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Abstract. In this paper we use broken book decompositions to study Reeb

flows on closed 3-manifolds. We show that if the Liouville measure of a nonde-

generate contact form can be approximated by periodic orbits, then there is a
Birkhoff section for the associated Reeb flow. In view of Irie’s equidistribution

theorem, this is shown to imply that the set of contact forms whose Reeb flows

have a Birkhoff section contains an open and dense set in the C∞-topology.
We also show that the set of contact forms whose Reeb flows have positive

topological entropy is open and dense in the C∞-topology.
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1. Introduction and results

The notion of a Birkhoff section (see Definition 2.4) is a classical tool to study
flows on 3-manifolds, going back to Poincaré. When a flow admits such a section,
its dynamics can be reduced to the dynamics of the first-return map on the section
– a much simpler data. Birkhoff sections are particularly convenient for studying
topological and dynamical properties of the flow. In contact topology, work of
Giroux [24] implies that every contact structure on a closed 3-manifold admits
a supporting open book decomposition. In particular, every contact structure is
defined by a contact form whose Reeb vector field has a global surface of section,
i.e. an embedded Birkhoff section. However for a given contact form – hence a
given Reeb vector field – deciding if Birkhoff sections exist is difficult.

Not every flow on a closed 3-manifold admits Birkhoff sections. For example
a flow which is not a suspension and has no periodic orbits does not have one.
Notice however that such a flow cannot be Reeb in view of the result of Taubes [47]
asserting that every Reeb vector field on a closed 3-manifold has a periodic orbit.
On the other hand, many Reeb flows do admit Birkhoff sections. A large class of
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examples is provided by a striking result due to Hofer, Wysocki and Zehnder [26]
which contains, as a special case, the fact that Hamiltonian flows on 3-dimensional
strictly convex compact energy levels possess disk-like global surfaces of section. As
a consequence, Hofer, Wysocki and Zehnder proved that on such an energy level
there are two or infinitely many periodic orbits. Another class consists of geodesic
flows on closed, orientable and connected Riemannian 2-manifolds such that the
curvature has a definite sign. When the curvature is everywhere negative, this is
implied by a result of Fried [21] asserting that transitive Anosov flows have Birkhoff
sections. When the curvature is everywhere positive this is covered by a classical
result of Birkhoff [7].

Consider a nonsingular vector fieldX on a compact 3-manifoldM tangent to ∂M .
If γ : R/TZ→M is a periodic orbit of period T > 0, parametrized by the flow, then
γ∗Leb
T is an invariant Borel probability measure, where Leb denotes the Lebesgue

measure on R/TZ. This measure is independent of the choice of period. The set of
invariant Borel probability measures is a convex subset of the topological dual of
the space of continuous real-valued functions on M equipped with the supremum
norm. A Borel probability measure is said to be approximated by periodic orbits if
it is the weak* limit of a sequence of finite convex combinations of measures induced
by periodic orbits.

When M is oriented, and X is the Reeb vector field of a positive contact form λ
with helicity vol(λ) =

∫
M
λ ∧ dλ > 0, then we say that the Liouville measure

can be approximated by periodic orbits if (λ ∧ dλ)/vol(λ) can be approximated
by periodic orbits as above. A periodic orbit is nondegenerate if its transverse
linearized Poincaré map has no root of unity as an eigenvalue. The contact form is
nondegenerate if every periodic Reeb orbit is nondegenerate. Birkhoff sections and
∂-strong Birkhoff sections are defined in Section 2; ∂-strong Birkhoff sections are,
in particular, also Birkhoff sections. Our main result reads as follows.

Theorem 1.1. If the Liouville measure of a nondegenerate contact form on a closed
3-manifold can be approximated by periodic Reeb orbits, then the Reeb flow admits
a ∂-strong Birkhoff section.

A result due to Irie [34] asserts that the set of nondegenerate contact forms on a
closed 3-manifold whose Liouville measures can be approximated by periodic orbits
is residual, in particular dense, with respect to the C∞-topology. Together with
Proposition 5.1 we obtain the following statement.

Corollary 1.2. On any closed 3-manifold, the set of contact forms such that the
Reeb flow admits a ∂-strong Birkhoff section spanned by nondegenerate periodic
orbits is open and dense in the C∞-topology.

The main key ingredient of the proof of Theorem 1.1 is the existence result found
in [10] for broken book decompositions carrying the Reeb vector field of a nondegen-
erate contact form on any closed 3-manifold. These are special kinds of foliations
on the complement of a finite set of periodic orbits, the so-called binding orbits,
and whose leaves are transverse to the Reeb vector field. One of the main appli-
cations of broken book decompositions obtained in [10] is the statement that every
nondegenerate Reeb flow on a closed 3-manifold has either two or infinitely many
periodic orbits, generalizing a previous result by Cristofaro-Gardiner, Hutchings
and Pomerleano [11] for cases where the first Chern class of the contact structure
is torsion. All these results rely on the machinery of Embedded Contact Homology
as defined by Hutchings [33].
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Remark 1.3. A result of Sigmund [46] implies that the Liouville measure of an
Anosov Reeb flow can be approximated by periodic orbits. This fact and Theo-
rem 1.1 together prove that Anosov Reeb flows have Birkhoff sections. This is a
special case of Fried’s results from [21].

While writing this article, we learned that similar results were independently
obtained by Contreras and Mazzucchelli [13].

Theorem 1.4 (Contreras and Mazzucchelli [13]). The Reeb flow of a nondegen-
erate contact form on a closed 3-manifold admits a Birkhoff section provided that
the stable and unstable manifolds of all hyperbolic periodic Reeb orbits intersect
transversely.

A contact form whose Reeb flow satisfies the assumptions of the above result
will be called here strongly nondegenerate, and were said to satisfy the Kupka-
Smale condition in [13]. Their argument takes the path suggested in [10], see
Remark 1.6, which is different from the one followed in this article. Both ways
still start from a common crucial input: the existence result for broken book de-
compositions from [10]. In Appendix C we sketch an argument using the strategy
elaborated in [10] and prior to the present work as well as to [13], but which leads
to a generic existence result only valid in C1-topology, see Theorem C.1. It relies
on the machinery developed by Arnaud, Bonatti and Crovisier [4, 8] and involves
the proof of the lift Axiom (Lemma C.2) for Reeb flows. In turn, the lift Axiom
and the derived connecting lemma (Theorem C.3) also imply Theorem C.4: the set
of transitive Reeb vector fields is C1-generic.

Broken book decompositions generalize the finite-energy foliations obtained for
nondegenerate Reeb flows on the tight 3-sphere by Hofer, Wysocki and Zehnder in
their pioneering work [27]. The analysis from [27] led to major breakthroughs in
the study of Reeb dynamics, as well as in the development of pseudo-holomorphic
curve theory in symplectic cobordisms. In particular, Hofer, Wysocki and Zehnder
were able to prove that a strongly nondegenerate Reeb flow on the tight 3-sphere
has two or infinitely many periodic orbits, leading them to first conjecture that the
2/∞ dichotomy must hold for all Reeb flows on the tight 3-sphere.

The literature is full of results with sufficient existence conditions for Birkhoff
sections, going back a century. Let us comment on the problem of finding global
sections spanned by given periodic orbits, with no genericity assumptions. The
simplest example is Birkhoff’s theorem [7]. Closed geodesics on oriented surfaces
determine immersed annuli on the unit tangent bundle, made of unit vectors along
the closed geodesic pointing “to one of the sides”. This is called a Birkhoff an-
nulus. It is proved in [7] that Birkhoff annuli over embedded closed geodesics on
positively curved spheres are global surfaces of section for the geodesic flow. This
result is interesting because it gives strong dynamical conclusions out of geometric
assumptions that can be checked in concrete examples. The analogue of Birkhoff’s
result in the context of convex energy levels is found in [28], where the periodic
orbits that span disk-like global surfaces of section are characterized. The convex-
ity assumption was first dropped in [30], eventually leading to the generalization
of Birkhoff’s result to Reeb flows via pseudo-holomorphic curves in [32], where it
is shown that certain linking assumptions on invariant measures, well-known to be
sufficient for global sections of general flows ([29, Theorem 1.3]), can sometimes be
reduced to linking assumptions on periodic orbits.

It is also interesting to try to measure the minimal complexity that a Birkhoff
section of a Reeb flow can have. For instance, Fried showed that geodesic flows
on hyperbolic surface always admit torus-like Birkhoff sections [21] and this was
recently extended to hyperbolic 2-dimensional orbifolds [14, 15]. On the other
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hand, van Koert constructed Reeb flows on S3 without disk-like global surfaces of
section [48].

Our second result concerns the topological entropy of Reeb flows in dimension
three. It is already known that a nondegenerate Reeb vector field with zero topo-
logical entropy admits a Birkhoff section [10]. Perturbing the first-return map on
the section, thanks to the work of Koropecki, Le Calvez and Nassiri [38], and of
Le Calvez and Sambarino [39] that we adapt to diffeomorphisms of surfaces with
boundary, we obtain the following statement.

Theorem 1.5. Let M be a closed 3-manifold and ξ ⊂ TM be a co-orientable contact
structure. The set of contact forms on M defining ξ such that the Reeb flow has
positive topological entropy is open and dense in the set of all contact forms on M
defining ξ, with respect to the C∞-topology.

This result can be seen as a generalization of the fact, shown by Knieper and
Weiss [37], that the geodesic flow on a closed surface has positive topological entropy
C∞-generically on the metric. Our proof follows essentially the same path: they
used the pseudo-holomorphic curves of Hofer, Wysocki and Zehnder [27] to produce
Birkhoff sections, dealing with the extra constraint of perturbing the metric instead
of the flow among its Reeb neighbors.

There are many results available in the literature providing conditions that force
a Reeb flow to have positive topological entropy. In [10] it was proved that if the
3-manifold is not graphed – for example if it is hyperbolic – then every nonde-
generate Reeb vector field has positive topological entropy. Symplectic topological
methods for studying positive topological entropy of Hamiltonian systems have now
been vastly used, going back to Polterovich [42], Frauenfelder and Schlenk [19] and
others. In [1] a condition on the fractional Dehn twist coefficients of a support-
ing open book decomposition is given to guarantee that every Reeb vector field,
possibly degenerate, for the given supported contact structure has positive topolog-
ical entropy. Alves and Pirnapasov [3] proved that any contact 3-manifold admits
transverse links that force positive topological entropy when realized as periodic
Reeb orbits. Alves and Meiwes obtain in [2] contact structures in higher dimen-
sional spheres such that the Reeb flows of all defining contact forms have positive
topological entropy.

We end this introduction with a rough outline of the proof of Theorem 1.1.
Given a flow in a closed manifold M and given a class y in H1(M), Schwartz-

man [44, Section 7] gave a necessary and sufficient condition for the flow to admit a
Birkhoff section with empty boundary dual to y: for every invariant Borel probabil-
ity measure µ the intersection of µ with y, see Section 3.3 for a definition, must be
positive. This criterion can be adapted to the existence of a Birkhoff section with
prescribed boundary, via Schwartzman-Fried-Sullivan theory [20, 44, 45]. It was
already known to specialists for some time but we provide an explicit statement as
Theorem A.1: given a link L made of periodic orbits and a class y in H1(M \ L),
there exists a ∂-strong Birkhoff section if every invariant measure supported in M\L
intersects y positively and on every component of L the flow winds positively with
respect to y. A refinement for global surfaces of section can be found in [29].

It is shown in [10] that when a contact form is nondegenerate its Reeb vector field
is supported by a broken book decomposition (K,F) in a special manner. Here K
is a link formed by periodic orbits, called binding orbits, and F is a special smooth
foliation of M \K, see Definition 2.7 for a precise description. The binding splits
into special sublinks K = Kr ∪ Kb, the components Kb are the so-called broken
binding orbits. It follows from definitions that when Kb = ∅, the broken book is a
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rational open book decomposition whose pages are Birkhoff sections for the Reeb
flow. Hence we proceed assuming that Kb 6= ∅.

In this case the foliation F contains a finite set of special leaves, called rigid
leaves, see Section 3.2, which almost meet the conditions of Theorem A.1: their
union SRF intersects all orbits of the flow. However it is not true that the flow
winds positively with respect to SRF , see Figure 1 right. In order to enforce this
property, one would like to find a surface transverse to the flow, bounded by periodic
orbits in M \ Kb, and that intersects all components of Kb positively. Then one
could “add it” to the surface SRF , thus obtaining the desired Birkhoff section, using
a process that can be traced back to Fried’s work [21], see also [10].

We do not find directly such a transverse surface. However we remark that
it is enough to find a surface bounded by periodic orbits and which intersects
the broken binding orbits positively — the point being that this surface need not
be positively transverse to the flow in its interior as is required in Fried’s process.
Indeed, denoting by Sb this surface, we remark that the “sum” nSRF +Sb intersects
positively all invariant measures when n is large enough, and that the flow winds
positively with respect to it along the broken binding orbits.

At the technical level, it is easier to find the Poincaré dual to this surface Sb : we
will find an additional link of periodic orbits K ′ ⊂M \Kb and a cohomology class
y′ ∈ H1(M \K ′;R) which essentially plays the role of the Poincaré dual of Sb. Once
this task is done, Theorem 1.1 is a direct consequence of Theorem 2.10, stated in
Section 2 and proved in Section 3. It uses the fine structural dynamical information
revealed by the broken book decomposition in order to check the assumptions of
Theorem A.1.

We are then left with the task of finding K ′ and y′, which is the content of
Proposition 2.11. For this we need to establish a small modification of the Action-
Linking Lemma from [6]. This lemma relates the intersection number between a
given surface and the Liouville measure (a topological data) to the contact area of
the surface. Hence, if the Liouville measure can be approximated by periodic orbits
then the contact area is re-obtained as the limit of intersection numbers of weighted
links of periodic orbits with the surface. The link K ′ is found among those links.

In the special case where M is a homology 3-sphere, we can make the argument
explicit and short: denoting by Ik a sequence of weighted links that approximate the
Liouville measure, and by h1, . . . , hn the broken binding orbits, the Action-Linking
Lemma implies that the linking Lk(hi, λ ∧ dλ) equals the action T (hi), which is
positive. Since Lk(hi, λ ∧ dλ) is the limit of the sequence Lk(hi, Ik) when k →∞,
we obtain that for k large enough, all linking numbers Lk(hi, Ik), i = 1, . . . , n,
are positive. This implies that Ik links positively with all broken binding orbits.
Therefore we can take K ′ = Ik and y′ = Lk(·, Ik).

This argument is special to homology 3-spheres, in general it needs to be replaced
by a refined one found in Section 4. Once these tools are in place, Theorem 1.1 has
the following simple proof.

Proof of Theorem 1.1. By [10, Theorem 1.1] we know that the Reeb vector field of
a nondegenerate contact form is strongly carried by a broken book decomposition,
see Definition 2.7 and Remark 2.8. An application of Proposition 2.11 with L = Kb

tells us that the hypotheses of Theorem 2.10 are satisfied. �

Remark 1.6. Contreras and Mazzucchelli studied in [13] the closure of the invari-
ant manifolds of the broken binding orbits, and found many homoclinic connections.
Once enough such homoclinic connections are found, the strategy described in [10]
and also implemented in the proof of Theorem C.1 applies. It is possible to show
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that there are additional periodic orbits spanned by transverse surfaces that in-
tersect the broken binding orbits. In [10, Theorem 4.13] it is then explained that
these additional surfaces can be “added” to form a new broken book decomposition
carried by the contact form, but with strictly less broken binding orbits. After a
finite number of steps, one gets a rational open book decomposition whose pages are
Birkhoff sections. A key contribution from [13], which seems surprising and of in-
dependent interest, is that under the strong nondegeneracy assumption the closure
of stable and unstable manifolds of the broken binding orbits coincide. Using this
fact, the desired additional transverse surfaces can be constructed and the strategy
described above can be applied. At this point of the argument, these additional
surfaces provide precisely the data K ′, y′ and the reduction process can be replaced
by our Theorem 2.10.
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gested to us by François Béguin. The implementation of these in the proof of
Theorem C.1 benefited from the clarifications of Sylvain Crovisier. The proof of
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Calvez and Sambarino, imply C∞-genericity of positive entropy for Reeb flows on
the tight 3-sphere. We thank the Institut Henri Poincaré, where we had a working
space during the trimester “Symplectic topology, contact topology and interactions”
and the Oberwolfach Institute where part of these results were discussed. We ac-
knowledge partial support by the DFG SFB/TRR 191 ‘Symplectic Structures in
Geometry, Algebra and Dynamics’, Projektnummer 281071066-TRR 191 and by
the ANR grants Gromeov, IdEx UGA, Quantact, COSY and CoSyDy.

2. Broken book decompositions

2.1. Rotation numbers along periodic orbits. LetM be any orientable smooth
3-manifold, and let X be a smooth vector field on M . Consider a periodic orbit
γ ⊂ M \ ∂M of X, with primitive period T > 0, as a knot oriented by X. This
orientation and the ambient orientation together co-orient γ. Denote by φt the local
flow near γ. Consider a small compact neighborhood N of γ, and an orientation
preserving diffeomorphism

(1) Ψ : N → R/TZ× D

satisfying Ψ(φt(p0)) = (t, 0) for some p0 ∈ γ. Here the closed unit disk D ⊂ C and
the circle R/TZ are oriented by the canonical orientations of C and R respectively,
and R/TZ× D gets the product orientation. On N \ γ we have coordinates

(2) (t, r, θ) ∈ R/TZ× (0, 1]× R/2πZ, Ψ−1(t, reiθ) ' (t, r, θ)

loosely referred to as tubular polar coordinates around γ. Consider the vector
bundle Eγ = TM |γ/Tγ → γ oriented by the co-orientation of γ, and denote by E∗γ
the complement of its zero section. The total space of the circle bundle E∗γ/R+ → γ
is a torus, which can be equipped with global coordinates (t, θ) ∈ R/TZ × R/2πZ
induced by Ψ. The linearized flow Dφt along γ descends to a flow on E∗γ/R+

represented as the flow of a vector field of the form

(3) ∂t + b(t, θ)∂θ

on this torus. The smooth function b(t, θ) is (TZ× 2πZ)-periodic.
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Definition 2.1. If y ∈ H1(N \γ;R) is cohomologous to p dt+ q dθ, with constants
p, q ∈ R, then define the rotation number of γ relative to y as

(4) ρy(γ) =
T

2π

(
p+ q lim

t→+∞

θ(t)

t

)
where θ : R→ R is any solution of θ̇(t) = b(t, θ(t)).

Remark 2.2. The rotation number ρy(γ) does not depend on the choice of Ψ, or
on the choice of the solution θ(t); see [29, Section 2] for details.

Remark 2.3. If γ ⊂ M \ ∂M as above is a component of some link L ⊂ M and
y ∈ H1(M \L;R), then we may identify y with the element of H1(N \γ;R) obtained
by pulling y back via the inclusion map N \ γ ↪→ M \ L. We still write ρy(γ) for
the corresponding rotation number, with no fear of ambiguity.

2.2. Broken books and Birkhoff sections. Consider a closed, connected, ori-
entable and smooth 3-manifold M with a smooth nonsingular vector field X. The
flow of X is denoted by φt.

Definition 2.4. A section for the flow of X is an immersion ι : S → M defined
on a compact surface S such that:

(i) If ∂S 6= ∅ then ι(∂S) is a link consisting of periodic orbits of X.
(ii) ι−1(ι(∂S)) = ∂S and ι defines an embedding S\∂S ↪→M \ι(∂S) transverse

to X.

A Birkhoff section, or rational global surface of section, for the flow of X is a section
such that:

(iii) For every p ∈M there exist t− < 0 < t+ such that φt±(p) ∈ ι(S).

If ι is simultaneously an embedding and a Birkhoff section, then ι(S) is called a
global surface of section for the flow of X.

If γ is a periodic orbit of X then Eγ = TM |γ/Tγ is a vector bundle over γ.
Hence P+γ = (Eγ \ 0)/R+ → γ is a circle bundle. Note that the linearized flow
Dφt|γ determines a smooth flow on P+γ. We call this flow the linearized flow on
P+γ, with no fear of ambiguity. If ι : S → M is a section for the flow of X and c
is a connected component of ∂S such that ι(c) = γ, then ι defines a smooth map
νcι : c → P+γ as follows: choose any smooth vector field n of S along c pointing
outwards, so that dι(n) is a map c→ TM |γ , and define νcι to be the map obtained
by composing dι(n) with the quotient map TM |γ → P+γ. The definition of νcι does
not depend on the choice of n. The trace of ι along c is defined as the image of the
map νcι , in particular it is a subset of P+γ.

Definition 2.5. Let ι : S →M be a section for the flow of X.

• We call ι a ∂-strong section if its trace along every connected component
c ⊂ ∂S is an embedding transverse to the linearized flow on P+γ; here γ is
the periodic orbit in ι(∂S) that contains ι(c).

• If ι is a Birkhoff section then we call ι a ∂-strong Birkhoff section if it is
a ∂-strong section, and if for every connected component c ⊂ ∂S its trace
along c defines a global section for the linearized flow on P+γ; here γ is the
periodic orbit that contains ι(c).

Remark 2.6. When the ∂-strong Birkhoff section is a global surface of section,
then we get a ∂-strong global surface of section as in [18, Definition 1.6].

Definition 2.7 ([10]). Assume now that M is oriented. The vector field X is said
to be strongly carried by a broken book decomposition (K,F), where the binding
K ⊂M is a link consisting of periodic orbits and F is a smooth foliation of M \K,
if the following conditions are satisfied.
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(I) The binding K, which is oriented by the flow, splits into two sublinks as
K = Kr t Kb, where Kr is called the radial part of the binding and Kb

the broken part of the binding. The leaves of F are transverse to and co-
oriented by X, and oriented by the orientation of M and this co-orientation.
In particular, trajectories intersect the leaves positively.

(II) For every leaf ` of F there exists a compact connected oriented surface S
with non-empty boundary, and a section ι : S → M for the flow such that
ι|S\∂S defines an orientation preserving diffeomorphism S \ ∂S → `, and
ι|∂S defines a (not necessarily surjective) submersion ∂S → K. Let c be a
connected component of ∂S with ι(c) = γ ⊂ K, in which case we say that
γ is in the boundary of `. Let k ∈ Z \ {0} be the degree of ι|c : c→ γ, and
let `∗ ∈ H1(M \K;R) be the class dual to `.
(a) If γ ∈ Kr then ρ`

∗
(γ) > 0.

(b) If γ ∈ Kb then |k| ∈ {1, 2}, ρ`∗(γ) = 0, γ is hyperbolic and its trans-
verse linearized Poincaré map has real eigenvalues α < β. If |k| = 1
then γ is positive hyperbolic in the sense that 0 < α < 1 < β. If |k| = 2
then γ is negative hyperbolic in the sense that α < −1 < β < 0.

(III) If γ ⊂ Kr then the intersection of the leaves of F with a small disk D
transverse to γ defines a radial foliation of D \ γ centered at D ∩ γ.

(IV) If γ ⊂ Kb then the intersections of the leaves of F with a small disk D
transverse to γ divide D \ γ into eight sectors centered at D ∩ γ. Four
of these sectors do not intersect W s(γ) ∪Wu(γ), are radially foliated and
might have empty interior. These are intercalated by four open sectors
containing (W s(γ) ∪Wu(γ)) ∩ (D \ γ), which are foliated by hyperbola.

Figure 1. A broken book decomposition strongly carrying a vec-
tor field X in a neighbourhood of a broken binding component γ.
On the left, the transversal view: the intersection of the broken
book with a disc transverse to X. The special leaves are bolded.
Some orbits of X are represented with green dotted lines. In par-
ticular the four local stable/unstable manifolds lie in four different
hyperbolic sectors. In the center the 3d-view. On the right, the
dynamics on the blown-up broken binding orbit P+γ and the spe-
cial leaves (purple): they are transverse to the projectivized flow
and intersect all its orbits, except those corresponding to the stable
and unstable manifolds. This manifests the fact that the rotation
number of the flow along a broken binding component with respect
to the union of the special leaves ρ`

∗
(γ) is zero.

Remark 2.8. In [10] it is defined that a contact form is carried by the broken
book decomposition (K,F) if all the properties in Definition 2.7 hold for the Reeb
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vector field X, except for (IIa). Without further assumptions, one gets a non-strict
inequality ρ`

∗
(γ) ≥ 0 for all γ ⊂ Kr and for all leaves `. But if ρ`

∗
(γ) = 0 for

some γ ⊂ Kr and some leaf ` that has γ on the boundary, then some iterate of γ
is degenerate in the sense that 1 is an eigenvalue of the corresponding transverse
Poincaré map. Hence, if λ is a nondegenerate contact form carried by (K,F) as
in [10], then its Reeb vector field is strongly carried by (K,F) as in Definition 2.7.

Remark 2.9. The finite-energy foliations obtained by Hofer, Wysocki and Zehnder
in [27] for a nondegenerate Reeb flow on the standard contact 3-sphere are R-
invariant foliations of R×S3 whose leaves are pseudo-holomorphic curves with finite
Hofer energy, all of which have genus zero and precisely one positive puncture. They
induce a broken book decomposition (K,F) as above with several special properties.
The R-invariant cylinders over the orbits of K are precisely the R-invariant leaves
of the finite-energy foliation, the other leaves project to the leaves of F . Moreover,
all orbits in K have self-linking number equal to −1, all orbits in Kb are positive
hyperbolic, and each of the four radially foliated sectors in (IV) consists of a single
ray. There are several other special additional properties.

Theorem 2.10. Suppose that X is strongly carried by a broken book decomposition
(K = Kb tKr,F), and that there exists a link K ′ ⊂M \Kb consisting of periodic
orbits and a class y′ ∈ H1(M \K ′;R) satisfying 〈y′, γ〉 > 0 for every γ ⊂ Kb. Then
there is a ∂-strong Birkhoff section for the flow of X with boundary in K ∪K ′.

Let λ be a positive contact form on M . Consider the space C0(M) of continuous
real-valued functions on M . It becomes a Banach space with the supremum norm.
As described in the introduction, we shall say that the Liouville measure can be
approximated by periodic orbits if there exists a sequence of weighted links of
periodic Reeb orbits

({γnj }, {pnj }) j = 1, . . . , N(n)

where each γnj is a periodic Reeb orbit with primitive period T (γnj ) > 0 and the
weights pnj ∈ (0, 1] satisfy

∑
j p

n
j = 1, such that

lim
n→∞

∑
j

pnj
(γnj )∗Leb

T (γnj )
=
λ ∧ dλ
vol(λ)

.

Here the orbits are seen as maps γnj : R/T (γnj )Z → M parametrized by the flow,

Leb denotes Lebesgue measure on R/T (γnj )Z, vol(λ) =
∫
M
λ ∧ dλ, and the limit is

taken in the weak* topology of the topological dual C0(M)′ of C0(M).

Proposition 2.11. Suppose that X is the Reeb vector field of a positive contact
form on M such that λ∧dλ can be approximated by periodic Reeb orbits. Let L ⊂M
be a link consisting of periodic Reeb orbits. Then there exists a link K ′ ⊂M \L and
y′ ∈ H1(M \K ′;R) such that K ′ consists of periodic Reeb orbits, and 〈y′, γ〉 > 0
for every γ ⊂ L.

3. From linking with the broken binding to Birkhoff sections

The goal of this section is to prove Theorem 2.10. Throughout this section we
consider a broken book decomposition (K,F) strongly carrying a smooth vector
field X on a closed, connected and oriented 3-manifold M as in Definition 2.7. The
flow of X is denoted by φt.

Note that Kb = ∅ if, and only if, the broken book decomposition is a rational
open book decomposition as defined in [5], whose pages are Birkhoff sections. Hence
we proceed assuming that Kb 6= ∅.
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3.1. Blowing periodic orbits up. The discussion here makes no use of the broken
book decomposition. We consider any link L ⊂ M made of periodic orbits of φt,
oriented by the flow. For each orbit γ ⊂ L denote by Tγ > 0 its primitive period,
and let Nγ be a small tubular neighborhood of γ with an orientation preserving
diffeomorphism Ψγ : Nγ → R/TγZ×D as in (1). On Nγ \ γ we have tubular polar
coordinates (t, r, θ) ∈ R/TγZ× (0, 1]×R/2πZ, Ψ−1

γ (t, reiθ) ' (t, r, θ) as in (2). One
can blow the link L up to construct a smooth 3-manifold ML defined as

(5) ML :=

M \ L t
⊔
γ⊂L

R/TγZ× (−∞, 1]× R/2πZ


/
∼

where (t, r, θ) in R/TγZ× (0, 1]× R/2πZ gets identified with Ψ−1
γ (t, reiθ). On ML

there are #π0(L) smoothly embedded tori

(6) Σγ = R/TγZ× {0} × R/2πZ

with coordinates (t, θ) ∈ R/TγZ × R/2πZ, and ML contains a smooth compact
domain

(7) DL =

M \ L t
⊔
γ⊂L

R/TγZ× [0, 1]× R/2πZ


/
∼

satisfying

∂DL =
⊔
γ⊂L

Σγ .

Note that DL \ ∂DL = M \ L. Note also that (t, r, θ) 7→ Ψ−1
γ (t, reiθ) defines a

smooth diffeomorphism from R/TγZ× (0, 1]× R/2πZ to Nγ \ γ.
It follows from arguments originally due to Fried [20] that X can be smoothly

extended from M \L to a vector field XL on ML, whose flow we denote by φtL. The
restriction of XL to DL is unique, and XL is tangent to ∂DL. The details we need
on Fried’s construction can be found below, for more details see [29, Section 3].
In particular, it is important to know that there is a precise relation between the
dynamics of XL on Σγ and the linearized dynamics of X along γ. To see this,
denote by Z = (Ψγ)∗X the representation of X in R/TγZ×D. By the fundamental
theorem of calculus we get that

Z(t, 0) =

(
1
0

)
⇒ Z(t, reiθ) =

(
1
0

)
+A(t, reiθ)reiθ

where

A(t, reiθ) =

∫ 1

0

D2Z(t, τreiθ) dτ =

(
A1(t, reiθ)
A2(t, reiθ)

)
and D2 stands for the partial derivative in the D-factor. Note also that

D2Z(t, 0) =

(
A1(t, 0)
A2(t, 0)

)
.

Now consider the smooth map

Φ : R/TγZ× [0, 1]× R/2πZ→ R/TγZ× D (t, r, θ) 7→ (t, reiθ) .

Note that Φ defines a diffeomorphism R/TγZ× (0, 1]×R/2πZ ' R/TγZ× (D\{0})
that can be used to pull Z|R/TγZ×(D\{0}) back to a vector field W . Since

DΦ−1(t, reiθ) =

1 0

0

(
cos θ sin θ

−r−1 sin θ r−1 cos θ

)
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it follows that

W (t, r, θ) = DΦ−1(t, reiθ)Z(t, reiθ)

= (1 +A1(t, reiθ)reiθ)∂t +
〈
eiθ, A2(t, reiθ)reiθ

〉
∂r +

〈
ieiθ, A2(t, reiθ)eiθ

〉
∂θ

extends smoothly to R/TγZ× [0, 1]× R/2πZ. Since at r = 0 the component in ∂r
vanishes, we conclude that the extension XL of X from M \ L to DL is tangent
to ∂DL. The restriction of XL to Σγ is then of the form

(8) ∂t + b(t, θ)∂θ b(t, θ) =
〈
ieiθ, A2(t, 0)eiθ

〉
.

With the above formula, the relation between the dynamics of XL on ∂DL and the
linearized dynamics along the various orbits γ ⊂ L becomes precise, since b(t, θ) is
exactly the same as the function appearing in (3). A solution(

a(t)
u(t)

)
= Dφt(t0, 0)

(
a0

u0

)
, u0 = |u0|eiθ0 6= 0

along γ must satisfy

(9) u(t) = |u(t)|eiθ(t) θ̇(t) = b(t+ t0, θ(t)), θ(0) = θ0 .

3.2. Rigid leaves. For a broken book decomposition (K,F), the set of rigid
leaves RF was considered in [10]. When Kb 6= ∅ it can be alternatively defined
as a smallest collection of leaves R satisfying the following property:

(∗) If U is a connected open set such that U ∩ (K ∪ (∪`∈R`)) = ∅ then F|U is
defined by a fibration U → R.

For convenience of the reader, we present here a proof of the following result.

Proposition 3.1. A broken book decomposition with Kb 6= ∅ that is strongly car-
rying a vector field, has at least one and at most finitely many rigid leaves.

In order to prove this result, we will use a global version of Reeb stability for
foliations.

Theorem 3.2 (Corollary 4.2.2, Chapter V [25]). Let X be a C0 compact manifold
with nonempty boundary endowed with a transversely oriented C0-foliation F that
is tangent to ∂X. If all the leaves of F are compact then X fibers over an interval
and the foliation is given by the fibers.

To study rigid leaves and prove Proposition 3.1, we first select finitely many
special leaves of F such that following holds:

• For every broken binding orbit γ ⊂ Kb, the leaves separating the four
radially foliated sectors from the sectors foliated by hyperbolas in the local
model described in (IV) are in the selected leaves. These are the leaves
marked in bold in Figure 1 left.

• Every binding orbit γ ⊂ K is in the boundary of one of the selected leaves.

We will denote this finite set of leaves by S and call them the special leaves.

Proof of Proposition 3.1. It is not difficult to see that it suffices to show that some
nonempty finite collection of leaves satisfies property (∗).

The foliation F of M \K is transversely oriented by the vector field X. This is
(I) Definition 2.7.

Since every γ ⊂ Kb is hyperbolic, any neighborhood γ contains a compact neigh-
borhood Nγ of γ with the following properties. Assume first that γ is positive
hyperbolic. Then:

(i) Nγ is homeomorphic to a solid torus.
(ii) ∂Nγ is decomposed into eight closed annuli with mutually disjoint interiors.

Each of these annuli is smoothly embedded in M .
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(iii) Four of the annuli in (ii) are transverse to X, the flow enters Nγ along two
of them and exists Nγ along the other two. Each of these four annuli is
contained in a leaf of F not in S.

(iv) The four annuli in (iii) are intercalated by four annuli tangent to X.
(v) In the local model described in (IV) Definition 2.7, the leaves of F corre-

sponding to rays intersect transversely the four annuli tangent to X, and
define a foliation by circles of four smaller annuli (possibly degenerated to
a circle).

If γ is negative hyperbolic then there is an analogous decomposition of ∂Nγ into
four closed and smoothly embedded annuli with mutually disjoint interiors, two are
transverse to X and contained in leaves of F not in S, and the other two are tangent
to X. The annuli tangent to X contain smaller annuli smoothly foliated by circles
(possibly only one circle) that are intersections with leaves of F corresponding to
rays in the local model described in (IV) Definition 2.7. In any case, we denote
by S ′ the (finite) set of leaves of F that, for some γ ⊂ Kb, contain one of the annuli
in ∂Nγ transverse to X.

Using (III) Definition 2.7, any γ ⊂ Kr admits a small neighborhood Nγ dif-
feomorphic to a solid torus such that ∂Nγ is smoothly foliated by circles made of
transverse intersections of the leaves of F with ∂Nγ . At least one of such circles is
contained in a leaf in S.

Consider the sets

NK =
⋃
γ⊂K

Nγ Ω = M \

(
NK ∪

⋃
`∈S∪S′

`

)
.

Note that Ω is open. Cutting M \ N̊K along leaves of S ∪ S ′ we see that each con-
nected component ω of Ω is the interior of a compact C0 3-manifold with bound-
ary Y with the following properties. We can decompose ∂Y = ∂τY ∪ ∂tY , where
∂τY corresponds to pieces of leaves in S∪S ′, and ∂tY are annuli in ∂NK foliated by
circles consisting of intersections with leaves of F . We now want to get rid of ∂tY .
If ∂tY 6= ∅ we can take Y ′ to be a copy of Y with the opposite orientation, and
paste Y and Y ′ along ∂tY ∪∂tY ′ in such a way to obtain a compact C0 3-manifold
Y ∪t Y ′ with boundary, endowed with a C0 foliation tangent to its boundary. This
foliation is transversely orientable, and all its leaves are compact. By Theorem 3.2,
we obtain that Y ∪t Y ′ fibers over a closed interval and the foliation is given by
the fibers. Thus for every open connected set W compactly contained in ω the
foliation F|W is defined by a fibration W → R. We conclude by noting that NK
can be taken arbitrarily small, and S ∪ S ′ is finite and nonempty. �

Hence, assuming that Kb 6= ∅, the set RF is finite, and on each connected open
set U compactly contained in M \ RF the foliation F|U is defined by a fibration
over R. Such a fibration gives a function that is strictly increasing or strictly
decreasing along the segments of orbits of X contained in U . Without loss of
generality, we assume that the function is strictly increasing.

Lemma 3.3. Fix any metric on M . For every δ > 0 there exists Tδ > 0 such that
the following holds: if p ∈ M \ K satisfies dist(φ[−Tδ,Tδ](p),Kb) ≥ δ, then there
exists t∗ ∈ [−Tδ, Tδ] such that φt∗(p) belongs to some leaf in RF .

Proof. We give a proof by contradiction. Assume that there exists some δ > 0
such that the conclusion of the lemma is false. Hence there is a sequence of points
pn ∈ M \ K and a sequence tn ∈ R tending to infinity as n → ∞, such that
dist(φ[−tn,tn](pn),Kb) ≥ δ and φ[−tn,tn](pn) ∩ (∪`∈RF `) = ∅. Modulo passing to
a subsequence, pn converges to some point p∞ such that dist(φR(p∞),Kb) ≥ δ.
Consider the compact set E = K ∪ (∪`∈RF `).
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We claim that dist(φR(p∞), E) > 0. First suppose, by contradiction, that
φR(p∞) contains points arbitrarily close to Kr. It follows that the trajectories
of pn spend arbitrarily large amounts of time arbitrarily near Kr, and by (II.a) in
Definition 2.7, φR(pn) intersects some rigid leaf for n large enough. This contra-
diction shows that dist(φR(p∞),K) > 0. Again by contradiction, we assume that
φR(p∞) contains points arbitrarily close to ∪`∈RF `. Using the transversality of the
flow with the leaves and the fact that φR(p∞) is at a positive distance to K, we
find an intersection between φR(p∞) and some rigid leaf. As before, this implies
that φ[−tn,tn](pn) intersects some rigid leaf, an absurd. We are done with the proof
of dist(φR(p∞), E) > 0.

It follows that the ω-limit set of p∞ satisfies dist(ω(p∞), E) > 0, hence ω(p∞) is a
compact subset of some connected open set U compactly contained inM\E. Choose
a recurrent point q ∈ ω(p∞). By Proposition 3.1 there is a continuous function
f : U → R strictly increasing along the segments of orbits in U , in particular along
the orbit of q. This leads to a contradiction: a continuous function cannot be
strictly increasing along a recurrent orbit. �

3.3. Invariant measures and intersection numbers. As in the previous sec-
tion, we consider a link L ⊂ M tangent to X, with the orientation induced by X.
We use the notation and the constructions from Section 3.1.

Denote by Pφ(M \ L) the set of φt-invariant Borel probability measures on
M \ L, and by Pφ(DL) the set of φtL-invariant Borel probability measures on DL.
If µ ∈Pφ(M \L) and y ∈ H1(M \L;R) then we may choose a closed 1-form β on
M \ L representing y such that ιXβ is bounded, and define

(10) µ · y =

∫
M\L

ιXβ dµ

called the intersection number of µ and y. The existence of β as above can be seen
with the help of polar tubular coordinates, and is implicitly contained in Section 3.1,
see [29, Section 2.1] for more details. The independence on the choice of β can be
seen by showing that there exists fµ,y ∈ L1(µ) and a Borel set E ⊂ M \ L such
that:

• µ(E) = 1 and all points in E are recurrent.
• If p ∈ E and V ⊂ M \ L is an open contractible neighborhood of p, then
T−1
n 〈y, k(Tn, p)〉 → fµ,y(p) as n → ∞, where Tn → +∞ is any sequence

such that φTn(p) → p, and k(Tn, p) are choices of loops obtained by con-
catenating to φ[0,Tn](p) a path from φTn(p) to p inside V .

• The identity

µ · y =

∫
M\L

fµ,y dµ

holds.

These facts can be proved with a direct application of the ergodic theorem, for more
details see [29, Section 2.1].

Similarly, for any µ ∈Pφ(DL) and y ∈ H1(DL;R) one defines

(11) µ · y =

∫
DL

ιXLβ dµ

where β is a closed 1-form on DL representing y. Independence of β is easier in
this case since DL is compact.

We may freely identify H1(DL;R) ' H1(M \L;R) via pull-back by the inclusion
map M \ L = DL \ ∂DL ↪→ DL, as in the statement below.
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Lemma 3.4 ([29], Lemma 3.6). If γ is a component of L, µ ∈ Pφ(DL) satisfies
supp(µ) ⊂ Σγ , and y is a class in H1(DL;R), then µ · y = 2π

Tγ
ρy(γ), where Tγ > 0

is the primitive period of γ.

3.4. First estimates of intersection numbers. The cohomology class

(12) y0 =
∑
`∈RF

`∗ ∈ H1(M \K;R) ' H1(DL;R),

dual to the rigid leaves, plays a key role in our arguments.

Lemma 3.5. If µ ∈Pφ(M \K) is ergodic then µ · y0 > 0.

Proof. Any γ ⊂ Kb is a hyperbolic orbit, hence isolated as an invariant set. More-
over, by hyperbolicity and condition (IV), we can find an isolating compact neigh-
borhood Nγ of γ inside any neighborhood of γ fixed a priori, and some η > 0
depending on Nγ , such that the following holds: If p ∈M \ (K ∪Wu(γ) ∪W s(γ))
and if ω 6= ∅ is a connected component of {t ∈ R | φt(p) ∈ Nγ}, then ω = [a, b] is a

compact interval with non-empty interior, φ[a−η,a)∪(b,b+η](p)∩Nγ = ∅, and ∃t∗ ∈ ω
such that φt∗(p) belongs to some leaf in RF .

Denote Wu(Kb) =
⋃
γ⊂KbW

u(γ) and W s(Kb) =
⋃
γ⊂KbW

s(γ). Taking unions
of various small Nγ as above, we find an isolating compact neighborhood Nb for Kb

inside any neighborhood of Kb fixed a priori, and some η > 0 depending on Nb,
with the following property:

(∗) If p ∈ M \ (K ∪ Wu(Kb) ∪ W s(Kb)) and ω is a non-empty connected
component of {t ∈ R | φt(p) ∈ Nb}, then ω = [a, b] is a compact interval
with non-empty interior, φ[a−η,a)∪(b,b+η](p)∩Nb = ∅, and ∃t∗ ∈ ω such that
φt∗(p) ∈

⋃
`∈RF `.

Fix ϕ : M → [0, 1] continuous such that ϕ is identically equal to 1 near Kb, and
is supported on a neighborhood U of Kb satisfying µ(U \Kb) <

1
2 . We can proceed

assuming, without loss of generality, that Nb ⊂ ϕ−1(1). Since µ is ergodic, the
following hold simultaneously for µ-almost all points p ∈M \K:

(13)

lim sup
T→+∞

1

T
Leb({t ∈ [0, T ] | φt(p) ∈ Nb})

≤ lim
T→+∞

1

T

∫ T

0

ϕ(φt(p)) dt =

∫
M\K

ϕ dµ <
1

2
,

(14) µ · y0 = lim
T→+∞

1

T
#{t ∈ [0, T ] | φt(p) ∈ ` for some ` ∈ RF} .

From now on we fix such p, and denote

J = {t ∈ R | φt(p) ∈ Nb} .

If we fix an auxiliary metric on M , and choose δ > 0 such that dist(·,Kb) > δ on
M \ Nb, then by Lemma 3.3 we find T∗ > 0 such that if φ[c,d](p) ⊂ M \ Nb and
d− c ≥ T∗ then φ[c,d](p) intersects some leaf in RF .

By (∗), for every T > 0 we write J ∩ [0, T ] is a finite union of n(T ) maximal
compact intervals, which are all at least η apart from each other. We list these
intervals as h1, . . . , hn(T ) in an increasing fashion: suphj ≤ inf hj+1. It follows
that inf hj+1 − suphj ≥ η. Note that only h1 and hn(T ) may not be connected
components of J .

Consequently, we can write [0, T ]\J as a finite union of m(T ) maximal intervals
which are open relatively to [0, T ], with |n(T )−m(T )| ≤ 1, all of which have length
at least equal to η. Denote by ω+

1 , . . . , ω
+
m+(T ) those intervals with length ≥ T∗.
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Denote by ω−1 , . . . , ω
−
m−(T ) those intervals with length < T∗. We have m(T ) =

m+(T ) +m−(T ) and

[0, T ] \ J = ω+
1 ∪ · · · ∪ ω

+
m+(T ) ∪ ω

−
1 ∪ · · · ∪ ω

−
m−(T ) .

Denote H(T ) = #{t ∈ [0, T ] | φt(p) ∈ ∪`∈RF `}, i.e. H(T ) is the number of
hitting times between φ[0,+∞)(p) and the union of the union of leaves in RF up to
time T . By (14) we have T−1H(T )→ µ · y0 as T → +∞. Our constructions so far
imply that there is at least one hitting time on each ω+

1 , . . . , ω
+
m+(T ) and, by (∗),

at least one hitting time on each h2, . . . , hn(T )−1. In particular, H(T ) ≥ n(T )− 2.
We split the remaining arguments in two cases.

Case 1. lim infT→+∞ T−1n(T ) > 0

In this case we are done since

µ · y0 = lim
T→+∞

H(T )

T
≥ lim inf
T→+∞

n(T )

T
> 0 .

Case 2. lim infT→+∞ T−1n(T ) = 0

In this case we can find Tj → +∞ such that T−1
j n(Tj) → 0 as j → +∞. Note

that

(15)

1 =
Leb(J ∩ [0, Tj ])

Tj
+

Leb([0, Tj ] \ J)

Tj

=
Leb(J ∩ [0, Tj ])

Tj
+

1

Tj

m+(Tj)∑
s=1

Leb(ω+
s ) +

1

Tj

m−(Tj)∑
s=1

Leb(ω−s ) .

Moreover, if j � 1 then T−1
j Leb(J ∩ [0, Tj ]) <

1
2 by (13), and

1

Tj

m−(Tj)∑
s=1

Leb(ω−s ) ≤ T∗
m−(Tj)

Tj
≤ T∗

m(Tj)

Tj
≤ T∗

n(Tj) + 1

Tj
→ 0 .

Plugging in (15) we get

(16) j � 1 ⇒ 1

Tj

m+(Tj)∑
s=1

Leb(ω+
s ) ≥ 1

2
.

Consider λj the maximal number of intervals of length T∗ that fit inside the union
of the ω+

s . Note that ∣∣∣∣∣∣T∗λj −
m+(Tj)∑
s=1

Leb(ω+
s )

∣∣∣∣∣∣ ≤ T∗m+(Tj) .

Hence for j large enough we compute

1

2
≤ 1

Tj

m+(Tj)∑
s=1

Leb(ω+
s ) ≤ T∗λj

Tj
+
T∗m+(Tj)

Tj
.

Since
m+(Tj)
Tj

→ 0 we get
λj
Tj
≥ 1

2T∗
for all j large enough. Hence

H(Tj)

Tj
≥ λj
Tj
≥ 1

2T∗

for all j large enough, and µ · y0 ≥ 1
2T∗

> 0 follows. �
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3.5. Further estimates of intersection numbers. Let the broken book decom-
position (K = Kr t Kb,F), the link of periodic orbits K ′ ⊂ M \ Kb and the
cohomology class y′ ∈ H1(M \K ′;R) be as in the statement of Theorem 2.10. As
in Section 3.1, we may blow K ∪ K ′ up to obtain a new manifold MK∪K′ with
a smooth compact domain DK∪K′ such that DK∪K′ \ ∂DK∪K′ = M \ (K ∪ K ′).
There is a boundary torus Σγ (6) for each orbit γ ⊂ K ∪K ′ and the vector field X
extends smoothly from M \ (K ∪K ′) to DK∪K′ . As agreed before, we may freely
identify H1(M \ (K ∪K ′);R) with H1(DK∪K′ ;R).

We pull y′ back to a cohomology class

(17) y′′ ∈ H1(M \ (K ∪K ′);R) ' H1(DK∪K′ ;R)

via the inclusion M \ (K ∪K ′) ↪→ M \K ′. Similarly, we pull the class y0 defined
in (12) back to a cohomology class

(18) y′′0 ∈ H1(M \ (K ∪K ′);R) ' H1(DK∪K′ ;R)

via the inclusion M \ (K ∪K ′) ↪→M \K. We denote

(19) ∂bDK∪K′ =
⋃
γ⊂Kb

Σγ .

Lemma 3.6. If µ ∈Pφ(DK∪K′) satisfies supp(µ) ⊂ ∂bDK∪K′ then µ · y′′0 = 0 and
µ · y′′ > 0.

Proof. In the construction of DK∪K′ , as explained in Section 3.1, we fix a diffeo-
morphism Ψγ as in (1) from a small tubular neighborhood Nγ of γ ⊂ K ∪K ′ onto
R/TγZ×D, with induced tubular polar coordinates (t, r, θ) ∈ R/TγZ×[0, 1]×R/2πZ.
These coordinates model a smooth neighborhood in DK∪K′ of the torus component
Σγ = {r = 0} ⊂ ∂DK∪K′ . If γ ⊂ Kb and 0 < ε � 1 then, since Kb ∩K ′ = ∅, the
loop

t ∈ R/TγZ 7→ (t, ε, 0) ∈ DK∪K′ \ ∂DK∪K′ = M \ (K ∪K ′)

is homologous to γ in M \K ′, and the loop θ ∈ R/2πZ 7→ (0, ε, θ) is homologous
to zero in M \K ′. Hence, if we write y′′ ≡ pdt+ qdθ in Nγ \ γ, then

p =
〈y′′, [t 7→ (t, ε, 0)]〉

Tγ
=
〈y′, γ〉
Tγ

> 0

and

q =
〈y′′, [θ 7→ (0, ε, θ)]〉

2π
=
〈y′, [θ 7→ (0, ε, θ)]〉

2π
= 0 .

Identifying H1(DK∪K′ ;R) ' H1(M \ (K ∪K ′);R), we can apply Lemma 3.4 to get

µ · y′′ = ρy
′′
(γ) =

〈y′, γ〉
2π

> 0 .

We now prove that µ · y′′0 = 0. Fix ` ∈ RF and its dual `∗ ∈ H1(M \ K;R).
Pulling `∗ back to H1(M \(K∪K ′);R) via the inclusion M \(K∪K ′) ↪→M \K, we
get a class y′′` ∈ H1(M \ (K ∪K ′);R) ' H1(DK∪K′ ;R). In Nγ \γ, with γ ⊂ Kb, we
have y′′` ≡ pdt + qdθ ≡ `∗ for constants p, q ∈ R, as above. If ` does not contain γ
in its boundary then p = q = 0, and µ · y′′` = 0. If ` contains γ in its boundary then

µ · y′′` = ρ`
∗
(γ) = 0 by (II.b) in Definition 2.7. Here Lemma 3.4 was used. Since

y′′0 =
∑
`∈RF y

′′
` the desired conclusion follows.

�
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3.6. Obtaining the Birkhoff section. The space C0(DK∪K′) becomes a Banach
space with the sup norm. Its topological dual C0(DK∪K′)

′ is a Banach space with
the corresponding dual norm, and its unit ball is a compact metrizable space when
equipped with the weak* topology; here it was used C0(DK∪K′) is a separable
Banach space. The set Pφ(DK∪K′) can be seen as a convex subset of the unit ball
of C0(DK∪K′)

′, and the Riesz representation theorem implies that Pφ(DK∪K′) is
closed in weak*. Hence Pφ(DK∪K′) with the weak* topology is a compact metric
space.

Consider E ⊂ Pφ(DK∪K′) the subset of ergodic measures. Let Eb be the set of
those µ ∈ E satisfying µ(∂bDK∪K′) = 1. Here ∂bDK∪K′ is the invariant set (19).
Then E1 = E \ Eb is the set of those µ ∈ E satisfying µ(∂bDK∪K′) = 0. In general,
the sets E , Eb, E1 might be non-compact in weak*.

Every cohomology class α ∈ H1(DK∪K′ ;R) defines a function

µ ∈Pφ(DK∪K′) 7→ µ · α ∈ R
which is weak* continuous. This is so since, by definition of intersection numbers,
µ ·α is an integral of some function in C0(DK∪K′) with respect to µ. Consider the
classes y′′ and y′′0 defined in (17) and in (18), respectively.

Let µ ∈ E1. By ergodicity, either µ(M \(K∪K ′)) = 1 or µ(M \(K∪K ′)) = 0. In
the former case, µ restricts to M \(K∪K ′) as an ergodic measure for the flow φt on
M \ (K ∪K ′), and Lemma 3.5 implies that µ · y′′0 > 0. In the latter case, we find a
component γ ⊂ Kr ∪K ′ such that supp(µ) is contained on the boundary torus Σγ .
If γ ⊂ Kr then Lemma 3.4 implies µ · y′′0 > 0. Here (II.a) from Definition 2.7 is also
used. If γ ⊂ K ′ \Kr then we get µ · y′′0 > 0 from the fact that γ is a periodic orbit
in the complement of K. Summarizing, we proved that

(20) µ ∈ E1 ⇒ µ · y′′0 > 0 .

By compactness of Pφ(DK∪K′) we get

c = sup
µ∈Pφ(DK∪K′ )

|µ · y′′| < +∞ .

Consider

(21) Z = E1 ∩ {µ ∈Pφ(DK∪K′) | µ · y′′0 = 0}

where E1 denotes the weak* closure. Note that Z is compact in weak* since it is a
closed subset of the compact set Pφ(DK∪K′).

Lemma 3.7. If µ ∈ Z then µ · y′′ > 0.

Proof. Fix µ ∈ Z. By the ergodic decomposition theorem we can find a Borel
probability measure Pµ on E such that

(22) µ · α =

∫
E
ν · α dPµ(ν)

holds for every α ∈ H1(DK∪K′ ;R). Apply this formula to y′′0 in combination with
the definition of Z and with Lemma 3.6 to get

0 = µ · y′′0 =

∫
E
ν · y′′0 dPµ(ν) =

∫
Eb
ν · y′′0 dPµ(ν) +

∫
E1
ν · y′′0 dPµ(ν)

=

∫
E1
ν · y′′0 dPµ(ν) .

Now (20) implies that ν · y′′0 > 0 for all ν ∈ E1, and we conclude that Pµ(E1) = 0.
Hence 1 = Pµ(Eb). Substituting α = y′′ in (22) we finally get

µ · y′′ =

∫
Eb
ν · y′′ dPµ(ν) > 0
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since by Lemma 3.6 the integrand is pointwise strictly positive. �

By compactness of Z and Lemma 3.7, we find an open neighborhood U of Z in
Pφ(DK∪K′) such that µ · y′′ > 0 for all µ ∈ U . Moreover, since (20) implies that

µ · y′′0 ≥ 0 for every µ ∈ E1, we get µ · y′′0 > 0 for every µ in Z ′ = E1 \ U . By the
compactness of Z ′

d = inf
µ∈Z′

µ · y′′0 > 0 .

Finally, choose a > 0 large enough so that ad > c and compute:

• If µ ∈ Eb then µ · (ay′′0 + y′′) = µ · y′′ > 0.
• Assume that µ ∈ E1. If µ ∈ U then µ · (ay′′0 + y′′) = aµ · y′′0 + µ · y′′

and both µ · y′′0 and µ · y′′ are strictly positive. If µ ∈ E1 \ U ⊂ Z ′ then
µ · (ay′′0 + y′′) ≥ ad− c > 0.

This proves that the class y′′∗ = ay′′0 + y′′ ∈ H1(DK∪K′ ;R) satisfies µ · y′′∗ > 0 for
all µ ∈ E . The ergodic decomposition theorem implies that µ · y′′∗ > 0 must also
hold for all µ ∈Pφ(DK∪K′). Let y∗ ∈ H1(M \ (K ∪K ′);R) be the class obtained
by pulling y′′∗ back via the inclusion M \ (K ∪K ′) = DK∪K′ \ ∂DK∪K′ ↪→ DK∪K′ .
Then µ · y∗ > 0 holds for all µ ∈Pφ(M \ (K ∪K ′)), and Lemma 3.4 implies that
ρy∗(γ) > 0 for all γ ⊂ K∪K ′. Hence we can apply Theorem A.1 to find the desired
Birkhoff section.

4. Finding orbits that link the broken binding

Our goal here is to prove Proposition 2.11. Let λ be a contact form on a
closed, connected and oriented 3-manifold M satisfying λ ∧ dλ > 0, with Reeb
vector field X. We consider a sequence of weighted links of periodic Reeb orbits
({γnj }, {pnj }), 1 ≤ j ≤ N(n), as in the introduction, and the associated Borel in-
variant probability measures

µn =
∑
j

pnj
(γnj )∗Leb

T (γnj )
.

In Proposition 2.11 it is assumed that ({γnj }, {pnj }) as above can be found so that

(23) µn → λ ∧ dλ
vol(λ)

in the weak* topology of C0(M)′. If we denote In = γn1 ∪ · · · ∪ γnN(n), then there is

no loss of generality to assume that

(24) In ⊂ In+1 ∀n .

Moreover, since L has measure zero with respect to λ ∧ dλ, there is no loss of
generality to further assume that

(25) In ⊂M \ L ∀n .

For every open set U ⊂M and p ≥ 0, Ωp(U) is equipped with the C∞loc-topology,
and the space Cp(U) of p-currents with compact support in U is defined as the
topological dual of Ωp(U) with the associated weak* topology. Boundary operators
∂∗ : C∗(U)→ C∗−1(U) are defined as adjoints of the exterior derivative. Elements
in Zp(U) = ker ∂p are called cycles, and the elements of Bp(U) = im∂p+1 ⊂ Zp(M)
are called boundaries. The quotient space Zp(U)/Bp(U) is canonically isomorphic
to Hp(U ;R).

Let us enumerate the components of L as h1, . . . , hm. They can also be seen
as maps hk : R/T (hk)Z → M parametrized by the flow, where T (hk) > 0 is
the primitive period of hk. In this way, each hk defines a cycle in C1(M) by the



GENERIC PROPERTIES OF 3-DIMENSIONAL REEB FLOWS 19

formula ω ∈ Ω1(M) 7→
∫
R/T (hk)Z h

∗
kω. This cycle is also denoted by hk, with no

fear of ambiguity.

Lemma 4.1. Let x1, . . . , xm ∈ Z be such that c =
∑m
k=1 xkhk ∈ B1(M). Choose an

oriented rational Seifert surface f : S → M for c, i.e. S is an oriented compact
surface, f is an immersion, and

• f |∂S defines a submersion ∂S → L covering each hk exactly xk times,
• f |S\∂S defines an embedding S \ ∂S →M \ L.

Then

lim
n→∞

∑
j

pnj
vol(λ) int(γnj , f)

T (γnj )
=

∫
S

f∗dλ =

m∑
k=1

xkT (hk)

where int(γnj , f) ∈ Z denotes the algebraic intersection number between γnj and f .

Proof. Consider the 3-manifold ML obtained from M and L via the blow-up con-
struction explained in Section 3.1. It contains a special smooth domain DL ⊂
ML (7) such that DL \ ∂DL = M \ L. The vector field X extends smoothly from
M \ L to DL tangentially to ∂DL. The extended vector field is still denoted here
by X, for simplicity. It is not difficult to show that also λ extends smoothly to DL.
Unfortunately, λ does not define a contact form on DL since dλ vanishes on TyDL

for every y ∈ ∂DL. The rest of this proof is a small modification of the proof of the
Action-Linking Lemma [6, Lemma 1.12].

Consider the map π : DL → M defined by collapsing each boundary torus (6)
Σhk to hk. This map is smooth since in tubular polar coordinates (t, r, θ) near
Σhk = {r = 0}, as in (2), the map is represented by (t, r, θ) 7→ (t, reiθ). After a
C∞-small perturbation of f , we can assume that f = π|S for an embedded surface
S ⊂ DL that intersects ∂DL transversely; in particular, ∂S = S ∩ ∂DL.

Consider a compact neighborhood U of S diffeomorphic to [−1, 1]× S in such a
way that {0}×S ' S. Denote by z the coordinate on [−1, 1]. If Ω is a positive area
form on S then there is no loss of generality to assume that Ω∧dz > 0 on U . Fix any
non-negative test function ϕ on R such that supp(ϕ) ⊂ [−1, 1] and

∫
R ϕ = 1. For

every δ ∈ (0, 1) set ϕδ(x) = δ−1ϕ(δ−1x). Hence supp(ϕδ) ⊂ [−δ, δ] and
∫
R ϕδ = 1.

Note that ϕδ(z)dz defines a closed 1-form supported in the interior of U and, as
such, it can be smoothly extended as a closed 1-form βδ on DL. It represents the
cohomology class dual to S. Consider smooth functions f, g : U → R defined by
f = iXdz and λ ∧ dλ = g Ω ∧ dz. Then∫

DL

iXβδ λ ∧ dλ =

∫
U'[−1,1]×S

ϕδ(z)f(z, q)g(z, q) Ω ∧ dz

=

∫
U'[−1,1]×S

ϕδ(z)(f(0, q)g(0, q) + ε(z, q)) Ω ∧ dz

=

∫
S

f(q, 0)g(q, 0) Ω +

∫
U'[−1,1]×S

ϕδ(z)ε(z, q) Ω ∧ dz .

One finds c > 0 such that supq∈S |ε(z, q)| ≤ c|z| holds for all (z, q) ∈ [−1, 1]×S ' U .
This follows from the fundamental theorem of calculus. Hence∣∣∣∣∫

DL

iXβδ λ ∧ dλ−
∫
S

f(0, q)g(0, q) Ω

∣∣∣∣
≤ cδ

(∫
S

Ω

)(∫
[−1,1]

ϕδ(z)dz

)
= cδ

∫
S

Ω .

Since all βδ’s are cohomologous, the integral
∫
DL

iXβδ λ∧dλ does not depend on δ.

This is a simple consequence of the fact that λ∧dλ defines an invariant measure on
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M \L = DL \ ∂DL, combined with the ergodic theorem. Taking the limit as δ → 0

(26)

∫
DL

iXβδ0 λ ∧ dλ =

∫
S

fg Ω ∀δ0 ∈ (0, 1) .

The identity dλ = iX(λ∧dλ) is valid on DL \∂DL = M \L, and hence is also valid
on DL with the smooth extensions of X, λ and dλ. On U one computes

dλ = iX(λ ∧ dλ) = iX(g Ω ∧ dz) = fg Ω + ν ∧ dz

for some 1-form ν. Since dz vanishes tangentially to S we get from (26) that∫
DL

iXβδ λ ∧ dλ =

∫
S

dλ =

m∑
k=1

xkT (hk) ∀δ ∈ (0, 1) .

Finally, once δ ∈ (0, 1) is fixed arbitrarily, the function iXβδ is bounded on M \ L
since it is continuous on the compact space DL ⊃ DL \ ∂DL = M \ L. Hence∫

DL

iXβδ λ ∧ dλ =

∫
M\L

iXβδ λ ∧ dλ

= vol(λ) lim
n→∞

∫
M\L

iXβδ dµ
n

= vol(λ) lim
n→∞

∑
j

pnj
int(γnj , f)

T (γnj )
.

Here we used the assumption that µn → (λ ∧ dλ)/vol(λ) in weak* topology of
C0(M)′ in combination with Lemma B.1. �

Let H = span{h1, . . . , hm} ⊂ Z1(M). Then dimH = m and {h1, . . . , hm} is a
basis of H. The space H contains a compact convex set

C =

{
m∑
k=1

akhk

∣∣∣∣∣ ak ≥ 0 ∀k,
m∑
k=1

ak = 1

}
.

Choose a basis e1, . . . , eR of H ∩B1(M). Hence [er] = 0 in H1(M ;R).
The universal coefficients theorem tells us that H2(M,L;R) ' H2(M,L;Q)⊗R.

Hence, for every r we can find finitely many ysr ∈ R and oriented rational Seifert
surfaces fsr as in Lemma 4.1 such that

er = ∂
∑
s

ysrf
s
r

where the fsr are seen in C2(M).

Lemma 4.2. If n is large enough then C ∩B1(M \ In) = ∅.

Proof. There is no loss of generality to assume that vol(λ) = 1. On the space H we
have the norm ‖

∑m
k=1 akhk‖ =

∑m
k=1 |ak|, and on H ∩ B1(M) we have the norm

‖
∑R
r=1 brer‖0 =

∑R
r=1 |br|. The norm on H ∩ B1(M) obtained by restricting ‖ · ‖

to H ∩ B1(M) is denoted by ‖ · ‖1. Since these are norms on a finite-dimensional
vector space, we find κ > 0 such that ‖ · ‖0 ≤ κ‖ · ‖1. Choose η > 0 satisfying
η ≥ maxr,s |ysr |. It is important to note that both κ and η are independent of n.
By Lemma 4.1

n� 1 ⇒

∣∣∣∣∣∣
∑
j

pnj
int(γnj , f

s
r )

T (γnj )
− 〈fsr , dλ〉

∣∣∣∣∣∣ < 1

2κη
min
k
T (hk) ∀r .
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If n is large enough and c ∈ C ∩ B1(M), write c =
∑m
k=1 akhk =

∑R
r=1 brer with∑m

k=1 ak = 1 and estimate∣∣∣∣∣∣
∑
j,r,s

bry
s
rp
n
j

int(γnj , f
s
r )

T (γnj )
−

m∑
k=1

akT (hk)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
r,s

bry
s
r

∑
j

pnj
int(γnj , fr)

T (γnj )
− 〈fsr , dλ〉

∣∣∣∣∣∣
≤
(

1

2κη
min
k
T (hk) max

r,s
|ysr |
) R∑
r=1

|br| ≤
(

1

2κ
min
k
T (hk)

)
‖c‖0

≤
(

1

2
min
k
T (hk)

)
‖c‖1 =

(
1

2
min
k
T (hk)

) m∑
k=1

ak =
1

2
min
k
T (hk) .

Combining with

m∑
k=1

akT (hk) ≥ (min
k
T (hk))

m∑
k=1

ak = min
k
T (hk)

and using the triangle inequality, we conclude that

(27) n� 1 ⇒
∑
j,r,s

bry
s
rp
n
j

int(γnj , f
s
r )

T (γnj )
≥ 1

2
min
k
T (hk) .

Let Θn be a closed 2-form on M representing the Poincaré dual in H2(M ;R) of
the class in H1(M ;R) represented by the cycle Σj p

n
j T (γnj )−1 γnj . Observe that for

any fixed closed 1-form α on M we can compute

lim
n→∞

∫
M

α ∧Θn = lim
n→∞

∑
j

pnj
T (γnj )

∫
γnj

α

= lim
n→∞

∫
M

iXα dµ
n

=
1

vol(λ)

∫
M

iXα λ ∧ dλ

=
1

vol(λ)

∫
M

α ∧ dλ = 0 .

In particular, this can be applied to the closed 1-form α representing the Poincaré
dual of the class in H2(M ;R) induced by an arbitrary S ∈ Z2(M), thus giving

lim
n→∞

〈S,Θn〉 = 0 .

To every A ∈ C2(M) satisfying ∂A ∈ H we can linearly associate Â defined by

∂A =
∑
r

brer ⇒ Â =
∑
r,s

bry
s
rf

s
r .

Here we used ∂A ∈ H ∩B1(M). In particular, ∂Â =
∑
r brer and ∂(A− Â) = 0.

To prove the lemma we now argue by contradiction, and assume that we can
find nj → ∞ and cj ∈ C ∩ B1(M \ Inj ). Let Aj ∈ C2(M \ Inj ) satisfy ∂Aj = cj .
By what was proved above, we can select further subsequences and assume, with
no loss of generality, that∣∣∣〈Aj − Âj ,Θnj+1

〉∣∣∣ < 1

4
min
k
T (hk)

〈
Âj ,Θnj+1

〉
≥ 1

2
min
k
T (hk) .

It follows that

(28)
〈
Aj ,Θnj+1

〉
>

1

4
min
k
T (hk) ∀j .
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EachAj induces a class [Aj ] ∈ H2(M,L;R). SinceH2(M,L;R) is finite-dimensional,
we find j∗ such that all [Aj ] are in the span of {[A1], . . . , [Aj∗ ]}. For every j > j∗ let
us write [Aj ] = dj1[A1] + · · ·+ djj∗ [Aj∗ ]. Note that if m ≥ l then Am is supported
in M \ Inm , and by (24) we have M \ Inm ⊂M \ Inl ⇒ 〈Am,Θnl〉 = 0. Hence

0 = 〈Aj ,Θn2
〉 = dj1 〈A1,Θn2

〉 ⇒ dj1 = 0 .

It follows that 0 = 〈Aj ,Θn3〉 = dj2 〈A2,Θn3〉 ⇒ dj2 = 0, and we can proceed
inductively to show that djs = 0 for every 1 ≤ s ≤ j∗. This proves that [Aj ] vanishes
in H2(M,L;R) when j is large enough, in contradiction to

〈
Aj ,Θnj+1

〉
> 0. �

To conclude the proof of Proposition 2.11, fix n large so that C ∩B1(M \In) = ∅.
This is possible by the previous lemma. We invoke the Hahn-Banach theorem to
obtain a continuous linear functional ϕn : C1(M \ In)→ R satisfying

(29) ϕn|C > 0 and ϕn|B1(M\In) ≡ 0 .

By reflexivity [16, §17], we find ωn ∈ Ω1(M \In) such that ϕn(·) = 〈·, ωn〉. Since ϕn
vanishes on B1(M \ In) we get dωn = 0. Since all hk belong to C , we get from (29)
that ∫

hk

ωn > 0 ∀k = 1, . . . ,m .

The cohomology class of ωn in H1(M \ In;R) is the class we were looking for, and
the proof of Proposition 2.11 is complete.

5. Openness of the supporting condition

Proposition 5.1. Let X be a smooth vector field on a smooth closed 3-manifold M
that has a ∂-strong Birkhoff section ι : S → M , such that ι(∂S) consists of non-
degenerate periodic orbits. There exists a C1-neighborhood N (X) of X such that
every smooth vector field X ′ ∈ N (X) has a ∂-strong Birkhoff section isotopic to ι.

Proof. Denote K = ι(∂S), ` = ι(S \ ∂S), and let `∗ ∈ H1(M \K;R) be the dual
class. As in Section 3.1, we blow M up along K to get the compact manifold
with boundary DK . There is a smooth projection P : DK → M represented as
(t, r, θ) 7→ (t, reiθ) with the aid of appropriate polar tubular coordinates (2). The
map P defines a diffeomorphism DK \ ∂DK →M \K and collapses Σγ to γ. The
vector field X|M\K extends smoothly to DK as a nonsingular vector field tangent to

∂DK . The extended vector field is denoted by X̃. In fact, there is a boundary torus
Σγ ⊂ ∂DK associated to every orbit γ ⊂ K, and the tubular polar coordinates (t, θ)
are global periodic coordinates on Σγ ' P+γ that represent the projection to γ as

(t, θ) 7→ t. In these coordinates X̃ assumes the form ∂t + b(t, θ)∂θ and its dynamics
is precisely linearized dynamics on P+γ. It is straightforward to construct a smooth
map ι̃ : S → DK satisfying ι = P ◦ ι̃. The assumption that ι is ∂-strong tells us that
ι̃(S) is an embedded surface in DK transverse to ∂DK . Any vector field X ′ on M

that coincides with X on K extends smoothly to a vector field X̃ ′ on DK , tangent
to ∂DK . Moreover, if X ′ is C1-close to X then X̃ ′ is C0-close to X̃. It follows that
ι̃(S) is transverse to X̃ ′ up to ∂DK and there is a smooth (hence bounded) return

time to ι̃(S) for the dynamics of X̃ ′. It follows that ι is a ∂-strong Birkhoff section
for X ′ provided that X ′ is C1-close enough to X.

Now take a transverse disk section Dγ near a component γ of K, where γ appears
as an isolated fixed point of the first return map. By the implicit function theorem,
this fixed point varies slightly under C1-small perturbations of X and defines a
periodic orbit γ′ for the perturbed vector field, C1-close to γ. Combined with the
“extension of isotopies” theorem, we obtain that for every ε > 0 there exists a C1-
small neighborhoodNε(X) of X such that for every smooth vector field X ′ ∈ Nε(X)
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there is an ε-small (in C1) smooth isotopy (φt)t∈[0,1], φ0 = idM , of M taking γ to
a periodic orbit γ′ = φ1(γ) of X ′, and similarly for the other binding components.
This isotopy can be taken supported near K. By further multiplying by a function
h ε-close to 1 in C1, the vector fields (φ1)∗X and hX ′ get to agree on φ1(K). Our
work shows that ι is a ∂-strong Birkhoff section for (φ1)∗(hX ′). It follows that φ1◦ι
is a ∂-strong Birkhoff section for X ′ when X ′ ∈ Nε(X). �

6. Genericity of entropy

Let φt : M → M be a flow on a closed 3-manifold. The topological entropy
htop(φ

t) is a non-negative number that measures the complexity of the flow. We
review a definition, originally introduced by Bowen [9]. We first endow M with
a metric d. Given T > 0 we define dT (x, y) = max{d(φt(x), φt(y)) : t ∈ [0, T ]}
for any couple of points x, y ∈ M . A subset S ⊂ M is (T, ε)-separated if for all
x 6= y in S we have that dT (x, y) > ε. Let N(T, ε) be the maximal cardinality of a
(T, ε)-separated subset of M . The topological entropy is defined as

htop(φ
t) = lim

ε→0
lim sup
T→∞

1

T
log(N(T, ε)).

If M has dimension 3 and the flow is at least C2, deep results of Katok [35] adapted
to the case of flows by Lima and Sarig [40], imply that having positive entropy is
equivalent to the existence of a transverse homoclinic connection: an intersection
between the stable and unstable manifolds of a hyperbolic periodic orbit that is
transverse. Thus, having positive topological entropy is an open condition. Con-
sequently, to establish Theorem 1.5 it remains to show that every contact form
on a fixed closed contact 3-manifold can be arbitrarily well C∞-approximated by
a contact form that defines the same contact structure, and whose Reeb flow has
positive topological entropy.

6.1. Input from topological surface dynamics. Here we review results on the
dynamics of surface homeomorphisms due to Mather [41], Koropecki [36], Ko-
ropecki, Le Calvez and Nassiri [38], and Le Calvez and Sambarino [39], as well
as some basic notions in Carathéodory’s theory of prime ends.

In this section S is an orientable surface without boundary. A boundary repre-
sentative of S is a sequence P1 ⊃ P2 ⊃ P3 . . . of open sets such that ∂Pi is compact
for every i, and ∩iPi = ∅. Here ∂Pi denotes the topological boundary of Pi relative
to S. Two boundary representatives {Pi} and {P ′i} are equivalent if for every n
there exists m such that Pm ⊂ P ′n, and vice versa. An ideal boundary point is
an equivalence class of boundary representatives. The set of ideal boundary points
of S, also called the ideal boundary of S, is denoted by bIS. The ideal comple-
tion of S is defined by cIS = S t bIS, and is topologized by declaring that open
subsets of S are open in cIS, and that a set containing p ∈ bIS is a neighborhood
of p if it contains {p} ∪ Pn for some n, where {Pi} is a boundary representative
of p. If f : S → S is a homeomorphism then there is an induced homeomorphism
fS : cIS → cIS. If bIS is finite then cIS is an orientable compact surface without
boundary.

Let U ⊂ S be open. The impression of p ∈ bIU in S is the set

Z(p) =
⋂

V⊂cIU open
p∈V

clS(V ∩ U)

where clS denotes closure relative to S. Note that Z(p) is closed in S and contained
in the topological boundary ∂U of U relative to S. If S has finite genus then an
ideal boundary point p ∈ bIU is said to be regular if p is isolated in bIU and Z(p)
has more than one point.
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A compact set K ⊂ S is called a continuum if it is connected and has at least
two points. A continuum K is said to be cellular if K = ∩n∈NDn where each
Dn ⊂ S is a closed disk, and Dn+1 is contained in the interior of Dn, for every n.
Cellular continua are contractible in S. A continuum K is said to be annular if
K = ∩n∈NAn, where each An ⊂ S is homeomorphic to a closed annulus, An+1 is
contained in the interior of An, and K separates both boundary components of An,
for every n.

From now on S is assumed to have finite genus. Let U ⊂ S be open and
p ∈ bIU be regular. In Carathéodory’s theory of prime ends one constructs a
space bEpU homeomorphic to a circle, in such a way that if U is invariant by
an orientation preserving homeomorphism f : S → S then there is an induced
orientation preserving homeomorphism on bEpU . Its Poincaré’s rotation number
is denoted by ρ(f, p) ∈ R/Z. The reader is referred to [38, Section 3] for a nice
introduction to the theory of prime ends.

From now on let f : S → S be an orientation preserving homeomorphism. A
1-translation arc γ for f is defined to be an embedded compact arc from a point x,
which is not a fixed point of f , to f(x) such that f(γ)∩ γ is either equal to {f(x)}
or equal to {x, f(x)}, the latter case happening precisely when x is fixed by f2. If
N ≥ 2 then a N -translation arc for f is a 1-translation arc such that fk(γ)∩ γ = ∅
for all 2 ≤ k ≤ N − 1, and fN (γ) ∩ γ is either equal to ∅ or to {x}, the latter case
precisely when x is fixed by fN+1.

Theorem 6.1 (Special case of Theorem 4.2 from [38]). Suppose that S is compact,
and that U ⊂ S is an open f -invariant disk such that S \ U has more than one
point. Assume that f preserves a Borel measure µ on S such that µ(W ) > 0 for
every non-empty open set W ⊂ S, and that µ(U \ C) < ∞ for some compact set
C ⊂ U . Let p be the point in bIU and assume that ρ(f, p) 6= 0. Then there exists
N ∈ N and a compact set K ⊂ U such that every N -translation arc in S \ K is
disjoint from ∂U .

Theorem 6.2 (Corollary 7.2 from [38]). Suppose that S is compact, f is non-
wandering, U ⊂ S is an f -invariant open connected set, and p ∈ bIU is regular
and fixed. If ρ(f, p) is irrational then either Z(p) is an annular continuum with no
periodic points, or Z(p) is a cellular continuum with a unique fixed point and no
other periodic points.

To conclude this section we review the notions of Moser stable and Mather
sectorial periodic points from [41, Section 5]. Let q be a fixed point of f .

Choose a contracting homeomorphism α of [0,+∞), i.e. αn(t)→ 0 for all t ≥ 0.
The map (s, t) 7→ (α(s), α−1(t)) defines a homeomorphism of [0,+∞) × [0,+∞)
denoted by α× α−1. An elementary sector for (f, q) is a closed subset U ⊂ S such
that q ∈ ∂U , q has a neighborhood N in U satisfying f(N) ⊂ U and f−1(N) ⊂ U ,
and the germ of f |U at q is topologically conjugate to the germ of α×α−1 at (0, 0).
Then q is said to be a Mather sectorial fixed point of f if a neighborhood of q in S
is a finite union of elementary sectors for (f, q). It turns out that this definition is
independent of the choice of α.

The point q is a Moser stable fixed point of f if every neighborhood of q in S
contains an f -invariant disk D with q in its interior, such that f |∂D has an orbit
dense in ∂D.

If q is a periodic point of f , then q is a Mather sectorial periodic point of f if
it is a Mather sectorial fixed point of fn for some n. Similarly, q is a Moser stable
periodic point of f if it is a Moser stable fixed point of fn for some n.

Remark 6.3. Let q be a Mather sectorial periodic point of f . It follows from the
above definitions that there exists n ≥ 1 such that fn(q) = q, and such that for



GENERIC PROPERTIES OF 3-DIMENSIONAL REEB FLOWS 25

every N ≥ 1 there is neighborhood VN of q in S with the following property: every
point in VN \ {q} belongs to an N -translation arc for fn.

We continue to follow [41, Section 5] closely. A fixed connection of f is an f -
invariant arc γ ⊂ S whose end points are fixed points of f , or an f -invariant circle γ
such that f |γ is orientation preserving and γ contains a fixed point of f . A periodic
connection is a fixed connection of fn, for some n.

Let µ be a Borel probability measure on S. We denote by A(S, µ) the set of
orientation preserving homeomorphisms f : S → S satisfying f∗µ = µ. We denote
by G(S, µ) the subset of A(S, µ) consisting of those homeomorphisms such that
every periodic point is Mather sectorial or Moser stable, and have no periodic
connections.

6.2. Applications to return maps of Birkhoff sections. Our goal here is to
establish the following result.

Proposition 6.4. Let λ be a strongly nondegenerate contact form defined on a
closed and connected 3-manifold M . If its Reeb flow has no elliptic periodic orbits,
and has a ∂-strong Birkhoff section, then some periodic orbit has a homoclinic
connection.

We are now concerned with the proof of Proposition 6.4. The Birkhoff section is
an immersion ι : S →M defined on a compact orientable surface with boundary S
as in Definition 2.4. As explained in Section 3, we can blow the link L = ι(∂S) up
and obtain a 3-manifold DL with boundary, whose boundary components consist
of invariant tori. It is straightforward to check that there is a unique immersion
ι̂ : S → DL that agrees with ι on Ṡ = S \ ∂S, maps ∂S to ∂DL and is transverse
to ∂DL along ∂S. The proof of Proposition 5.1 shows that ι̂ defines a smooth
embedding S ↪→ DL transverse to ∂DL that defines a global section for the extended
flow on DL, and is still denoted by S for simplicity. The return map on S is a
smooth diffeomorphism. The space cI Ṡ is nothing but the closed orientable surface
obtained from S by collapsing the boundary components to points. The return
map on S induces an orientation preserving homeomorphism

f : cI Ṡ → cI Ṡ

that is smooth on Ṡ, and such that bI Ṡ consists of periodic points. If λ is the contact
form defining the Reeb flow on M , then dλ defines a finite Borel measure on Ṡ that
is invariant by f |Ṡ . After normalizing, we get an induced Borel probability measure

µ on cI Ṡ with the following properties:

• µ is f -invariant.
• Every non-empty open subset W ⊂ cI Ṡ satisfies µ(W ) > 0.

• µ agrees on Ṡ with a constant multiple of the measure induced by dλ.

Since every component γ of L is a hyperbolic periodic orbit of the Reeb flow, the
embedded surface S ⊂ DL could be modified in such a way that all points in bI Ṡ
are Mather sectorial periodic points of f , keeping all the other properties described
so far. This follows from a normal form of the Reeb flow near the hyperbolic closed
Reeb orbit γ. Clearly, every periodic point in Ṡ coming from a periodic orbit of the
Reeb flow in M \L is Mather sectorial, since all closed Reeb orbits are hyperbolic.
Moreover, the strong nondegeneracy assumption implies that there are no periodic
connections. Summarizing, we have that f ∈ G(cI Ṡ, µ).

The next statement is a direct application of [41, Theorem 5.1] and of Theo-
rem 6.2. Its proof is extracted from the proof of [38, Theorem 8.3].
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Lemma 6.5. Let U ⊂ cI Ṡ be an open f -invariant connected set, and let p ∈ bIU be
regular and periodic. Then Z(p) ⊂ cI Ṡ is an annular continuum with no periodic
points of f .

Proof. Up to taking powers, there is no loss of generality to assume that U is
invariant and p is fixed. From [41, Theorem 5.1] we get that ρ(f, p) is irrational.
Theorem 6.2 implies that either Z(p) is an annular continuum with no periodic
points, or it is a cellular continuum that has a fixed point x of f and no other
periodic points of f . Note that Z(p) has empty interior since it is contained in the
boundary of U . Now we reproduce the argument from [38, Theorem 8.3] with small
adaptations, and assume by contradiction that the latter alternative holds.

The surface cI Ṡ cannot be a sphere. Otherwise cI Ṡ \ Z(p) would be an open
f -invariant disk with irrational prime ends rotation number. The fixed point x in
Z(p) is Mather sectorial. Since Z(p) is a continuum, we can use Remark 6.3 to
find, for every N , an N -translation arc γ for fn inside any neighborhood of x, for
some n, such that γ intersects Z(p). This contradicts Theorem 6.1.

It follows that the universal covering π : R2 → cI Ṡ is a plane. Choose a point
x̃ ∈ π−1(x), and a lift f̃ of f such that f̃(x̃) = x̃. Let K be the connected

component of π−1(Z(p)) contained in a disk D̃ having x̃ in its interior, and that

π|D̃ is a homeomorphism onto a neighborhood of Z(p). Then f̃(K) = K and K has
empty interior. Let S′ be the one-point compactification of R2, i.e. S′ is the sphere
obtained from R2 by adding a point at infinity, and let f ′ : S′ → S′ be the map
induced by f̃ . Then U ′ = S′ \K is an open disk with ∂U ′ = K (boundary relative
to S′). If p′ is the (unique) point of bIU

′ then ρ(f ′, p′) = ρ(f, p) is irrational. But x̃
is Mather sectorial and we can argue as above, using Remark 6.3, to find, for every
N , an N -translation arc γ for (f ′)n inside any neighborhood of x̃, for some n, such
that γ intersects K. This contradicts Theorem 6.1. �

Corollary 6.6 (Corollary 8.7 from [38]). If U ⊂ cI Ṡ is an open connected f -
periodic set with #bIU < ∞, then the boundary of U is a finite disjoint union of
aperiodic annular continua and periodic points.

Proof. The set bIU consists of finitely many periodic points for the induced map
fU : cIU → cIU . We find n ≥ 1 such that U is invariant by fn, and every
point in bIU is fixed by (fU )n. Let p ∈ bIU . If Z(p) is not a point then, by
Lemma 6.5, it is an aperiodic annular continuum invariant by fn. If Z(p) is a point
then it is a periodic point of f . The conclusion follows since the boundary of U is
∪p∈bIUZ(p). �

Corollary 6.7 (Corollary 8.9 from [38]). Let x ∈ Ṡ be a periodic point of f , which

is necessarily hyperbolic. If x belongs to some periodic continuum K ⊂ cI Ṡ, then
the stable and unstable manifolds of x are contained in K. Moreover, all four stable
and unstable branches of x have the same closure in cI Ṡ.

Proof. Let γ be a branch of x, stable or unstable, such that γ 6⊂ K. Then γ inter-
sects a connected component V of cI Ṡ \K such that x ∈ ∂V . The set V is periodic
since f preserves µ. By Corollary 6.6, ∂V is a disjoint union of periodic points and
aperiodic annular continua. But the connected component of ∂V containing x is
not an aperiodic continuum since it contains the periodic point x. Hence x is an
isolated point of ∂V , in particular also of K, in contradiction to the fact that K is
a continuum.

Let γ1, γ2 be branches of x. The closure K of γ1 in cI Ṡ is a periodic continuum.
Hence, by what was proved above, γ2 ⊂ K. It follows that the closure of γ2 is
contained in the closure of γ1. The same argument interchanging the roles of γ1

and γ2 concludes the proof. �
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With the above results in place, we can consider a relation on the set of periodic
points of f contained in Ṡ. Note that, by assumption, all such periodic points are
hyperbolic. Similarly to [39, Section 3], two such periodic points x1, x2 are related
if each of the four stable/unstable branches of x1 has the same closure as any of the
four branches of x2. This relation is clearly symmetric and transitive. Reflexivity
is non-trivial and follows from Corollary 6.7. Hence, this is an equivalence relation.
The set of equivalence classes is denoted by E(f). For a given κ ∈ E(f) we denote
by K(κ) the closure of one (hence any) of the four branches of a point in κ.

Lemma 6.8 (Corollary 3.2 from [39]). If κ ∈ E(f) and x ∈ Ṡ is a (hyperbolic)
periodic point such that x ∈ K(κ), then x ∈ κ.

Proof. Direct consequence of Corollary 6.7. �

The above lemma was the last tool we needed to be able to conclude that the
proof of [39, Proposition 5.1] can be reproduced ipsis litteris to establish the fol-
lowing statement. We do not reproduce the argument here.

Lemma 6.9. Let g be the genus of cI Ṡ. Every set of (necessarily hyperbolic) periodic

points in Ṡ with strictly more than 2g elements contains at least one point that has
a homoclinic connection.

We can now finish the proof of Proposition 6.4. Since the contact form λ is
nondegenerate, a result from [10] implies that there are either two or infinitely
many periodic Reeb orbits. If there are exactly two periodic orbits then the results
from [12] imply that both are elliptic. Since we work under the assumption that
there are no elliptic periodic Reeb orbits, it follows that there are infinitely many
such periodic orbits. These give rise to infinitely many periodic points of f in Ṡ.
From Lemma 6.9 we get the desired homoclinic connection. In fact, this lemma
even implies that there are infinitely many homoclinic connections.

6.3. Proof of Theorem 1.5. Fix a co-orientable contact structure on M . Con-
sider the set Λ of contact forms defining ξ, equipped with the C∞-topology. This
set is an open subset of the vector space Ω1(M) equipped with the C∞-topology.
The latter is a topological vector space whose topology can be defined by a complete
metric. Consider the set Λ+ ⊂ Λ of contact forms whose Reeb flows have positive
topological entropy. As mentioned before, Λ+ is open, and we need to show that
Λ+ is dense in Λ.

Let Λ∗ ⊂ Λ denote the set of nondegenerate contact forms. As is well-known, Λ∗
contains a countable intersection of open and dense subsets of Λ. In particular,
Λ∗ is dense in Λ. Let Λe ⊂ Λ denote the subset of all contact forms that admit
at least one nondegenerate and elliptic closed Reeb orbit. Then Λh = Λ∗ \ Λe

consists precisely of those contact forms on Λ all of whose periodic Reeb orbits are
hyperbolic.

Fix a contact form λ ∈ Λe, and let γ be an elliptic and nondegenerate periodic
Reeb orbit of λ. By [22, Theorem 2], see also [49], there is a sequence of contact
forms λn such that λn → λ in C∞ and the Reeb flow of every λn has a hyperbolic
closed Reeb orbit with a transverse homoclinic connection. In fact, these homoclinic
connections can even be found inside any neighborhood of γ fixed a priori. In
particular, λn ∈ Λ+ for every n.

Now let λ ∈ Λ \ Λe. There is a sequence of contact forms λn satisfying λn → λ
in C∞, such that every λn is strongly nondegenerate and has a ∂-strong Birkhoff
section for its Reeb flow. This is so because both properties are C∞-generic; the
latter property holds in an open and dense set of contact forms in the C∞-topology
by Corollary 1.2. If there exists a subsequence nj → ∞ such that λnj ∈ Λe then,
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by what was observed so far, λ is a limit of contact forms in Λ+. Hence, it remains
to deal with the case where there exists N ∈ N such that for every n ≥ N the
contact form λn is strongly nondegenerate, its Reeb flow has a ∂-strong Birkhoff
section, and all periodic Reeb orbits are hyperbolic. Proposition 6.4 implies that for
every n ≥ N the Reeb flow of λn has a hyperbolic periodic orbit with a homoclinic
connection, which in turn implies that λn ∈ Λ+. The proof of Theorem 1.5 is
complete.

Appendix A. A result in Schwartzman-Fried-Sullivan theory

In this appendix M is a closed, connected and oriented 3-manifold, and X is
a smooth vector field on M . The flow of X is denoted by φt. Let L ⊂ M be
a link formed by periodic orbits. As before, we denote by Pφ(M \ L) the set of
φ-invariant Borel probability measures on M \ L. The statement below can be
found as Theorem 2.3 in the extended arXiv version of [31], but its proof was not
available in the literature as far as we know, except for some arguments sketched
by Ghys [23], and for a version stated in terms of homology directions by Fried [20].

Theorem A.1. Suppose that there exists y ∈ H1(M \ L;R) satisfying

• µ · y > 0 for all µ ∈Pφ(M \ L).
• ρy(γ) > 0 for all γ ⊂ L.

Then there exists a ∂-strong Birkhoff section for φt whose boundary components
are contained in L.

Remark A.2. A refinement of Theorem A.1 with conditions for global surfaces of
section representing a prescribed homology class can be found in [29].

Remark A.3. Some components of L may not be contained in the boundary of
the Birkhoff section provided by Theorem A.1.

A.1. Preliminaries.

A.1.1. Blowing periodic orbits up. As proved in Section 3.1, we can blow L up and
construct a new manifold without boundary ML (5), containing a special smooth
compact domain DL (7). The domain DL ⊂ ML is the closure of M \ L in ML.
Moreover, X can be extended from M \L to ML as a smooth vector field XL. The
vector field XL is not unique, but its restriction to DL is unique. Moreover, XL is
tangent to ∂DL and the dynamics on ∂DL captures the linearized dynamics along
the components of L in a precise way described in Section 3.1.

For later purposes we need to fix some notation. Denote the components of L by
γ1, . . . , γh and their primitive periods by Tj > 0. For each j = 1, . . . , h, Σj ⊂ ∂DL

denotes the boundary torus associated to the end of M \ L near γj .

A.1.2. Schwartzman cycles and structure currents. For every p ≥ 0 one can turn
Ωp(ML) into a topological vector space by equipping it with the C∞loc-topology.
Its topological dual is denoted by Cp = Ωp(ML)′ and equipped with the weak*
topology. As mentioned before, an element of Cp is a p-current with compact
support. Denote by C ′p the topological dual of Cp equipped with its weak* topology.
The map Ωp(ML) → C ′p given by ω 7→ 〈·, ω〉 is a linear homeomorphism, in other
words Ωp(ML) is reflexive. There is a boundary operator ∂ : Cp+1 → Cp defined as
the adjoint of the exterior derivative d : Ωp(ML)→ Ωp+1(ML). A current in Cp is
called a cycle if it is in the kernel of ∂ : Cp → Cp−1, and is called a boundary if it
is in the image of ∂ : Cp+1 → Cp. The space of boundaries is denoted by Bp, the
space of cycles by Zp, and we have Hp(ML;R) = Zp/Bp.
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Consider the set P(ML) of compactly supported finite Borel measures on ML,
and let PφL(DL) ⊂ P(ML) be the subset of those which are φL-invariant proba-
bility measures supported on DL. Any µ ∈P(ML) defines a 1-current cµ ∈ C1 by
the formula

〈cµ, ω〉 =

∫
ML

ω(XL) dµ, ω ∈ Ω1(ML) .

We follow Sullivan’s notation and write cµ =
∫
ML

XL dµ. If µ is supported on DL

then cµ is a cycle if, and only if, µ is φL-invariant. The elements of the set

SX := {cµ | µ ∈PφL(DL)} ⊂ Z1

will be called Schwartzman cycles. The Dirac currents δp ∈ C1, p ∈ML, are defined
by 〈δp, ω〉 = ω(XL)|p ∈ R. Let C ⊂ C1 denote the closed convex cone generated
by {δp | p ∈ DL}. In [45] C is called the cone of structure currents in DL. The
following lemma summarizes the analytical facts we need.

Lemma A.4 ([29], Lemma 3.3 and Lemma 3.4). The following hold.

(I) There exists ω ∈ Ω1(ML) such that 〈c, ω〉 > 0 for every c ∈ C \ {0}.
(II) If ω is as in (I) then the convex set K = {c ∈ C | 〈c, ω〉 = 1} is compact.

(III) For every c ∈ C there exists a unique finite Borel measure on DL such that
c =

∫
DL

XL dµ.

A.2. Transverse foliations. Let β be a closed 1-form β ∈ Ω1(ML) that repre-
sents y on M \ L = DL \ ∂DL. We claim that

(30) 〈cµ, β〉 > 0 ∀µ ∈PφL(DL) .

To see this, let µ ∈PφL(DL) be arbitrary. For every Borel set E ⊂ML define

µj(E) = µ(E ∩ Σj) µ̇(E) = µ(E ∩ (DL \ ∂DL)) = µ(E ∩ (M \ L)) .

Then µ̇ and the µj are φL-invariant Borel measures, and µ = µ̇+
∑
j µj . We have

(31) 〈cµ, β〉 =

∫
ML

β(XL) dµ =

∫
ML

β(XL) dµ̇+

h∑
j=1

∫
ML

β(XL) dµj .

If µj(ML) = µ(Σj) > 0 then µj/µj(ML) ∈ PφL(DL) is supported on Σj . By
Lemma 3.4 and the hypotheses of Theorem A.1∫

ML

β(XL) dµj =

∫
Σj

β(XL) dµj =
2π

Tj
µj(ML)ρy(γj) > 0 .

If µ̇(ML) = µ(M \ L) > 0 then µ̇/µ̇(ML) induces an element of Pφ(M \ L). By
the hypotheses of Theorem A.1∫

ML

β(XL) dµ̇ =

∫
M\L

β(X) dµ̇ > 0 .

Thus each term in the sum (31) is non-negative, and at least one term is positive
since µ(ML) = µ(DL) = 1. We have established (30).

By (I) and (II) in Lemma A.4 there exists ω ∈ Ω1(ML) such that 〈·, ω〉 > 0 on
C \{0}, and K = {c ∈ C | 〈c, ω〉 = 1} is compact and convex in C1. Let c ∈ C \{0}
be a cycle. By (III) in Lemma A.4, c =

∫
ML

XL dν for some positive finite Borel

measure ν supported on DL, and ν must be invariant because c is a cycle. In
other words, µ := ν/ν(ML) ∈ PφL(DL) and c = ν(ML)cµ for a Schwartzman
cycle cµ. From (30) we conclude that 〈c, β〉 = ν(ML) 〈cµ, β〉 > 0. In particular
C ∩ B1 = {0}, or equivalently K ∩ B1 = ∅, and β evaluates positively on K ∩ Z1.
By [29, Theorem A.1] we find η0 ∈ C ′1 that vanishes on B1, is positive on K, and
agrees with β on Z1. By reflexivity C ′1 = Ω1(ML) we conclude that η0 is a 1-form,
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and as such it must be closed since it vanishes on B1. Moreover, η0|M\L represents y
since it agrees with β on Z1. Finally, note that

(32) η0(XL)|p = 〈δp, η〉 > 0 ∀ p ∈ DL

because 〈·, η0〉 > 0 on C \ {0}.
The kernel of η0 integrates to a foliation transverse to XL, and hence to X on

M \ L, but in general this foliation might behave very badly. In the next Section
we shall deal with this issue by well-known arguments.

A.3. Birkhoff sections. Note that H1(ML;R) ' H1(M \ L;R) is a finite dimen-
sional vector space. Hence, in view of (32), we can find arbitrarily C∞loc-close to η0

a 1-form η1 on ML which is closed, has rational periods, and still satisfies (32).
Consider inclusions ι : DL ↪→ML and ιj : Σj ↪→ML. The class [ι∗η1] ∈ H1(DL;R)
is close to y, and induces a class in H1(DL;Q). Choose m ∈ N such that η := mη1

has integer periods. Note that η satisfies (32), that is

(33) η(XL)|p = 〈δp, η〉 > 0 ∀ p ∈ DL .

Denote by N ∈ N a generator of the group of periods of η. Then, after arbitrarily
choosing a point p0 ∈M \ L, we can define a map pr : DL → R/Z by setting pr(p)
to be the integral of N−1ι∗η along any path from p0 to p, modulo Z:

pr(p) =
1

N

∫ p

p0

ι∗η mod Z .

The map pr : DL → R/Z is a smooth surjective submersion in view of (33). It
follows from this construction that if c : S1 →M \ L is a smooth loop then

(34)
1

N

∫
c

η = degree of pr ◦ c .

The preimages pr−1(x) are the leaves of a foliation of DL obtained by integrating
ker ι∗η. Each pr−1(x) is a compact embedded submanifold of DL that intersects
the boundary ∂DL cleanly, since it is transverse to XL and XL is tangent to ∂DL.
It follows that pr−1(x) ⊂ DL is a smooth embedded surface transverse to XL

with boundary equal to pr−1(x) ∩ ∂DL. Each leaf pr−1(x) can be co-oriented by
the vector field XL, and can also be co-oriented by pulling back the canonical
orientation of R/Z via the map pr. These co-orientations coincide by construction.
Note that all trajectories in DL will hit all leaves pr−1(x) in finite time, both in
the future and in the past: this follows from compactness of DL and from (33). In
particular, for all x ∈ R/Z the surface pr−1(x) is a global surface of section for the
flow of XL on DL.

In a final step we modify one given fiber of the map pr to obtain a Birkhoff section
for the flow of X on M . Let us fix x ∈ R/Z arbitrarily. For each j ∈ {1, . . . , h}, we
choose coordinates (t, θ) ∈ R/TjZ×R/2πZ ' Σj as explained in Section 3.1. These
can be used to write a basis {dt, dθ} of H1(Σj ;R). Note that N−1ι∗jη is homologous

to a1 dt/Tj + a2 dθ/2π for some a1, a2 ∈ Z. Assume that pr−1(x) ∩ Σj 6= ∅, and
let us consider a connected component α of pr−1(x) ∩ Σj , oriented as part of the
boundary of pr−1(x). Then α is non-trivial in H1(Σj ;Z), since otherwise it would
bound a disk D ⊂ Σj with XL t ∂D thus forcing a singularity of XL on Σj . Let
{e1, e2} be the basis in H1(Σj ;Z) dual to {dt/Tj , dθ/2π} and write α = n1e1 +n2e2

in homology. We already know that (n1, n2) 6= (0, 0). Since α is an embedded loop
in Σj we also know that (n1, n2) is primitive: if d ∈ N and (n1, n2)/d ∈ Z × Z
then d = 1. Moreover, 0 = N−1

∫
α
ι∗jη = a1n1 + a2n2. The numbers n1, n2 depend

only on j and not on the choice of α. Using the transversality of the flow, we
can deform pr−1(x) near pr−1(x) ∩ Σj to obtain a surface S that intersects ∂DL

transversely, is transverse to XL up to the boundary, still is a global section for
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the flow on DL, and such that the following holds: if n1 = 0 then S coincides with
finitely many annuli of the form {t = t∗, r ∈ [0, ε)} near Σj ; if n1 6= 0 then dt does
not vanish tangentially to S ∩ Σj . Now we collapse each Σj to γj to obtain again
the manifold M from DL. This collapsing map can be defined by (t, r, θ) 7→ (t, reiθ)
near each Σj . In this process S gets map to a Birkhoff section for the flow of X
on M . The transversality to the flow on ∂DL before applying the projection implies
that we get a ∂-strong Birkhoff section. In the notation above, if n1 = 0 then each
loop α gets mapped to an interior point of the obtained section where it intersects γj
transversely, and if n1 6= 0 then the orbit γj gets covered |n1| times.

Remark A.5. Since the Birkhoff section obtained is ∂-strong, the associated return
time function is bounded.

Appendix B. A lemma on weak* convergence

Let X be a compact manifold and let µ be a regular1 Borel probability measure
on X. Let µn be a sequence of Borel probability measures satisfying µn → µ in the
weak* topology.

Lemma B.1. If V ⊂ X is open with µ(∂V ) = 0, and if f : V → R is a continuous
bounded function, then ∫

V

f dµn →
∫
V

f dµ .

Proof. We start with a claim.

Claim. For every η > 0 there exists an open neighborhood W of ∂V , and n0 ≥ 1,
such that n ≥ n0 ⇒ µn(W ) < η.

To prove the claim, we use the regularity of µ to find an open neighborhood W ′

of ∂V such that µ(W ′) < η. Now we find ψ : X → [0, 1] continuous such that
supp(ψ) ⊂W ′ and ψ|W ≡ 1 on some open neighborhood W ⊂W ′ of ∂V . Then

η > µ(W ′) ≥
∫
X

ψ dµ = lim
n→∞

∫
X

ψ dµn

which implies that we can find n0 such that

n ≥ n0 ⇒ µn(W ) ≤
∫
X

ψ dµn < η

as desired. The proof of the claim is complete.

Let ε > 0 be fixed arbitrary. For any δ > 0 we can use the regularity of µ to find
a compact set K0 ⊂ V such that µ(K0) > µ(V )−δ/2, and an open set U0 ⊃ V such
that µ(U0) < µ(V )+δ/2. By the claim proved above we find an open neighborhood
W of ∂V and n0 such that µn(W ) < δ for all n ≥ n0. Consider sets

K = K0 ∪ (V \W ), U = U0 ∩ (V ∪W ) .

Then K ⊃ K0 is compact, U ⊂ U0 is open, and U \ K ⊂ W . Moreover, we can
estimate

µ(U \K) ≤ µ(U0 \K0) = µ(U0)− µ(K0) < µ(V ) + δ/2− (µ(V )− δ/2) = δ

where the assumption µ(∂V ) = 0 was used to get the equality µ(V ) = µ(V ). In
addition, we have

n ≥ n0 ⇒ µn(U \K) ≤ µn(W ) < δ .

Now consider ϕ : X → [0, 1] continuous such that supp(ϕ) ⊂ U \K and ϕ ≡ 1 on
some neighborhood of ∂V . Let h : X → R be the continuous function that agrees

1A Borel probability measure is regular if for every Borel set E and every ε > 0 we find a compact
set K and an open set U such that K ⊂ E ⊂ U , µ(K) > µ(E) − ε and µ(U) < µ(E) + ε.



32 V. COLIN, P. DEHORNOY, U. HRYNIEWICZ, AND A. RECHTMAN

with (1−ϕ)f on V and vanishes on X \V . By the assumption that µn → µ weak*,
we can find n1 such that

n ≥ n1 ⇒
∣∣∣∣∫
X

h dµn −
∫
X

h dµ

∣∣∣∣ < δ .

We can estimate∣∣∣∣∫
V

f dµn −
∫
V

f dµ

∣∣∣∣ =

∣∣∣∣∫
V

ϕf dµn −
∫
V

ϕf dµ+

∫
X

h dµn −
∫
X

h dµ

∣∣∣∣
≤
∣∣∣∣∫
V

ϕf dµn

∣∣∣∣+

∣∣∣∣∫
V

ϕf dµ

∣∣∣∣+

∣∣∣∣∫
X

h dµn −
∫
X

h dµ

∣∣∣∣
≤ (sup |f |) (µn(U \K) + µ(U \K)) +

∣∣∣∣∫
X

h dµn −
∫
X

h dµ

∣∣∣∣
from where we see that if n ≥ max{n0, n1} then∣∣∣∣∫

V

f dµn −
∫
V

f dµ

∣∣∣∣ ≤ 2δ (sup |f |) + δ .

Finally, note that we could have chosen δ > 0 satisfying 2δ (sup |f |) + δ < ε. The
proof of the lemma is complete. �

Appendix C. An alternative proof of the C1-density of the existence
of a Birkhoff section

In this appendix we sketch an alternative proof of the following direct conse-
quence of Corollary 1.2. As the proof takes a different path, we think it is worth
mentioning it.

Theorem C.1. If (M, ξ) is a closed oriented 3-manifold then the set of Reeb vector
fields for ξ on M that admit a Birkhoff section is C1-dense in the set of Reeb vector
fields.

As we have mentioned in the introduction, a C∞-generic contact form λ on (M, ξ)
is nondegenerate. Let R be the Reeb vector field of λ. In that case, by Theorem 1.1
of [10], R is carried by a broken book decomposition (K,F). The binding K of
the broken book decomposition has radial and broken components, and if all the
components are radial the broken book decomposition is a rational open book
decomposition and any page is a Birkhoff section. The proof of Theorem 4.13
in [10] provides a mechanism to successively eliminate broken components of the
binding K, inspired by Fried [21]. It works as follows, see also Figure 2.

Let k ∈ K be a broken component of the binding, which is automatically a
hyperbolic orbit of the Reeb flow R. Assume it is positive (i.e. the eigenvalues of the
linearized first return map are positive) and denote by N and S the two components
of the complement of k in its stable manifold, and by E and W the two components
of the complement of k in its unstable manifold (in red and blue respectively on
Figure 2 left). If there is a transverse homoclinic connection p from E to N and
a transverse homoclinic connection q from W to S, then one can find a periodic
orbit p′ of R close to p and another one q′ close to q. There is also a periodic
orbit r′ following successively p and q thanks to the combinatorial description of
the dynamics. In this situation, Fried [21] constructed a pair of pants P transverse
to R, bounded by these three orbits, and intersecting the orbit k in its interior, see
Figure 2.

We add this section P to our broken book decomposition, via the following
process, sometimes called Fried sum: denoting by SRF the union of the rigid pages,
we consider the union P ∪ SRF . It is an immersed surface with 1-dimensional
singularities consisting of arcs ending on boundary orbits of P or SRF , see Figure 3
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k

p′

q′
r′

r′

Figure 2. On the left, a transversal picture where the central dot
is k, the stable manifolds are in blue, the unstable ones in red,
the empty dots correspond to the homoclinic W-S connection q,
the pentagons to the orbit q′, the triangles to the orbit p′ and the
4-pointed stars to the orbit r′. On the right the pair of pants P
transverse to the vector field R and intersecting the orbit k con-
structed by Fried: it is the union of a parallelogram in a local
transverse disc whose vertices lie on p′, r′, q′ and r′ respectively,
and the image under the flow of the two “almost stable edges” of
this parallelogram. This topological surface is not strictly speaking
transverse to the flow, but one can smooth it and make it trans-
verse to R at the same time.

left. We desingularize those arcs transversally to the vector field, as on the central
picture. On a broken binding orbit transverse to P , the result is depicted on
Figure 3 right: the addition of a meridian circle corresponding to the intersection
with P to the boundary of SRF gives a boundary for the new surface that intersects
all orbits of the projectivized flow, including the stable and unstable direction
of the broken binding orbit. We then obtain a new broken book decomposition,
whose new binding is the initial one increased by the three new orbits p′, q′, r′ and
whose broken binding is the previous with k removed, i.e. k is no more a broken
binding component anymore: it can either disappear from the binding or become a
radial component, depending on the balance between the number of incoming and
outgoing rigid pages. Since the orbits p′, q′ and r′ are intersecting the pages of
(K,F) transversally, they become radial components of the new binding.

By applying this process on all broken binding orbits successively, we reduce the
broken part of the binding. After a finite number of steps, the broken book has
only radial binding components, and all its pages are Birkhoff sections for the Reeb
flow.

The case where k is a negative hyperbolic periodic orbit is treated in the same
manner. The difference is that now one needs to consider the second iterate of the
return map to a local transversal to the periodic orbit in order to have the same
picture.

The conclusion so far is that the proof of Theorem C.1 boils down to proving that
by a C1-small perturbation supported away from the binding K, one can introduce
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Figure 3. On the left is depicted the Fried sum of two transverse
surfaces, which amounts to consider their union and desingularize
it transversaly to the vector field. On the right what happens
along a broken binding orbit k when adding the pair of pants P to
the collection of rigid pages SRF . The torus is the blow-up of k.
The stable and unstable manifolds are dotted, the rigid pages are
in pink and purple depending on the sector, and P is the orange
meridian circle. If the sum of the longitudinal coordinates of all
boundary components of SRF add up to 0, then the Fried union
with P also has zero longitudinal coordinate, hence the boundary
of the new surface can be made meridional. After an isotopy,
we obtain a surface with no boundary component along k and
transverse to it. If this sum is nonzero, then the obtained surface
still has k in its boundary, but k is now in the radial part of the
boundary (i.e. the flow winds with respect to the new surface).

transverse homoclinic connections at will. Note that if the perturbation is small
enough and supported outside a fixed neighborhood of K, then the Reeb vector
field remains carried by (K,F) since the transversality condition is open away from
the binding.

This is a direct application of the work of Bonatti-Crovisier [8] and Arnaud-
Bonatti-Crovisier [4] in the Reeb case. The only thing to check is that Reeb flows
satisfy the lift Axiom of Pugh-Robinson [43]. For its statement and proof below,
we denote by Dr(z) ⊂ R2n and Br(z) ⊂ R2n the closed and open euclidean balls of
radius r > 0 and center z ∈ R2n, respectively.

Lemma C.2 (Lift Axiom). Equip R2n×R with coordinates (z, t). Consider a contact
form λ on D1(0) × [0, 1] with Reeb vector field R = ∂t. There exist K > 0 and
0 < ε∗ < 1/2 with the following property. For every 0 < ε < ε∗ and z0 ∈ Bε(0)\{0}
there exists a smooth contact form λ′ on D1(0)× [0, 1] with the same contact kernel
than λ such that ‖λ′ − λ‖C2 < Kε, λ′ − λ is compactly supported in the open box
Bε−1|z0|(0)× (0, 1), and the Reeb flow of λ′ takes (0, 0) to (z0, 1).

Proof. Fix β : [0, 1] → [0, 1] smooth such that β(t) = 0 for t near 0, β(t) = 1 for
t near 1, β′ ≥ 0. For every z0 ∈ B1(0) consider the curve γ(t; z0) = (β(t)z0, t).
We look for a family of contact Hamiltonians hz0(z, t) on D1(0)× [0, 1], depending
on a parameter z0 ∈ R2n. The associated contact Hamiltonian vector field is
X = hz0R + Y , where Y is determined by iY λ = 0, dhz0 − (iRdhz0)λ = iY dλ.
We would like to achieve that X is positively tangent to γ, and that hz0 = 1
along γ. A simple calculation shows that these constraints can be met if |z0| is
small enough. Moreover, if we represent dhz0(γ(t)) = 〈V (t; z0), ·〉 by a vector
field then |V | + |∂tV | + |∂2

t V | ≤ c|z0| for some c > 0 independent of z0. Note
that 〈V (t; z0), ∂tγ(t; z0)〉 = 0 for all t. Perhaps after making c larger, but still



GENERIC PROPERTIES OF 3-DIMENSIONAL REEB FLOWS 35

independent of z0, the function ĥz0(z, t) = 1 + 〈V (t; z0), (z − β(t)z0, 0)〉 satisfies

‖ĥz0 − 1‖C2(D1(0)×[0,1]) ≤ c|z0| , |ĥz0(z, t)− 1| ≤ c|z0|(|z|+ |z0|)

and meets the requirements along γ. The discussion so far is independent of ε.
Consider smooth bump functions φεz0(z) with values in [0, 1], φεz0 = 1 on D2|z0|(0),

supp(φεz0) ⊂ Bε−1|z0|(0), ‖∇φεz0‖∞ = O(ε|z0|−1), ‖∇2φεz0‖∞ = O(ε2|z0|−2). To
conclude, note that there exists ε∗ > 0 small enough such that if 0 < ε < ε∗ then

hz0 = 1 + φεz0(z)(ĥz0(z, t)− 1) is the contact Hamiltonian we were looking for, and
λ′ = hz0λ. �

For the rest of the argument, recall from [4, 8] that it uses the fact that in the
conservative setting there are no wandering points and that there exists N > 0
depending only on the C1-size of the perturbation ε, such that given any fixed
closed neighborhood U of finitely many periodic orbits one can join any two points
in the same connected component of M \(∪t∈[0,N ]φt(U)) by a δ-pseudo-orbit, where
δ � ε can be chosen small at will independently of N and ε. The jumps of the
pseudo-orbit are contained in a finite number of disjoint flow-boxes in M \U whose
radii are of order δ and length N . To construct the flow-boxes, δ has to be taken
very small once ε and N have been fixed. Here φt denotes the flow of R at time
t. The δ-pseudo-orbits can then be turned into genuine ones by ε-C1-small and
δ-C0-small perturbations of the flow, supported in the flow-boxes (and thus in the
complement of U) and given by the lift Axiom, see [4, 8].

Precisely here, to make sure that we create a homoclinic connection, we take a
point a on a unstable manifold of a broken component of the binding k and a point
b on one of its stable manifolds. The set U is a small closed neighborhood of the
binding of the supporting broken book so that a and b are in the boundary of U .
We can moreover get that

• the orbit of a for negative time stays in U as well as the orbit of b for
positive times.

• the orbit of a for time [0, N ] stays outside of U as well as the orbit of b for
time [−N, 0].

We can then find, following [4, 8], two first flow-boxes around the portions of
orbits φ[0,N ](a) and φ[−N,0](b) and the remaining ones away from the two first
and U , provided the endpoints φN (a) and φ−N (b) belong to the same connected
component of M \ (∪t∈[0,N ]φt(U)). This last condition is always achievable by
taking U small enough.

Then the Lift Axiom gives a perturbed Reeb vector field, with a deformation
supported in our collection of flow-boxes (and thus in M \U), whose flow connects a
and b. This in turn yields a homoclinic orbit for k passing through a and b, since we
did not perturb the portions of orbits in U through a and b that were respectively
negatively and positively asymptotic to k. An extra C∞-small perturbation is
enough to make the homoclinic connection transverse. If δ is taken small enough,
the transversality of the perturbed Reeb vector field with the pages of the broken
book away from the binding is preserved.

To go slightly further, let us summarize the connecting lemma that is in partic-
ular obtained in the previous discussion:

Theorem C.3 (Arnaud, Bonatti and Crovisier [4] +ε). Let (M, ξ = kerλ) be a
closed contact 3-manifold with λ nondegenerate, then given any two points x, y ∈M ,
there exists a C2-small perturbation λ′ of λ such that y is in the positive orbit of x
under the flow of Rλ′ .

From this result, following Arnaud-Bonatti-Crovisier [4, Section 5.1], one obtains:
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Theorem C.4. On a closed contact 3 manifold, the set of transitive Reeb vector
fields is a Gδ-dense in the set of Reeb vector fields for the C1-topology.

Proof. The arguments of [4, Section 5.1] apply verbatim. We reproduce them here
for the reader’s convenience. First the set G0 of nondegenerate Reeb vector fields
is a Gδ. We then consider a countable basis (Un)n∈N of neighborhoods of M and
for m,n ∈ N we let Um,n be the set of Reeb vector fields R for which the flow (φt)t∈R
satisfies: there exists t > 0 with φt(Un)∩Um 6= ∅. The set Um,n is open in the C1-
topology. Moreover G0∩Um,n is C1-dense by the connecting lemma (Theorem C.3)
and so is Um,n. Thus

G =
⋂
m,n

Um,n

is a Gδ.
Every R in G is by definition topologically transitive and thus transitive: it has

a dense orbit. Indeed, if R ∈ G, for every m ∈ N the set Vm of points of M whose
positive orbit meets Um is open and dense. Thus

⋂
m Vm is a Gδ. Every point

q ∈
⋂
m Vm is on a dense orbit. �
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