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Abstract

Helmut Hofer introduced in ’93 a novel technique based on holomorphic
curves to prove the Weinstein conjecture. Among the cases where these
methods apply are all contact 3–manifolds (M, ξ) with π2(M) 6= 0. We
modify Hofer’s argument to prove the Weinstein conjecture for some
examples of higher dimensional contact manifolds. In particular, we are
able to show that the connected sum with a real projective space always
has a closed contractible Reeb orbit.

0 Introduction

Let (M, ξ) be a contact manifold with contact form α. The associated Reeb
field Rα is the unique vector field that satisfies the equations

α(Rα) = 1 and ιRαdα = 0

everywhere.

Weinstein conjecture. Let (M, ξ) be a closed contact manifold, and choose
any contact form α with ξ = kerα. The Reeb field Rα associated to α always
has a closed orbit.

In his seminal paper [3], Helmut Hofer found a strong relation between the
dynamics of the Reeb field and holomorphic curves in symplectizations. Initially
Hofer proved the Weinstein conjecture using these methods in three cases, namely
the conjecture holds for a closed contact 3–manifold (M, ξ), if M is diffeomorphic
to S3, if ξ is overtwisted or if π2(M) 6= 0.

A generalization of the second case to higher dimensions has been achieved
in [1] for contact structures that have a plastikstufe. We will try to generalize
the third one. In order to justify our hypothesis, let us recall the key steps
in Hofer’s proof. The non-triviality of the second homotopy group combined
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with the assumption that the contact structure is tight, allow us to find a non-
contractible embedded sphere whose characteristic foliation has only two elliptic
singularities and no closed leaves. Near the singularities, an explicit Bishop
family of holomorphic disks can be constructed, and it can be proved that the
disks produce a finite energy plane. The existence of a finite energy plane in a
symplectization of the manifold implies the existence of a contractible periodic
Reeb orbit.

Our generalization of Hofer’s theorem for contact (2n+ 1)–manifolds replaces
the 2–sphere by an embedded (n+1)–submanifold such that the contact structure
restricts to an open book decomposition. Following Hofer’s ideas, we will prove
that if such a submanifold represents a non-trivial homology class then there
exists a periodic contractible Reeb orbit.

Among the examples where we are able to find such submanifolds, are the
connected sum of any contact manifold M with one of

1. the projective space with its standard contact structure

2. many subcritically fillable manifolds as for example Sn×Sn+1 or Tn×Sn+1.

1 The main criteria

Definition 1.1. An open book decomposition (ϑ,B) of a manifold N con-
sists of

1. a proper codimension 2 submanifold B ⊂ N whose tubular neighborhood
is diffeomorphic to B × C, and

2. a (locally trivial) fibration ϑ : (N \B)→ S1 such that the map ϑ agrees on
the neighborhood B × C with the angular coordinate eiϕ of the C–factor.

The submanifold B is called the binding, and the fibers of ϑ are called the
pages of the open book. From the definition it follows that the closure of a
page P in N is a compact manifold with boundary B.

Remark 1.2. Open book decompositions are typically only studied on closed
manifolds, in which case the binding is also a closed manifold. In this article, we
will first restrict to closed manifolds, but later we will study closed manifolds
whose universal cover admits an open book decomposition, and we do not want
to suppose that the universal cover itself is a closed manifold.

Example 1.3. As an example of an open book decomposition on a non-compact
manifold take the product of S2 with any non-compact manifold M . Let N
and S be the north and south poles of the sphere, clearly M × S2 has an open
book with binding M × {N,S}, and fibration given by the standard angular
coordinate on S2.

Assume (M, ξ) is a contact (2n + 1)–manifold. A submanifold N ↪→ M
(possibly with boundary) is called maximally foliated by ξ if dimN = n+ 1,
and if the intersection ξ ∩ TN defines a singular foliation on N . The regular
leaves of such a foliation are locally Legendrian submanifolds.
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Definition 1.4. Let N be as above and without boundary. We say that N ↪→
(M, ξ) carries a Legendrian open book, if the maximal foliation on N defines
an open book decomposition of N , i.e., the singular set

{
p ∈ N

∣∣ TpN ⊂ ξp
}

is the binding of an open book on N , and each regular leaf of the foliation
corresponds to a page of the open book.

The following notion is extensively studied in [4] as a filling obstruction,
here we will only use it as a sufficient condition for the existence of a closed
contractible Reeb orbit.

Definition 1.5. Let N be a compact submanifold of (M, ξ) that is maximally
foliated by ξ, and has non-empty boundary ∂N that can be written as a product
manifold ∂N ∼= S1×L. We say that N carries a Legendrian open book with
boundary, if the following conditions are satisfied by the foliation:

1. The singular set is the union of the boundary ∂N and a closed (not
necessarily connected) codimension 2 submanifold B ⊂ N \∂N with trivial
normal bundle.

2. There exists a submersion

ϑ : N \B → S1

that restricts on ∂N ∼= S1 × L to the projection onto the first factor.

3. The regular leaves of the Legendrian foliation ξ ∩ TN are the fibers of ϑ
intersected with the interior of N .

4. The neighborhood of B has a trivialization B × C for which the angular
coordinate eiϕ on C agrees with the map ϑ.

Remark 1.6. There are two common definitions of the overtwisted disk; ac-
cording to one version the boundary is a regular compact leaf of the foliation,
but there is a second version where the foliation is singular along the boundary
of the disk. This second definition is an example of a Legendrian open book with
boundary. By a small perturbation it is always possible to move from one version
to the other one, so that both definitions are equivalent. Similarly, it is possible
to deform a plastikstufe to obtain a Legendrian open book with boundary, so
that the definition above includes PS–overtwisted manifolds.

Theorem 1.7. Let (M, ξ) be a closed contact manifold, and let N be a compact
submanifold.

1. If ξ induces a Legendrian open book on N (without boundary), and if ξ
admits a contact form α without closed contractible Reeb orbits, then it
follows that N represents the trivial homology class in Hn+1(M,Z2).

2. If ξ induces a Legendrian open book with boundary on N , then every contact
form α on (M, ξ) has a closed contractible Reeb orbit.
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Remark 1.8. In the situation of Theorem 1.7.(ii), it also follows that (M, ξ)
does not admit a (semi-positive) strong symplectic filling in general, and under
some cohomological condition it even excludes the existence of a weak filling.
The proof of this fact is given in [4].

Remark 1.9. It should be possible to strengthen the conclusions of the theorem.
For example, if both N and the moduli space used in the proof of (i) are
orientable, the coefficients for the homology group can be taken in Z.

Theorem 1.7. Following Hofer’s idea for 3–manifolds, we will study a moduli
space of holomorphic disks in the symplectization of (M,α). To prove (i), we
will then show that the union of these holomorphic disks represents an element
in the chain complex of M whose boundary is homologous to the submanifold
N . The proof of (ii) is based on a contradiction to Gromov compactness as in
[1], and we will only discuss it briefly at the end.

(i) First, we have to choose a suitable almost complex structure J on the
symplectization (

R×M, d(et α)
)
.

We embed (M,α) as the 0–level set {0} ×M , and define J in a neighborhood
of the binding B in {0} × N , before extending it over all of R ×M . It was
shown in Section 3 of [5] that the germ of the contact form in a neighborhood
of B is completely determined by the foliation on N , or said otherwise, there is
a neighborhood U around the binding B that is strictly contactomorphic to a
neighborhood Ũ of the 0–section in(

R3 × T ∗B, dz +
1

2
(x dy − y dx) + λcan

)
,

where (x, y, z) are the standard coordinates on R3, and λcan is the canonical
1–form on T ∗B. The set U ∩N corresponds in this model to the intersection of
Ũ with the submanifold {(x, y, 0)} ×B.

We will now study the following model for the symplectization of U : Let
W1 = C2 be the Stein manifold with standard complex, and symplectic structures,
and with the plurisubharmonic function h1(z1, z2) = |z1|2 + |z2|2. To find a
Weinstein structure on T ∗B choose a Riemannian metric g on the binding B,
then the cotangent bundle W2 = T ∗B carries an induced Riemannian metric g̃,
and an exact symplectic structure dλcan given by the differential of the canonical
1–form λcan := −p dq. There is a unique almost complex structure Jg on W2 that

is compatible with dλcan and with the metric g̃. The function h2(q,p) = ‖p‖2/2
is Jg–plurisubharmonic and satisfies dh2 ◦ Jg = −λcan (see also the Appendix B
in [5]).

The product manifold W = W1 ×W2 = C2 × T ∗B is a Weinstein manifold
with almost complex structure J ′ = i ⊕ Jg, and plurisubharmonic function
h = h1 + h2. Its contact type boundary M ′ := h−1(1) contains the submanifold{(√

1− |z|2, z; q,0
) ∣∣∣ |z| < ε

}
∼= D2 ×B .
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The natural contact structure ker
(
−dh ◦ J ′

)
on M ′ induces a singular foliation

on this submanifold that is diffeomorphic to the neighborhood of the binding
of an open book, so that in fact the neighborhood of this submanifold in W is
symplectomorphic to a neighborhood of {0} ×B in the symplectization, and the
plurisubharmonic function h coincides with et on R×M .

The pull-back of J ′ = i⊕ Jg to the symplectization defines thus an almost
complex structure in a neighborhood of the binding {0}×B in R×M , which we
can easily extend to an almost complex structure on (−ε, ε)×M that is compatible
with the symplectic form d(et α), and for which α = −dt ◦ J . Unfortunately this
almost complex structure is not t–invariant, but we can extend J to an almost
complex structure that is tamed by d(etα) everywhere, restricts to ξ, and is
t–invariant below a certain level set {−C} ×M in the symplectization.

With the chosen almost complex structure J , it is easy to explicitly write
down a Bishop family of holomorphic disks in a neighborhood of {0} ×B, and
to use an intersection argument to exclude the existence of other holomorphic
disks in this neighborhood. Namely, the Bishop family will be given in the model
C2 × T ∗B by the intersection of the 2–planes

Et0,q0
:=
{

(t0, z; q0,0)
∣∣ q0 ∈ B, t0 < 1, z ∈ C

}
with h−1

(
(1 − ε, 1]

)
. The result gives for every point q0 of the binding B a

1–dimensional family of round disks attached with their boundary on the foliated
submanifold. The radius of the disk decreases as t0 → 1, and in the limit
the disks collapse to the point q0 ∈ B. All of the disks are pairwise disjoint,
and if we look at the space of parameterized disks, we obtain thus a smooth
(n+ 3)–dimensional manifold.

To exclude the existence of other disks close to the binding, we use an
intersection argument with the local foliation given by the (i⊕ Jg)–holomorphic
codimension 2 submanifolds

Sz0 :=
{

(z0, z)
∣∣ z ∈ C

}
× T ∗B

with Re z0 < 1. For more details see Section 3 of [5].
We will now look at the moduli space of holomorphic disks given as follows:

Denote N \B by N̊ , and let M̃ be the space of all J–holomorphic maps

u :
(
D2, ∂D2

)
→
(
(−∞, 0]×M, {0} × N̊

)
.

One can easily deduce from the maximum principle and the boundary point
lemma that either u is constant or its boundary u

(
∂D2

)
must intersect ξ every-

where transversely in positive direction.
We will restrict to the component of M̃ that contains the Bishop family

(for every component of the binding there is an independent Bishop family,
but one result of our assumptions will be that all these families lie in the
same component of the moduli space), and for such disks it follows from basic
topological considerations that u

(
∂D2

)
intersects every page of the open book

on N exactly once.
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Before producing a moduli space by taking a quotient of M̃, we will briefly
discuss Gromov compactness.

Proposition 1.10. There exists a uniform energy bound for all curves u ∈ M̃.

Proof. The energy of a holomorphic curve u in a symplectization is defined as

Eα(u) := sup
ϕ∈F

∫
u

d
(
ϕα
)
,

where F is the set of smooth functions ϕ : R → [0, 1] with ϕ′ ≥ 0. Here we
identify R with the R–factor of the symplectization.

Using Stokes’ Theorem, we easily obtain for any holomorphic disk u ∈ M̃
that

Eα(u) =

∫
∂u

α .

There is a continuous function f : N → [0,∞) such that α|TN = f dϑ, where
ϑ : N \B → S1 is the fibration of the open book, and because the boundary of
the curves u

(
∂D2

)
crosses every page of the open book on N exactly once, we

obtain the energy bound

Eα(u) ≤ 2π max
x∈N

f(x) ,

proving the claim.

Let (uk)k ⊂ M̃ be a sequence of holomorphic maps. The only disks that may
intersect a small neighborhood of the binding {0}×B are the ones that lie in the
Bishop family, and hence we will assume that all maps uk stay at finite distance
from the binding {0} ×B, because otherwise it follows that the uk collapse to a
point in B.

Proposition 1.11. Let (un)n be a sequence of holomorphic maps whose image
is bounded away from {0} ×B. There is a subsequence (ukn)n and a family of
biholomorphisms ϕn ∈ Aut(D2), such that the reparameterized maps (ukn ◦ϕn)n
converge uniformly in C∞ to a map u∞ ∈ M̃.

Proof. Assume the conclusion is false, then the gradient of the reparameterized
sequence is blowing up, and this would either lead to the existence of a holo-
morphic sphere, a finite energy plane, or a disk bubbling off. Symplectizations
never contain holomorphic spheres, and since by our assumption (M,α) does
not have closed contractible Reeb orbits, we also have excluded the existence
of finite energy planes. Finally bubbling of disks is not allowed either, because
the maximum principle forces non-constant holomorphic disks to intersect the
pages of the open book (B, ϑ) on N transversely in positive direction. By our
assumption it follows that the disks uk intersect every page exactly once, but
if the limit of uk would decompose into several non-constant disks v1, . . . , vN ,
each of them would also cross every page of the open book at least once. On
the other hand, each of the vj is obtained by rescaling uk on a subset of the
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domain D2, but by a careful argument this implies that uk has to intersect
many pages several times contradicting our assumption. This implies that after
reparemeterization there is a subsequence of the uk that converges uniformly to
a single disk u∞.

With the limit behavior of the maps in M̃ understood, we will now study
the moduli space

M := M̃ × D2/ ∼ ,

where we identify pairs (u, z), (u′, z′) ∈ M̃ ×D2, if and only if there is a Möbius
transformation ϕ ∈ Aut(D2) such that (u, z) =

(
u′ ◦ ϕ−1, ϕ(z′)

)
. All disks in

the space M̃ are injective along their boundary, so that they must be simple.
Furthermore, one can easily check that the disks in the Bishop family are regular
solutions of the Cauchy-Riemann equation by using that not only J , but also
the boundary conditions, decompose into product form. Perturbing the almost
complex structure away from the binding of the open book on N , makes thus
all of the elements of M̃ regular, and it follows that M̃ is a smooth manifold of
dimension

dimM̃ = (n+ 1)χ(D2) + µ
(
u−1T (R×M), u−1TN

)
.

The Euler characteristic χ(D2) is 1, and the Maslov index µ
(
u−1T (R ×

M), u−1TN
)

is 2 (check for example [5], or use simply the product form for

the neighborhood of the binding). Note that the action of Aut(D2) on M̃ is

proper and free because every map u ∈ M̃ is injective along its boundary, and
the identity is the only biholomorphism of D2 that keeps the boundary of the
disk pointwise fixed.

It follows that M is a non-compact smooth (n+ 2)–dimensional manifold
with boundary. The boundary corresponds to equivalence classes [u, z] ∈ M
with z ∈ ∂D2.

Let ev(M) ⊂ R×M be the union of the image of all holomorphic disks lying
in M.

Proposition 1.12. We can compactify the moduli space M by taking the union
of M and all the individual points in the binding B of N that lie in the closure
of ev(M). The manifold structure on M extends naturally to the compactifica-
tion M, and we obtain that M is a compact smooth manifold with boundary.

Proof. If
(
[uk, zk]

)
k

is a sequence of elements in M, and if the image of the
maps uk stays at a finite distance from the binding {0} × B, then we know
by Proposition 1.11 that there is a subsequence

(
[ukn , zkn ]

)
n

and a family of

reparameterizations ϕn ∈ Aut(D2) such that ukn ◦ ϕ−1n converges uniformly to

a map u∞ ∈ M̃. The subsequence
(
[ukn ◦ ϕ−1n , ϕn(zkn)]

)
n

contains a further
subsequence that converges to a proper element [u∞, z∞] of the moduli space
M.

If the image of a map uk intersects a small neighborhood U of the binding
in the symplectization, then it is up to reparameterization an element of the
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Bishop family. Thus, when the image of the maps uk gets close to the binding
{0} × B, we can find a subsequence

(
[ukn , zkn ]

)
n

such that all the ukn lie in
the Bishop family. Here, we can describe M and its closure explicitly. The
Et0,q0

–planes are all pairwise disjoint, hence we have that there is exactly one
disk [u, z] ∈ M with u(z) = p for every p in the symplectization lying in the

image of the Bishop family
{

(t, z; q,0)
∣∣ q ∈ B, t < 1, z ∈ C, |z|2 ≤ 1 − t2

}
.

Then the compactification of the Bishop family is naturally diffeomorphic to the
smooth manifold with boundary{

(t, z; q,0)
∣∣ q ∈ B, t ≤ 1, z ∈ C, |z|2 ≤ 1− t2

}
.

There is a well-defined smooth evaluation map

ev : M→ R×M, [u, z] 7→ u(z)

from the compactification of the moduli space into the symplectization.

Definition 1.13. The degree deg f ∈ Z2 of a continuous map f : X → Y
between two closed n–manifolds X and Y is defined as the element A ∈ Z2 such
that f#[X] = A [Y ] ∈ Hn(Y,Z2).

For smooth maps it is easy to compute deg f , because it suffices to take a
regular value y ∈ Y of f , and count [2]

deg f = #f−1(y) mod 2 .

Hence, it follows immediately that the restriction of the evaluation map to the
boundary ∂M of the moduli space is a smooth map

ev|∂M : ∂M→ {0} ×N

of degree 1 (as can be easily seen by using that close to the binding {0} × B
there is for every p ∈ {0} × N a unique disk [u, z] ∈ ∂M with u(z) = p). In
particular by combining the trivial identity

ev ◦ ι∂M = ιN ◦ ev|∂M

for the standard inclusions ι∂M : ∂M ↪→M and ιN : N ↪→ R×M , with the fact
that ∂M is null-homologous in Hn+1(M,Z2), and using that ev ◦ι∂M induces
the trivial map on Hn+1(∂M,Z2), we obtain that(

ιN
)
#

: Hn+1(N,Z2)→ Hn+1(M,Z2)

vanishes, because
(

ev|∂M
)
#

is an isomorphism. It follows that N represents a

trivial (n+ 1)–class in Hn+1(M,Z2) as we wanted to show.
(ii) If N carries a Legendrian open book with boundary, we will proceed as

follows: Choose close to the binding {0} ×B on the symplectization the almost
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complex structure described above that allows us to find the Bishop family of
holomorphic disks.

In Section 5.3 of [6], it was shown that we can find a specific almost complex
structure on a neighborhood of the boundary {0} × ∂N ∼= S1 × L that prevents
any holomorphic disk to enter this area. After choosing these two almost complex
structures, close to the binding B and to the boundary ∂N , extend them to
a global almost complex structure J on R ×M that is compatible with the
symplectic form d(et α), and for which −dt ◦ J = α. Additionally, we require J
to be t–invariant below a certain level set {−C} ×M in the symplectization.

Denote now N \ (B ∪ ∂N) by N̊ , and study the space M̃ of J–holomorphic
maps

u :
(
D2, ∂D2

)
→
(
(−∞, 0]×M, {0} × N̊

)
that lie in the connected component of one of the Bishop families around the
binding B. As before if follows from basic topological considerations and the
maximum principle that the boundary u

(
∂D2

)
of any disk in M̃ traverses every

page of the open book on N exactly once. If we assume that (M,α) does not
have any contractible periodic Reeb orbits, then the compactness argument for
sequences in M̃ works as in Proposition 1.11, because there is an area around
∂N where no holomorphic curves are allowed to enter.

The moduli space, we will study now is given by

M := M̃ × S1/ ∼ ,

where we identify pairs (u, z), (u′, z′) ∈ M̃ × S1, if and only if there is a Möbius
transformation ϕ ∈ Aut(D2) such that (u, z) =

(
u′ ◦ ϕ−1, ϕ(z′)

)
. By the

arguments above, M is a smooth (n+ 1)–dimensional manifold with a smooth
evaluation map

ev : M→ {0} ×N, [u, z] 7→ u(z) .

If we choose a generic (differentiable) path γ : [0, 1]→ N that connects a binding
component of B with a component of the boundary ∂N , and is such that
γ
(
]0, 1[

)
⊂ N̊ , then the evaluation map is transverse to γ. The pre-image

ev−1(γ) is a non-empty 1–dimensional smooth submanifold of M. We only
consider the component M0 of ev−1(γ) that contains elements of the Bishop
family.

The closure of the submanifold M0 has one end that corresponds to the
disks that collapse to a point on the binding, and so M0 cannot be a circle, but
must be instead an interval. The other end of the interval exists by Gromov
compactness, but by our assumptions this limit curve will be a regular element
of M0, so that in fact it is not the end of the interval leading to a contradiction,
which implies the existence of a closed contractible Reeb orbit.

We can generalize Theorem 1.7 by changing open books to covered open
books, let us start with the definition.

Definition 1.14. Let N be a closed manifold with universal cover π : Ñ →
N . A pair (ϑ,B) consisting of a closed codimension 2 submanifold B of N ,
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and a fibration ϑ : (N \ B) → S1, is called a k–fold covered open book

decomposition of N , if it induces an open book decomposition (ϑ̃, B̃) on Ñ ,

where the binding B̃ is π−1(B), and where the fibration ϑ̃ : Ñ \B̃ → S1 commutes
with π and z 7→ zk according to the following diagram:

Ñ \ B̃ S1

N \B S1

-ϑ̃

?

π

?

z 7→zk

-ϑ

In particular, note that k is not the covering number of π : Ñ → N .

Example 1.15. An ordinary open book decomposition (ϑ,B) of a manifold N

is a 1–fold covered open book decomposition, as the open book on Ñ will be
given by ϑ̃ = ϑ ◦ π, and B̃ = π−1(B).

But this of course does not imply that Ñ is a 1–fold cover of N , as the
following example shows: The standard open book decomposition on S2 (see
Fig. 1) induces in an obvious way an open book decomposition on the manifold
S1 × S2, and its universal cover R× S2.

Example 1.16. The unit sphere Sn−1 =
{

(x1, . . . , xn) ∈ Rn
∣∣ x21+· · ·+x2n = 1

}
admits an open book with binding B =

{
(x1, . . . , xn) ∈ Sn−1

∣∣ x1 = x2 = 0
}

,
and fibration map

ϑ : Sn−1 \B → S1, (x1, . . . , xn) 7→ (x1, x2)√
x21 + x22

.

The binding is an (n− 3)–sphere, and the pages are (n− 2)–balls (see Fig. 1).
The real projective space RPn−1 can be obtained as the quotient of the unit

sphere Sn−1 by the antipodal map

A : Sn−1 → Sn−1, (x1, . . . , xn) 7→ (−x1, . . . ,−xn) .

The open book on Sn−1 described above projects onto a covered open book
of RPn−1 with binding B′ =

{
[0 : 0 : x3 : · · · : xn] ∈ RPn−1

} ∼= RPn−3, and
fibration map

ϑ′ : RPn−1 \B′ → S1, [x1 : · · · : xn] 7→
(
x21 − x22, 2x1x2

)
x21 + x22

,

which is induced by the square of ϑ. The pages of this open book are still
(n− 2)–balls, but the monodromy is the antipodal map, and going around the
binding once corresponds to crossing all pages twice (see Fig. 2). This way we
obtain a 2–fold covered open book of RPn−1 that is not a genuine open book
decomposition.
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Figure 1: The standard open book on the 2–sphere.

Figure 2: The induced covered open book on RP2. The boundary of the disk is
identified under the antipodal map, so that for example the thicker rays represent
a single page that touches the binding at both of its boundaries.

Definition 1.17. Accordingly we say that a maximally foliated submanifold N
of a contact manifold carries a Legendrian covered open book, if the maximal
foliation on N defines a covered open book decomposition of N .

If N is a maximally foliated compact submanifold with boundary in a contact
manifold (M, ξ), then we say that ξ induces a Legendrian covered open
book with boundary if the foliation on the interior of N defines a covered
open book, and if it satisfies close to the boundary the same conditions as an
ordinary Legendrian open book with boundary.

Definition 1.18. Let N be a closed submanifold of a contact manifold (M, ξ),
and assume that ξ induces a Legendrian k–fold covered open book on N . We
say that N is nucleation free, if every loop γ ⊂ N \B that is contractible in
M projects via the fibration ϑ : N \ B → S1 to a loop ϑ ◦ γ that represents a
class in kZ ⊂ π1(S1) ∼= Z.

Remark 1.19. Another way to state the definition is the following: Let
ιN\B : N → M be the standard inclusion, then the Legendrian k–fold cov-

ered open book on N is nucleation free, if ker
(
ιN\B

)
∗ ⊂ π1(N \B) is mapped

by ϑ∗ into kZ ⊂ π1(S1).

Remark 1.20. The reason for our definition of nucleation free is that it excludes
bubbling of certain holomorphic disks in the symplectization.

Theorem 1.21. Let (M, ξ) be a closed contact manifold, and let N be a compact
submanifold.
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1. If ξ admits a contact form α without closed contractible Reeb orbits, and
if it induces a Legendrian covered open book on N (without boundary)
that is nucleation free, then N represents the trivial homology class in
Hn+1(M,Z2).

2. If ξ induces on N a Legendrian covered open book with boundary that is
nucleation free, then every contact form α of (M, ξ) has a closed contractible
Reeb orbit.

Remark 1.22. Note that the conditions in Theorem 1.21.(ii) do not imply the
non-fillability of M . Nonetheless, it implies that there is a loop in N \B that is
contractible in the filling W of M , but that projects via ϑ to a positive loop of
S1 that makes strictly less than k turns.

Theorem 1.21. We follow the lines of the proof of Theorem 1.7, but several
details have to be adjusted to the new situation. To find a Bishop family around
the binding B, we will construct a model around the binding B̃ in the cover,
perform all steps as in Theorem 1.7, and finally show that π : Ñ → N induces
similar results in the base.

Note that the fundamental group G := π1(N) acts by deck transformations

on Ñ , and that Ñ/G ∼= N . We will identify a tubular neighborhood of N in M
with a neighborhood U of the 0–section in the normal bundle νN . The universal
cover of νN is just given by the pull-back bundle π−1(νN) over Ñ , and so we

find a neighborhood Ũ of the 0–section of π−1(νN) such that Ũ/G = U . We

can also pull-back the contact form α|U to a G–invariant contact form α̃ on Ũ .

The contact form α̃ induces on Ñ an open book decomposition, and in
principle we can use Section 3 of [5] to obtain a neighborhood of the binding

B̃ strictly contactomorphic to a neighborhood of the 0–section in R3 × T ∗B̃
with the contact form dz + 1

2 (x dy − y dx) + λcan. We need to be a bit more

careful though, because B̃ does not need to be compact. But the construction
of this contactomorphism is based on the Moser trick, and a closer inspection
of the proof shows that not only does this contactomorphism exist, but that it
is even G–equivariant: where G acts on the T ∗B̃–factor by the linearization of
the G–action on B̃, and on the R3–factor by linear transformations leaving the
z–direction invariant.

The symplectization R×Ũ is the universal cover of the symplectization R×U .
The fundamental group G = π1(N) acts trivially on the R–factor, and thus
respects the symplectic form d(et α̃). It is also not difficult (though tiresome) to
check that the almost complex structure J constructed in Section 3 of [5] is also
G–invariant.

As in the Proof of Theorem 1.7, we find in R × Ũ a Bishop family of J–
holomorphic disks, and also the corresponding family of codimension 2 almost
complex submanifolds Sz used for the intersection argument. Furthermore, since
J is G–invariant, it follows that G maps each of these families into itself, and
so we may project the almost complex structure J and these families into the
symplectization R×M .
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Let M̃ be the component of the space of holomorphic maps

u :
(
D2, ∂D2

)
→
(
(−∞, 0]×M, {0} × N̊

)
that contains the Bishop family described above.

Proposition 1.23. The space M̃ is (after a small perturbation of J) a smooth

manifold of dimension dimM̃ = dimN + 2 = n+ 3.

Proof. By slightly perturbing the almost complex structure, one can always
achieve that all simple holomorphic curves in a moduli space become regular
solutions of the Cauchy-Riemann equation. It is hence necessary to show that
all holomorphic disks in M̃ are indeed simple. A non-constant disk u that is
not somewhere injective would be the multiple cover of another disk u0 making
strictly less than k turns in the open book, but this would be a contradiction to
the assumption that N is nucleation free. By perturbing J , we can hence make
sure that the solution space M̃ is a smooth manifold of dimension

dimM̃ = µ
(
u−1T (R×M), u−1TN

)
+ n+ 1 ,

where we used that the Euler characteristic of a disk is 1. The boundary Maslov
index µ for Bishop disks with boundary in an ordinary Legendrian open book
is always 2. Here we are considering a covered open book on N , but every
sufficiently small Bishop disk lives in a contractible neighborhood of a point in
the binding B. The covering map on this subset is hence a diffeomorphism, and
it follows that the Maslov index of u is also 2.

Proposition 1.24. Every sequence of holomorphic disks (un)n ∈ M has a
subsequence that either converges to a constant disk in the binding of N , or to a
regular holomorphic disk u∞ that also lies in the moduli space M.

Proof. The boundary of every non-constant holomorphic disk u that is attached
with ∂u on the submanifold {0} × N̊ will always have positively transverse
intersections with the pages of the covered open book. By the assumption that
N is nucleation free, and because ∂u is also clearly contractible in M , it follows
that ϑ(∂u) ⊂ S1 will make a (positive) multiple of k turns in the covered open
book.

If we then choose a sequence of holomorphic disks (un)n in M̃, each one
intersects every page of the open book exactly k times, because the un are
homotopic to a Bishop disk. The limit curve of (un)n cannot decompose into
several non-constant holomorphic disks v1, . . . , vN , because the boundary of
these curves would describe loops in N \B that are contractible in M , but that
make strictly less than k turns in the covered open book. This way, a sequence
of holomorphic disks cannot degenerate to a nodal curve.

The rest of the proof is now exactly as the one of Theorem 1.7.
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2 Examples and applications

The main difficulty consists in finding a situation where we can apply Theo-
rems 1.7 and 1.21 to prove the Weinstein conjecture.

Note that it is easy to find examples of submanifolds with an induced
Legendrian open book in any Darboux chart. For example, it is easy to see that
Sn+1 can be embedded into

(
S2n+1, ξ0

)
via

(x0, . . . , xn+1) ∈ Sn+1 ↪→
(
x0 + ix1, x2, . . . , xn+1

)
∈ Cn+1

such that the standard contact form restricts to x0 dx1 − x1 dx0 which clearly
defines the canonical open book on Sn+1 with an n–ball as a page, and with
trivial monodromy. Another example was given in Section 5.2 of [5], where it
was shown that we can embed S2 × Sn−1 in the desired way into

(
R2n+1, ξ0

)
.

On the other hand there are often evident obstructions to the realization of
a homology class by a maximally foliated submanifold as an open book. For
example, the only closed 2–dimensional manifolds that admit an ordinary or a
covered open book decomposition are S2 and RP2. The reason for this is that if
Σ is a closed surface that admits a (covered) open book, then we can lift the
rotational vector field ∂ϕ from S1 to Σ, and obtain a vector field whose index
is positive at each of its singularities. By the Poincaré-Hopf theorem it follows
that the Euler characteristic of Σ has to be positive, but the only compact
surfaces that have positive Euler characteristic are S2 and RP2. Hence from
purely topological obstructions, we obtain that T3 (or for example a hyperbolic
3–manifold) does not contain any embedded non-nullhomologous 2–sphere or
real projective 2–space, because both would have to lift to a non-nullhomologous
S2 in R3.

But it is also easy to give contact topological obstructions, because there
are many contact manifolds that do not have contractible Reeb orbits as the
following examples will show.

Example 2.1. Let (M, ξ) be the unit cotangent bundle S(T ∗Tn) of the torus
with its canonical contact structure. We can identify M with Tn × Sn−1 with
coordinates (x1, . . . , xn) ∈ Tn and (y1, . . . , yn) ∈ Sn−1 and write the canonical
1–form as

λcan =

n∑
j=1

yj dxj .

The Reeb field for this form is R =
∑
j yj ∂xj , and so it follows that the orbits

move in constant direction along the torus, and hence there are no closed
contractible Reeb orbits. In particular it follows that it is not possible to embed
any manifold with a Legendrian open book into

(
S(T ∗Tn), λcan

)
that represents

a non-trivial class in Hn+1

(
S(T ∗Tn),Z2

)
.

After having described some of the problems of our method we will explain, in
Examples 2.3 and 2.4, two situations where our results apply. The existence of a
contractible Reeb orbit was already known for both of them, but we believe that
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our method is still relevant, because it only depend on purely local information.
One can for example easily deduce:

Lemma 2.2. Let (M1, ξ1) and (M2, ξ2) be two closed cooriented contact mani-
folds with dimM1 = dimM2. If (M1, ξ1) satisfies the conditions of Theorem 1.7
or 1.21, then any contact form on the connected sum(

M1#M2, ξ1#ξ2
)

has a contractible Reeb orbit.

Similar results can be obtained for other surgeries, but they require a more
careful analysis in each situation.

Example 2.3. Let (M, ξ) be a contact manifold that is subcritically Stein fillable,
that means it can be filled by a Stein manifold of the form (C×W,dx∧dy+dλ),
where (W,dλ) is a 2n–dimensional Stein manifold. In this case the Weinstein
conjecture has been proved in general (without imposing the condition on the
critical points used below) using Floer homology techniques [8].

A subcritically Stein fillable manifold (M, ξ) admits an open book with
page W and trivial monodromy consisting of taking the angular coordinate
on the C–factor of C × W as a fibration over S1. Any properly embedded
Lagrangian submanifold L in W that has Legendrian boundary in ∂W gives rise
to an (n+ 1)–submanifold N of M that is foliated as a Legendrian open book.
In fact N is obtained by taking the intersection of C × L ⊂ C ×W with the
convex boundary M . Another way to describe the construction is by saying that
we take the product of L with S1, and then close this off by adding ∂L× D2 in
a neighborhood of the binding of M .

Unfortunately this manifold will often be homologically trivial. We can avoid
this problem if W is a Stein manifold with plurisubharmonic Morse function
h : W → [0,∞), whose highest index critical point p0 has index n. Then we can
take for L the unstable manifold of p0 which will be a Lagrangian plane which
intersects the skeleton of W only in p0. This way, we obtain for N a sphere
with the standard Legendrian open book decomposition, and the intersection
between N and the skeleton of any page is 1, so that [N ] may not be trivial in
Hn+1(M,Z2), and we can apply our theorem to find a contractible Reeb orbit.

The easiest examples that fit into this situation are unit bundles of C⊕ T ∗S
for any closed manifold S. To be even more explicit, take the contact structure
ξ on Tn × Sn+1 given by

ξ = ker
( n∑
j=1

yj dxj +
1

2

(
yn+1 dyn+2 − yn+2 dyn+1

))
with (x1, . . . , xn) the coordinates on Tn, and (y1, . . . , yn+2) the coordinates on
Sn+1. Here, any sphere {x} × Sn+1 is foliated by a Legendrian open book, and
we obtain, in contrast to Example 2.1, that (Tn × Sn+1, ξ) always has a closed
contractible Reeb orbit.
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Similarly the contact structure on Sn × Sn+1 given by using the trivial open
book with page T ∗Sn and trivial monodromy also always has a closed contractible
Reeb orbits.

Example 2.4. The most obvious example, where we find a submanifold with
a Legendrian covered open book is the real projective space with the standard
contact structure(

RP2n−1 =
{

[x1 : · · · : xn : y1 : · · · : yn]
∣∣ ∑

j

(x2j + y2j ) = 1
}
,

ξ0 := ker

n∑
j=1

(
xj dyj − yj dxj

))
given as the quotient of the standard contact sphere S2n−1 by the antipodal map.
The submanifold

{
[x1 : · · · : xn : xn+1 : 0 : · · · : 0]

} ∼= RPn+1 represents the

non-trivial class in Hn(RP2n−1,Z2), and carries the covered open book described
in Example 1.16. It follows from Theorem 1.21 that any contact form for ξ0
admits a contractible closed Reeb orbit.

Note that the Weinstein conjecture for this example also follows from the
existence result of closed orbits for the standard contact structure on the unit
sphere [7].
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[5] K. Niederkrüger, The plastikstufe - a generalization of the overtwisted disk
to higher dimensions., Algebr. Geom. Topol. 6 (2006), 2473–2508.
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