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Abstract. The purpose of this note is to give two new proofs of C. H. Taubes’
result concerning the helicity of a strictly ergodic flow. A strictly ergodic flow

is a uniquely ergodic volume preserving flow. The theorem states that on a
3-manifold the helicity of such flows is zero. For both proofs we use C. H.

Taubes’ result on the existence of periodic orbits for Reeb vector fields [7] and

for the second one we also use the characterization of geodesible vector fields
by D. Sullivan [5].

1. Introduction

Let X be a vector field on a closed oriented 3-manifold M , that preserves the
volume form Ω. Thus the Lie derivative LXΩ = 0. Cartan’s formula implies that
ω = ιXΩ is a closed 2-form. The vector field X is exact if ω is exact. In this
case, let α be a primitive of ω. Observe that in S3 or in any homotopy sphere, any
volume preserving vector field is exact. The helicity of the vector field X is defined
as the integral

h(X) =

∫
α ∧ dα,

that does not depends on the choice of the 1-form α. The helicity is an important
invariant in the study of fluid flows. When the manifold is simply connected the
helicity coincides with the asymptotic linking number, as proved by Arnold [1].

A vector field is uniquely ergodic if its flow admits a unique invariant measure.
When such a measure is a smooth volume, equivalently a volume form, the vector
field is strictly ergodic.

Theorem 1.1 (Taubes, [6]). Let X be a strictly ergodic exact vector field on a
closed 3-manifold M . Then h(X) = 0.

Let f be the function defined by f = α(X) or equivalently α ∧ dα = fΩ.
Observe that h(X) is the integral of f with respect to Ω. The proofs we present
here give the following stronger statement:

Theorem 1.2. If X is a minimal exact vector field preserving the volume form
Ω, then there exists an invariant measure µ such that

∫
M
f dµ = 0.
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By minimal we understand a vector field whose orbits are dense in M . A
strictly ergodic vector field is minimal. The minimality or strict ergodicity is used
in different ways in the proofs below. In the first proof, it is used to say that X is
not a Reeb vector field and thus find two invariant measures for which the integral
of f is strictly positive with respect to the first measure and strictly negative with
respect to the second measure. A linear combination of these invariant measures
gives the measure µ in Theorem 1.2.

In the second poof, the minimality or strict ergodicity of X is used to say that
X is not geodesible (in other words, X is not the Reeb vector field of a stable
Hamiltonian structure). D. Sullivan’s characterisation of geodesible vector fields
gives the existence of the measure µ. We thank the referee for pointing out a
proof of Theorem 1.1 that was explained to him by Gabriel Paternain in 2008 and
differs little from the second proof in this paper. In fact, instead of using the
characterisation by D. Sullivan of geodesible vector fields, one can use Theorem 5.2
of D. McDuff’s article [3].

C. H. Taubes’ proof of Theorem 1.1 relies on Seiberg-Witten equations. He uses
this technique in a similar way as for proving the existence of a periodic orbit of a
Reeb vector field on a 3-manifold [7]. The proofs presented here use the fact that
a Reeb vector field has a periodic orbit and hence cannot be minimal. In the case
of S3 or a 3-manifold with non-trivial second homotopy group, H. Hofer proved the
existence of periodic orbit for Reeb vector fields using pseudoholomorphic curves
[2].

There are two types of examples of strictly ergodic flows on 3-manifolds. First,
suspensions of strictly ergodic diffeomorphisms of the 2-torus. Second quotients of
the horocycle flow. The following example was explained to us by A. Verjovsky.
Consider the Brieskorn manifolds

Vp,q,r = {(z1, z2, z3) ∈ C3 | zp1 + zq2 + zr3 = 0, z21 + z22 + z23 = 1},

with p, q, r positive integers and two by two relative primes. Then Vp.q.r is a ho-
mology sphere and S3 if p, q or r is equal to 1. If 1

p + 1
q + 1

r < 1 then Vp,q,r is a

quotient of SL(2,R) by a lattice. The horocycle flow on SL(2,R) defines a flow in
the quotient space that is a strictly ergodic flow on the 3-manifold. The horocycle
flow defines a strictly ergodic flow on any compact quotient of SL(2,R), but these
quotients are not always homology spheres.

2. First proof

Consider an exact vector field X preserving the volume form Ω, then, using the
same notation as in the introduction, write ιXΩ = ω = dα for a differential 1-form
α. In this section we prove the following result:

Theorem 2.1. Let X be an exact volume preserving vector field. Assume that
X has no periodic orbits and let f be the function defined by α ∧ dα = fΩ. Then,
there exists an invariant measure µ with

∫
f dµ = 0.

Clearly, Theorems 1.2 and 1.1 can be deduced from Theorem 2.1.
Before starting the proof, recall that a differential 1-form λ on a closed oriented

3-manifold M is a contact form if λ∧dλ 6= 0. For such a form, its Reeb vector field
X is defined by the equations λ(X) = 1 and ιXdλ = 0. Thus X preserves λ and
the volume form λ ∧ dλ.
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Proof. Let φt be the flow of the vector field X. The conclusion in Theorem 2.1
can be reformulated in the following way: it cannot happen that the integrals of f
with respect to all the φt-invariant measures are all strictly positive or all strictly
negative.

Assume the converse and let all such integrals be, for instance, strictly positive.
Consider the family of 1-forms

αt =
1

t

∫ t

0

φ∗ταdτ,

obtained by averaging α along the flow. Since the flow preserves Ω, it preserves
ω = ιXΩ and hence for any t the 1-form αt is a primitive of ω with

αt ∧ ω =

(
1

t

∫ t

0

f ◦ φτ dτ
)

Ω.

Notice that among the time average functions f̄t = 1
t

∫ t
0
f ◦ φτ dτ , there is a

strictly positive function. Indeed, if this was not the case, there would exists a
sequence of points ptn such that f̄tn(ptn) ≤ 0. But,

f̄tn(ptn) =
1

tn

∫ tn

0

f(φτ (ptn)) dτ =

∫
f dµn,

where

µn =
1

tn

∫ tn

0

δφτ (ptn ) dτ

the time average of the Dirac measure δptn . Consider a Riemannian metric on M
such that the norm of X is identically 1, then the length of the orbit segment from
ptn to φtn(ptn) is equal to tn. Thinking the measures µn as 1-currents, the mass
of µn is 1. Extracting a weakly converging subsequence µnk of more and more
invariant measures, we find that the limit µ is a non-zero invariant measure with∫

f dµ = lim
k→∞

∫
f dµnk ≤ 0,

giving us a contradiction to our assumption. Hence for some t we have αt ∧ dαt =
f̄tΩ, with

f̄t =
1

t

∫ t

0

f ◦ φτ dτ > 0.

But then αt is a contact form and αt(X) = f̄t > 0 and ιXdαt = ιXω = 0. Thus,
modulo a reparametrisation by a positive function, X is the Reeb vector field of αt.
Due to Taubes’ result, X possesses a periodic orbit. This contradiction concludes
the proof. �

3. Second proof

A non-singular vector field is geodesible if there exists a Riemannian metric
on the ambient manifold making all the orbits geodesics. As remarked in [5], a
vector field is geodesible if and only if there exists a differential 1-form λ such that
λ(X) = 1 and ιXdλ = 0. Observe that geodesible vector fields form a larger family
than Reeb vector fields, since the form λ might be a closed 1-form. Geodesible
volume preserving vector fields are also known in the literature as Reeb vector
fields of stable Hamiltonian structures.
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Theorem 3.1 (Sullivan [5]). A vector field is geodesible if and only if any
foliation cycle cannot be approximated by tangent 2-chains.

A foliation cycle is a flat current that is obtained from positive linear combi-
nations of the Dirac currents defined by X. We recall that foliation cycles are in
one to one correspondence with the invariant measures of the flow of X, as proved
by D. Sullivan [4]. The term tangent 2-chain means a flat current of integration on
sets that are tangent to the vector field X, this implies that the 2-chain evaluated
on any 2-form whose kernel contains X must be equal to zero. We can now give
the second proof to Theorem 1.1.

Proof. We use the previous notation, that is Ω is the invariant volume form
and ιXΩ = ω = dα.

If the flow of X is strictly ergodic then it is a minimal flow: every orbit is
dense. Assume that X is geodesible, then there exists a differential 1-form λ such
that λ(X) = 1 and ιXdλ = 0. In particular, λ and λ ∧ dλ are invariant forms.
Since the latter is a differential 3-form we can write λ∧ dλ = gΩ for some function
g. Since both Ω and λ ∧ dλ are invariant forms, the function g is invariant and by
the minimality of the flow it is constant. If g 6= 0, the vector field X is the Reeb
vector field of the contact form λ, which contradicts minimality by the existence
of a periodic orbit [7]. If g = 0, observe that dλ = 0 since X is not in the kernel
of λ. Then λ is a closed 1-form positive on X. Tischler’s theorem [8] implies that
M fibers over the circle and each fiber is a global section for the flow. This means,
that the fibers are closed 2-manifold S transverse to the vector field and the flow is
the suspension of a diffeomorphism of S. This is impossible, an exact vector field
cannot admit a global section as a consequence of Stokes’ theorem:

0 =

∫
∂S

α =

∫
S

dα =

∫
S

ω > 0,

where the last inequality follows since ω is an area form on S.
Thus X is not geodesible. Since X is strictly ergodic and invariant measures

are in one to one correspondence with foliation cycles [4], there is only one foliation
cycle Z that corresponds to the volume form Ω. Then

Z(α) =

∫
M

α ∧ dα =

∫
M

fΩ = h(X),

as remarked in page 232 of [4]. Then by Theorem 3.1 there exists a sequence of
tangent 2-chains Bn such that ∂Bn tends to Z. Since X is in the kernel of dα and
is tangent to Bn, we have that Bn(dα) = 0. Thus,

Z(α) = lim
n→∞

∂Bn(α) = lim
n→∞

Bn(dα) = 0.

�

Remark 3.2. If X is minimal but not strictly ergodic, the proof above implies
that X is not geoedesible. Then there is a the foliation cycle approximated by the
boundaries of tangent 2-chains, that is not necessarily the foliation cycle associated
to the invariant volume form. Thus the proof above provides the existence of an
invariant measure µ for which

∫
M
f dµ = 0, proving Theorem 1.2.
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