
at both ends of space to local minimum points of the potential V , has been described
under rather general (assumed to be generic) hypotheses on V by the second author
in [39, 40, 43]. Every such solutions must approach, as time goes to +∞, far to the
left in space a stacked family of bistable fronts travelling to the left, far to the right
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in space a stacked family of bistable fronts travelling to the right, and in between a
pattern of standing pulses/fronts going slowly away from one another (this extends to
gradient systems the program initiated in the late seventies by Fife and McLeod for scalar
equations [19–21]). The present paper provides a rigorous proof of the genericity of the
hypotheses made on the potential V in [39, 40, 43]. The same hypotheses yield similar
conclusions for hyperbolic gradient systems [41] and for radially symmetric solutions
of parabolic gradient systems in higher space dimension [42]. The results obtained in
this last reference rely on an additional hypothesis, which is the higher space dimension
analogue of conclusion 2 of Theorem 1.7 (elementarity of symmetric standing pulses).
The genericity of this hypothesis is proved in the companion paper [44], using the same
approach as in the present paper.

The extension Theorem 1.8 of Theorem 1.7 (comprising the last conclusion 5 of
Corollary 1.1) is motivated by the study of the long-range interaction between fronts and
pulses of the parabolic system (1.1). The long-range interaction between such “localized
structures” is the object of a large body of literature, both in Mathematics and Physics, see
for instance [6, 11, 14, 18, 28, 52] among many other possible references. The conclusions
of Theorem 1.8 are especially relevant in conjunction with this topic, for the following
reason. Consider a solution of the parabolic system (1.1) close to, say, two standing fronts
or pulses or two fronts travelling at the same speed, far away from one another. Let us
denote by uleft(·) and uright(·) their profiles, so that the solution is close to a translate
of uleft on R− and to a translate of uright on R+. Then, the (large) distance between
these two translates is expected to vary slowly, according to a (long-range) interaction
law that can be computed at first order, and which is related to the asymptotics of uleft
at +∞ and of uright at −∞. Basically, when (as in the present context) the tails of uleft
and uright are not oscillating, this first order long-range interaction can be attractive or
repulsive or neutral, depending on the sign of a scalar product between the (oriented)
directions through which uleft and uright approach their (common) limit (at +∞ and
at −∞ respectively), see for instance the conjecture at the bottom of p. 59 of [5], or
expressions (2.12) and (2.13) in Theorem 2.3 of [18]. In the present context, according to
the conclusions of Theorem 1.8 and for a generic potential, these two oriented directions
are aligned with the one-dimensional eigenspace associated with the smallest eigenvalue
of the Hessian D2V of the potential at the minimum point which is the common limit
mentioned above. Among the consequences, the first order long-range interaction is thus
either attractive or repulsive, but not neutral.

2 Stable and unstable manifolds of equilibria
Throughout all this section V denotes a potential function in Ck+1(Rd,R) and c denotes
a non-negative quantity (speed). As stated in Proposition 1.2, the travelling fronts and
standing fronts/pulses of the parabolic equation (1.1) correspond to heteroclinic and
homoclinic connections for the flow in R2d generated by the first order differential system
(1.7). Let Ω be the maximal (open) subset of R× R2d where this flow is defined and let
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us consider its flow Sc,V defined as

(2.1) Sc,V : Ω→ R2d , (ξ, U0) 7→ U(ξ) ,

where U(ξ) is the solution of (1.7) with U(0) = U0. By definition, for every (ξ, U0) in Ω,

∂

∂ξ
Sc,V (ξ, U0) = Fc,V

(
Sc,V (ξ, U0)

)
where Fc,V :

(
u
v

)
7→
(

v
∇V (u)− cv

)
.

Although the variable ξ denotes primarily the space variable in a frame travelling at
speed c for the initial partial differential system (1.1), this variable also plays the role of
a time in the differential systems (1.2) and (1.7) prescribing the profiles of travelling and
standing waves. In the following, this variable will thus often be referred to as a “time”.

2.1 Linearization around an equilibrium point
Let e denote a non-degenerate critical point of V . Let (u1, . . . , ud) denote an orthonormal
basis of Rd made of eigenvectors of the Hessian D2V (e) and let µ1, . . . , µd denote the
corresponding (real) eigenvalues.

Definition 2.1. Let us call Morse index of e, denoted by m(e), the number of negative
eigenvalues of D2V (e), counted with their algebraic multiplicity.

Since the critical point e is assumed to be non-degenerate, it is: a minimum point
if m(e) equals 0, a saddle point if m(e) is between 1 and d− 1, and a maximum point
if m(e) equals d. In addition, none of the quantities µ1, . . . , µd vanishes, and we may
assume that

µ1 ≤ · · · ≤ µm(e) < 0 < µm(e)+1 ≤ · · · ≤ µd if m(e) > 0 ,
and 0 < µ1 ≤ · · · ≤ µd if m(e) = 0 .

Now, let us consider the equilibrium point E = (e, 0Rd) of Sc,V corresponding to e. The
linearized differential system (1.7) at E reads:

(2.2) U̇ = DFc,V (E)U , or equivalently
{
u̇ = v

v̇ = D2V (e)u− cv
.

Observe that a complex quantity λ is an eigenvalue for the linear system (2.2) if and only
if the quantity λ(λ + c) is an eigenvalue for the Hessian D2V (e), that is if λ(λ + c) is
equal to one of the quantities µ1, . . . , µd. For j in {1, . . . , d}, let

(2.3) λj,+ = − c2 +

√
c2

4 + µj and λj,− = − c2 −

√
c2

4 + µj

denote the two (real or complex) eigenvalues of the linear system (2.2) corresponding to
µj , and let

(2.4) Uj,+ =
(

uj

λj,+uj

)
and Uj,− =

(
uj

λj,−uj

)
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denote the corresponding eigenvectors. Let

(2.5) Es
c,V (E) and Ec

c,V (E) and Eu
c,V (E)

denote the stable, centre, and unstable subspaces of R2d for the linear operator DFc,V

defined in (2.2), that is the eigenspaces corresponding to eigenvalues with negative,
zero and positive real parts respectively. The dimensions of those spaces and of the
corresponding invariant manifolds (defined below) derive from expressions (2.3), and
are as summarized in Table 2.1. The case of a negative speed c can be derived by the

c = 0 c > 0
Dimension of Eu

c,V (E) and W u
c,V (E) d−m(e) d−m(e)

Dimension of Es
c,V (E) and W s

c,V (E) d−m(e) d+m(e)
Dimension of Ec

c,V (E) and W c
loc,c,V(E) 2m(e) 0

Table 2.1: Dimensions of stable, unstable, and centre manifolds for an equilibrium point
E = (e, 0) of the differential system (1.7), corresponding to a critical point e of the
potential with Morse index m(e).

transformation (c, ξ) 7→ (−c,−ξ) which leaves the systems (1.2) and (1.7) unchanged
(and exchanges the stable and unstable dimensions).

The dimension of Eu
c,V (E) is also commonly called the Morse index of E. To avoid

any confusion, the denomination Morse index will only be used for critical points of the
potential, not for the corresponding equilibria in R2d.

2.2 Local stable and unstable manifolds when the speed c is positive
The construction of the local stable (unstable) manifold of an equilibrium of a differential
system is classical. A historical reference is Kelley’s article [29], comprising the construc-
tion and the dependence on the parameters, however with a slightly non-optimal regularity.
A complete construction can be found in many textbooks, for example Theorem 3.2.1 of
[22] or Theorem 9.4 of [49]. The goal of this subsection and of subsection 2.3 below is to
provide precise statements (Proposition 2.2 below and Proposition 2.4 in subsection 2.3
when the speed c equals 0) concerning these manifolds (for the differential system (1.7)),
and the associated notation (without proofs); those statements and notation will be
called upon in the sequel.

Take V0 in Ck+1(Rd,R), let e0 denote a non-degenerate critical point of V0, and let c0
denote a positive quantity. According to Table 2.1, the point (e0, 0), which will be denoted
by E0, is a hyperbolic equilibrium point and the subspaces Eu

c0,V0
(E0) and Es

c0,V0
(E0)

introduced in (2.5) generate the whole space R2d (or in other words the central part
Ec

c0,V0
(E0) reduces to {0R2d}). Let

(2.6)
βu = min {Re(λ) : λ eigenvalue of DFc0,V0(E0) with Re(λ) > 0}

and βs = max {Re(λ) : λ eigenvalue of DFc0,V0(E0) with Re(λ) < 0} .
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There exist norms ∥·∥u on the unstable subspace Eu
c0,V0

(E0) and ∥·∥s on the stable subspace
Es

c0,V0
(E0) such that, for every non negative quantity ξ,

(2.7)

∥∥∥exp
[
−ξDFc0,V0(E0)|Eu

c0,V0
(E−)

]∥∥∥
u
≤ exp

(
−β

u

2 ξ

)
,

and
∥∥∥exp

[
ξDFc0,V0(E0)|Es

c0,V0
(E+)

]∥∥∥
s
≤ exp

(
βs

2 ξ
)
.

For every positive quantity r, let

(2.8)
B

u
E0(r) =

{
Uu ∈ Eu

c0,V0(E0) : ∥Uu∥u ≤ r
}
,

and B
s
E0(r) =

{
U s ∈ Es

c0,V0(E0) : ∥U s∥s ≤ r
}
,

and BE0(r) =
{
Uu + U s : Uu ∈ Bu

E0(r) and U s ∈ Bs
E0(r)

}
.

Proposition 2.2 (local stable and unstable manifolds). There exist a neighbourhood ν
of V0 in Ck+1(Rd,R), a neighbourhood C of c0 in (0,+∞) and a positive quantity r such
that, for every (c, V ) in C × ν, the following statements hold.

1. There exists a unique critical point e(V ) of V such that E(V ) = (e(V ), 0) belongs
to E0 + BE0(r). In addition, e(V ) has the same Morse index as e0 and the map
ν → Rd, V 7→ e(V ) is of class Ck.

2. There exist Ck-functions

wu
loc, c, V : Bu

E0(r)→ B
s
E0(r) and ws

loc, c, V : Bs
E0(r)→ B

u
E0(r)

such that, if we consider the sets

W u
loc, c, V

(
E(V )

)
=
{
E(V ) + Uu + wu

loc, c, V (Uu) : Uu ∈ Bu
E0(r)

}
and W s

loc, c, V

(
E(V )

)
=
{
E(V ) + U s + ws

loc, c, V (U s) : U s ∈ Bs
E0(r)

}
,

then, for every U in BE0(r) the following two assertions are equivalent:
a) U is in W u

loc, c, V

(
E(V )

)
;

b) Sc,V (ξ, U)− E(V ) remains in BE0(r) for all ξ in (−∞, 0] and Sc,V (ξ, U)→
E(V ) as ξ → −∞;

and for every U in BE0(r) the following two assertions are equivalent:
c) U ∈W s

loc, c, V

(
E(V )

)
;

d) Sc,V (ξ, U)− E(V ) remains in BE0(r) for all ξ in [0,+∞) and Sc,V (ξ, U)→
E(V ) as ξ → +∞.

3. Both differentials Dwu
loc, c0, V0

(0) and Dws
loc, c0, V0

(0) vanish, and both maps

C × ν ×Bu
E0(r)→ B

s
E0(r), (c, V, Uu) 7→ wu

loc, c, V (Uu)
and C × ν ×Bs

E0(r)→ B
u
E0(r), (c, V, U s) 7→ ws

loc, c, V (U s)

are of class Ck.
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With the notation provided by Proposition 2.2, for every (c, V ) in C×ν, let us introduce
the maps

ŵu
loc, c, V : Bu

E0(r)→ R2d, Uu 7→ E(V ) + Uu + wu
loc, c, V (Uu) ,

and ŵs
loc, c, V : Bs

E0(r)→ R2d, U s 7→ E(V ) + U s + ws
loc, c, V (U s) .

Local unstable and stable manifolds of E(V ) can be defined as

(2.9)
W u

loc, c, V

(
E(V )

)
= ŵu

loc, c, V

(
B

u
E0(r)

)
,

and W s
loc, c, V

(
E(V )

)
= ŵs

loc, c, V

(
B

s
E0(r)

)
.

Those manifolds depend smoothly of c and V . The global unstable and stable manifolds

W u
c,V

(
E(V )

)
= {U ∈ R2d : Sc,V (ξ, U)→ E(V ) when ξ → −∞}

and W s
c,V

(
E(V )

)
= {U ∈ R2d : Sc,V (ξ, U)→ E(V ) when ξ → +∞}

can then be derived from those local manifolds through the flow Sc,V as follows:

W u
c,V

(
E(V )

)
= Sc,V

(
R×W u

loc, c, V

(
E(V )

))
,

and W s
c,V

(
E(V )

)
= Sc,V

(
R×W s

loc, c, V

(
E(V )

))
.

Remark. Here are two observations that will turn out to play some role in the forthcoming
proofs.

• According to the characterization provided by this proposition (equivalence between
2a and 2b and between 2c and 2d), for every solution ξ 7→ U(ξ) of system (1.7),
if this solution belongs to the stable (unstable) manifold of E(V ) then it crosses
exactly once the border ∂W s

loc, c, V

(
E(V )

)
of the local stable manifold (the border

∂W u
loc, c, V

(
E(V )

)
of the local unstable manifold) of E(V ). In addition, according

to the the conditions (2.7) satisfied by the norms ∥·∥u and ∥·∥s, up to replacing the
radius r by a smaller quantity, this intersection between the trajectory of ξ 7→ U(ξ)
and the border of the local stable (unstable) manifold of E(V ) is transverse inside
the full stable (unstable) manifold. Although the transversality of this intersection
is not formally required in the following, assuming that it holds helps figuring out
the broad scheme, see for instance Figure 5.1.

• The functions wu
loc, c, V and ws

loc, c, V are uniquely defined by the characterization
provided by Proposition 2.2 once the radius r and the departure sets of these two
functions are chosen. As a consequence, those two functions and the local stable
and unstable manifolds W u

loc, c, V

(
E(V )

)
and W s

loc, c, V

(
E(V )

)
remain unchanged if

the potential function V is modified outside a neighbourhood of the set

πpos
[
W u

loc, c, V

(
E(V )

)
∪W s

loc, c, V

(
E(V )

)]
,

where πpos is the projection onto the position coordinates:

(2.10) πpos : R2d → Rd, (u, v) 7→ u .
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2.3 Local stable and unstable manifolds when the speed c equals 0
As Table 2.1 shows, an equilibrium E is hyperbolic except if c vanishes and m(e) is
positive. In this case, there exists, in addition to the stable and unstable manifolds of
E, a centre manifold with dimension 2m(e) (corresponding to the central part of the
spectrum of the linear system (2.2) at E). However, as shown by the following lemma,
a solution ξ 7→ U(ξ) of system (1.7) cannot asymptotically approach E through such a
centre manifold. The statement of Proposition 2.4 below and the proof of Proposition 1.2,
provided in subsection 3.1, rely on this lemma.
Lemma 2.3 (approach of critical points through stable/unstable manifolds). Assume
that c equals 0. For every critical point e of V such that the Morse index m(e) is positive,
and for every (maximal) solution ξ 7→ U(ξ) of the differential system (1.7), if E denotes
the point (e, 0), the following conclusions hold:

1. if U(ξ) goes to E as ξ goes to +∞, then the trajectory of ξ 7→ U(ξ) converges to E
tangentially to the stable space Es

V (E).

2. if U(ξ) goes to E as ξ goes to −∞, then the trajectory of ξ 7→ U(ξ) converges to E
tangentially to the unstable space Eu

V (E),
Proof. Let ξ 7→ U(ξ) = (u, v)(ξ) denote a solution of the differential system (1.7) for a
speed c equal to 0, and let us assume that U(ξ) goes to E as ξ goes to +∞. It follows
from the invariance of the Hamiltonian function HV (defined in (1.4)) along U(·) that
HV (U(ξ)) = HV (E), or in other words that

(2.11) 1
2 |v(ξ)|2 − V

(
u(ξ)

)
= −V (e) .

Let us proceed by contradiction and assume that this solution does not belong to the
stable manifold of E. With the notation of subsection 2.1, it follows that, as ξ goes to
+∞, the component of U(ξ)−E along the centre subspace Ec

V (E) is dominant compared
to its component along the hyperbolic subspace Es

V (E) + Eu
V (E); with symbols, if πcent

denotes the projection along Es
V (E) + Eu

V (E) onto Ec
V (E) in R2d,

(2.12) U(ξ)− E = πcent
(
U(ξ)− E

)
+ oξ→+∞

(
πcent

(
U(ξ)− E

))
.

It follows from the expressions (2.3) and (2.4) of the eigenvalues and eigenvectors of
DF0,V (E) that

Ec
V (E) = span

{
U1,+, U1,−, . . . , Um(e),+, Um(e),−

}
.

As a consequence, applying the projection πpos (projection onto the position coordinates,
defined in (2.10)) to equality (2.12), it follows that, if we denote by πm(e) the orthogonal
projection onto span{u1, . . . , um(e)} in Rd,

u(ξ)− e = πm(e)
(
u(ξ)− e

)
+ oξ→+∞

(
πm(e)

(
u(ξ)− e

))
.

Since the restriction of D2V (e) to the image of πm(e) is negative definite, it follows that,
for ξ sufficiently large, V

(
u(ξ)

)
is less than V (e), thus −V

(
u(ξ)

)
is greater than −V (e),

contradicting equality (2.11). Lemma 2.3 is proved.
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As for Proposition 2.2 in the case c > 0, the aim of the next Proposition 2.4 is to
provide (in the case c = 0) a precise statement and the associated notation concerning
the local stable and unstable manifolds of an equilibrium for the differential system (1.2).
In this case c = 0, the conclusions of Lemma 2.3 show that centre manifolds are not
relevant for homoclinic and heteroclinic solutions; for that reason, those centre manifolds
are ignored in Proposition 2.4. Concerning the construction and properties of the local
stable and unstable manifolds, there is no difference with respect to the positive speed
case considered in Proposition 2.2, see again [22, 29, 49]. Observe that, by contrast with
the statements that can be found in textbooks, the characterization of these local stable
and unstable manifolds does not require an exponential rate of convergence towards E,
again due to the conclusions of Lemma 2.3 (see the equivalence between assertions 2a
and 2b and between assertions 2c and 2d in Proposition 2.4 below).
Notation. For the remaining of this paper, when the speed c vanishes, it will be omitted
in the notation. Thus, concerning the previously introduced notation,

FV SV Es
V Ec

V Eu
V W s

V W u
V

stand for: F0,V S0,V Es
0,V Ec

0,V Eu
0,V W s

0,V W u
0,V .

Take V0 in Ck+1(Rd,R) and let e0 denote a non-degenerate critical point of V0 and let
E0 = (e0, 0) (which is not necessarily hyperbolic). Let βu and βs be as in (2.6). As in
the case c > 0, there exist norms ∥·∥u on the unstable subspace Eu

V0
(E0) and ∥·∥s on the

stable subspace Es
V0

(E0) such that inequalities (2.7) hold for every non negative quantity
ξ. Let ∥·∥c denote any norm on the centre subspace Ec

V0
(E0) (for instance the euclidean

norm). For every positive quantity r, let

B
u
E0(r) = {Uu ∈ Eu

V0(E0) : ∥Uu∥u ≤ r} ,
B

s
E0(r) = {U s ∈ Es

V0(E0) : ∥U s∥s ≤ r} ,
B

c
E0(r) = {U c ∈ Ec

V0(E0) : ∥U c∥c ≤ r} ,
and BE0(r) = {Uu + U s + U c : Uu ∈ Bu

E0(r) and U s ∈ Bs
E0(r) and U c ∈ Bc

E0(r)} .

Proposition 2.4 (local stable and unstable manifolds). There exist a neighbourhood ν
of V0 in Ck+1(Rd,R) and a positive quantity r such that, for every V in ν, the following
statements hold.

1. There exists a unique critical point e(V ) of V such that E(V ) = (e(V ), 0) belongs
to E0 + BE0(r). In addition, e(V ) has the same Morse index as e0 and the map
ν → Rd, V 7→ e(V ) is of class Ck.

2. There exist Ck-functions

wu
loc, V : Bu

E0(r)→ B
s
E0(r) +B

c
E0(r) and ws

loc, V : Bs
E0(r)→ B

u
E0(r) +B

c
E0(r)

such that, if we consider the sets

W u
loc, V

(
E(V )

)
=
{
E(V ) + Uu + wu

loc, V (Uu) : Uu ∈ Bu
E0(r)

}
and W s

loc, V

(
E(V )

)
=
{
E(V ) + U s + ws

loc, V (U s) : U s ∈ Bs
E0(r)

}
,
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then, for every U in BE0(r), the following two assertions are equivalent:
a) U is in W u

loc, V

(
E(V )

)
;

b) SV (ξ, U)−E(V ) remains in BE0(r) for all ξ in (−∞, 0] and SV (ξ, U)→ E(V )
as ξ → −∞,

and for every U in BE0(r), the following two assertions are equivalent:
c) U ∈W s

loc, V

(
E(V )

)
;

d) SV (ξ, U)−E(V ) remains in BE0(r) for all ξ in [0,+∞) and SV (ξ, U)→ E(V )
as ξ → +∞.

3. Both differentials Dwu
loc, V0

(0) and Dws
loc, V0

(0) vanish, and both maps

ν ×Bu
E0(r)→ B

s
E0(r), (V,Uu) 7→W u

loc, V (Uu)
and ν ×Bs

E0(r)→ B
u
E0(r), (V,U s) 7→W s

loc, V (U s)

are of class Ck.

With the notation provided by Proposition 2.4, for every V in ν, let us introduce the
maps

ŵu
loc, V : Bu

E0(r)→ R2d, Uu 7→ E(V ) + Uu + wu
loc, V (Uu) ,

and ŵs
loc, V : Bs

E0(r)→ R2d, U s 7→ E(V ) + U s + ws
loc, V (U s) .

Local unstable and stable manifolds of E(V ) can be defined as

(2.13)
W u

loc, V

(
E(V )

)
= ŵu

loc, V

(
B

u
E0(r)

)
,

and W s
loc, V

(
E(V )

)
= ŵs

loc, V

(
B

s
E0(r)

)
.

Those manifolds depend smoothly of V . As in subsection 2.2, the global unstable/stable
manifolds of E(V ), denoted by W u

V (E(V )) and W s
V (E(V )) can be expressed in terms of

those local manifolds and of the flow SV . Both observations made in the remark ending
the previous subsection are still valid in the present case of zero speed and potential
existence of a centre manifold.

3 Preliminary properties of travelling fronts and standing fronts
and pulses

Let us take and fix, for this whole section, a potential function V in Ck+1(Rd,R).

3.1 Proof of Proposition 1.2
Let e− and e+ be two (possibly equal) non-degenerate critical points of V , let c denote a
non negative quantity (speed), and let ξ 7→ u(ξ) denote the profile of a front or pulse
connecting e− to e+ and travelling at speed c (or standing if c equals zero) for the
potential V .
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Lemma 3.1. The derivative u̇(ξ) goes to 0 as ξ goes to ±∞.

Proof. If the speed c is positive, then ξ 7→ u(ξ) is the profile of a travelling front. It
follows from integrating (1.5) that

(3.1) lim
ξ→+∞

HV (u(ξ))− lim
ξ→−∞

HV (u(ξ)) = −c
∫
R
|u̇(ξ)|2 dξ

and thus that u̇(·) is in L2(R). Thus 0 is an adherent value of the kinetic part of the
Hamiltonian function ξ 7→ HV

(
U(ξ)

)
as ξ goes to ±∞, meaning that V (e±) are adherent

values of HV (U(ξ)). Since according to (1.5) this last function decreases with ξ, it follows
that HV

(
U(ξ)

)
goes to V (e±) as ξ goes to ±∞, and the intended conclusion follows.

If the speed c equals 0, it follows from the differential system (1.2) and the convergence
of u(·) to critical points that ü(ξ) goes to 0 as ξ goes to ±∞. Thus u̇(·) is uniformly
continuous and the convergence of u yields the intended conclusion.

Proof of Proposition 1.2. Let us use the notation of Proposition 1.2. If c is non zero or
if c equals 0 and both Morse indices m(e−) and m(e+) of e− and e+ vanish, then E−
and E+ are hyperbolic equilibria of the differential system (1.7) and the conclusions of
Proposition 1.2 follow from Lemma 3.1.

If c equals 0 and the Morse indices m(e−) and m(e+) are any, then the equilibria E−
and E+ are not necessarily hyperbolic, but again in this case it follows from Lemma 3.1
that U(ξ) goes to E± as ξ → ±∞; and it follows from Lemma 2.3 that the values of
ξ 7→ U(ξ) belong to the unstable manifold of E− and to the stable manifold of E+.

3.2 Equivalent definitions of a symmetric standing pulse
Let e denote a non-degenerate critical point of V , and let ξ 7→ u(ξ) denote the profile of a
standing pulse connecting e to itself. In Definition 1.5, the symmetry of such a pulse was
defined by the existence of a “turning time” where u̇ vanishes. The following standard
result (see for instance [17]) completes this definition.

Lemma 3.2 (equivalent definitions of a symmetric standing pulse). For every real
quantity ξturn, the following properties are equivalent:

1. ξturn is a turning time in the sense of Definition 1.5, that is u̇(ξturn) = 0;

2. for every ξ in R,

(3.2) u(ξturn − ξ) = u(ξturn + ξ) ;

3. there exists ξ in R such that

(3.3) u(ξturn − ξ) = u(ξturn + ξ) and u̇(ξturn − ξ) = −u̇(ξturn + ξ) .

In addition, these statements hold for at most one real quantity ξturn.
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Proof. Differentiating equality (3.2) with respect to ξ yields equalities (3.3) for all ξ,
so that property 2 implies property 3, and property 3 for ξ equal to 0 is equivalent to
property 1, so that property 2 implies property 1 and property 1 implies property 3.

It remains to prove that property 3 implies property 2. Assume that property 3 holds,
and, for every real quantity ξ, let us write

u1(ξ) = u(ξturn + ξ) and u2(ξ) = u(ξturn − ξ) .

Since ξ 7→ u(ξ) is a solution of the second order differential system (1.2) with c equal to
zero, both ξ 7→ U1(ξ) and ξ 7→ U2(ξ) are solutions of the first order differential system
(1.7) (again with c equal to zero). According to property 3, there exists ξ such that U1(ξ)
is equal to U2(ξ). Thus U1(ξ) must be equal to U2(ξ) for every real time ξ, and property
2 follows. Thus the three properties of Lemma 3.2 are equivalent.

In addition, if property 2 holds for two different turning times ξturn and ξ′
turn, then

ξ 7→ u(ξ) is periodic with a period equal to 2(ξ′
turn − ξturn), a contradiction with the

assumption that u is a standing pulse connecting e to itself. Lemma 3.2 is proved.

3.3 Values reached only once by profiles of travelling fronts / standing pulses
The proofs carried on in the sections 5 to 7 below rely on the construction of suitable
perturbations of the potential V . Whereas the uniqueness of the solutions of differential
system (1.7) ensures that the function ξ 7→

(
u(ξ), u̇(ξ)

)
defined by such a solution is

one-to-one, this is not necessarily true for the function ξ 7→ u(ξ) (as shown by Figure 3.1).
As a consequence, a perturbation of the potential V may affect this solution at different
times. The goal of the following proposition is to avoid this inconvenience, by providing
in each case under consideration a time interval where u(ξ) is reached only once.

Proposition 3.3.

1. For every profile ξ 7→ u(ξ) of a front travelling at a positive speed c and connecting
two non-degenerate critical points, there exists a time ξonce such that, for all times
ξ∗ in (−∞, ξonce] and ξ in R,

(3.4) u(ξ) = u(ξ∗) =⇒ ξ = ξ∗ .

2. For every profile ξ 7→ u(ξ) of an asymmetric standing pulse and for every nonempty
open interval I of R, there exists a nonempty open interval Ionce, included in I,
such that, for all times ξ∗ in Ionce and ξ in R, implication (3.4) holds.

3. For every profile ξ 7→ u(ξ) of a symmetric standing pulse, if ξturn denotes the
turning time of this pulse (see Lemma 3.2), then, for every nonempty open interval
I included in (−∞, ξturn], there exists a nonempty open interval Ionce, included in
I, such that, for all times ξ∗ in Ionce and ξ in (−∞, ξturn], implication (3.4) holds.
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u0

−V

e−

e+

u(ξ)

Figure 3.1: The one-dimensional example of this figure shows that property 1 of Proposi-
tion 3.3 may not hold outside a small neighbourhood of the critical point e−.

Proof of statement 1 of Proposition 3.3. Let ξ 7→ u(ξ) denote the profile of a front trav-
elling at a positive speed c for the potential V , and let e− denote the critical point,
assumed to be non-degenerate, approached by u(ξ) as ξ goes to −∞. Since all eigenval-
ues of DFc,V (E−)|Eu

c,V (E−) are real and positive (see subsection 2.1), the corresponding
solution U(ξ) of system (1.7) must approach E− tangentially to some (real, unstable)
eigenvector Ueig of DFc,V (E−) as ξ goes to −∞. If λ denotes the corresponding (positive)
eigenvalue, then Ueig is of the form (ueig, λueig), where ueig is an eigenvector of D2V (e−),
see expression (2.4). Thus there must exist a nonzero scalar function ξ 7→ α(ξ) so that,
as ξ goes to −∞,

U(ξ) = E− + α(ξ)Ueig + o
(
α(ξ)

)
, that is

{
u(ξ) = e− + α(ξ)ueig + o

(
α(ξ)

)
,

u̇(ξ) = α(ξ)λueig + o
(
α(ξ)

)
.

It follows that there exists a large negative time ξ0 such that, for every ξ in (−∞, ξ0],
d

dξ
|u(ξ)− e−|2 = 2(u(ξ)− e−) · u̇(ξ) > 0 .

In particular, the function

(3.5) (−∞, ξ0]→ Rd, ξ 7→ u(ξ)

is a C1-diffeomorphism onto its image. According to the decrease (1.5) of the Hamiltonian,
the quantity HV

(
U(ξ0)

)
is less than −V (e−). As a consequence, there exists a time ξonce

in (−∞, ξ0) such that, for every ξ∗ in (−∞, ξonce],

(3.6) HV

(
U(ξ0)

)
< −V

(
u(ξ∗)

)
.

Take a time ξ∗ in (−∞, ξonce] and a time ξ in R and let us assume that u(ξ) equals u(ξ∗).
If ξ was greater than ξ0 then it would follow from the expression (1.4) of the Hamiltonian,
its decrease (1.5) and inequality (3.6) that

−V
(
u(ξ)

)
≤ HV

(
U(ξ)

)
≤ HV

(
U(ξ0)

)
< −V

(
u(ξ∗)

)
,

a contradiction with the equality of u(ξ) and u(ξ∗). Thus ξ is less than or equal to ξ0,
and it follows from the one-to-one property of the function (3.5) that ξ must be equal to
ξ∗. Statement 1 of Proposition 3.3 is proved.
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Proof of statement 2 of Proposition 3.3. Let ξ 7→ u(ξ) be the profile of an asymmetric
standing pulse for the potential V , let e denote the critical point approached by u(ξ)
as ξ goes to ±∞, and let I be a nonempty open interval of R. In view of the intended
conclusion (statement 2), we may assume that I is bounded. According to the invariance
(1.5) of the Hamiltonian HV , for every ξ in R, the difference V

(
u(ξ)

)
− V (e) is equal to

|u̇(ξ)|2/2 and is therefore nonzero, so that the critical point e is never reached by the
function ξ 7→ u(ξ) on R. As a consequence there exists a (small) positive quantity r such
that |u(ξ)− e| is larger than r for all ξ in I; and since u(ξ) approaches e as ξ goes to
±∞, there exists a (large) positive quantity M such that |u(ξ)− e| is smaller than r
outside of [−M,M ].

Assume that there exist two different times ξ and ξ′ in R such that u(ξ) equals u(ξ′).
Then, again according to the invariance (1.5) of the Hamiltonian HV , the time derivatives
u̇(ξ) and u̇(ξ′) must have the same norm. Besides, these two vectors cannot be equal (or
else the profile u would be periodic) nor opposite (or else according to Lemma 3.2 the
pulse would be symmetric), thus they are not proportional. Thus the couples (ξ, ξ′) such
that u(ξ) is equal to u(ξ′) are isolated in R2. In addition, if (ξ, ξ′) is such a couple and ξ
is in I then ξ′ must belong to [−M,M ]. This shows by compactness that there exists
only a finite number of couples (ξ, ξ′) in I × R such that u(ξ) equals u(ξ′). Statement 2
of Proposition 3.3 follows.

Proof of statement 3 of Proposition 3.3. The arguments are the same as in the proof of
statement 2 above. Let ξ 7→ u(ξ) be the profile of a symmetric pulse with turning time
ξturn for the potential V , let I be a nonempty open interval of (−∞, ξturn], assumed to be
bounded. If there exist two different times ξ and ξ′ in (−∞, ξturn] such that u(ξ) equals
u(ξ′), again the time derivatives u̇(ξ) and u̇(ξ′) have the same norm. These two vectors
cannot be equal (or else the profile u would be periodic) nor opposite (or else, according
to statement 3 of Lemma 3.2, (ξ + ξ′)/2 would be a second turning time — less than
ξturn — for u, a contradiction with the conclusion of Lemma 3.2). Thus again, u̇(ξ) and
u̇(ξ′) cannot be proportional, and the same arguments as in the proof of statement 2
above show that there exists only a finite number of couples (ξ, ξ′) in I × (−∞, ξturn]
such that u(ξ) = u(ξ′).

4 Tools for genericity
4.1 An instance of the Sard–Smale Transversality Theorem
To prove that a given property generically holds, a standard method is to express this
property as a transversality problem and to use one instance among the family of theorems
known as Sard–Smale Transversality Theorem (or Thom Transversality Theorem, or
simply Transversality Theorem), see [1, 7, 24, 36]. In this paper the following instance
will be used (Theorem 4.2 below). Let us consider a function

Φ :M× Λ→ N ,
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where M and N are two finite-dimensional manifolds and Λ (“parameter space”) is a
Banach manifold, together with a submanifold W of N (see Figure 4.1). Let us assume
that these four manifolds and the function Φ are of class Ck (as everywhere in the paper
k denotes an integer greater than or equal to 1). Finally, let codim(W) denote the
codimension of W in N .

Definition 4.1. With the notation above, the image of Φ is said to be transverse to W ,
if, for every (m,λ) in M× Λ such that Φ(m,λ) is in W, the following equality holds:

DΦ(TmM× TλΛ) + TΦ(m,λ)W = TΦ(m,λ)N

(here DΦ denotes the differential of Φ at (m,λ)). Accordingly, for every λ in Λ, if Φλ

denotes the function:
M→N , m 7→ Φ(m,λ) ,

then the image of Φλ is said to be transverse to W if, for every m inM such that Φ(m,λ)
is in W, denoting DΦλ the differential of Φλ at m,

DΦλ(TmM) + TΦ(m,λ)W = TΦ(m,λ)N .

Theorem 4.2 (Sard–Smale Transversality Theorem). With the notation above, if

1. k > dim(M)− codim(W),

2. and the image of Φ is transverse to W,

then there exists a generic subset Λgen of Λ such that, for every λ in Λgen, the image of
Φλ is transverse to W.

The proof of this result can be found in [1] or in [24]. The key hypothesis, which is
often difficult to check, is the transversality hypothesis 2. Notice that the conclusion
is stronger than this hypothesis since it states that the transversality holds for a fixed
generic parameter λ, whereas hypothesis 2 uses the freedom of moving λ.

4.2 Extending local genericity to global genericity
Theorem 4.2 (under the form above or another) is the standard tool to prove that a
property generically holds. However, it turns out that is is often difficult, in practice,
to express a property using a single function Φ as above; thus one is often led to patch
together several conclusions provided by this theorem. The following lemma provides a
way to carry out this patching process. This lemma is identical to Lemma 3.3 of Chapter
3 of [35], where a proof can be found.

Lemma 4.3 (local genericity implies global genericity in a separable Baire space). Let
V be a separable Baire space and Vdense be a dense subset of V. For every subset Vgen of
V, the following two assertions are equivalent:

1. the subset Vgen is generic in V;

2. for every V0 in Vdense, there exists a neighbourhood ν of V0 in V such that Vgen ∩ ν
is generic in ν.
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λ moves

Φ
M Φ(M, λ)

W

Figure 4.1: Geometric interpretation of Theorem 4.2. Assume that for a given parameter
λ0, DΦλ0(TM) + TW is not the whole tangent space TN , but that the dependence of
Φ on λ provides the missing directions. Then for almost every λ close to λ0, the image
Φ(M, λ) intersects W transversally.

4.3 Potentials that are quadratic past a given radius
The whole space Ck+1(Rd,R) of potentials is somewhat difficult to handle, for various
reasons: it is not separable, even locally, and the flow of system (1.7) is not globally
well-defined for some of the potentials V in this space. To get around these difficulties,
the proofs of the next sections 5 and 6 will be carried out on a more restricted class
Vquad-R of potentials, after what the results will be extended to the full set Ck+1(Rd,R)
in the final section 9. Let

(4.1) Vfull = Ck+1(Rd,R) ,

and, for a positive quantity R, let

(4.2) Vquad-R =
{
V ∈ Vfull : for all u in Rd, |u| ≥ R =⇒ V (u) = |u|

2

2

}
.

By contrast with Vfull, the affine subspace Vquad-R of Vfull is separable, and therefore
provides a framework where Lemma 4.3 may be applied. The next lemma states some
(nice) properties of the flow of system (1.7) for a potential V in Vquad-R. It is followed
by another one (Corollary 4.6 below) providing the adequate tools to proceed with the
extension mentioned above and carried out in section 9.
Notation. For every non negative quantity r, let BRd(0, r) and BRd(0, r) denote the open
ball and the closed ball centred at the origin and of radius r in Rd.

Lemma 4.4. For every positive quantity R and for every potential V in Vquad-R, the
following conclusions hold.

1. For every speed c, the flow defined by the differential system (1.7) is global.
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2. Every profile ξ 7→ u(ξ) of a travelling front or a standing front or a standing pulse,
for this potential, satisfies the following bound:

(4.3) sup
ξ∈R
|u(ξ)| < R .

Proof. Let V be in Vquad-R and let c be a real quantity. According to the definition (4.2)
of Vquad-R, there exists a positive quantity K such that, for every u in Rd,

|∇V (u)| ≤ K + |u| .

As a consequence, it follows from the expression (1.6) of Fc,V that, for every solution
U = (u, v) of (1.7) in R2d,∣∣∣U̇(ξ)

∣∣∣ = |Fc,V (u, v)| = |(v,∇V (u)− cv)| = O|U |→∞
(
|U(ξ)|

)
.

This bound prevents solutions from blowing up in finite time, proving conclusion 1.
Now let ξ 7→ u(ξ) denote a solution of (1.2) approaching critical points of V at both

ends of R. Let us write q = |u|2/2, so that

(4.4) q̇ = u · u̇ and q̈ = −cq̇ + u̇2 + u · ∇V (u) ,

and so that, since V is in Vquad-R, for every real quantity ξ,

|u(ξ)| ≥ R =⇒ d

dξ |ξ

(
ecξ q̇(ξ)

)
= ecξ(u̇2(ξ) + u2(ξ)

)
> 0 .

Since V is quadratic outside the ball BRd(0, R), its critical points must belong to the
interior of BRd(0, R), and the same must be true for u(ξ) when |ξ| is large. Now, if |u(·)|
were to reach the value R at some (finite) time ξ0, then (if ξ0 is the first time when this
happens) q̇(ξ0) would be nonnegative; the implications above show that, from this time
on, the quantity ecξ q̇(ξ) (and thus also the quantity q̇(ξ)) would remain positive; so that
q(ξ) and |u(ξ)| would keep increasing with ξ, a contradiction with the fact that u(ξ) must
be back inside BRd(0, R) for ξ large. Conclusion 2 is proved.

4.4 Topological properties of restriction maps
Let R denote a positive quantity and let us consider the set

(4.5) Vres-R = Ck+1(BRd(0, R),R
)
.

The next Lemma 4.5 will be used to carry out, in section 9, the extension mentioned
at the beginning of this subsection. To ease its formulation, let us adopt Vquad-∞ as an
alternative notation for the space Vfull. Let R′ denote either a quantity larger than R or
∞, and let us consider the restriction operator:

(4.6) resR,R′ : Vquad-R′ → Vres-R , V 7→ V|BRd (0,R) .
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Lemma 4.5. The restriction map resR,R′ is continuous, surjective and open.

Proof. If two potentials of Vquad-R′ are Ck-close, then their restrictions to the closed ball
BRd(0, R) are still Ck-close on this ball, so that the map resR,R′ is continuous.

To prove that the map resR,R′ is surjective and open, it is sufficient to construct a
continuous right inverse for this map. For this purpose we may consider Seeley’s extension

ext∞,R : Vres-R → Vfull ,

which is a right inverse for resR,∞ (that is resR,∞ ◦ ext∞,R is the identity map of Vres-R).
The map defined in Seeley’s original paper [47] extends to the whole space Rd a function
initially defined on a half space, but using spherical coordinates the same definition leads
to this extension ext∞,R. This map ext∞,R is linear and continuous for the usual topology
for the departure set Vres-R and the topology of uniform convergence of derivatives up
to order k on compact subsets of Rd for the arrival set Vfull. Now, if χ : [0,+∞) → R
denotes a smooth truncation function satisfying

χ ≡ 1 on [0, R] and χ ≡ 0 on
[
min(R+ 1, R′),+∞

)
,

then the map extR′,R : Vres-R → Vquad-R defined, for every V in Vres-R, by

extR′,R(V )(u) = χ(|u|) ext∞,R(V )(u) +
(
1− χ(|u|)

) |u|2
2 ,

is a right inverse of resR,R′ and is continuous (for the topologies of uniform convergence
of derivatives up to order k for the departure and arrival sets). Lemma 4.5 is proved.

Corollary 4.6. For every couple (A,B) of subsets of Vres-R, let A′ = res−1
R,R′(A) and

B′ = res−1
R,R′(B) denote the sets of the potentials of Vquad-R′ whose restrictions to BRd(0, R)

belong to A and B respectively. Then the following equivalences hold:

A is open in Vres-R ⇐⇒ A′ is open in Vquad-R′ ,(4.7)
A is dense in B ⇐⇒ A′ is dense in B′ ,(4.8)

A is dense in Vres-R ⇐⇒ A′ is dense in Vquad-R′ .(4.9)

Proof. Equivalence (4.7) follows from the continuity and the openness of resR,R′ .
According to the surjectivity of resR,R′ , the set resR,R′(A′) is equal to A and the set

resR,R′(B′) is equal to B. Since the image of a dense set by a continuous map is dense in
its image, if A′ is dense in B′ then A is dense in B. Implication “⇐= ” of (4.8) is proved.

On the other hand, if A is dense in B, then, for every open subset Ω′ of B′, its image
Ω := resR,R′(Ω′) is, according to Lemma 4.5, open in B so that the intersection A ∩ Ω is
nonempty. According to the surjectivity of resR,R′ , the set res−1

R,R′(A∩Ω) is also nonempty
and it is by construction included in A′ ∩ Ω′, which is a fortiori nonempty. This proves
that A′ is dense in B′ and completes the proof of equivalence (4.8).

Finally, equivalence (4.9) follows from (4.8) by setting B′ equal to Vquad-R′ and B equal
to Vres-R. Corollary 4.6 is proved.
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5 Generic transversality of travelling fronts
5.1 Notation and statement
Notation. Let us recall the notation Vfull and Vquad-R introduced in (4.1) and (4.2). For
every potential function V in Vfull, let Σcrit(V ) and Σmin(V ) denote the set of non-
degenerate critical points and of non-degenerate minimum points of V , respectively, and
let us consider the set

(5.1)
FV =

{
(c, u) ∈ (0,+∞)× Ck+1(R,Rd) : ξ 7→ u(ξ) is a global solution of the
system ü = −cu̇+∇V (u) and there exists (e−, e+) in
Σcrit(V )× Σmin(V ) such that lim

ξ→−∞
u(ξ) = e− and lim

ξ→+∞
u(ξ) = e+

}
.

In other words, (c, u) is in FV if and only if c is a positive quantity and ξ 7→ u(ξ) is the
profile of a front travelling at speed c and connecting a non-degenerate critical point (at
the left end) to a non-degenerate minimum point (at the right end), for the potential V .

Let us take and fix a positive quantity R. The goal of this section is to prove
Proposition 5.1 below, which is a weaker version of statement 1 of Theorem 1.7 since the
potentials under consideration belong to the subspace Vquad-R and not to the full space
Vfull. The reasons for first proving the intended genericity result in this restricted setting
are explained at the beginning of subsection 4.3, and the extension from Vquad-R to Vfull
will be carried out in the last section 9. As a reminder, the transversality of a travelling
front was defined in Definition 1.3.

Proposition 5.1. For every positive quantity R, there exists a generic subset of Vquad-R
such that, for every potential V in this subset, every travelling front (c, u) in FV is
transverse.

5.2 Reduction to a local statement
Let V0 denote a potential function in Vquad-R, and let e−,0 and e+,0 denote a non-degenerate
critical point and a non-degenerate minimum point of V0, respectively. According to
Proposition 2.2 (or simply to the Implicit Function Theorem), there exists a small
neighbourhood νrobust(V0, e−,0, e+,0) of V0 in Vquad-R and two Ck+1-functions e−(·) and
e+(·), defined on νrobust(V0, e−,0, e+,0) and with values in Rd, such that e−(V0) equals
e−,0 and e+(V0) equals e+,0 and, for every V in νrobust(V0, e−,0, e+,0), both e−(V ) and
e+(V ) are critical point of V close to e+,0. The following local generic transversality
statement, which calls upon this notation, yields Proposition 5.1 (as shown below).

Proposition 5.2. For every positive speed c0, there exist a neighbourhood νV0, e−,0, e+,0, c0

of V0 in Vquad-R, included in νrobust(V0, e−,0, e+,0), a neighbourhood CV0, e−,0, e+,0, c0 of c0 in
(0,+∞), and a generic subset νV0, e−,0, e+,0, c0, gen of νV0, e−,0, e+,0, c0 such that, for every V
in νV0, e−,0, e+,0, c0, gen, every front travelling at a speed c in CV0, e−,0, e+,0, c0 and connecting
e−(V ) to e+(V ), for the potential V , is transverse.
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Proof that Proposition 5.2 yields Proposition 5.1. Let us denote by Vquad-R-Morse the
dense open subset of Vquad-R defined by the Morse property (see [24]):

(5.2) Vquad-R-Morse = {V ∈ Vquad-R : all critical points of V are non-degenerate} .

Let V0 denote a potential function in Vquad-R-Morse. Its critical points are non-degenerate
and thus isolated and, since V0 is in Vquad-R, they belong to the open ball BRd(0, R),
so that those critical points are in finite number. Assume that Proposition 5.2 holds.
With the notation of this proposition, let us consider the following three intersections, at
each time over all couples (e−,0, e+,0) with e−,0 a non-degenerate critical point and e+,0
a non-degenerate minimum point of V0:

(5.3)

νV0, c0 = νrobust(V0) ∩
(⋂

νV0, e−,0, e+,0, c0

)
,

CV0, c0 =
⋂
CV0, e−,0, e+,0, c0

and νV0, c0, gen = νrobust(V0) ∩
(⋂

νV0, e−,0, e+,0, c0, gen
)
.

Those are finite intersections, so that νV0, c0 is still a neighbourhood of V0 in Vquad-R,
CV0, c0 is still a neighbourhood of c0 in (0,+∞) and the set νV0, c0, gen is still a generic
subset of νV0, c0 . Let I denote a compact sub-interval of (0,+∞); the three sets defined
above in (5.3) can be constructed likewise for every c0 in I. Since I is compact, it can be
covered by a finite union of sets CV0,c0,i , corresponding to a finite set {c0,1, . . . , c0,p} of
speeds. Again the intersections

νV0, I =
⋂

1≤i≤p

νV0, c0,i and νV0, I, gen =
⋂

1≤i≤p

νV0, c0,i, gen .

are finite and thus νV0, I, gen is still a generic subset of νV0, I , which is a neighbourhood of
V0 in Vquad-R-Morse. By construction, for every potential function V in νV0, I, gen, all fronts
travelling at a speed belonging to I and connecting a critical point of V to a minimum
point of V are transverse. In other words, the set

Vquad-R-Morse-⋔-F-I =
{
V ∈ Vquad-R-Morse : for every travelling front (c, u) in FV ,
if c is in I then (c, u) is transverse

}
,

is locally generic in the sense that Vquad-R-Morse-⋔-F-I ∩ νV0, I is generic in νV0, I . Since
Vquad-R is separable, applying Lemma 4.3 with V = Vquad-R, Vdense = Vquad-R-Morse,
Vgen = Vquad-R-Morse-⋔-F-I and ν = νV0, I shows that the set Vquad-R-Morse-⋔-F-I is generic
in the whole set Vquad-R. As a consequence, the set⋂

q∈N∗
Vquad-R-Morse-⋔-F-[−1/q,q]

is still generic in Vquad-R. For every potential V in this set, all travelling fronts belonging
to FV are transverse, so that this set fulfils the conclusions of Proposition 5.1.

The remaining part of section 5 will thus be devoted to the proof of Proposition 5.2.
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5.3 Proof of the local statement (Proposition 5.2)
5.3.1 Setting

For the remaining part of this section, let us fix a potential function V0 in Vquad-R, a
non-degenerate critical point e−,0 of V0 and a non-degenerate minimum point e+,0 of V0,
differing from e−,0. According to Proposition 2.2, there exist a neighbourhood ν of V0
in Vquad-R, included in νrobust(V0, e−,0, e+,0), a neighbourhood C of c0 in (0,+∞), and a
positive quantity r such that, for every (c, V ) in C × ν, there exist Ck+1-functions

ŵu
loc, c, V : Bu

E−,0(r)→ R2d and ŵs
loc, c, V : Bs

E+,0(r)→ R2d

such that the sets

W u
loc, c, V

(
E−(V )

)
= ŵu

loc, c, V

(
B

u
E−,0(r)

)
and W s

loc, c, V

(
E+(V )

)
= ŵs

loc, c, V

(
B

s
E+,0(r)

)
define a local unstable manifold of E−(V ) and a local stable manifold of E+(V ), respec-
tively (see the conclusions of Proposition 2.2 and equalities (2.9)).

Here is the setting where Sard–Smale Theorem (Theorem 4.2) will be applied (see
Figure 5.1). Let

W u
loc, c, V (E−(V ))

freedom when bu moves

freedom when ξ moves

ŵu
loc, c, V (bu)

Bu
bu

Φu(bu, ξ, c, V )
freedom when c moves

ŵs
loc, c, V (bs)

E+(V )
Φs(bs, c, V )

bs

E−(V ) flow Sc,V (ξ, ·)

Figure 5.1: The function ŵu
loc, c, V (·) maps Bu onto the boundary of the local unstable

manifold W u
loc, c, V

(
E−(V )

)
. A point ŵu

loc, c, V (bu) of this boundary is pushed forward
during a time ξ by the flow Sc,V (ξ, ·) to give the image Φu(bu), which still belongs to the
global unstable manifold of E−(V ). On the other hand, Φs maps Bs onto the boundary
of the local stable manifold W s

loc, c, V (E+). The dependence of Φu on the time ξ and
the point bu provides a number of degrees of freedom equal to the dimension of the
unstable manifold, while an additional degree of freedom is provided by the speed c. This
additional dependence makes the difference between the transversality of a travelling
front as defined in Definition 1.3 and the classical transversality of stable and unstable
manifolds.

Bu = ∂B
u
E−,0(r) , Bs = ∂B

s
E+,0(r) , M = Bu × Bs × R× C ,

Λ = ν , N = (R2d)2 , and W = {(A,B) ∈ N : A = B} .

Notice that W is the diagonal of N . Let us consider the functions

Φu : Bu × R× C × Λ → R2d , (bu, ξ, c, V ) 7−→ Sc,V

(
ξ, ŵu

loc, c, V (bu)
)

and Φs : Bs × C × Λ → R2d , (bs, c, V ) 7−→ ŵs
loc, c, V (bs) .
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For every V in Λ and c in C, the image of Φu(·, ·, c, V ) is the global unstable manifold
W u

c,V

(
E−(V )

)
(except the point E−(V ) itself), whereas the image of Φs(·, c, V ) is the

boundary of the local stable manifold W s
loc, c, V

(
E+(V )

)
. Finally, let

(5.4) Φ :M× Λ→ N , (m,V ) =
(
(bu, bs, ξ, c), V

)
7→
(
Φu(bu, ξ, c, V ),Φs(bs, c, V )

)
.

5.3.2 Additional conditions on ν and r

The main step in the proof of Proposition 5.2 is the construction of a suitable perturbation
W of V (carried out in subsection 5.3.5 below). This construction requires more accurate
conditions on the setting above.

First, since e−,0 and e+,0 differ, we may assume that ν and C and r are small enough
so that, for every V in ν,

(5.5) πpos
(
W u

loc, c, V

(
E−(V )

))
∩ πpos

(
W s

loc, c, V

(
E+(V )

))
= ∅ ,

where πpos is the projection on the first component defined in (2.10).
Next, the following lemma is a more uniform version of assertion 1 of Proposition 3.3,

the key difference being that r can be chosen small enough such that Ionce contains
positive times.

Lemma 5.3. Up to replacing ν by a smaller neighbourhood of V0 in Vquad-R, and
C by a smaller neighbourhood of c0 in (0,+∞), and r by a smaller radius, we may
assume that the following conclusions hold. For every V in ν, every c in C, and every
solution ξ 7→ U(ξ) =

(
u(ξ), u̇(ξ)

)
of system (1.7) such that U(0) belongs to the boundary of

W u
loc, c, V

(
E−(V )

)
(in other words there exists bu in Bu such that U(0) equals ŵu

loc, c, V (bu)),
there exists a a compact interval with nonempty interior Ionce, included in (0,+∞), such
that:

1. the function ξ 7→ |u(ξ)− e−(V )| is increasing on Ionce (so that u|Ionce is a diffeo-
morphism onto its image),

2. and for all ξ∗ in Ionce and ξ in R, u(ξ) = u(ξ∗) implies ξ = ξ∗,

3. and condition (5.5) holds, and in addition,

u(Ionce) ∩ πpos
[
W u

loc, c, V

(
E−(V )

)
∪W s

loc, c, V

(
E+(V )

)]
= ∅ .

Proof. Consider for now that ν and C and r are as in the previous subsection, and, for
some bu in Bu, let us consider the solution ξ 7→ U(ξ) =

(
u(ξ), u̇(ξ)

)
of system (1.7) defined

as:
U(ξ) = Sc0,V0

(
ξ, ŵu

loc, c0, V0(bu)
)

(so that U(0) = ŵu
loc, c0, V0(bu)).

The same arguments as in the proof of statement 1 of Proposition 3.3 yield the following
conclusions. First, there exists a (large, negative) time ξ0(bu) such that the function ξ 7→
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|u(ξ)− e−,0| is increasing on
(
−∞, ξ0(bu)

]
. Then, there exists ξonce(bu) in

(
−∞, ξ0(bu)

)
such that, for every ξ∗ in

(
−∞, ξonce(bu)

]
,

HV

(
U
(
ξ0(bu)

))
< −V

(
u(ξ∗)

)
(which is nothing but inequality (3.6)). Then, it follows from statement 1 of Proposition 3.3
that, for the interval Ionce equal to

[
ξonce(bu)− 2, ξonce(bu)− 1

]
, conclusions 1 and 2 of

Lemma 5.3 hold for the solution U (and they still hold if ξonce(bu) is replaced by a lesser
quantity).

Now, observe that, due to the smooth dependence of the map (−∞, 0] → R2d, ξ 7→
Sc,V

(
ξ, ŵu

loc, c, V (bu)
)

on V and c and bu, this construction can be made uniform with
respect to bu in a (small) open subset Ω of Bu and V in a (small) neighbourhood νΩ
(included in ν) of V0, and to c in a (small) neighbourhood CΩ (included in C) of c0; in
other words, there exists a (sufficiently large negative) quantity ξonce(Ω) such that the
conclusions above hold for all such V and c and bu. Since Bu is compact, it can be
covered by a finite number Ω1 . . .Ωn of such open subsets. Thus, replacing

ν by
n⋂

i=1
νΩi and C by

n⋂
i=1
CΩi ,

and choosing

ξonce = min
i∈{1,...,n}

ξonce(Ωi) and Ionce = [ξonce − 2, ξonce − 1] ,

conclusions 1 and 2 of Lemma 5.3 hold. Up to replacing r by a smaller positive quantity,
we may assume in addition that Ionce belongs to (0,+∞). Finally, again up to replacing
r by a smaller positive quantity, we may assume that conclusion 3 also holds.

5.3.3 Equivalent characterizations of transversality

Let us consider the set
FΛ, C =

{
(V, c, u) : V ∈ Λ and c ∈ C and u is the profile of a front travelling
at speed c and connecting e−(V ) to e+(V ), for the potential V

}
,

and let us denote by F̃Λ, C the set of equivalence classes of FΛ, C for the equivalence
relation: (V, c, u) ∼ (V †, c†, u†) if and only if V = V † and c = c† and u = u† up to a
translation of the time. The aim of this subsection is to prove Proposition 5.5 below,
relating the transversality of the intersection Φ(M× Λ) ∩ W to the transversality of
travelling fronts belonging to FΛ, C . To begin with, the next Proposition 5.4 formalizes
the correspondence between the intersection of the image of Φ with the diagonal W and
the profiles of such travelling fronts.
Proposition 5.4. The map

(5.6) Φ−1(W)→ FΛ, C , (bu, bs, ξ, c, V ) 7→
(
V, c, ξ′ 7→ πpos

(
Sc,V

(
ξ′, ŵu

loc, c, V (bu)
)))

defines a a one-to-one correspondence between Φ−1(W) and the quotient set F̃Λ, C.
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Proof. The image by Φ of a point (bu, bs, ξ, c, V ) of M× Λ belongs to the diagonal W
of N if and only if Φu(bu, ξ, c, V ) = Φs(bs, c, V ). If this last equality holds, the function
u : ξ′ 7→ Φu(bu, ξ′, c, V ) is a solution belonging to the unstable manifold W u

c,V

(
E−(V )

)
such that u(ξ) = Φs(bs, c, V ) belongs to the local stable manifold of E+(V ). Thus u
defines the profile of a front travelling at speed c and connecting e−(V ) to e+(V ). The
map (5.6) is thus well defined.

Now, if ξ 7→ u(ξ) is the profile of a front travelling at a speed c in C for the potential
V and connecting e−(V ) to e+(V ), then, according to Proposition 1.2, the image of
ξ 7→

(
u(ξ), u̇(ξ)

)
belongs to the intersection W u

c,V

(
E−(V )

)
∩W s

c,V

(
E+(V )

)
. As a con-

sequence, this image must cross the boundary of W u
loc, c, V

(
E−(V )

)
at a time ξ− and

the boundary of W s
loc, c, V

(
E+(V )

)
at a time ξ+: there exists bu in Bu and bs in Bs such

that
(
u(ξ−), u̇(ξ−)

)
= ŵu

loc, c, V (bu) and
(
u(ξ+), u̇(ξ+)

)
= ŵs

loc, c, V (bs). By construction,
Φu(bu, ξ+ − ξ−, c, V ) = Φs(bs, c, V ) and thus Φ(bu, bs, ξ+ − ξ−, c, V )) is in W . In addition,
according to the remark at the end of subsection 2.2, the times ξ− and ξ+ at which these
intersections occur are unique (for a given profile ξ 7→ u(ξ)), thus so are the points bu in
Bu and bs in Bs and the time lag ξ+ − ξ−. This completes the proof of this one-to-one
correspondence.

Both corresponding notions of transversality are related as follows.

Proposition 5.5. For every potential function V in Λ, the following two statements are
equivalent.

1. The image of the function M→N , m 7→ Φ(m,V ) is transverse to W.

2. Every profile ξ 7→ u(ξ) of a front travelling at a speed c in C and connecting e−(V )
to e+(V ), for the potential V , is transverse.

Proof. Let us take (m1, V1) in M× Λ such that Φ(m1, V1) is in W, let (bu
1 , b

s
1, ξ1, c1)

denote the point m1 and let ξ 7→ u1(ξ) denote the profile of the corresponding travelling
front. In other words,

for all ξ in R , U1(ξ) = Φu(bu
1 , ξ, c1, V1) , where U1(ξ) =

(
u1(ξ), u̇1(ξ)

)
.

Let us consider the maps

ΓΦ : (Bu × R× C)× (Bs × C)→ R× R2d(
(bu, ξ, cu), (bs, cs)

)
7→
(
cu,Φu(bu, ξ, cu, V1)

)
+
(
cs,Φs(bs, cs, V1)

)
,

and
∆Φ :M→ R2d , (bu, bs, ξ, c) 7→ Φu(bu, ξ, c, V1)− Φs(bs, c, V1) .

and let us write, only for this proof, DΦ for DTm1 MΦ, and similarly DΦu and DΦs and
D(ΓΦ) and D(∆Φ) for the differentials of Φu and Φs and ΓΦ and ∆Φ at (m1, V1) and
with respect to all variables but V .

Lemma 5.6. The following three statements are equivalent.
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(A) The image of DΦ contains a supplementary subspace of the diagonal W of (R2d)2.

(B) The map D(ΓΦ) is surjective.

(C) The map D(∆Φ) is surjective.

Proof of Lemma 5.6. If statement (A) holds, then, for every (α, β) in (R2d)2, there exist
γ in R2d and δm in Tm1M such that

(5.7) (γ, γ) +DΦ · δm = (α, β) ,

so that

(5.8) D(∆Φ) · δm = α− β ,

and statement (C) holds. Conversely, if statement (C) holds, then, for every (α, β)
in (R2d)2, there exists δm in Tm1M such that (5.8) holds, and as a consequence, if
(δbu, δbs, δξ, δc) denotes the components of δm, the vector α−DΦu(δbu, δξ, δc) is equal
to β −DΦs(δbs, δc), and if this vector is denoted by γ, then equality (5.7) holds, and this
shows that statement (A) holds. Thus statements (A) and (C) are equivalent.

Now, if statement (B) holds, then, for every (δc, δU) in R×R2d, there exist (δbu, δξ, δcu)
in Tbu

1
Bu × R2 and (δbs, δcs) in Tbs

1
Bs × R such that

(5.9) (δc, δU) =
(
δcu, DΦu · (δbu, δξ, δcu)

)
+
(
δcs, DΦs · (δbs, δcs)

)
,

so that δc is equal to δcu + δcs and so that

δU = DΦu · (δbu, δξ, δcu) +DΦs · (δbs, δc− δcu)
= DΦu · (δbu, δξ, δcu) +DΦs · (0, δc)−DΦs · (−δbs, δcu) ,

so that finally, if (δbu,−δbs, δξ, δcu) is denoted by δm, then

(5.10) δU = D(∆Φ) · δm+DΦs · (0, δc) .

By choosing δc equal to 0, this shows that every δU in R2d is in the image of D(∆Φ),
which is statement (C). Conversely, if statement (C) holds, then for every (δc, δU) in
R × R2d, there exists δm in Tm1M such that (5.10) holds, and if δcu denotes the last
component of δm and δcs is the difference δc− δcu, then equality (5.9) holds, and this
shows that statement (B) holds. Thus statements (B) and (C) are equivalent.

Continuation of the proof of Proposition 5.5. To conclude, let us see how both transver-
sality statements 1 and 2 can be expressed in terms of the ingredients of Lemma 5.6.
On the one hand, according to Definition 1.3, the travelling front with profile u1(·) and
speed c1 is transverse if and only if the intersection

(5.11)
( ⋃

cu>0
{cu} ×W u

cu,V

(
E−(V )

))
∩
( ⋃

cs>0
{cs} ×W s

cs,V

(
E+(V )

))
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is transverse, in R2d+1, along the set {c1}×U1(R). This transversality can be considered
at a single point, no matter which, of the trajectory U0(R), thus in particular at the point
Φu(bu

1 , ξ1, c1, V1), which is equal to Φs(bs
1, c1, V1). By definition, the sum of the tangent

spaces associated to the manifolds intersected in (5.11) is the image of D(ΓΦ) and the
transversality stated in statement 2 is therefore equivalent to the surjectivity of the map
D(ΓΦ) (statement (B) in Lemma 5.6).

On the other hand, the image of the functionM→ (R2d)2, m 7→ Φ(m,V1) is transverse
at Φ(m1, V1) to the diagonal W of (R2d)2 as stated in 1 if and only if the image of DΦ
contains a supplementary subspace of the diagonal (statement (A) in Lemma 5.6). Thus
Proposition 5.5 follows from Lemma 5.6.

According to Proposition 5.5, Proposition 5.2 follows from the conclusion of Theorem 4.2
applied to the function Φ (see subsection 5.3.6). The next two subsections are devoted
to checking that this function Φ fulfils hypotheses 1 and 2 of this theorem.

5.3.4 Checking hypothesis 1 of Theorem 4.2

Since the vector field (1.6) defining the flow (2.1) is of class Ck, so is the function Φ. It
follows from subsection 2.1 that

dim(Bu) = d−m(e−,0)− 1 and dim(Bs) = d− 1 , thus dim(M) = 2d−m(e−,0) ,

and since the codimension of W in N is equal to 2d,

dim(M)− codim(W) = −m(e−,0) ≤ 0 , thus k > dim(M)− codim(W) ;

in other words, hypothesis 1 of Theorem 4.2 is fulfilled.

5.3.5 Checking hypothesis 2 of Theorem 4.2

Take (m1, V1) in the set Φ−1(W). Let (bu
1 , b

s
1, ξ1, c1) denote the components of m1, and,

for every real quantity ξ, let us write

U1(ξ) =
(
u1(ξ), v1(ξ)

)
= Sc1,V1

(
ξ, ŵu

loc, c1, V1(bu
1)
)
.

The function ξ 7→ u1(ξ) is the profile of a front travelling at speed c1 and connecting
e−(V1) to e+(V1) for the potential V1; and, according to the empty inclusion (5.5), the
quantity ξ1 is positive. Let us write

DΦ , DΦu and DΦs

for the full differentials (with respect to arguments m in M and V in Λ) of the three
functions Φ and Φu and Φs respectively at the points

(
bu

1 , b
s
1, ξ1, c1, V1

)
,
(
bu

1 , ξ1, c1, V1
)

and
(
bs

1, c1, V1
)
. Checking hypothesis 2 of Theorem 4.2 amounts to prove that

(5.12) im(DΦ) + TW = TN .
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To this end, since the subspace R2d × {0R2d} of N is transverse to the diagonal W, it is
sufficient to prove that, for every γ in R2d, the vector

(
γ, 0R2d

)
can be reached by DΦ.

Thus, it is sufficient to prove that, for every γ in R2d, there exist a real quantity ζ and a
function W in Ck+1

b (Rd,R) with a compact support supp(W ) satisfying

(5.13) supp(W ) ⊂ BRd(0, R) ,

such that

DΦu · (0, ζ, 0,W ) = γ ,(5.14)
and DΦs · (0, 0,W ) = 0R2d .(5.15)

To fulfil equality (5.15), it is sufficient to assume that W satisfies the following additional
condition:

(5.16) supp(W ) ∩ πpos
[
W s

loc, c, V

(
E+(V1)

)]
= ∅ ,

where πpos : R2d → Rd is the projection on the first component defined in (2.10) (this
condition ensures that the local stable manifold of E+(V1) is not changed by a perturbation
of V1 in the direction of W , see the second remark at the end of subsection 2.2). For
convenience, we will also ensure that the same is true for the local unstable manifold of
E−(V1), that is:

(5.17) supp(W ) ∩ πpos
[
W u

loc, c, V

(
E−(V1)

)]
= ∅ .

Fulfilling equality (5.14) amounts to prove that the orthogonal complement of the subspace
of the directions of R2d that can be reached by DΦu · (0, ζ, 0,W ) is trivial, i.e. reduced
to {0R2d}. Observe that

DΦu · (0, ζ, 0, 0) = ζ U̇1(ξ1) .
Thus the transversality statement (5.12) is a consequence of the following lemma.

Lemma 5.7 (perturbation of the potential reaching a given direction). For every nonzero
vector (ϕ1, ψ1) in R2d which is orthogonal to U̇1(ξ1), there exists W in Ck+1

b (Rd,R)
satisfying conditions (5.13), (5.16) and (5.17) and the inequality

(5.18) ⟨DΦu · (0, 0, 0,W ) | (ϕ1, ψ1)⟩ ≠ 0 .

Proof of Lemma 5.7. Let (ϕ1, ψ1) denote a nonzero vector orthogonal to U1(ξ1) in R2d,
and let W be a function in Ck+1

b (Rd,R) satisfying the conditions (5.13), (5.16) and (5.17).
Let us consider the linearization of the differential system (1.7), for the potential V1 and
the speed c1, around the solution ξ 7→ U1(ξ):

(5.19) d

dξ

(
δu(ξ)
δv(ξ)

)
=
(

0 id
D2V1

(
u1(ξ)

)
−c1

)(
δu(ξ)
δv(ξ)

)
,

and let T (ξ, ξ′) denote the family of evolution operators obtained by integrating this
linearized differential system between times ξ and ξ′. It follows from condition (5.17) that
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W only affects the part of Φu corresponding to the flow (not on the function ŵu
loc, c1, V1

)
and the variation of constants formula yields that

(5.20) DΦu · (0, 0, 0,W ) =
∫ ξ1

0
T (ξ, ξ1)

(
0,∇W

(
u1(ξ)

))
dξ .

For every time ξ, let T ∗(ξ, ξ1) denote the adjoint operator of T (ξ, ξ1), and let

(5.21)
(
ϕ(ξ), ψ(ξ)

)
= T ∗(ξ, ξ1) · (ϕ1, ψ1) .

According to expression (5.20), inequality (5.18) reads∫ ξ1

0

〈(
0,∇W

(
u1(ξ)

)) ∣∣∣ T ∗(ξ, ξ1) · (ϕ1, ψ1)
〉
dξ ̸= 0 ,

or equivalently

(5.22)
∫ ξ1

0
∇W

(
u1(ξ)

)
· ψ(ξ) dξ ̸= 0 .

Notice that, due to the expression of the linearized differential system (5.19), (ϕ, ψ) is a
solution of the adjoint linearized system

(5.23)
(
ϕ̇(ξ)
ψ̇(ξ)

)
= −

(
0 D2V1

(
u1(ξ)

)
id −c1

)(
ϕ(ξ)
ψ(ξ)

)
.

Our task is thus to construct a function W in Ck+1
b (Rd,R) satisfying (5.13), (5.16),

(5.17) and (5.22). There are two difficulties to overcome.

1. First, as shown by Figure 3.1, the function ξ 7→ u1(ξ) may reach the same value for
different values of the argument ξ, making it difficult to handle the interactions
of the contributions to the integral (5.22) of the perturbation W

(
u1(ξ)

)
at these

different values of ξ.

2. Second, the integral (5.22) depends on the gradient ∇W of the perturbation W
and not on W itself, and this gradient cannot be any function.

These difficulties have already been tackled in several contexts, see [37, 38, 45] (ordinary
differential equations) and [8–10, 26, 27] (partial differential equations). Each time,
some specific arguments have to be found, using the peculiarities and constraints of the
considered system.

In the present case, the following trick will do the job. According to Lemma 5.3, there
exists a closed interval with nonempty interior Ionce, included in (0,+∞), such that

(5.24) u1(Ionce) ∩ πpos
[
W u

loc, c, V

(
E−(V1)

)
∪W s

loc, c, V

(
E+(V1)

)]
= ∅ ,

such that u̇ does not vanish on Ionce, and such that

(5.25) for all ξ∗ in Ionce and ξ in R , u1(ξ) = u1(ξ∗) =⇒ ξ = ξ∗ .
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According to the empty intersection (5.24) and since u1(ξ) is in W s
loc, c, V

(
E+(V1)

)
for

ξ greater than ξ1, the interval Ionce is actually included in (0, ξ1). In view of (5.25),
the image u1(Ionce) of this interval provides a suitable place where the trajectory can
be perturbed without the inconvenience 1 emphasized above. Two cases have to be
considered (plus a third one that will turn out to be empty).

Case 1. There exists a time ξ∗ in Ionce such that ψ(ξ∗) is not collinear to u̇1(ξ∗).
In this case, up to an affine conformal change of coordinate system in Rd, we may

assume that

(5.26) u1(ξ∗) = 0 and u̇1(ξ∗) = ϵ1 and ϵ2 · ψ(ξ∗) ̸= 0 ,

where ϵ1 = (1, 0, . . . , 0) and ϵ2 = (0, 1, 0, . . . , 0) are the two first vectors of the canonical
basis of Rd. Let ρ denote an even function in Ck+1(R, [0, 1]

)
satisfying

ρ(0) = 1 and ρ vanishes on R \ (−1, 1).

Let ε denote a small positive quantity to be chosen later and let us consider the bump
function

ρε : Rd → [0, 1], u 7→ ρ

( |u|
ε

)
.

It follows from this definition that

(5.27) ρε(0Rd) = 1 and supp(ρε) ⊂ BRd(0, ε) and ∥∇ρε∥L∞(Rd,R)d ∈ Oε→0(ε−1) .

Let us define the perturbation W as follows: for
every u in Rd,

W (u) = ρε(u)(ϵ2 · u) ,

see Figure 5.2, so that

(5.28) ∇W (u) = ρε(u)ϵ2 + (ϵ2 · u)∇ρε(u) .

ϵ1

ϵ2

u1(ξ)

Figure 5.2: Graph of W .

It follows from this definition that, if ε is small enough, then, on the one hand conditions
(5.13) (according to inequality (4.3) of Lemma 4.4), and (5.16) and (5.17) (according to
the empty intersection (5.24)) are fulfilled; and, on the other hand, according to (5.25)
and since u̇1(ξ∗) is nonzero, there exists an open interval I∗

ε of R satisfying

(5.29) ξ∗ ∈ I∗
ε and, for every ξ in R, u1(ξ) ∈ BRd(0, ε) ⇐⇒ ξ ∈ I∗

ε .

Let us assume that ε is chosen as such. It follows from (5.29) that the integral in (5.22)
reduces to:

(5.30)
∫

I∗
ε

∇W
(
u1(ξ)

)
· ψ(ξ) dξ .
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As a consequence, if u1(ξ) follows a straight line in the direction of ϵ1 inside the ball
BRd(0, ε), then, for every ξ in I∗

ε ,

∇W
(
u1(ξ)

)
= ρε

(
u1(ξ)

)
ϵ2 ,

so that the integral (5.30) reduces to∫
I∗

ε

ρε
(
u1(ξ)

)
ϵ2 · ψ(ξ) dξ ,

and according to the last property of (5.26), if ε is sufficiently small then this integral
does not vanish, fulfilling inequality (5.22) — and thus also (5.18).

In the general situation where u1(ξ) does not necessarily follow a straight line in the
direction of ϵ1 inside the ball BRd(0, ε), the quantity ϵ2 ·u1(ξ) is in Oε→0(ε2) when ξ is in
I∗

ε , thus it follows from (5.28) and from the last property of (5.27) that, still for ξ in I∗
ε ,

∇W
(
u1(ξ)

)
= ρε

(
u1(ξ)

)
ϵ2 +Oε→0(ε) ,

and since ρε(0Rd) equals 1, it follows from the last property of (5.26) that, if ε is sufficiently
small, then inequality (5.22) is fulfilled again — thus so is inequality (5.18).

If case 1 does not occur, then ψ(ξ) is collinear to u̇1(ξ) for every ξ in Ionce, and since
u̇1(·) does not vanish on Ionce, there exists a C1-function α : Ionce → R such that, for
every ξ in Ionce,

(5.31) ψ(ξ) = α(ξ)u̇1(ξ) .

The next cases 2 and 3 differ according to whether the function α(·) is constant or not.

Case 2. For every ξ in Ionce, equality (5.31) holds for some nonconstant function α(·).
For every perturbation W of the potential, if the support of W is localized enough

around some point of u(Ionce) (so that expression (5.31) holds as soon as ∇W
(
u(ξ)

)
is nonzero), then an integration by parts shows that the integral in inequality (5.22)
becomes

(5.32)
∫
∇W

(
u1(ξ)

)
· ψ(ξ) dξ =

∫
α(ξ)∇W

(
u1(ξ)

)
· u̇1(ξ) dξ = −

∫
α̇(ξ)W

(
u1(ξ)

)
dξ

(with integration domain [0, ξ1] for each of these integrals).
The expression of this last integral shows why the assumption (made in the present

case 2) that α(·) is nonconstant matters. According to this assumption, there exists ξ∗

in Ionce such that α̇(ξ∗) is nonzero. Let us assume (up to an affine change of variable
in R2d) that u1(ξ∗) is equal to 0Rd . Let us define BRd(0, ε) and ρε and I∗

ε as in case 1
above, and let us simply define the perturbation W as

W = ρε .
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As in case 1, for ε sufficiently small, conditions (5.13), (5.16) and (5.17) are fulfilled, and
the integral in inequality (5.22) reduces to the expression (5.30). In view of (5.32), (5.22)
thus becomes

(5.33)
∫

I∗
ε

α̇(ξ)W
(
u1(ξ)

)
dξ ̸= 0 ,

which is fulfilled if ε sufficiently small. It follows that inequality (5.22) is fulfilled, and
thus so is inequality (5.18).

Case 3. For every ξ in Ionce, ψ(ξ) = αu̇(ξ), for some real (constant) quantity α.
In this case, expression (5.32) shows that inequality (5.22) cannot hold if the support

of W is localized around some point of u(Ionce). Fortunately, this third case will lead to
a contradiction (and does therefore actually not happen). Recall that (ϕ, ψ) is a solution
of the adjoint linearized system (5.23). Thus, for every ξ in Ionce, it follows from the
assumption made in this case 3 that

(5.34) ϕ(ξ) = cψ(ξ)− ψ̇(ξ) = cαu̇1(ξ)− αü1(ξ) .

Besides, recall that (ϕ1, ψ1) is orthogonal to U̇1(ξ1) = T (ξ, ξ1) U̇1(ξ). Thus,
(
ϕ(ξ), ψ(ξ)

)
=

T ∗(ξ, ξ1) (ϕ1, ψ1) is orthogonal to U̇1(ξ). According to the expression of ψ and expression
(5.34), this last property reads

(5.35) cα|u̇1|2(ξ)− αü1(ξ) · u̇1(ξ) + αu̇1(ξ) · ü1(ξ) = 0 , which yields cα|u̇1|2(ξ) = 0 .

Since u̇1 does not vanish on (−∞, ξonce), the quantity α must be zero. This yields
ϕ ≡ ψ ≡ 0, and contradicts the assumptions of Lemma 5.7.

In short, case 3 cannot happen and, in both cases 1 and 2, a suitable construction
provides a function W in Ck+1

b (Rd,R) fulfilling the conditions (5.13) and (5.16) to (5.18).
Lemma 5.7 is proved.

5.3.6 Conclusion

Proof of Proposition 5.2. As seen in subsection 5.3.4, hypothesis 1 of Theorem 4.2 is
fulfilled for the function Φ defined in (5.4). Since the conclusion of Lemma 5.7 yields
equality (5.12), hypothesis 2 of this theorem is also fulfilled. The conclusion of this
theorem ensures that there exists a generic subset Λgen of Λ such that, for every V in Λgen,
the function Φ(·, V ) is transverse to the diagonal W of N . According to Proposition 5.5,
it follows that, for every V in Λgen, every profile ξ 7→ u(ξ) of a front travelling at a speed
c in C and connecting e−(V ) to e+(V ), for the potential V , is transverse. In other words
the conclusions of Proposition 5.2 hold with CV0, e−,0, e+,0, c0 = C, νV0, e−,0, e+,0, c0 = ν = Λ
and νV0, e−,0, e+,0, c0, gen = Λgen.

As shown in subsection 5.2, Proposition 5.1 follows from Proposition 5.2.
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6 Generic elementarity of symmetric standing pulses
This section presents strong similarities with the previous section 5. For that reason, the
presentation aims at emphasizing the main differences, while some details or comments
are omitted when they are identical to some already provided in section 5.

6.1 Notation and statements
Notation. For every potential function V in Vfull, let us recall (subsection 5.1) that
Σcrit(V ) denotes the set of non-degenerate critical points of V , and let us consider the set

(6.1)
PV =

{
u ∈ Ck+1(R,Rd) : ξ 7→ u(ξ) is a global solution of the system ü = ∇V (u) ,
and there exists e in Σcrit(V ) such that u(ξ)→ e as ξ → ±∞

}
.

In other words, u is in PV if and only if ξ 7→ u(ξ) is the profile of a standing pulse
connecting a non-degenerate critical point e to itself, for the potential V .

Let us take and fix a positive quantity R. Let us recall that the elementarity of a
symmetric standing pulse was defined in Definition 1.6. The goal of this section is to
prove the following proposition.

Proposition 6.1. There exists a generic subset of Vquad-R such that, for every potential
V in this subset, every symmetric standing pulse in PV is elementary.

Let V0 denote a potential function in Vquad-R, and let e0 denote a non-degenerate critical
point of V0. According to Proposition 2.4 (or simply to the Implicit Function Theorem),
there exists a small neighbourhood νrobust(V0, e0) of V0 in Vquad-R and a Ck+1-function
e(·) defined on νrobust(V0, e0) and with values in Rd, such that e(V0) equals e0 and, for
every V in νrobust(V0, e0), e(V ) is a critical point of V0 close to e0.

Exactly the same arguments as in subsection 5.2 show that Proposition 6.1 is a
consequence of the following local statement.

Proposition 6.2. There exists a neighbourhood νV0, e0 of V0 in Vquad-R, included in
νrobust(V0, e0), and a generic subset νV0, e0, gen of νV0, e0 such that, for every V in νV0, e0, gen,
every symmetric standing front connecting e(V ) to itself is elementary.

The remaining part of section 6 will thus be devoted to the proof of Proposition 6.2.
Let us keep the notation V0 and e0 and νrobust(V0, e0) introduced above. According to
Proposition 2.4, there exist a neighbourhood ν of V0 in Vquad-R, included in νrobust(V0, e0),
and a positive quantity r such that, for every V in ν, there exist Ck-functions

ŵu
loc, V : Bu

E0(r)→ R2d and ŵs
loc, V : Bs

E0(r)→ R2d

such that the sets

W u
loc, V

(
E(V )

)
= ŵu

loc, V

(
B

u
E0(r)

)
and W s

loc, V

(
E(V )

)
= ŵs

loc, V

(
B

s
E0(r)

)
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define a local unstable manifold and a local stable manifold of E(V ), respectively (see
the conclusions of Proposition 2.4 and equalities (2.13)). Observe that the departure sets
B

u
E0(r) of ŵu

loc, V and B
s
E0(r) of ŵs

loc, V do not depend on V . Let

Bu = ∂B
u
E0(r) and Bs = ∂B

s
E0(r) .

According to the expression (2.4) of the eigenvectors of the linear system (2.2),

Eu
V0(E0) ∩ Ssym = {0R2d} and Es

V0(E0) ∩ Ssym = {0R2d} .

It follows that, up to replacing ν by a smaller neighbourhood of V0 in Vquad-R and r by a
smaller positive quantity, for every V in ν,

(6.2) W u
loc, V

(
E(V )

)
∩ Ssym = {E(V )} and W s

loc, V

(
E(V )

)
∩ Ssym = {E(V )} .

6.2 Proof of Proposition 6.2
6.2.1 Application of Theorem 4.2

The setting to which Theorem 4.2 will be applied is as follows. Let

M = Bu × R , Λ = ν , N = R2d and W = Ssym ,

and let us consider the function

(6.3) Φ :M× Λ→ N , (bu, ξ, V ) 7→ SV

(
ξ, ŵu

loc, V (bu)
)
.

If the conclusion of Theorem 4.2 holds within this setting, then there exists a generic
subset Λgen of Λ such that, for every V in Λgen, the image of the function M → N ,
m 7→ Φ(m,V ) is transverse to W.

For a given potential V , the image of m 7→ Φ(m,V ) is nothing but the unstable
manifold of E(V ) (deprived of E), see the proof of Proposition 5.4. According to the
characterizations of the symmetric standing pulses stated in Lemma 3.2, the intersection
of Φ(M, V ) with W = Ssym actually corresponds to the set of symmetric standing pulses.
Moreover, by definition (see Definition 1.6), the elementarity of the symmetric standing
pulses for V is equivalent to the transversality of the intersection of Φ(M, V ) with
W = Ssym. Thus, the conclusion of Theorem 4.2 directly implies Proposition 6.2 with
νV0, e0 = ν = Λ and νV0, e0, gen = Λgen.

It remains to show that, in the setting above, the hypotheses of Theorem 4.2 are
fulfilled.

6.2.2 Checking hypothesis 1 of Theorem 4.2

It follows from subsection 2.1 that dim(Bu) = d−m(e0)− 1. Hence,

dim(M)− codim(W) =
(
d−m(e0)

)
− d = −m(e0) ,

which is less than the positive integer k (the regularity of Φ). Hypothesis 1 of Theorem 4.2
is thus fulfilled.
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6.2.3 Checking hypothesis 2 of Theorem 4.2

Take (m1, V1) in the set Φ−1(W). Let (bu
1 , ξturn) denote the components of m1, and, for

every real quantity ξ, let us write

U1(ξ) =
(
u1(ξ), v1(ξ)

)
= SV1

(
ξ, ŵu

loc, V1(bu
1)
)
.

The function ξ 7→ u1(ξ) is the profile of a symmetric standing pulse, connecting e(V1)
to itself for the potential V1, and the quantity ξturn is the turning time of this standing
pulse (see Definition 1.5). Observe that, according to the first equality of (6.2), this
turning time ξturn must be positive. Let DΦ denote the full differential (with respect to
m and V ) of Φ at the point

(
(bu

1 , ξturn), V1
)
. Hypothesis 2 of Theorem 4.2 follows from

the next Lemma 6.3.

Lemma 6.3 (perturbation of the potential reaching a given direction). For every nonzero
vector ψ1 in Rd, there exists W in Ck+1

b (Rd,R) such that

(6.4) ⟨DΦ · (0,W ) | (0, ψ1)⟩ ≠ 0 ,

and

(6.5) supp(W ) ⊂ BRd(0, R) .

Proof. The proof is similar to that of Lemma 5.7. Let ψ1 be a nonzero vector in Rd. ,
and let W denote a function in Ck+1

b (Rd,R) with a support satisfying the condition

(6.6) supp(W ) ∩ πpos
(
W u

loc, V

(
E(V1)

))
= ∅ .

Let us again use the notation T (ξ, ξ′) to denote the family of evolution operators obtained
by integrating the linearized differential system (5.19) (for c1 equal to 0) between the
times ξ and ξ′. It follows from the empty intersection (6.6) that

(6.7) DΦ · (0,W ) =
∫ ξturn

0
T (ξ, ξturn)

(
0,∇W

(
u1(ξ)

))
dξ .

For every time ξ, let T ∗(ξ, ξturn) denote the adjoint operator of T (ξ, ξturn), and let(
ϕ(ξ), ψ(ξ)

)
= T ∗(ξ, ξturn) · (0, ψ1) .

According to (6.7), condition (6.4) reads∫ ξturn

0

〈(
0,∇W

(
u1(ξ)

)) ∣∣∣ T ∗(ξ, ξturn) · (0, ψ1)
〉
dξ ̸= 0 ,

or equivalently

(6.8)
∫ ξturn

0
∇W

(
u1(ξ)

)
· ψ(ξ) dξ ̸= 0 .
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According to the first equality of (6.2) and due to the Hamiltonian invariance (1.5), for
every (u, v) in W u

loc, V1

(
E(V1)

)
and differing from E(V1), the quantity V1(u) is greater than

V1
(
e(V1)

)
. On the other hand, since u̇1(ξturn) vanishes the quantity V1

(
u1(ξturn)

)
is equal

to V1
(
e(V1)

)
, so that u1(ξturn) does not belong to the (closed) set πpos

(
W u

loc, V1

(
E(V1)

))
.

As a consequence, there exists a time ξ−, less than (and sufficiently close to) ξturn, such
that

(6.9) u1
(
[ξ−, ξturn]

)
∩ πpos

(
W u

loc, V1

(
E(V1)

))
= ∅ .

Observe that, according to Lemma 3.2, the function ξ 7→ u̇1(ξ) does not vanish on
(−∞, ξturn). As in subsection 5.3.5, three cases have to be considered for the construction
of the perturbation W .

Case 1. There exists a time ξ† in (ξ−, ξturn) such that ψ(ξ†) is not collinear to u̇1(ξ†).
In this case, conclusion 3 of Proposition 3.3 provides an open interval Ionce included in

(ξ−, ξturn) and small enough so that, for every ξ∗ in Ionce,
• the vector ψ(ξ∗) is not collinear to u̇1(ξ∗),

• and for every ξ in (−∞, ξturn), if u1(ξ) equals u1(ξ∗) then ξ equals ξ∗.
The same construction as in case 1 of the proof of Lemma 5.7 can then be carried out.
It leads to a perturbation W such that supp(W ) is localized around a point of u(Ionce)
(so that, according to inequality (4.3), inclusion (6.5) holds and according to the empty
intersection (6.9) the empty intersection (6.6) holds) and such that inequality (6.8) holds

— thus so does inequality (6.4).

Case 2. For every ξ in (ξ−, ξturn), ψ(ξ) = α(ξ)u̇1(ξ) with α(·) not constant.
Again, conclusion 3 of Proposition 3.3 provides an open interval Ionce included in

(ξ−, ξturn), small enough so that, for every ξ∗ in Ionce,
• ψ(ξ∗) = α(ξ∗)u̇1(ξ∗),

• and α̇(ξ∗) ̸= 0,

• and for every ξ in (−∞, ξturn), if u1(ξ) equals u1(ξ∗) then ξ equals ξ∗.
The same construction as in case 2 of the proof of Lemma 5.7 can then be carried out.

Case 3. For every ξ in (ξ−, ξturn), ψ(ξ) = αu̇1(ξ), for some real (constant) quantity α.
In case 3 of the proof of Lemma 5.7, the non-nullity of c was mandatory to take

advantage of (5.35). Thus, a new ad hoc argument is now required to preclude the
possibility of the present case 3. Here it is: since u̇1(ξturn) = 0, it follows from the
assumption made in this case that ψ(ξ) goes to 0 as ξ goes to ξturn, so that ψ1 vanishes,
contradicting the assumptions of Lemma 5.7.

In short, case 3 cannot occur and in both other cases, a suitable perturbation W of
the potential can be constructed by following the constructions introduced in the proof
of Lemma 5.7. Lemma 6.3 is proved.
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7 Generic transversality of asymmetric standing pulses
As in the previous section, the proofs of this section present strong similarities with the
ones which have been already detailed and the presentation will only emphasize the main
differences.

7.1 Notation and statements
The same notation as in the previous section 6 will be used all along the present section 7.
Let us take and fix a positive quantity R. The goal of this section is to prove the following
proposition (the transversality of a standing pulse was defined in Definition 1.4).

Proposition 7.1. There exists a generic subset of Vquad-R such that, for every potential
V in this subset, every asymmetric standing pulse in PV is transverse.

Let V0 denote a potential function in Vquad-R, and let e0 denote a non-degenerate critical
point of V0. As already stated in subsection 6.1, there exists a small neighbourhood
νrobust(V0, e0) of V0 in Vquad-R and a Ck+1-function e(·) defined on νrobust(V0, e0) and
with values in Rd, such that e(V0) equals e0 and, for every V in νrobust(V0, e0), e(V ) is a
critical point of V0 close to e0.

Exactly the same arguments as in subsection 5.2 show that Proposition 7.1 is a
consequence of the following local statement.

Proposition 7.2. There exists a neighbourhood νV0, e0 of V0 in Vquad-R, included in
νrobust(V0, e0), and a generic subset νV0, e0, gen of νV0, e0 such that, for every V in νV0, e0, gen,
every asymmetric standing front connecting e(V ) to itself is transverse.

The remaining part of section 7 will thus be devoted to the proof of Proposition 7.2. Let
us consider the same setting as in subsection 6.1 for local stable and unstable manifolds
of E(V ), for V in a small enough neighbourhood ν of V0. In particular, let us assume
that local stable and unstable manifolds are small enough so that equalities (6.2) hold. In
addition, according to the expression (2.4) of the eigenvectors of the linear system (2.2),

Eu
V0(E0) ∩

(
{0Rd × Rd}

)
= {0R2d} and Es

V0(E0) ∩
(
{0Rd × Rd}

)
= {0R2d} .

It follows that there exists a positive quantity rexit such that, for every U in W u
V0

(E0)
differing from E0,

sup
ξ∈R

∣∣πpos
(
SV0(ξ, U)

)
− e0

∣∣ > rexit ;

in other words, if a solution ξ 7→ U(ξ) =
(
u(ξ), u̇(ξ)

)
(for the potential V0) is homoclinic

to E0 then u(ξ) must leave the ball BRd(e0, rexit) before eventually returning into it. Up
to replacing ν by a smaller neighbourhood of V0 in Vquad-R and rexit by a smaller positive
quantity, we may assume that, for every V in ν and for every U in W u

V

(
E(V )

)
differing

from E(V ),

(7.1) sup
ξ∈R

∣∣πpos
(
SV (ξ, U)

)
− e(V )

∣∣ > rexit .
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Finally, up to replacing ν by a smaller neighbourhood of V0 in Vquad-R and r by a smaller
positive quantity, we may assume that, for every V in ν,

(7.2) πpos
(
W u

loc, V

(
E(V )

)
∪W s

loc, V

(
E(V )

))
⊂ BRd

(
e(V ), rexit/4

)
.

7.2 Asymmetric standing pulses of bounded length and away from Ssym

By comparison with symmetric standing pulses considered in section 6, dealing with
asymmetric standing pulses is less straightforward for the following reasons.

1. Symmetric and asymmetric standing pulses connecting a given critical point to itself
may coexist for some potentials, and while symmetric standing pulses will be proved
to be generically elementary (Definition 1.6), only asymmetric standing pulses will
be proved to be generically transverse, see subsection 7.5). As a consequence,
applying Theorem 4.2 to prove the generic transversality of asymmetric standing
pulses requires to exclude, by a way or another, symmetric ones.

2. The transversality of a standing pulse stated in Definition 1.4 is a transversality
inside the submanifold corresponding to the level set of the Hamiltonian for the
energy −V (e). This submanifold depends on V and a direct application of Theo-
rem 4.2 is not possible because its transversality is stated inside a fixed manifold
N . A simple solution to skip this dependence is to fix V close to e0, but with
the consequence that the considered set of potentials V will not be open, so that
applying Theorem 4.2 in this framework will provide local density but not local
genericity of the potentials for which asymmetric pulses are transverse. Local
genericity will actually be obtained through a countable intersection of open and
dense sets, with separate proofs for their openness and their density.

For every V in ν and for every non negative quantity ξ̄, let us consider the set

(7.3)

W u
V

(
E(V ), ξ̄

)
= SV

(
ξ̄,W u

loc, V

(
E(V )

))
=

⋃
U∈W u

loc, V

(
E(V )

)SV (ξ̄, U)

= {E(V )} ∪
⋃

bu∈Bu, ξ∈(−∞,ξ̄]

SV

(
ξ, ŵu

loc, V (bu)
)
.

According to this notation, the set W u
V

(
E(V ), 0

)
reduces to W u

loc, V

(
E(V )

)
and the set

W u
V

(
E(V ), ξ̄

)
increases (for inclusion) with ξ̄ and represents (in some sense) the unstable

manifold of the equilibrium E(V ) “until time ξ̄”. For all positive quantities ξ̄ and ε, let
us consider the set

ν⋔ asym stand pulses(ξ̄, ε) =
{
V ∈ ν : if U0 ∈W u

V

(
E(V ), ξ̄

)
∩ ∂W s

loc, V

(
E(V )

)
and if

dist
(
SV (R, U0) \

[
W u

loc, V

(
E(V )

)
∪W s

loc, V

(
E(V )

)]
,Ssym

)
≥ ε , then the(7.4)

corresponding standing pulse: R→ Rd, ξ 7→ πpos
(
SV (ξ, U0)

)
is transverse

}
.
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In other words, a potential function V belonging to ν is in ν⋔ asym stand pulses(ξ̄, ε) if every
standing pulse connecting W u

loc, V

(
E(V )

)
to W s

loc, V

(
E(V )

)
in a time less than or equal

to ξ̄ while remaining at a distance greater than or equal to ε from Ssym, is transverse.
Observe that, according to equalities (6.2), such a standing pulse is necessarily asymmetric.
Proposition 7.2 follows from the next proposition.

Proposition 7.3. For all positive quantities ξ̄ and ε, the set ν⋔ asym stand pulses(ξ̄, ε) is
open and dense in ν.

Proof that Proposition 7.3 yields Proposition 7.2. It follows from Proposition 7.3 that
the set

(7.5)
⋂

N∈N
ν⋔ asym stand pulses(N, 1/N)

is a generic subset of ν. And, according to the definition of ν⋔ asym stand pulses(·, ·), for
every potential V in this set, every asymmetric standing pulse connecting e(V ) to itself
is transverse.

The remaining of this section is devoted to the proof of Proposition 7.3.

7.3 Openness of ν⋔ asym stand pulses(ξ̄, ε)
For every potential V in ν and for all positive quantities ξ̄ and ε, the manifolds
W u

V

(
E(V ), ξ̄

)
and W s

loc, V

(
E(V )

)
are compact, and those manifolds depend smoothly on

V . Let (Vn)n∈N denotes a sequence of potentials belonging to ν \ ν⋔ asym stand pulses(ξ̄, ε)
and converging to some potential V∞ of ν, and let us prove that, in this case, V∞ is
still outside of ν⋔ asym stand pulses(ξ̄, ε) (this will prove that ν⋔ asym stand pulses(ξ̄, ε) is open
in ν). For every integer n, there exists a non-transverse standing pulse connecting
W u

loc, Vn

(
E(Vn)

)
to W s

loc, Vn

(
E(Vn)

)
in a time less than or equal to ξ̄ while remaining at

a distance greater than or equal to ε from Ssym. As emphasized in (7.3), this pulse is
characterized by a (unique) bu

n in Bu such that its trajectory in R2d crosses the bound-
ary of W u

loc, Vn

(
E(Vn)

)
at the point ŵu

loc, Vn
(bu

n), and a (unique) time ξn in the interval
[0, ξ̄] such that this trajectory crosses the boundary of W s

loc, Vn

(
E(Vn)

)
at the point

SVn

(
ξn, ŵ

u
loc, Vn

(bu
n)
)
. Then,

(i) by compactness (up to considering a subsequence of (Vn)n∈N), we may assume that
(bu

n, ξn) converges to some couple (bu
∞, ξ∞) of Bu× [0, ξ̄], which in turn characterizes

a standing pulse for V∞. Notice here the importance of considering homoclinic
orbits of bounded “length”, otherwise the limit trajectory would not necessarily be
homoclinic to E(V∞).

(ii) Moreover, both conditions in (7.4) are closed conditions, so that the limit standing
pulse also satisfies them.

(iii) Thanks to the “margin” ε with respect to the symmetry subspace Ssym, the limit
standing pulse is necessarily asymmetric.
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(iv) Last, the limit standing pulse is non-transverse since this property is closed.

The limit potential V∞ is thus not in ν⋔ asym stand pulses(ξ̄, ε), and this completes the proof
that ν⋔ asym stand pulses(ξ̄, ε) is open in ν.

7.4 Density of ν⋔ asym stand pulses(ξ̄, ε)
7.4.1 Application of Theorem 4.2

The proof of the density assertion of Proposition 7.3 will again follow from applying
Theorem 4.2 to the following appropriate setting.

Take positive quantities ξ̄ and ε, and a potential V1 in ν. Our goal is to prove that
there exist potentials in ν⋔ asym stand pulses(ξ̄, ε) which are arbitrarily close to V1. Let

(7.6)
M =

{
(bu, ξ) ∈ Bu × (0, ξ̄ + 1) : dist

(
SV1

(
[0, ξ], ŵu

loc, V1(bu)
)
,Ssym

)
> ε/2

and πpos
(
SV1

(
ξ, ŵu

loc, V1(bu)
))
∈ BRd

(
e(V1), rexit/2

)}
.

and let Λ1 denote a neighbourhood of V1 in the set

(7.7)
{
V ∈ ν : V ≡ V1 on the closed ball BRd

(
e(V1), rexit

)}
.

We may assume that this neighbourhood Λ1 is small enough so that, for every V in Λ1
and (bu, ξ) in Bu × (0, ξ̄ + 1), the following two conclusions hold:

1. if (bu, ξ) is not in M, then

(7.8)
either dist

(
SV

(
[0, ξ], ŵu

loc, V (bu)
)
,Ssym

)
< ε

or πpos
(
SV

(
ξ, ŵu

loc, V (bu)
))
̸∈ BRd

(
e(V1), rexit/4

)
;

2. if (bu, ξ) is in M, then

(7.9)
dist

(
SV

(
[0, ξ], ŵu

loc, V (bu)
)
,Ssym

)
> 0 ,

and πpos
(
SV

(
ξ, ŵu

loc, V (bu)
))
∈ BRd

(
e(V1), rexit

)
.

For V in Λ1, let

(7.10)
N = H−1

V

(
HV

(
E(V )

))
∩
(
BRd

(
e(V ), rexit

)
× Rd) \ {E(V )}

and W = ∂W s
loc, V

(
E(V )

)
= ŵs

loc, V (Bs) .

Observe that M, N , and W are submanifolds of R2d and since Λ1 is included in ν, it
follows from inclusion (7.2) that W is included in N . In addition, according to the
condition (7.7) on V and to the inclusion (7.2), M, N and W do actually not depend
on the potential V in Λ1. As already explained in the second remark of the beginning
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of subsection 7.2, this is mandatory to provide a setting where Theorem 4.2 applies. It
follows that, according to (7.9), we may consider the function

(7.11) Φ :M× Λ1 → N , (bu, ξ, V ) 7→ SV

(
ξ, ŵu

loc, V (bu)
)
,

which is well defined. Notice that, even if M contains only couples (bu, ξ) for which,
for V in Λ1, the position u(ξ) = πpos

(
SV

(
ξ, ŵu

loc, V (bu)
)

of the corresponding solution
is inside BRd

(
e(V1), rexit

)
(second condition of (7.9)), it follows from the property (7.1)

defining rexit that this position u(·) exits BRd

(
e(V1), rexit/2

)
at other times, and this will

provide a suitable place to perturb the potential. In other words, it will be possible to
modify Φ(bu, ξ, V ) by perturbing V outside of BRd

(
e(V1), rexit

)
, even if the arrival set of

Φ and its image are restricted to this ball.

Proposition 7.4. For every potential function V in Λ1, if the image of the functionM→
N , V 7→ Φ(m,V ) is transverse to W, then V belongs to the set ν⋔ asym stand pulses(ξ̄, ε).

Proof. Let us consider V in Λ1 and U0 in W u
V

(
E(V ), ξ̄

)
∩ ∂W s

loc, V

(
E(V )

)
satisfying

inequality (7.4). According to the definition (7.3) of W u
V

(
E(V ), ξ̄

)
, the point U0 is of the

form (u, u̇)(ξ) with u a standing pulse such that (u, u̇)(0) = ŵu
loc, V (bu) and ξ in [0, ξ̄].

According to the inclusion (7.2) satisfied by the local manifolds and the definition of
ν⋔ asym stand pulses(ξ̄, ε), the implication (7.8) shows that (bu, ξ) belongs to M. Thus, the
image Φ

(
(bu, ξ), V

)
is well defined, and it remains to notice that the transversality of

Φ with W exactly corresponds to the definition Definition 1.4 of the transversality of a
standing pulse. It thus follows from the definition of the set ν⋔ asym stand pulses(ξ̄, ε) that
V belongs to this set.

The remaining part of the proof follows exactly the same arguments as in sections 5
and 6, except for the exclusion of “case 3”, which will require a slightly different ad hoc
argument.

7.4.2 Checking hypothesis 1 of Theorem 4.2

By contrast with the previous sections, the ambient space N is now a level set of dimension
2d − 1 (instead of R2d); however the computation is similar. Indeed, it follows from
subsection 2.1 that, on the one hand, dim(M) = dim

(
∂B

u
E0(r)

)
+ 1 = d −m(e0) and,

on the other hand, dim(W) = d − m(e0) − 1 so that codim(W) = d + m(e0). Thus
hypothesis 1 of Theorem 4.2 is fulfilled.

7.4.3 Checking hypothesis 2 of Theorem 4.2

Take (m2, V2) in the set Φ−1(W). Let (bu
2 , ξ2) denote the components of m2, and, for

every real quantity ξ, let us write

U2(ξ) =
(
u2(ξ), v2(ξ)

)
= SV2

(
ξ, ŵu

loc, V2(bu
2)
)
.

The function ξ 7→ u2(ξ) is the profile of a standing pulse, connecting e(V2) to itself, for
the potential V2, and, according to (6.2) and (7.9), this standing pulse is asymmetric. In
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addition, according to (7.1) and (7.2), the quantity ξ2 is positive. Let DΦ denote the
full differential (with respect to m and V ) of Φ at the point (m2, V2

)
. Hypothesis 2 of

Theorem 4.2 follows from the next Lemma 7.5.

Lemma 7.5 (perturbation of the potential reaching a given direction). For every nonzero
vector (ϕ0, ψ0) ∈ Rd ×Rd belonging to TU2(ξ2)N , there exists W in Ck+1

b (Rd,R) such that

(7.12) ⟨DΦ · (0,W ) | (ϕ0, ψ0)⟩ ≠ 0 ,

and such that W satisfies the condition

(7.13) supp(W ) ∩BRd

(
e(V2), rexit

)
= ∅ .

Proof. The proof is similar to those of Lemmas 5.7 and 6.3. Let (ϕ2, ψ2) be a nonzero
vector in Rd ×Rd belonging to TU2(ξ2)N . Let W be a function in Ck+1

b (Rd,R), and let us
assume that condition (7.13) holds. Let us again use the notation T (ξ, ξ′) to denote the
family of evolution operators obtained by integrating the linearized differential system
(5.19) (for the potential function V2, and for a speed equal to 0) between the times ξ and
ξ′. For every time ξ, let T ∗(ξ, ξ2) denote the adjoint operator of T (ξ, ξ2), and let(

ϕ(ξ), ψ(ξ)
)

= T ∗(ξ, ξ2) · (ϕ2, ψ2) .

Using the same computations as in Lemmas 5.7 and 6.3, it follows from the inclusion
(7.2) and the empty intersection (7.13) that inequality (7.12) reads

(7.14)
∫ ξ2

0
∇W

(
u2(ξ)

)
· ψ(ξ) dξ ̸= 0 .

Observe that, according to inequality (7.1), there exists a (nonempty) open interval I
included in (0, ξ2) and such that, for every ξ in I, u2(ξ) ̸∈ BRd

(
e(V2), rexit

)
. According

to Lemma 3.2, the function ξ 7→ u̇2(ξ) does not vanish on R, thus a fortiori neither on I.
As in subsections 5.3.5 and 6.2.3, three cases must be considered for the construction of
the perturbation W .

Case 1. There exists a time ξ† in I such that ψ(ξ†) is not collinear to u̇2(ξ†).
The same construction as in the first case of the proof of Lemma 5.7 (or as in the first

case of the proof of Lemma 6.3) can then be carried out.

Case 2. For every ξ in I, ψ(ξ) = α(ξ)u̇2(ξ) with α(·) not constant.
Again, the same construction as in the second case of the proof of Lemma 5.7 (or as in

the first case of the proof of Lemma 6.3) can then be carried out.

Case 3. For every ξ in (ξ−, ξturn), ψ(ξ) = αu̇2(ξ) for some real (constant) quantity α.
As in subsections 5.3.5 and 6.2.3, this third case has to be precluded by a specific

argument. It follows from the adjoint linearized system (5.23) satisfied by ϕ and ψ (with
c0 equal to zero) that, for every ξ in I,

(7.15) ϕ(ξ) = −ψ̇(ξ) = −αü2(ξ) = −α∇V2(u2(ξ)) .
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Besides, since (ϕ2, ψ2) was assumed to belong to TU2(ξ2)N , it follows that
(
ϕ(ξ), ψ(ξ)

)
belongs to TU2(ξ)H

−1
V2

(
HV2

(
E(V2)

))
for all ξ in R (the level set of the energy is invariant

by the flow). The orthogonal space of the tangent space to the level set N is a line
spanned by the gradient of the Hamiltonian ∇HV2(U2) = (−∇V2(u2(ξ)), u̇2(ξ)). Thus,
the condition (ϕ2, ψ2) ∈ TU2(ξ2)N reads

(ϕ2, ψ2) ⊥ (−∇V2(u2(ξ)), u̇2(ξ)) , that is α
(
∇V2(u2)2 + u̇2

2
)

= 0 .

This implies α = 0 and thus (ϕ, ψ) ≡ (0, 0), a contradiction with the assumptions of
Lemma 7.5.

In summary, the third case cannot occur and, in both other cases, the same constructions
as in the proofs of Lemmas 5.7 and 6.3 can be carried out, leading to a perturbation
W satisfying the empty intersection (7.13) and inequality (7.14) (and therefore also
inequality (7.12)).

7.4.4 Conclusion

Proof of Proposition 7.3. To complete the proof of Proposition 7.3 amounts to prove
that the set ν⋔ asym stand pulses(ξ̄, ε) is dense in ν. It follows from Lemma 7.5 that both
hypotheses 1 and 2 of Theorem 4.2 are fulfilled for the function Φ defined in (7.11). The
conclusion of this theorem ensures that there exists a generic subset Λgen of Λ1 such that,
for every V in Λgen, the function Φ(·, V ) is transverse toW . According to Proposition 7.4,
the set ν⋔ asym stand pulses(ξ̄, ε) is a superset of Λgen; in particular, there exists potentials
in ν⋔ asym stand pulses(ξ̄, ε) that are arbitrarily close to V1. Since V1 was any potential in ν,
this proves the intended density. Proposition 7.3 is proved.

As shown at the end of subsection 7.2, Proposition 7.3 implies Proposition 7.2, which
in turn implies Proposition 7.1.

7.5 Transversality of symmetric standing pulses?
As it stands, the proof of the generic transversality of asymmetric standing pulses provided
above does not directly apply to symmetric ones. Indeed, for a symmetric standing pulse
ξ 7→ u(ξ), with (say) turning time 0, the condition corresponding to (5.22) or (7.14) reads∫ ξ̄

−ξ̄
∇W

(
u(ξ)

)
· ψ(ξ) dξ ̸= 0 or equivalently

∫ 0

−ξ̄
∇W

(
u(ξ)

)
·
(
ψ(ξ) + ψ(−ξ)

)
dξ ̸= 0 ,

where ξ̄ is a large enough positive quantity. This condition cannot be fulfilled if the
function ξ 7→ ψ(ξ) is odd and, due to the symmetry of the adjoint linear equation

ψ̈(ξ) = D2V
(
u(ξ)

)
· ψ(ξ) ,

this happens as soon as ψ(0) vanishes. This case, corresponding to the degeneracy of the
first order derivative with respect to perturbations of the potential, can therefore not be
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excluded. Possibly, the second order derivative could be investigated but the computation
goes beyond the scope of this paper. For that reason, the generic transversality of
symmetric standing pulses is not established here and remains, to our best knowledge,
an open question.

8 Generic non-existence of standing fronts
Let us take and fix a positive quantity R. Due to the Hamiltonian invariance, precluding
the existence of standing fronts is a simple task.

Proposition 8.1. There exists a dense open subset of Vquad-R such that, for every
potential V in this subset, there is no standing front for this potential.

Proof. Let us consider the dense open subset Vquad-R-Morse of Vquad-R containing the
functions of Vquad-R satisfying the Morse property (this notation was introduced in (5.2)),
and let V denote a potential in Vquad-R-Morse. The number of critical points of such a
potential is finite, and, up to applying to V an arbitrarily small localized perturbation
around each of these critical points, it may be assumed that each of these critical points
belongs to a level set of V containing no other critical point. This property is open and
dense in Vquad-R-Morse, thus in Vquad-R, and, since the Hamiltonian HV defined in (1.4)
is constant along the profile of a standing front, it prevents the existence of a standing
front. Proposition 8.1 is proved.

9 Proof of the main results
Propositions 5.1, 6.1, 7.1 and 8.1 show the genericity of the properties considered in
Theorem 1.7, but only inside the space Vquad-R of the potentials that are quadratic past
some radius R. Working in this last space is easier because it is a second countable
Banach space and the flows associated to its potentials are global. In this section,
the arguments will be adapted to obtain the genericity of the same properties in the
space Vfull = Ck+1(Rd,R) of all potentials, endowed with the extended topology (see
subsection 1.4).

9.1 Proof of conclusion 1 of Theorem 1.7
Let us recall the notation FV introduced in (5.1), and, for every positive quantity R, let
us consider the set

(9.1) FV,R =
{

(c, u) ∈ FV : sup
ξ∈R
|u(ξ)| ≤ R

}

of the travelling fronts of FV (invading a minimum point of V ) with a profile contained
in BRd(0, R). As shown thereafter, the following proposition yields conclusion 1 of
Theorem 1.7.
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Proposition 9.1. For every positive quantity R, there exists a generic subset Vfull-⋔-F-R
of Vfull such that, for every potential function V in this subset, V is a Morse function
and every travelling front (c, u) in FV,R is transverse.

Proof that Proposition 9.1 yields conclusion 1 of Theorem 1.7. The set⋂
R∈N∗

Vfull-⋔-F-R ,

is a countable intersection of generic subsets of Vfull and is therefore again a generic
subset of Vfull. For every potential function V in this set, V is a Morse function and every
travelling front in FV belongs to FV,R as soon as R is large enough, and is therefore,
according to the property of the set Vfull-⋔-F-R stated in Proposition 9.1, transverse.
Statement 1 of Theorem 1.7 is proved.

The aim of subsection 9.1 is thus to prove Proposition 9.1. Before doing so, here are
a few preliminary comments. Let R be a positive quantity. Proposition 5.1 states that
there exists a generic subset Vquad-R-⋔-F of Vquad-R such that, for every potential Vquad in
this subset, all travelling fronts in FVquad are transverse. However, due to the constraint
at |u| = R, the extension to Rd of all the truncations of these potentials in BRd(0, R) is
meagre. The idea is to take some margin: consider the generic subset Vquad-(R + 1)-⋔-F of
Vquad-(R+1) and, using the notation introduced in definition (4.6), consider the set

(9.2) res−1
R,∞ ◦ resR,(R+1)(Vquad-(R + 1)-⋔-F ) .

For every potential Vfull in this set, all travelling fronts in FVfull,R are transverse; indeed,
this property depends only on the values of Vfull inside the ball BRd(0, R), where Vfull
must be identically equal to some potential Vquad of Vquad-(R + 1)-⋔-F . It is tempting to
look for an extension of Corollary 4.6 to generic subsets, which would yield the genericity
of the set (9.2). Unfortunately, this corollary definitely applies to open dense subsets, and
not to generic ones. Pursuing further in this direction, observe that, since Vquad-(R + 1)-⋔-F
is a generic subset of Vquad-(R+1), there exists a countable family (ON )N∈N of dense open
subsets of Vquad-(R+1) such that

(9.3)
⋂

N∈N
ON ⊂ Vquad-(R + 1)-⋔-F ,

leading to

res−1
R,∞ ◦ resR,(R+1)

( ⋂
N∈N
ON

)
⊂ res−1

R,∞ ◦ resR,(R+1)(Vquad-R + 1-⋔-F ) .

According to general properties of functions, the following inclusion holds:

(9.4) resR,(R+1)
( ⋂

N∈N
ON

)
⊂
⋂

N∈N
resR,(R+1)(ON ) .

52



If this inclusion was an equality, then, still according to general properties of functions,
the following equality would hold:

res−1
R,∞ ◦ resR,(R+1)

( ⋂
N∈N
ON

)
=
⋂

N∈N
res−1

R,∞ ◦ resR,(R+1)(ON ) ,

and, since according to Corollary 4.6 the right-hand side of this equality is a countable
intersection of dense open subsets of Vfull, the intended conclusion that the set (9.2) is
generic in Vfull would follow. Unfortunately, Proposition 5.1 provides no clue about the
sets ON and a strict inclusion in (9.4) cannot be precluded. However, let us make the
following key observation, which enlightens the remaining of the proof: if the property
“a given potential V belongs to ON ” only depends on the values of V inside the ball
BRd(0, R), then inclusion (9.4) is actually an equality.

The main step in the proof is thus to construct dense subsets ON of Vquad-(R+1) such
that:

1. for every potential Vquad in ⋂nON , every travelling front in FV,R is transverse,

2. and the property “a given potential V belongs to ON ” only depends on the values
of V inside the ball BRd(0, R).

Proof of Proposition 9.1. As above, let R denote a positive quantity. Let V0 denote a
potential function in Vquad-(R+1), let e−,0 and e+,0 denote a non-degenerate critical point
and a non-degenerate minimum point of V0 and let c0 denote a positive speed. Let us
consider the neighbourhoods νV0, e−,0, e+,0, c0 of V0 in Vquad-(R+1) and CV0, e−,0, e+,0, c0 of c0 in
(0,+∞) provided by Proposition 5.2 for these objects. Recall that those neighbourhoods
are the ones from which, for every V in νV0, e−,0, e+,0, c0 and every c in CV0, e−,0, e+,0, c0 , the
functions ŵu

loc, c, V , the sets M and W and the functions Φu and Φs and Φ were defined
in subsection 5.3. Up to replacing the neighbourhood νV0, e−,0, e+,0, c0 by its interior, we
may assume that it is open in Vquad-(R+1). Similarly, we may assume that CV0, e−,0, e+,0, c0

is compact in R. Let N denote a non negative integer and let us consider the set

(9.5) MN = Bu × Bs × (−∞, N ]× CV0, e−,0, e+,0, c0 =
{
(bu, bs, ξ, c) ∈M : ξ ≤ N

}
.

As in subsection 5.3, let us define N as (R2d)2, and let us consider the set
(9.6)
OV0, e−,0, e+,0, c0, N =

{
V ∈ νV0, e−,0, e+,0, c0 : Φ

(
MN , V

)
is transverse to W in N

}
.

As shown in Proposition 5.5, this set OV0, e−,0, e+,0, c0, N is made of the potential functions
V in νV0, e−,0, e+,0, c0 such that every profile ξ 7→ u(ξ) of a front travelling at a speed
c in CV0, e−,0, e+,0, c0 and connecting e−(V ) to e+(V ) for this potential, and connecting
∂W u

loc, c, V

(
E−(V )

)
to ∂W s

loc, c, V

(
E+(V )

)
in a time less than or equal to N , is transverse.

Lemma 9.2. The set OV0, e−,0, e+,0, c0, N is a dense open subset of νV0, e−,0, e+,0, c0.

Proof of Lemma 9.2. The density is a direct consequence of Proposition 5.2 which states
that, generically with respect to V in νV0, e−,0, e+,0, c0 , the whole image of M by the map
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m 7→ Φ(m,V ) is transverse toW . To prove the openness, let us argue as in subsection 7.3.
Let us consider a sequence (Vn)n∈N of potentials in νV0, e−,0, e+,0, c0 converging to a potential
V∞ in νV0, e−,0, e+,0, c0 , and such that, for every n in N, there exists mn = (bu

n, b
s
n, ξn, cn)

in MN such that the set Φ(MN , Vn) is not transverse to W at Φ(mn, Vn). Observe that,
according to the empty intersection (5.5), ξn must be positive. As a consequence, by
compactness of Bu × Bs × [0, N ]× CV0, e−,0, e+,0, c0 , we may assume that mn converges, as
n goes to +∞, to a point m∞ of MN . Then, by continuity, the image Φ(MN , V∞) is
not transverse to W at Φ(m∞, V∞). This proves that νV0, e−,0, e+,0, c0 \ OV0, e−,0, e+,0, c0, N

is closed in νV0, e−,0, e+,0, c0 , and yields the intended conclusion.

Continuation of the proof of Proposition 9.1. Let us make the additional assumption
that the potential V0 is a Morse function. Then, the set of critical points of V0 is finite
and depends smoothly on V in a neighbourhood νrobust(V0) of V0. Intersecting the
sets νV0, e−,0, e+,0, c0 and CV0, e−,0, e+,0, c0 and OV0, e−,0, e+,0, c0, N above over all the possible
couples (e−,0, e+,0) in Σcrit(V0)× Σmin(V0) provides an open neighbourhood νV0, c0 of V0,
a compact neighbourhood CV0, c0 of c0 and an open dense subset OV0, c0, N of νV0, c0 such
that, for all V ∈ OV0, c0, N , every front travelling at speed c ∈ CV0, c0 and connecting the
local (un)stable manifolds of two points (e−, e+) in Σcrit(V )×Σmin(V ) within the “time”
N , is transverse.

Denoting by int(A) the interior of a set A and using the notation of definition (4.6),
let us introduce the sets

ν̃V0, c0 = res−1
R,∞ ◦ resR,(R+1)(νV0, c0) ,(9.7)

and ÕV0, c0, N = res−1
R,∞ ◦ resR,(R+1)

(
OV0, c0, N

)
,(9.8)

and Õext
V0, c0, N = ÕV0, c0, N ⊔ int

(
Vfull \ ν̃V0, c0

)
.(9.9)

In other words, a potential Ṽ of Vfull is in ν̃V0, c0 (in ÕV0, c0, N ) if it coincides, inside the
ball BRd(0, R), with a potential Vquad quadratic past R+ 1 and belonging to νV0, c0 (to
OV0, c0, N ). The last set Õext

V0, c0, N is an extension of the open dense subset ÕV0, c0, N of
ν̃V0, c0 , obtained by adding all potentials outside (the closure of) ν̃V0, c0 .

Lemma 9.3. The set Õext
V0, c0, N is a dense open subset of Vfull.

Proof of Lemma 9.3. According to Corollary 4.6, the set ν̃V0, c0 is an open subset of Vfull,
and the set ÕV0, c0, N is a dense open subset of ν̃V0, c0 . Thus, according to its definition
(9.9), the set Õext

V0, c0, N is a dense open subset of Vfull.

Continuation of the proof of Proposition 9.1. Since Vquad-(R+1) is a separable space, it is
second-countable. Thus Vquad-(R+1)-Morse × (0,+∞) is also second-countable and can be
covered by a countable number of products νV0, c0 × CV0, c0 . With symbols, there exists a
countable family (V0,i, c0,i)i∈N of elements of Vquad-(R+1)-Morse × (0,+∞) so that

(9.10) Vquad-(R+1)-Morse × (0,+∞) =
⋃
i∈N

νV0,i, c0,i × CV0,i, c0,i .
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Notice here the importance of first working with Vquad-(R+1), which is second-countable,
instead of the full space Vfull, which is not. Let us consider the set

(9.11) Vfull-⋔-F-R = Vfull-Morse ∩

 ⋂
(i,N)∈N2

Õext
V0,i, c0,i, N

 ,

where Vfull-Morse is the set of potentials in Vfull which are Morse functions.

Lemma 9.4. For every potential Ṽ in the set Vfull-⋔-F-R, every travelling front (u, c) in
FṼ ,R is transverse.

Proof of Lemma 9.4. Let Ṽ be a potential function in the set Vfull-⋔-F-R and (c, u) be
a travelling front in FṼ ,R. According to Lemma 4.5, the map resR,(R+1) is surjec-
tive, thus there exists a potential function V in Vquad-(R+1) such that V belongs to
res−1

R,(R+1) ◦ resR,∞(Ṽ ) (in other words V coincides with Ṽ on BRd(0, R)). Since Ṽ is a
Morse function, the critical points of V in BRd(0, R) are degenerate, and up to applying
to V a small perturbation in BRd(0, R+ 1) \BRd(0, R), we may assume that its critical
point in this set are also nondegenerate, so that V is actually also a Morse function.
Since Ṽ coincides with V inside BRd(0, R) and since the travelling front u is contained
in this ball, it is also a travelling front of V and it is sufficient to show that (u, c) is a
transverse travelling front for V .

According to equality (9.10), there exists an integer i such that V belongs to νV0,i, c0,i

and c belongs to CV0,i, c0,i . Then, since V and Ṽ coincide on BRd(0, R), Ṽ belongs to
ν̃V0,i, c0,i (definition (9.7)). Besides, it follows from definition (9.11) that, for every integer
N , Ṽ belongs to Õext

V0,i, c0,i, N ; and since V is also in ν̃V0,i, c0,i , it follows from definition
(9.9) that Ṽ actually belongs to ÕV0,i, c0,i, N .

Let us denote by e− and e+ the critical points of V (and Ṽ ) approached by u(ξ) as
ξ goes to −∞ and +∞ respectively. According to the definition of the neighbourhood
νV0,i, c0,i of V0,i, there exists a (unique) critical point e−,0,i and a (unique) minimum
point e+,0,i of V0,i such that, if W 7→ e−,i(W ) and W 7→ e+,i(W ) denote the functions
which “follow” these critical points for W in νrobust(V0,i), then e− equals e−,i(V ) and e+
equals e+,i(V ). Let us keep the notation M and Φ to denote the objects defined as in
subsection 5.3 for the neighbourhoods νV0,i, e−,0,i, e+,0,i, c0,i of V0,i and CV0,i, e−,0,i, e+,0,i, c0,i of
c0,i. The travelling front (c, u) therefore corresponds to an intersection between Φ(M, V )
and W, which occurs at a certain point m of M and thus for a certain (positive) time ξ
which is the time that the profile of this travelling front takes to go from the border of
the local unstable manifold of e− to the border of the local stable manifold of e+.

Let N denote an integer greater than or equal to ξ. Since Ṽ belongs to ÕV0,i, c0,i, N ,
there must exist (according to definition (9.8)) a potential VN in νV0,i, c0,i identically
equal to Ṽ (and V ) on the ball BRd(0, R) and belonging to OV0,i, c0,i, N . Again, (c, u)
is a travelling front for VN and the previous correspondence between this front and an
intersection between Φ(M, VN ) and W still holds. Since VN belongs to OV0,i, c0,i, N , the
aforementioned intersection must be transverse, leading to the transversality of the front
(u, c) for VN .
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Again, the three potentials Ṽ and V and VN considered here have the same values
along the profile of the travelling front (u, c). Thus, this front is also transverse for Ṽ .

End of the proof of Proposition 9.1. The set Vfull-⋔-F-R defined in (9.11) is a countable
intersection of dense open subsets of Vfull, and is therefore a generic subset of Vfull. In
view of Lemma 9.4, Proposition 9.1 is proved.

9.2 Proof of conclusions 2 and 3 of Theorem 1.7
The proof of conclusions 2 and 3 of Theorem 1.7 is similar to the proof of conclusion
1 provided in the previous subsection. As a consequence, only the core arguments will
be reproduced here. Let us recall the notation PV introduced in (6.1), and, for every
positive quantity R, let us consider the set

PV,R =
{
u ∈ PV : sup

ξ∈R
|u(ξ)| ≤ R

}
.

As shown in the previous subsection for Proposition 9.1 and conclusion 1 of Theorem 1.7,
the following proposition yields conclusions 2 and 3 of of Theorem 1.7.

Proposition 9.5. For every positive quantity R, there exists a generic subset Vfull-⋔-P-R
of Vfull, included in Vfull-Morse, such that, for every potential function V in Vfull-⋔-P-R,
every standing pulse u in PV,R is: elementary if this standing pulse is symmetric, and
transverse if this standing pulse is asymmetric.

Proof. Let R denote a positive quantity and let V0 denote a Morse potential function in
Vquad-(R+1). Let e0 denote a non-degenerate critical point of V0 and let us consider an
open neighbourhood νV0, e0 of V0 in Vquad-(R+1) included in both neighbourhoods provided
by Propositions 6.2 and 7.2. For every N in N∗ and for every V in νV0, e0 , let us consider
the subset OV0, e0, N of νV0, e0 defined as the set of potentials V in νV0, e0 satisfying the
following two conditions:

1. every symmetric standing pulse of V , connecting ∂W u
loc, V

(
E(V )

)
to the symmetric

subspace Ssym in a time less than or equal to N , is elementary;

2. and every asymmetric standing pulse of V , connecting ∂W u
loc, V

(
E(V )

)
to

∂W s
loc, V

(
E(V )

)
in a time less than or equal to N while remaining at a distance

greater than or equal to 1/N of Ssym, is transverse.

The same arguments as in the proof of Lemma 9.2 show that the set OV0, e0, N is a dense
open subset of νV0, e0 : the density follows from Propositions 6.2 and 7.2 and, regarding the
openness, the key new ingredient is the condition that every asymmetric standing pulse
remains at a distance at least 1/N of Ssym. Indeed, a sequence of asymmetric standing
pulses (as considered in the proof) may (generally speaking) approach a symmetric
standing pulse which may be non-transverse even if it is elementary. Staying away from
Ssym precludes this possibility.
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As on page 54, let us consider the intersections of the previous sets over all the critical
points of V0:

νV0 =
⋂

e0∈Σcrit(V0)
νV0, e0 and OV0, N =

⋂
e0∈Σcrit(V0)

OV0, e0, N .

The set νV0 is still open in Vquad-(R+1) and the set OV0, N is still a dense open subset of
νV0 . As in definitions (9.7) to (9.9), these sets can be extended as follows:

ν̃V0 = res−1
R,∞ ◦ resR,(R+1)(νV0) ,

ÕV0, N = res−1
R,∞ ◦ resR,(R+1)

(
OV0, N

)
,

and Õext
V0, N = ÕV0, N ⊔ int

(
Vquad-(R+1) \ ν̃V0

)
.

The end of the proof follows the same arguments as the ones of subsection 9.1. The set
Vquad-(R+1)-Morse can be covered by a countable number of subsets ν̃V0,i and the set

Vfull-⋔-P-R = Vfull-Morse ∩

 ⋂
(i,N)∈N2

Õext
V0,i, N


is the generic subset the existence of which was stated in Proposition 9.5.

9.3 Proof of conclusion 4 of Theorem 1.7
Let us consider the set OR of potentials V of Vfull such that all the critical points of
V in BRd(0, R) are non-degenerate and have different values. The same arguments as
in Proposition 8.1 show that this set OR is an open dense subset of Vfull, so that the
intersection ∩R∈N∗OR is generic in Vfull. Since the critical points connected by a standing
front must belong to the same level set of the potential, no standing front can exist for a
potential in this intersection.

9.4 Proof of conclusions 1 to 4 of Corollary 1.1
Let V be a potential function belonging to the generic subset provided by Theorem 1.7,
let (c, u) be a travelling front in FV , and let e− and e+ denote the critical point and the
minimum point of V connected by this travelling front. According to Table 2.1,

dim

 ⋃
c′>0
{c′} ×W u

c′,V (E−)

 = d−m(e−) + 1 ,

and dim

 ⋃
c′>0
{c′} ×W s

c′,V (E+)

 = d+ 1 .

The intersection between these two manifolds contains at least the curve {c} × U(R)
corresponding to the travelling front. Thus, the dimension of the sum of the tangent
spaces to these two manifolds is less than or equal to the quantity(

d−m(e−) + 1
)

+ (d+ 1)− 1 = 2d+ 1 −m(e−) .
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Since according to Definition 1.3 and Theorem 1.7 the intersection between these two
manifolds is transverse in R2d+1, along the set {c} × U(R), this quantity is greater than
or equal to 2d+ 1, so that the Morse index m(e−) must be zero. This proves conclusion
1 of Corollary 1.1.

Now let us assume that u is the profile of a standing pulse and let e denote the critical
point of V such that this pulse connects e to itself. According to Table 2.1,

dim (W u
V (E)) = d−m(e) and dim (W s

V (E)) = d−m(e) .

According to Definition 1.6 and Theorem 1.7, if u is symmetric then the intersection
between W u

V (E) and the d−dimensional manifold Ssym is transverse in R2d, at the point
U(ξturn) and this can happen only if m(e) = 0. If u is asymmetric then the intersection
between W u

V (E) and W s
V (E) is transverse, in H−1

V

(
V (E)

)
, along the trajectory U(R).

The intersection of W u
V (E) and W s

V (E) is at least one-dimensional and the dimension of
H−1

V

(
V (E)

)
is equal to 2d− 1. Again, the transversality can happen only if m(e) = 0.

This proves conclusion 2 of Corollary 1.1.
In all the cases considered above, the counting of the dimensions and the transversality

imply that the intersections of the stable and unstable manifolds reduce to the smallest
possible set, that is: the one-dimensional curve drawn by the trajectory U for travelling
fronts or asymmetric pulses, and the singleton

{
U(ξturn)

}
defined by the turning point for

symmetric pulses. By local compactness of the unstable manifolds, this implies that the
trajectories of a given class are isolated from each other (even if a family of asymmetric
standing pulses may accumulate on a non-degenerate — and in this case non-transverse

— symmetric pulse). In particular, there is only a countable number of such trajectories.
Conclusion 3 of Corollary 1.1 is proved.

Finally, conclusion 4 about the robustness of travelling fronts and standing pulses
(the fact that they persist under small perturbations of the potential) follows from their
transversality (that, is, the transversality of the intersections considered above).

10 Generic asymptotic behaviour for the profiles of bistable
travelling fronts and of standing pulses stable at infinity

The goal of this section is to prove Theorem 1.8 (and thus also conclusion 5 of Corol-
lary 1.1).

10.1 Asymptotic behaviour of profiles
Let V0 denote a potential in Vfull, let e0 denote a nondegenerate minimum point of V ,
and let c denote a nonnegative quantity (speed). As in subsection 2.1, let (u1, . . . , ud)
denote an orthonormal basis of Rd made of eigenvectors of D2V (e0), and let µ1, . . . , µd

denote the corresponding (positive) eigenvalues, with µ1 ≤ · · · ≤ µd. The statement
“the least eigenvalue of D2V (e0) is simple”, in conclusion 1 of Theorem 1.8, just means
that µ1 is less than µ2 (and thus also than all the other eigenvalues of D2V (e0)). Let us
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make this assumption. With the notation of subsection 2.1, it follows that, for every j in
{2, . . . , d},

λj,− < λ1,− < 0 < λ1,+ < λj,+ ;

in other words, λ1,− and λ1,+ are, among all the eigenvalues of DFc,V (E0) (which are
real), the closest ones to 0 (here E0 = (e0, 0Rd) is the equilibrium point of the flow Sc,V

corresponding to e0). If a solution ξ 7→ u(ξ) of the differential system (1.7) goes to e0
as ξ goes to −∞ (+∞), then one among the following two possible cases occurs (see
Proposition 10.1 below for a more precise statement):

1. there exists a real quantity K such that

u(ξ)− e0 = Keλ1,+ξu1 + oξ→−∞(eλ1,+ξ)
(and u(ξ)− e0 = Keλ1,−ξu1 + oξ→+∞(eλ1,−ξ) , respectively);

2. u(ξ)− e0 = oξ→−∞(eλ1,+ξ) (and u(ξ)− e0 = oξ→+∞(eλ1,−ξ), respectively).

The words “u(ξ) approaches its limit (at ±∞) tangentially to the eigenspace corresponding
to the smallest eigenvalue of D2V at this point”, used in conclusion 5 of Corollary 1.1
and in conclusion 2 of Theorem 1.8, mean that case 1 above occurs. As illustrated on
Figure 10.1 (see also Figure 10.2), approach of equilibria “at the slowest possible rate”
(case 1 above) is a generic feature among solutions of differential systems. The main goal
of this section is thus to provide a formal proof that this feature is indeed generic (with
respect to the potential V ) for bistable travelling fronts and standing pulses stable at
infinity of the parabolic system (1.1).

Figure 10.1: Attractive node of a two-dimensional vector field. In the language of
subsection 10.2, the vertical axis is the “strongly stable subspace” of the equilibrium.

10.2 Local strongly stable and unstable manifolds when the speed c is
positive

Let us keep the notation and assumptions of the previous subsection and let us assume
that c is positive. The aim of this subsection is to provide a variant of Proposition 2.2
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devoted to the “strongly” local stable and unstable manifolds, which are characterized
by a “fast” convergence (case 2 above). Concerning the references, the same comments
as in subsection 2.2 apply.

Calling upon the notation of subsection 2.1, let

Esu(E0) = span
(
{U2,+, . . . , Ud,+}

)
and Ess(E0) = span

(
{U2,−, . . . , Ud,−}

)
,

and Em(E0) = span
(
{U1,−, U1,+}

)
(the superscripts “su”, “ss”, and “m” stand for “strongly unstable”, “strongly stable”,
and “mild”, respectively), and

βsu = λ2,+ and βss = λ2,− .

As in subsection 2.2, there exist norms ∥·∥su on Esu(E0) and ∥·∥ss on Ess(E0) such that
inequalities (2.7) (with “su” instead of “u” and “ss” instead of “s” everywhere) hold. For
every positive quantity r, let us define the balls Bsu

E0(r) and Bss
E0(r) as in (2.8) (with the

same substitutions “u”←“su” and “s”←“ss”), let Bm
E0(r) denote the closed ball centred

at E0 and with radius r, in the subspace Em(E0), for the usual euclidean norm on these
subspace, and let

BE0(r) =
{
U su + U ss + Um : U su ∈ Bsu

E0(r) and U ss ∈ Bss
E0(r) and Um ∈ Bm

E0(r)
}
.

Let λ3/2,− and λ3/2,+ denote real quantities satisfying

λ2,− < λ3/2,− < λ1,− and λ1,+ < λ3/2,+ < λ2,+ .

Proposition 10.1 (local strong stable and unstable manifolds). There exist a neigh-
bourhood ν of V0 in Vfull, a neighbourhood C of c0 in (0,+∞) and a positive quantity r
such that, for every (c, V ) in C × ν, in addition to the conclusions of Proposition 2.2, the
following statements hold.
There exist Ck-functions

wsu
loc, c, V : Bsu

E0(r)→ B
m
E0(r) +B

ss
E0(r) and wss

loc, c, V : Bss
E0(r)→ B

m
E0(r) +B

su
E0(r)

such that, if we consider the sets

W su
loc, c, V

(
E(V )

)
=
{
E(V ) + U su + wsu

loc, c, V (U su) : U su ∈ Bsu
E0(r)

}
and W ss

loc, c, V

(
E(V )

)
=
{
E(V ) + U ss + wss

loc, c, V (U ss) : U ss ∈ Bss
E0(r)

}
,

then, for every U in BE0(r) the following two assertions are equivalent:

1. U is in W su
loc, c, V

(
E(V )

)
;

2. Sc,V (ξ, U)− E(V ) remains in BE0(r) for all ξ in (−∞, 0] and

|Sc,V (ξ, U)− E(V )| = oξ→−∞(eλ3/2,+ξ) ;
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and for every U in BE0(r) the following two assertions are equivalent:

1. U ∈W ss
loc, c, V

(
E(V )

)
;

2. Sc,V (ξ, U)− E(V ) remains in BE0(r) for all ξ in [0,+∞) and

|Sc,V (ξ, U)− E(V )| = oξ→+∞(eλ3/2,−ξ) .

Both differentials Dwsu
loc, c0, V0

(0) and Dwss
loc, c0, V0

(0) vanish, and both maps

C × ν ×Bsu
E0(r)→ B

m
E0(r) +B

ss
E0(r), (c, V, U su) 7→ wsu

loc, c, V (U su)
and C × ν ×Bss

E0(r)→ B
m
E0(r) +B

su
E0(r), (c, V, U ss) 7→ wss

loc, c, V (U ss)

are of class Ck.

10.3 Idea of the proof of conclusion 2 of Theorem 1.8
The goal of this subsection is to provide a rough idea of the proof of Theorem 1.8, more
precisely of the main conclusion of this theorem which is conclusion 2 (the proof of
conclusion 1, carried out in the next subsection, is straightforward).

The proof of conclusion 2 is actually almost identical to the proof of Theorem 1.7.
Observe that, by contrast with the proof of Theorem 1.7, only bistable travelling fronts
and standing pulses that are stable at infinity need to be considered. In each case
(bistable travelling fronts, symmetric and asymmetric standing pulses stable at infinity),
the proof relies on applying Sard–Smale Theorem 4.2 to the same settings as in the proof
of Theorem 1.7, both for potentials that are quadratic past a certain radius and for the
extension to general potentials, except for the following change:

1. either the unstable manifold of the left end equilibrium E−(V ) is replaced by its
strongly unstable manifold,

2. or the stable manifold of the right end equilibrium E+(V ) is replaced by its strongly
stable manifold.

More precisely, both replacements have to be (separately) considered both for travelling
fronts and asymmetric standing pulses, while only the first replacement is relevant for
symmetric standing pulses.

Let us see why such change (replacement) in the setting does not affect the validity of the
two assumptions of Theorem 4.2, and how its conclusions can be interpreted. Concerning
assumption 1 of Theorem 4.2, this replacement leads to the following consequences:

1. either the dimension of the manifold denoted by M is decreased by 1 (this is what
happens for travelling fronts, be it with replacement 1 or 2, for symmetric standing
pulses with replacement 1, and for asymmetric standing pulses with replacement 1),

2. or the dimension of the manifold denoted by W is decreased by 1 (this is what
happens for asymmetric standing pulses with replacement 2).
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In each of these cases, the dimension of the arrival manifold N is unchanged, and as
a consequence, the difference dim(M) − codim(W) is exactly decreased by 1. More
precisely, since only bistable travelling fronts and standing pulses stable at infinity are
considered, this difference is actually exactly equal to −1. Assumption 1 of Theorem 4.2
is therefore still satisfied.

Concerning assumption 2 of Theorem 4.2, it is also fulfilled in each of these cases, due
to the key following observation: in the proof of each of the three lemmas proving that
this assumption holds (Lemmas 5.7, 6.3 and 7.5), the freedom provided by the variables
bu and bs is not used — only the freedom provided by the time variable ξ and by the
potential V are. As a consequence, the fact that the unstable manifold of E−(V ) is
replaced by its strongly unstable manifold does not affect the validity of the conclusion
of the lemma, and neither does the fact that the stable manifold of E+(V ) is replaced by
its strongly stable manifold. In other words, the key assumption 2 of Theorem 4.2 still
holds.

In each case and for each of the two replacements 1 and 2, the conclusions of Theorem 4.2
thus still hold, and ensure that, locally generically with respect to V , the profiles of
travelling fronts or of (a)symmetric standing pulses locally correspond to transverse
intersections between the image of m 7→ Φ(m,V ) and W in N . But the fact that
dim(M)− codim(W) is now equal to −1 actually precludes the very existence of such
transverse intersections. In other words, locally generically with respect to V , profiles
of bistable travelling fronts or of (a)symmetric pulses stable at infinity approaching
their limit at −∞ through its strongly stable manifold or their limit at +∞ through its
strongly stable manifold do simply (locally) not exist, which is the intended conclusion.
The emptiness of such a transverse intersection due to the value −1 of the difference
dim(M)− codim(W) is illustrated by Figure 10.2.

Figure 10.2: Whereas the sum of the dimensions of W u(E−) and W s(E+) has the minimal
value for a nonempty transverse intersection between these two manifolds to exist, for
W su(E−) and W s(E+) (or for W u(E−) and W ss(E+)) this sum is smaller, so that a
transverse intersection between such manifolds must be empty. This figure actually
depicts the intersection defining a transverse asymmetric bistable standing front, but
the same principle applies for bistable travelling fronts, and elementary symmetric (or
transverse asymmetric) standing pulses that are stable at infinity.

The remaining arguments, ensuring the first extension to global statements for poten-
tials quadratic past a certain radius (subsections 5.2, 6.1 and 7.1), and then the second
extension to general potentials (subsections 9.1 and 9.2), are unchanged.
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To complete these arguments, a few milestones of the proof for travelling fronts are
detailed in subsection 10.5 below.

10.4 Proof of conclusion 1 of Theorem 1.8
Let R denote a positive quantity, let us recall the notation Vquad-R introduced in (4.2)
and Vquad-R-Morse introduced in (5.2), and let us consider the set

Vquad-R-Morse-ss-eig =
{
V ∈ Vquad-R-Morse : at every minimum point of V ,
the smallest eigenvalue of D2V is simple

}
(the subscript “ss-eig” stands for “simple smallest eigenvalue”).
Proposition 10.2. The set Vquad-R-Morse-ss-eig is a dense open subset of Vquad-R-Morse
(and thus of Vquad-R).

Proof. Openness follows from the continuity of the roots (eigenvalues of D2V at a
minimum point) of a polynomial with respect to its coefficients. To prove the density,
let V be in Vquad-R-Morse, and let us assume that there exists a minimum point e of V
such that the smallest eigenvalue µ1 of D2V (e) is not simple. Let δ denote a positive
quantity, small enough so that the closed ball BRd(e, δ) contains no critical point of V
but e. Let ρ denote a smooth function [0,+∞)→ R satisfying

ρ(r) = 1 for r in [0, 1/2] and ρ(r) = 0 for r in [1,+∞) ,

and let ε denote a small positive quantity to be chosen below. Let u1 denote an unit
eigenvector of D2V (e) associated to µ1, and let us consider the perturbed potential Vpert
defined as:

Vpert(u) = V (u)− ε

2
(
(u− e) · u1

)2
ρ
(
|u− e| /δ

)
.

Then, e is still a critical point of Vpert and, for every v in Rd,

D2Vpert(e)(v, v) = D2V (e)(v, v)− ε(v · u1)2 .

As a consequence, u1 is still an eigenvector of D2Vpert(e), the corresponding eigenvalue
µ1− ε is simple, and the other eigenvalues of D2Vpert(e) are the same as those of D2V (e)
(the difference D2Vpert(e)−D2V (e) vanishes on the orthogonal subspace to u1 in Rd),
these other eigenvalues are therefore greater than µ1− ε. In addition, if ε is small enough,
then µ1 − ε is positive (so that e is still a minimum point of Vpert) and the closed ball
BRd(e, δ) contains no critical point of Vpert but e. The same procedure, repeated for each
minimum point of V such that the smallest eigenvalue of D2V at this minimum point is
not simple, provides an arbitrarily small perturbation of V belonging to Vquad-R-Morse-ss-eig,
and therefore proves the intended density.

Let VMorse-ss-eig denote the subset of Vfull containing Morse potentials V such that, at
every minimum point point of V , the smallest eigenvalue of the Hessian D2V at this
minimum point is simple. Proceeding as in subsection 9.3, the same arguments as in the
proof of Proposition 10.2 above show that this set VMorse-ss-eig is a generic subset of Vfull,
which proves conclusion 1 of Theorem 1.8.
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10.5 Proof of conclusion 2 of Theorem 1.8 for bistable travelling fronts
The aim of this subsection is to complete the idea of the proof of conclusion 2 of
Theorem 1.8 provided in subsection 10.3 with a few milestones of this proof, in the case
of travelling fronts (only).

As for conclusion 1 of Theorem 1.7, the first goal is to prove the intended conclusion
among potentials that are quadratic past a certain (positive) radius R. This is stated
by the following proposition, which is an extension of Proposition 5.1. It calls upon the
notation FV introduced in (5.1).

Proposition 10.3. There exists a generic subset of Vquad-R, included in Vquad-R-Morse-ss-eig
such that, for every potential V in this subset, every travelling front (c, u) in FV is
transverse, bistable, and its profile u approaches its limit at +∞ (−∞) tangentially to
the eigenspace corresponding to the smallest eigenvalue of D2V at this point.

10.5.1 Reduction to a local statement

Let V0 denote a potential function in Vquad-R-Morse-ss-eig, and let e−,0 and e+,0 denote non-
degenerate minimum points of V0. Let us consider the neighbourhood νrobust(V0, e−,0, e+,0)
of V0 introduced in subsection 5.2, and let us denote by ν̃robust(V0, e−,0, e+,0) the inter-
section νrobust(V0, e−,0, e+,0) ∩ Vquad-R-Morse-ss-eig. The following proposition is a variant
(extension in the case of bistable travelling fronts) of Proposition 5.2. The notation
is similar, except for the “tilde” added to the symbols of the various sets, in order to
differentiate them for the corresponding sets introduced in Proposition 5.2.

Proposition 10.4. For every positive speed c0, there exist a neighbourhood ν̃V0, e−,0, e+,0, c0

of V0 in Vquad-R, included in ν̃robust(V0, e−,0, e+,0), a neighbourhood C̃V0, e−,0, e+,0, c0 of c0 in
(0,+∞), and a generic subset ν̃V0, e−,0, e+,0, c0, gen of ν̃V0, e−,0, e+,0, c0 such that, for every V
in ν̃V0, e−,0, e+,0, c0, gen, every front travelling at a speed c in C̃V0, e−,0, e+,0, c0 and connecting
e−(V ) to e+(V ), for the potential V , is transverse and its profile u approaches its limit
at +∞ (−∞) tangentially to the eigenspace corresponding to the smallest eigenvalue of
D2V at this point.

Proof that Proposition 10.4 yields Proposition 10.3. Proposition 5.1 already ensures the
existence of a generic subset Vquad-R-⋔-F of Vquad-R such that, for every potential function
V in this subset, every travelling front (c, u) in FV is transverse. According to the
arguments of subsection 9.4, such a front is necessarily bistable. Thus, only the conclusion
of Proposition 10.4 relative to the asymptotic behaviour of the profile remains to be
proved.

To this end, the arguments are the same as in subsection 5.2. We may introduce the sets
ν̃V0, c0 and CV0, c0 and νV0, c0, gen, defined exactly as the corresponding sets (without tilde)
in (5.3) (with νrobust(V0, e−,0, e+,0) replaced with ν̃robust(V0, e−,0, e+,0)), and the same
remaining arguments (replacing Vquad-R-Morse with Vquad-R-Morse-ss-eig) show the existence
of a generic subset of Vquad-R, included in Vquad-R-Morse-ss-eig, such that, for every potential
V in this subset, every bistable travelling front (c, u) in FV is transverse and its profile u
approaches its limit at both ends of R according to the intended conclusion. Intersecting
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this generic subset with the one provided by Proposition 5.1 provides a generic subset of
Vquad-R for which all conclusions of Proposition 10.3 hold.

10.5.2 Proof of the local statement

The proof of Proposition 10.4 may be derived from the proof of Proposition 5.2, up to a
few changes and thanks to some key arguments, all of which are exposed in subsection 10.3
above.

10.5.3 Extension to all potentials

The extension to all potentials is obtained by applying the same strategy as in subsec-
tion 9.1. Let us recall the notation FV,R introduced in (9.1). The same arguments as
in subsection 9.1 show that the intended extension is a consequence of the following
extension of Proposition 9.1.

Proposition 10.5. For every positive quantity R, there exists a generic subset
Vfull-⋔-F-min-rate-R of Vfull, included in VMorse-ss-eig, such that, for every potential V in this
subset, every travelling front (c, u) in FV,R is transverse, bistable, and approaches its limit
at +∞ (−∞) tangentially to the eigenspace corresponding to the smallest eigenvalue of
D2V at this point.

Proof. Proposition 9.1 already provides a generic subset Vfull-⋔-F-R of Vfull such that,
for every potential V in this subset, every travelling front (c, u) in FV,R is transverse,
and therefore bistable (subsection 9.4). Therefore, only the conclusion relative to the
asymptotic behaviour of the profiles remains to be proved.

The proof of this conclusion is a variation of the proof of Proposition 9.1 and follows
the ideas exposed in subsection 10.3: for some potential V0 in Vquad-(R+1) and for some
non-degenerate minimum points e−,0 and e+,0 of V , and for every nonnegative integer N ,
two variants of the set MN defined in (9.5) (and of the open subset OV0, e−,0, e+,0, c0, N

defined in (9.6)) can be introduced: one where Bu is replaced by Bsu, and one where Bs

is replaced by Bss. In each of theses two cases, the condition “Φ
(
MN , V

)
is transverse

to W in N ” can be read as “the intersection between Φ
(
MN , V

)
and W is empty”,

due to the missing dimension induced by the change in each of theses variants. Then,
replacing the open subset OV0, e−,0, e+,0, c0, N by the intersection of its two variants, the
remaining arguments are exactly the same. This proves Proposition 10.5 (and therefore
also completes the proof of conclusion 2 of Theorem 1.8 for bistable travelling fronts).
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