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Abstract

In the spirit of Goodman-Plante average condition for the existence
of a transverse invariant measure for foliations, we give an averaging
condition to find tangentially smooth measures with prescribed Radon-
Nikodym cocycle. Harmonic measures are examples of tangentially smooth
measures for foliations and laminations. We also present sufficient hy-
pothesis on the averaging condition under which the tangentially smooth
measure is harmonic.

1 Introduction

Averaging sequences for foliations were introduced in the pioneering work of J.
F. Plante [30] on the influence that the existence of transverse invariant measures
exerts on the structure of a foliation. Although only the case of sub-exponential
growth was dealt with in [30], Plante’s approach is clearly reminiscent of the
classic work of E. Følner on groups [10]. Using the same kind of ideas, S. E.
Goodman and J. F. Plante exhibited an averaging condition which guarantees
the existence of transverse invariant measures for foliations of compact manifolds
[15].

In this paper we formulate a more general averaging condition which gives
rise to a tangentially smooth measure for a compact laminated space (M,F).
This condition may be related to the η-Følner condition of [2], in the same
spirit as Følner, but using a modified Riemannian metric along the leaves. The
modification is done by replacing any complete Riemannian metric along the
leaves with the product of the metric with some density function. Namely,
given a compact laminated space and a positive cocycle defined on the equiva-
lence relation induced by the lamination on a total transversal, we prove that
an η-Følner sequence gives rise to the existence of a tangentially smooth mea-
sure whose Radon-Nikodym cocycle is the given one. Moreover, we describe
sufficient hypothesis for obtaining a harmonic measure. This is the content of
Theorem 4.10.

Before proving Theorem 4.10, we start by analizing the discrete case. We
define an averaging condition for any equivalence relation R defined by a finitely
generated pseudogroup acting on a compact space and any continuous cocycle

1



δ : R → R∗+, that we call δ-averaging condition. In Theorem 3.6 we prove that
the existence of a δ-averaging sequence gives a quasi-invariant measure with
Radon-Nikodym cocycle δ. Under some additional conditions, in particular
if δ is harmonic, the measure obtained is harmonic. In this case, our result is
reminiscent of Kaimanovich’s characterization of amenable equivalence relations
[21].

The paper is organized as follows. In Section 2 we review some preliminaries,
in particular Section 2.3 contains the proof of Goodman and Plante’s theorem.
The discussion of the discrete and continuous settings is splitted in two separate
sections, Section 3 and Section 4, respectively, which can be read independently.
In Section 5 we analyze some explicit examples. The relation between the two
types of averaging sequences will be briefly discussed in the final Section 6.

2 Preliminaries

2.1 Laminations and equivalence relations

A compact space M admits a d-dimensional lamination F of class Cr with
1 ≤ r ≤ ∞ if there exists a cover of M by open sets Ui homeomorphic to the
product of an open disc Pi in Rd centered at the origin and a locally compact
separable metrizable space Ti. Thus, if we denote the corresponding foliated
chart by ϕi : Ui → Pi×Ti, each Ui splits into plaques ϕ−1

i (Pi×{y}). Each point
y ∈ Ti can also be identified with the point ϕ−1

i (0, y) in the local transversal
ϕ−1
i ({0} × Ti). In addition, the change of charts ϕj ◦ ϕ−1

i : ϕi(Ui ∩ Uj) →
ϕj(Ui ∩ Uj) is given by

ϕj ◦ ϕ−1
i (x, y) = (ϕyij(x), γij(y)) (2.1)

where γij is an homeomorphism between open subsets of Ti and Tj and ϕyij
is a Cr-diffeomorphism depending continuously on y in the Cr-topology. We
say that A = {(Ui, ϕi)}i∈I is a good foliated atlas if it satisfies the following
conditions:

(i) the cover U = {Ui}i∈I is locally finite, hence finite;

(ii) each open set Ui is a relatively compact subset of a foliated chart;

(iii) if Ui ∩ Uj 6= ∅, there is a foliated chart containing Ui ∩ Uj , implying that
each plaque of Ui intersects at most one plaque of Uj .

Each foliated chart Ui admits a tangentially Cr-smooth Riemannian metric
gi = ϕ∗i g0 induced from a Cr-smooth Riemannian metric g0 on Rp. We can
glue together these local Riemannian metrics gi to obtain a global one g using
a tangentially Cr-smooth partition of unity. From Lemma 2.6 of [1], we know
that any Cr lamination of a compact space equipped with a Cr foliated atlas A
admits a C∞ foliated atlas Cr-equivalent to A.
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A discrete equivalence relation R is defined by F on the total transversal
T = tTi: the equivalence classes are the traces of the leaves on T . We can see
R as the orbit equivalence relation defined by the holonomy pseudogroup Γ of
F , generated by the local diffeomorphisms γij . These homeomorphisms form a
finite generating set, which we will denote Γ(1), that defines a graphing of R.
This means that each equivalence class R[y] is the set of vertices of a graph,
and there is an edge joining two vertices z and w if there is γ ∈ Γ(1) such that
γ(z) = w. We can define a graph metric dΓ(z, w) = min {n /∃γ ∈ Γ(n) : g(z) =
w }, where Γ(n) are the elements that can be expressed as words of length at
most n in terms of Γ(1). A transverse invariant measure for F is a measure on
T that is invariant under the action of Γ. It is quite rare for a measure of this
kind to exist.

Remark 2.1. If F has no holonomy (i.e. Γy = {γ ∈ Γ | γ(y) = y} is trivial for
all y ∈ T ), we can endow R with the topology generated by the graphs of the
elements of Γ. Then R becomes an étale equivalence relation, i.e. the partial
multiplication ((y, γ(y)), (γ(y), γ′(γ(y))) ∈ R ∗ R 7→ (y, γ′◦γ(y)) ∈ R and the
inversion (y, γ(y)) ∈ R 7→ (γ(y), y) ∈ R are continuous, and the left and right
projections β : (y, z) ∈ R 7→ y ∈ T and α : (y, z) ∈ R 7→ z ∈ T are local
homeomorphisms. In general, by considering the germs of the elements of Γ at
the points of their domains. we can replace R with the transverse holonomy
groupoid [17] that becomes similarly an étale groupoid [31].

2.2 Compactly generated pseudogroups

In the last section, we obtained a pseudogroup from a foliated atlas. Here we will
recall the Haefliger equivalence for pseudogroups obtained from different atlases
and its metric counterpart in the compact case that we will need later in Section
2.3. For any compact laminated space (M,F) the holonomy pseudogroup Γ is
compactly generated in the sense of [18], meaning that:

(i) T contains a relatively compact open set T1 meeting all the orbits;

(ii) the reduced pseudogroup Γ|T1 (whose elements have domain and range in
T1) admits a finite generating set Γ(1) (called a compact generation system
of Γ on T1) so that each element γ : A → B of Γ(1) is the restriction of an
element γ of Γ whose domain contains the closure of A.

Any probability measure νK on the compact set K = T1 that is preserved by
the action of Γ|K extends to a unique Borel measure ν on T which is Γ-invariant
and finite on compact sets. We refer to Lemma 3.2 of [30].

On the other hand, notice that T is covered by the domains of a family of
elements of Γ with range in T1. The union of these elements and their inverses
defines the fundamental equivalence between the holonomy pseudogroup Γ and
the reduced pseudogroup Γ|T1 . This is the base concept to define the Haefliger
equivalence of pseudogroups (see [17] and [18]):
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Definition 2.2. Two pseudogroups Γ1 and Γ2 acting on the spaces T1 and T2

are Haefliger equivalent if they are reductions of a same pseudogroup Γ acting
on the disjoint union T = T1 t T1, and both T1 and T2 meet all the orbits of Γ.

The choice of generators for Γ1 and Γ2 defines a metric graph structure on
the orbits, but the Haefliger equivalence between Γ1 and Γ2 may not preserve
their quasi-isometry type. Let us recall this concept introduced by M. Gromov
[16]:

Definition 2.3. Two metric spaces (M,d) and (M ′, d′) are quasi-isometric if
there exists a map f : M →M ′ and constants λ ≥ 1 and C ≥ 0 such that

1

λ
d(y, z)− C ≤ d′(f(y), f(z)) ≤ λd(y, z) + C

for all y, z ∈M and d′(y′, f(M)) ≤ C for all y′ ∈M ′.

Definition 2.4 ([12],[19]). A Haefliger equivalence between two pseudogroups
Γ1 and Γ2 acting on T1 and T2, respectively, is a Kakutani equivalence if Γ1

and Γ2 admit finite generating systems such that their orbits, endowed with the
graph metric, are quasi-isometric.

According to Theorem 2.7 of [25] and Theorem 4.6 of [3], if two compactly
generated pseudogroups Γ1 and Γ2 are Haefliger equivalent, then there are com-
pact generating systems on T1 and T2, respectively, such that the pseudogroups
become Kakutani equivalent. These compact generating systems are called good
in [25] and recurrent in [3]. The relevance of this, is that the existence of aver-
aging sequences depends on the quasi-isometric type of the orbits (see [3] and
[24] for the details).

2.3 Existence of transverse invariant measures

In this section we will discuss a sufficient condition for the existence of a trans-
verse invariant measure, which serves as motivation for Theorems 3.6 and 4.10.
In [15], Goodman and Plante formulate the following proposition. Let us start
with some definitions.

Definition 2.5. Let A be a finite subset of T and γ an element of Γ. We define
the difference set

∆γA = {x ∈ T | x ∈ A, γ(x) 6∈ A} ∪ {x ∈ T | x 6∈ A, γ(x) ∈ A},

with the convention that γ(x) 6∈ A holds if γ(x) is not defined. We denote the
cardinality of A by |A|.

Definition 2.6. A sequence of finite subsets An of T is an averaging sequence
for Γ if for all γ ∈ Γ(1) (and then for all γ ∈ Γ),

lim
n→∞

|∆γAn|
|An|

= 0.

4



Proposition 2.7 (Goodman-Plante [15]). An averaging sequence {An} gives
rise to a transverse invariant measure ν whose support is contained in the limit
set limn→∞An = {y ∈ T | ∃ynk

∈ Ank
: y = limk→∞ ynk

}.

The idea of the proof is the following. Assuming that T is compact, we
may construct a Γ-invariant probability measure on T from the sequence of
probability measures νn defined by νn(B) = |B ∩ An|/|An| for every Borel set
B ⊂ T . According to Riesz’s representation theorem, each measure νn can
be identified with a functional In on the space C(T ) of continuous real-valued
functions on T . The functionals In are

In(f) =
1

|An|
∑
y∈An

f(y).

By passing to a subsequence, if necessary, In converges in the weak topology to
a positive functional I which determines a unique Borel regular measure ν such
that I(f) =

∫
T
fdν for every f ∈ C(T ). The averaging condition implies that

I and ν are Γ-invariant since for every γ ∈ Γ and every f ∈ C(T ) with support
on the range of γ, we have

|I(f◦γ)− I(f)| ≤ ‖f‖∞ lim
n→∞

|∆γAn|
|An|

= 0.

Finally, it is clear that ν(T ) = 1 and supp(ν) = limn→∞An.

In the non-compact case, by replacing Γ and Γ1 with suitable reductions
we can assume, without loss of generality, that the fundamental equivalence be-
tween the holonomy pseudogroup Γ and its reduction Γ1 to a relatively compact
open subset T1 of T becomes a Kakutani equivalence for some compact gener-
ation systems on T and T1. Then, any averaging sequence An for Γ defines an
averaging sequence An ∩ K for Γ|K where K = T 1 is a compact subset of T .
Hence, we obtain a probability measure νK on K that is invariant under Γ|K .
Now, we can extend νK to a unique Borel measure ν on T which is Γ-invariant
and finite on compact sets.

Example 2.8. Consider a graph with bounded geometry, like any orbit Γ(x)
of the holonomy pseudogroup of a compact laminated space. This graph is
said to be Følner if it contains a sequence of finite subsets of vertices An such
that |∂An|/|An| → 0, where ∂An denotes the boundary set with respect to the
graph structure. Since ∆γA ⊂ ∂A ∪ γ−1(∂A) for any γ ∈ Γ(1), we get that
|∆γAn| ≤ 2|∂An|, and we have an averaging sequence. In particular, any orbit
Γ(x) having sub-exponential growth is an example of Følner graph since

lim inf
n→∞

|An+1 −An−1|
|An|

= 0,

where An = Γ(n)(x).
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Using the one-to-one correspondence between foliated cycles and transverse
invariant measures stablished by D. Sullivan [34], it is not difficult to show the
following continuous version of Goodman-Plante’s result:

Proposition 2.9 (Goodman-Plante [15]). Let {Vn} be an averaging sequence
for F , i.e. a sequence of compact domains Vn (of dimension d) in the leaves
such that

lim
n→∞

area(∂Vn)

vol(Vn)
= 0

where area denotes the (d − 1)-volume and vol the d-volume with respect to
the complete Riemannian metric along the leaves. Then {Vn} gives rise to a
transverse invariant measure ν whose support is contained in the saturated limit
set limn→∞ Vn = { p ∈M /∃pnk

∈ Vnk
: p = limk→∞ pnk

}.

Recall that a foliated d-form α ∈ Ωd(F) is a family of differentiable d-forms over
the plaques of A depending continuously on the transverse parameter and which
agree on the intersection of each pair of foliated charts. A foliated r-cycle is a
continuous linear functional ξ : Ωd(F)→ R strictly positive on strictly positive
forms and null on exact forms with respect to the leafwise exterior derivative
dF . Any averaging sequence Vn defines the sequence of foliated currents

ξn(α) =
1

vol(Vn)

∫
Vn

α

where α is a foliated d-form. By passing to a subsequence, if necessary, we have
a limit current ξ = limn→∞ ξn. Since the boundaries of the domains Vn vanish
asymptotically, Stokes’ theorem implies that ξ is a foliated d-cycle [34].

3 Averaging sequences in the discrete setting

The main objective of this section is to prove the existence of a harmonic mea-
sure for an étale equivalence relation R that contains a modified averaging se-
quence. Initially, we will assume thatR is given by a free action of a pseudogroup
Γ on a compact space T , but some generalizations will be discussed later. In
Section 3.1, we will define a weighted measure on the equivalence classes, that
will allow us to recall the notion of modified averaging sequence introduced by
V. A. Kaimanovich in [21] and [23]. Given a continuous cocycle δ : R → R∗+,
the Radon-Nikodym problem is to determine the set of probability measures ν
on T which are quasi-invariant and admit δ as their Radon-Nikodym derivative
[32]. Theorem 3.6 gives a positive answer to this problem in the presence of a
modified averaging sequence.

3.1 Quasi-invariants measures

Let ν be a quasi-invariant measure on T . As usual, we will assume that ν is a
regular Borel measure that is finite on compact sets. Integrating the counting

6



measures on the fibers of the left projection β(y, z) = y with respect to ν
gives the left counting measure dν̃(y, z) = dν(y). Indeed, for each Borel set
A ⊂ R, we define ν̃(A) =

∫
|Ay|dµ(y) where |Ay| is the cardinal of the set

Ay = {z ∈ T/(y, z) ∈ A} ⊂ R[y]. The same is valid for the right projection
α(y, z) = z and we get the right counting measure dν̃−1(y, z) = dν̃(z, y) = dν(z).
Then ν̃ and ν̃−1 are equivalent measures if and only if ν is quasi-invariant, in
which case the Radon-Nikodym derivative is given by δ(y, z) = dν̃/dν̃−1(y, z).
We refer to [28], [21], [31] and [32].

Definition 3.1. A cocycle with values in R∗+ is a map δ : R → R∗+ satisfying
δ(x, y)δ(y, z) = δ(x, z) for all (x, y), (y, z) ∈ R.

The map δ is known as the Radon-Nikodym cocycle of (R, T, ν).

Definition 3.2. Given a cocycle δ : R → R∗+, the measure | · |y on R[y] is given
by |z|y = δ(z, y) for all z ∈ R[y]. Then, for a finite subset A ⊂ R[y],

|A|y =
∑
z∈A

δ(z, y).

3.2 Discrete averaging sequences

We are interested in giving a sufficient condition to solve the Radon-Nikodym
problem in the discrete setting. We will state this condition using the notion of
modified averaging sequence (see [21] and [23]):

Definition 3.3. Let δ : R → R∗+ be a cocycle of R. Let {An} be a sequence of
finite subsets of T such that An ⊂ R[yn] for each n ∈ N. We will say that {An}
is a δ-averaging sequence for Γ if

lim
n→∞

|∆γAn|yn
|An|yn

= 0

for all γ ∈ Γ(1). An equivalence class R[y] is δ-Følner if R[y] contains an
δ-averaging sequence {An} such that |∂An|y/|An|y → 0 as n→ +∞.

By choosing a finite generating set for Γ, we can realize each equivalence class
R[y] as the set of vertices of a graph. We will write z ∼ w for each pair of
neighboring vertices z and w joined by an edge in R[y], and deg(z) the number
of neighbors of z ∈ R[y]. We will use D to denote the set of discontinuities of
the degree function deg. Let ν be a quasi-invariant measure on T , and denote
by D : L∞(T, ν)→ L∞(T, ν) the Markov operator defined by

Df(y) =
1

deg(y)

∑
z∼y

f(z).

We denote by D∗ the dual operator acting on the space of positive Borel mea-
sures on T , and by ∆ : L∞(T, ν) → L∞(T, ν) the Laplace operator defined by
∆f(y) = Df(y)− f(y).
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Definition 3.4. A quasi-invariante measure ν on T is harmonic or stationary
(for the simple random walk on R) if for every bounded measurable function
f : T → R, we have

∫
∆f dν = 0.

Proposition 3.5 ([29]). For a quasi-invariant measure ν on T the following
are equivalent:

(i) ν is harmonic;

(ii) D∗ν = ν;

(iii) the Radon-Nikodym cocycle δ : R → R∗+ is harmonic, i.e. for ν-almost
every y ∈ T and every z ∈ R[y], we have

δ(z, y) =
1

deg(z)

∑
w∼z

δ(w, y).

Theorem 3.6. Let R be the orbit equivalence relation defined by a finitely
generated pseudogroup Γ acting freely on a compact space T . Let δ : R → R∗+
be a continuous cocycle. Then:

i) any δ-averaging sequence {An} gives rise to a positive Borel measure ν on
T whose support is contained in the limit set of {An}, which is quasi-invariant
and has δ as Radon-Nikodym cocycle;

ii) moreover, if δ is harmonic and ν(D) = 0, then ν is a harmonic measure.

Proof. We start by constructing a sequence of probability measures νn given
by νn(B) = |B ∩ An|yn/|An|yn for every Borel subset B of T . By passing to a
subsequence, the sequence νn converges in the weak topology to a positive Borel
measure ν on T . First, we will prove that ν is a quasi-invariant measure having
a Radon-Nikodym cocycle equal to δ. For every local transformation γ ∈ Γ an
every function f ∈ C(T ) with support on the range of γ, we have∫

f(z) d(γ∗ν)(z) =

∫
f(γ(y)) dν(y) = lim

n→∞

1

|An|yn

∑
y∈An

f(γ(y))δ(y, yn)

and ∫
f(y)δ(z, y) dν(y) = lim

n→∞

1

|An|yn

∑
y∈An

f(y)δ(γ(y), y)δ(y, yn)

= lim
n→∞

1

|An|yn

∑
y∈An

f(y)δ(γ(y), yn)

where z = γ(y). Therefore
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0 ≤
∣∣∣∣∫ f(z) d(γ∗ν)(z)−

∫
f(y)δ(z, y) dν(y)

∣∣∣∣
≤ lim

n→∞

1

|An|yn

∣∣∣∣∣∣
∑
y∈An

f(γ(y))δ(y, yn)− f(y)δ(γ(y), yn)

∣∣∣∣∣∣
≤ lim

n→∞
‖f‖∞

|∆γAn|yn
|An|yn

= 0

and thus ∫
f(z) d(γ∗ν)(z) =

∫
f(y)δ(z, y) dν(y),

proving the claim.

We will now prove that if δ is harmonic and ν(D) = 0, then ν is a harmonic
measure. Observe that if ν(D) = 0, then ∆f is continuous ν-almost everywhere
and therefore ∫

∆f dν = lim
n→∞

∫
∆f dνn

for all f ∈ C(T ). If δ is harmonic, we have∫
∆f(y) dνn(y) =

1

|An|yn

∑
y∈An

(
1

deg(y)

∑
z∼y

f(z)− f(y)

)
δ(y, yn)

=
1

|An|yn

∑
y∈An

1

deg(y)

∑
z∼y

f(z)δ(y, yn)− f(y)

(
1

deg(y)

∑
z∼y

δ(z, yn)

)

=
1

|An|yn

∑
y∈An

1

deg(y)

∑
z∼y

f(z)δ(y, yn)− f(y)δ(z, yn)

and then

0 ≤
∣∣∣∣∫ ∆f(y) dν(y)

∣∣∣∣
≤ lim

n→∞

1

|An|yn

∣∣∣∣∣∣
∑
y∈An

∑
z∼y

f(z)δ(y, yn)− f(y)δ(z, yn)

∣∣∣∣∣∣
≤ lim

n→∞
‖f‖∞

∑
γ∈Γ(1)

|∆γAn|yn
|An|yn

≤ lim
n→∞

2 ‖f‖∞ |Γ
(1)| |∂An|yn
|An|yn

= 0,

that is ν is a harmonic measure.

A similar result can be found in [33]. In general, the second part of Theo-
rem 3.6 remains valid when the Laplace operator ∆ preserves continuous func-
tions. This is always true when D = ∅, as in the following case:
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Corollary 3.7. Let R be the orbit equivalence relation defined by a group of
finite type Γ acting freely on a compact space T . Let δ : R → R∗+ be a continuous
harmonic cocycle. Any δ-averaging sequence {An} gives rise to a harmonic
measure ν on T supported by the limit set of {An}.

Arguing as for usual averaging sequences, we can extend Theorem 3.6 to any
compactly generated pseudogroup Γ acting freely on a locally compact Polish
space T . Moreover, in the 0-dimensional case, the degree function is again
continuous. This applies in particular to solenoids [5] and laminations defined
by repetitive graphs (introduced in [13] and studied in [1], [7] and [26]):

Corollary 3.8. Let R be the orbit equivalence relation defined by compactly gen-
erated pseudogroup Γ acting freely on a locally compact separable 0-dimensional
space T . Let δ : R → R∗+ be a continuous harmonic cocycle. Any δ-averaging
sequence {An} gives rise to a harmonic measure ν on T supported by the limit
set of {An}.

In order to extend Theorem 3.6 to non-free actions, we can adopt two differ-
ent strategies. Let us first recall that the notion of equivalence relation is enough
to describe the transverse structure of a lamination in the Borel context. More
precisely, any Borel or topological lamination F induces a Borel equivalence re-
lation R on a total transversal T (compare to Remark 2.1) defined by the action
of the holonomy pseudogroup. We refer to the Ph.D. thesis of M. Bermúdez [6]
for the definition of a Borel lamination. If R is a discrete Borel equivalence rela-
tion defined by the action of a Borel pseudogroup Γ acting on a compact space
T and if δ : R → R∗+ is a Borel cocycle, then the proof of Theorem 3.6 remains
valid. In the topological context, Theorem 3.6 is not exactly equivalent to the
situation above because the transverse holonomy groupoid and the equivalence
relation are only Borel isomorphic on the residual set of leaves without holon-
omy. Another strategy consists in replacing étale equivalence relations with
étale groupoids, and proving that averaging sequences for stationary cocycles
define stationary measures on groupoids. Details will be reported elsewhere.

4 Averaging sequences in the continuous setting

We are interested in stating Theorem 3.6 in the continuous setting, namely
for a compact laminated space (M,F). Instead of working with quasi-invariant
measures, we are going to use tangentially smooth measures. These form a larger
class than harmonic measures. As previously mentioned, transverse invariant
measures for foliations are rather rare, but harmonic measures always exist.
Harmonic measures were introduced by L. Garnett in [11]. In Sections 4.1 and
4.2 we will study these measures and recall some notation. In Section 4.3 we will
construct a differential foliated 1-form from a given cocycle. Finally, in Section
4.4 we will use this foliated form to prove the continuous analogue of Theorem
3.6.
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4.1 Tangentially smooth measures

Consider now a regular Borel measure µ on M . Using a Cr foliated atlas A,
we can give a local decomposition µ =

∫
λyi dνi(y) on each foliated chart Ui,

where λyi is a measure on the plaque ϕ−1
i (Pi × {y}) and νi a measure on Ti.

Here, in order to define the foliated Laplace operator ∆F , we can always assume
that r ≥ 3 up to C1-equivalence of foliated atlases, and we fix a tangentially
Cr-smooth Riemannian metric g along the leaves of F .

Definition 4.1 ([2]). A measure µ on M is tangentially smooth if for every
i ∈ I and νi-almost every y ∈ Ti, the measures λyi are absolutely continuous with
respect to the Riemannian volume dvol restricted to the plaque passing through
y, and the density functions hi(x, y) = dλyi /dvol(x, y) are smooth functions of
class Cr−1 on the plaques.

Observe that the local decomposition of µ is not necessarily unique. Let
µ|Ui =

∫
λyi dνi(y) =

∫
λ̄yi dν̄i(y) be two decompositions. Then we obtain∫

Ti

∫
Pi×{y}

hi(x, y) dvol(x, y) dνi(y) =

∫
Ti

∫
Pi×{y}

h̄i(x, y) dvol(x, y) dν̄i(y),

and we can consider the Radon-Nikodym derivative δi(y) = dνi/dν̄i(y) such
that h̄i(x, y) = δi(y)hi(x, y). This situation arises naturally in the intersection
of two foliated charts Ui and Uj . Indeed, if Ui∩Uj 6= ∅, we have that µ|Ui∩Uj =∫
λyi dνi(y) =

∫
λyjdνj(y). Thus, as before, we deduce that

δij(y) = dνi/d((γji)∗νj)(y) =
hj(ϕ

y
ij(x), γij(y))

hi(x, y)
. (4.1)

Then the functions hi verify that log hj − log hi = log δij on Ui ∩ Uj . Since δij
is a function on Ti, we have that dF log hi = dF log hj . Then η = dF log hi is a
well-defined foliated 1-form of class Cr−2 along the leaves, which makes possible
to estimate the transverse measure distortion under the holonomy.

Definition 4.2. The foliated 1-form η is the modular form of µ.

4.2 Harmonic measures

We start by recalling the definition given by L. Garnett in [11]:

Definition 4.3. We will say that µ is harmonic if
∫

∆Ffdµ = 0 for every
continuous tangentially Cr−1-smooth function f : M → R.

According to Theorem 1 of [11], any harmonic measure is an example of tan-
gentially smooth measure since the densities hi are positive harmonic functions
of class Cr−1 on the plaques. In particular, any transverse invariant measure
combined with the Riemannian volume on the leaves gives a harmonic measure
which is called completely invariant. A harmonic measure µ is completely in-
variant if and only if η = 0 (we refer to corollary 5.5 of A. Candel’s paper [8]).
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In the general harmonic case, the following proposition states some properties
of the modular form. This proposition is a refined version of Lemma 4.19 on
page 116 of the Ph.D. thesis of B. Deroin [9].

Proposition 4.4 ([9]). If µ is a harmonic measure, then η is a bounded foliated
1-form which admits a uniformly tangentially Lipschitz primitive log h on the
residual set of leaves without holonomy.

Proof. Let A = {(Ui, φi)}i∈I be a good Cr foliated atlas of (M,F), and hi
the local density functions of µ. Let us first observe that since the functions
hi coincide on the intersections of the plaques modulo multiplication by a con-
stant, they define a primitive of the induced 1-form on the holonomy covering
of each leaf L. If F has no essential holonomy, the functions log hi can be glued
together to obtain a measurable global primitive log h of η. In general, the
modular form η admits a continuous primitive log h on the residual set of leaves
without holonomy. Now, let us assume that A is a refinement of a good atlas
A′ = {(U ′i , φ′i)}i∈I , and h′i are the corresponding local densities. Thus, every
plaque of Ui is relatively compact in a plaque of U ′i . In fact, using a vertical
reparametrization, we can suppose that φ−1

i (Pi × {y}) ⊂ (φ′i)
−1(P ′i × {y}) for

every y ∈ Ti. There exists a relatively compact open set V ⊂ P ′i such that
φ−1
i (Pi × {y}) ⊂ (φ′i)

−1(V × {y}) for every y ∈ Ti. Since hi is harmonic, the
Harnack inequality implies the existence of a constant Ci > 0 such that

1

Ci
≤ hi(x, y)

hi(x0, y)
≤ Ci, (4.2)

for all x, x0 ∈ Pi and for all y ∈ Ti. Since the atlases A and A′ are finite, the
primitive log h is uniformly Lipschitz in the tangential coordinate x.

4.3 Modular form associated to a cocycle

We will now describe how to construct a modular form η ∈ Ω1(F) from a Borel
or continuous cocycle δ : R → R∗+. For simplicity, R is endowed here with
the natural Borel or topological structure induced by the structure of Borel
or topological groupoid on the transverse holonomy groupoid G formed by the
germs < γ >y of the elements γ of Γ at the points y of their domains, see
[28]. The natural projection (β, α) :< γ >y∈ G 7→ (y, γ(y)) ∈ R becomes an
isomorphism of Borel or topological groupoids in restriction to the residual set
of leaves without holonomy. Equivalently, we can consider a Borel or continuous
cocycle δ : G→ R∗+ projectable on R.

We start by considering tangentially Cr-smooth Borel or continuous func-
tions cki : Ui ∩ Uk → R given by

cki(ϕ
−1
k (x, y)) = log δki(y)

where δki(y) = δ(y, γki(y)) for all (x, y) ∈ Pk × Tk. By choosing a tangentially
Cr-smooth partition of unity {ρi}mi=1 subordinated to the foliated atlas A, we
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can glue the functions cki obtaining tangentially Cr-smooth Borel or continuous
functions ci : Ui → R given by

ci =

m∑
k=1

ρkcki.

The cocycle condition implies that cij = ckj − cki, so that

cj − ci =

m∑
k=1

ρkckj −
m∑
k=1

ρkcki =

(
m∑
k=1

ρk

)
cij = cij .

Hence, for each i = 1, . . . ,m we can define a tangentially Cr−1-smooth Borel or
continuous foliated 1-form

ηi =

m∑
k=1

(dFρk) cki

on Ui. Each local 1-form ηi is exact

ηi =

m∑
k=1

(dFρk) cki = dFci = dF log hi

where hi = eci : Ui → R∗+ is a Borel or continuous function of class Cr along
the leaves.

Proposition 4.5. There is a well defined Borel or continuous closed foliated
1-form η ∈ Ω1(F) such that η|Ui = ηi.

Proof. For each pair i, j ∈ {1, . . . ,m}, we have that:

ηj − ηi =

m∑
k=1

(dFρk) ckj −
m∑
k=1

(dFρk) cki =

(
m∑
k=1

dFρk

)
cij = 0

on Ui ∩ Uj . Then the 1-form η is well defined, Borel or continuous, and closed.

Definition 4.6. The foliated 1-form η is the modular form of δ.

Remarks 4.7. (i) The modular form η depends on the choice of the partition
of unity, but its cohomology class does not depend.

(ii) As for harmonic measures, the modular form η of a Borel or continuous
cocycle δ admits a Borel or continuous primitive log h on the residual set of
leaves without holonomy. Thus, assuming that F has no holonomy (or passing
to the holonomy covers of the leaves), we may find a global Borel or continuous
primitive on M (respectively, a Borel or continuous primitive on the holonomy
groupoid Hol(F)), see [2].
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4.4 Continuous averaging sequences

In the present setting, we can reformulate the Radon-Nikodym problem as the
problem of determining tangentially smooth measures µ on M which admit η
as their modular form. The aim of this section is to establish Theorem 3.6 for
laminations. First, we need a continuous analogue of Definition 3.3. Consider a
d-dimensional lamination F of class Cr on a compact space M , endowed with a
tangentially Cr-smooth Riemannian metric g, and a continuous cocycle δ : R →
R∗+. The modular form η admits a continuous tangentially Cr-smooth primitive
log h on the residual set of leaves without holonomy. On each leaf without
holonomy Ly passing through y ∈ T , we can multiply g by the normalized
density function h/h(y) in order to obtain a modified metric (h/h(y))g.

Definition 4.8. Let {Vn} be a sequence of compact domains with boundary
contained in a sequence of leaves without holonomy Lyn . We will say that {Vn}
is a η-averaging sequence for F if

lim
n→∞

areaη(∂Vn)

volη(Vn)
= 0

where areaη denotes the (d− 1)-volume and volη the d-volume with respect to
the modified metric along Lyn . A leaf Ly is η-Følner if it contains an η-averaging
sequence {Vn} such that areaη(∂Vn)/volη(Vn)→ 0 as n→ +∞.

Remarks 4.9. (i) The isoperimetric ratio areaη(∂Vn)/volη(Vn) does not de-
pend on the choice of y nor h in the second definition. This justifies the notation,
which is slightly different from the one used in [2].

(ii) When µ is a completely invariant harmonic measure, the normalized den-
sity function is equal to 1 and thus the modified volume and the Riemannian
volume coincide. Hence, we recover the common definition of averaging se-
quence.

(iii) For harmonic measures, Harnack’s inequalities (4.2) imply that the mod-
ified volume of the plaques and the modified area of their boundaries remain
uniformly bounded.

Theorem 4.10. Let (M,F) be a Cr lamination of a compact space M , 1 ≤ r ≤
∞, and let R be the equivalence relation induced by F on a total transversal T .
Consider a continuous cocycle δ : R → R∗+, and let η be the modular form of
δ. Assume that F admits a foliated atlas such that the modified volume of the
plaques is bounded. Then:

i) any η-averaging sequence {Vn} for F gives rise to a tangentially smooth mea-
sure µ whose support is contained in the limit set of {Vn} and whose modular
form is equal to η;

ii) moreover, if η has a primitive log h such that h is a harmonic function, then
µ is a harmonic measure.
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Proof. As in the discrete case, we will start by constructing a sequence of foliated
d-currents

ξn(α) =
1

volη(Vn)

∫
Vn

h

h(yn)
α,

where α is a foliated d-form. By passing to a subsequence, the sequence ξn
converges to a foliated d-current ξ. Let µ be the measure on M associated with
the current ξ. For every function f ∈ C(T ), we have

∫
f dµ = ξ(fω) where

ω = dvol is the volume form along the leaves.

Now, we will prove that µ is a tangentially smooth measure with modular
form η. Consider a good Cr foliated atlas A = {(Ui, φi)}i∈I obtained by re-
finement from a given good atlas, and whose plaques have bounded modified
volume. As we mentioned before, up to C1-equivalence, we can assume now
that r ≥ 3. Since the modified volume of the plaques of A and the modified
area of their boundaries remain bounded, the traces An = Vn∩T of the domains
Vn on the total transversal T form a δ-averaging sequence, as in Definition 3.3.
In fact, since Vn is covered by the plaques Py of A centered at the points y of
An, we have that:

volη(Vn) =

∫
Vn

ωη ≤
∑
y∈An

∫
Py

ωη =
∑
y∈An

(∫
Py

h(x, y)

h(0, y)
dvol(x, y)

)
δ(y, yn)

where ωη is the modified volume form along the leaves and h(x, y) denotes the
density function restricted to a foliated chart Uy containing the plaque Py. Then
there is a constant C > 0 such that volη(Vn) ≤ C|An|yn Actually, we can choose
C > 0 such that 1

C ≤ volη(Vn)/|An|yn ≤ C. Thus, by passing to a subsequence,
we may assume that the ratio volη(Vn)/|An|yn converges to a constant c > 0.
Now, as stated in the proof of Theorem 3.6, we may also assume that the
sequence of measures νn(B) = |B ∩An|yn/|An|yn converge to a quasi-invariant
measure ν on T whose Radon-Nikodym derivative is equal to δ. Combined with
the modified Riemannian volume along the leaves, this transverse measure gives
us a tangentially smooth measure µ′ on M . Thus, for every function f ∈ C(M)
with support in Ui, we have∫

f dµ′ =

∫
Ti

∫
Pi×{y}

f(x, y)
hi(x, y)

hi(0, y)
dvol(x, y) dν(y).

Then∫
f dµ′ = lim

n→+∞

1

|An|yn

∑
y∈Vn∩Ti

(∫
Pi×{y}

f(x, y)
hi(x, y)

hi(0, y)
dvol(x, y)

)
δ(y, yn)

= lim
n→+∞

1

|An|yn

∑
y∈Vn∩Ti

∫
Pi×{y}

f ωη. (4.3)
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On the other hand, by definition, we have∫
f dµ = ξ(fω) = lim

n→+∞

1

volη(Vn)

∫
Vn

fωη

= lim
n→+∞

1

volη(Vn)

∑
y∈Vn∩Ti

∫
Pi×{y}

f ωη (4.4)

Comparing identities (4.3) and (4.4), we deduce that µ = 1
c µ
′ is a tangentially

smooth measure with modular form η.

To conclude, we will prove that µ is harmonic when h is harmonic. We will
start by denoting hn = h/h(yn) the normalized density functions on the leaves
Lyn . Since the Laplace operator ∆F preserves continuous functions, we have
that ∫

∆Ff dµ = lim
n→∞

1

volh(Vn)

∫
Vn

(∆Ff)hn ω,

for all f ∈ C(T ). Green’s formula implies that∫
Vn

(∆Ff)hn ω =

∫
Vn

((∆Ff)hn−f (∆Fhn)ω =

∫
∂Vn

hn ιgrad(f)ω−f ιgrad(hn)ω.

Since hn is harmonic, we have∫
∂Vn

ιgrad(hn)ω =

∫
Vn

div(grad(hn))ω =

∫
Vn

(∆Fhn)ω = 0

and then

0 ≤
∣∣∣∣∫
∂Vn

fιgrad(hn)ω

∣∣∣∣ ≤ ‖f‖∞ ∫
∂Vn

ιgrad(hn)ω = 0

for all n ∈ N. On the other hand, since f is bounded, there exists a constant
k > 0 depending only on f such that we have

0 ≤
∣∣∣∣ 1

volh(Vn)

∫
∂Vn

hn ιgrad(f)ω

∣∣∣∣ ≤ lim
n→∞

k
areaη(∂Vn)

volη(Vn)
= 0

and therefore ∫
∆Ff dµ = lim

n→∞

1

volh(Vn)

∫
Vn

(∆Ff)hn ω = 0,

that is µ is a harmonic measure.

Remarks 4.11. (i) If δ : R → R∗+ is a Borel cocycle with modular form η,
Theorem 4.10 remains also valid. So any η-averaging sequence for F gives rise
to a tangentially smooth measure µ that is harmonic when η admits a primitive
log h such that h is a harmonic function.

(ii) According to Remark 4.7.(ii), the notion of η-Følner may be applied to the
holonomy covers of the leaves of F . Thus, it suffices to replace F with the lifted
lamination in the holonomy groupoid Hol(F), in order to globalize the previous
result. As in the discrete setting, details will be precised elsewhere.
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5 Examples

5.1 Discrete averaging sequences for amenable non Følner
actions.

There are amenable actions of non amenable discrete groups whose orbits con-
tain averaging sequences [23]. For example, let ∂Γ be the space of ends of the
free group Γ with two generators α and β whose elements are infinite words
x = γ1γ2 . . . with letters γn in Φ = {α±1, β±1}. If ν denotes the equidis-
tributed probability measure on ∂Γ (such that all cylinders consisting of infinite
words with fixed first n letters have the same measure), then Γ acts essentially
freely on ∂Γ by sending each generator γ and each infinite word x = γ1γ2 . . . to
γ.x = γγ1γ2 . . . . Since this action is amenable, according to Theorem 2 of [21]
(see also Proposition 4.1 of [2]), we know that ν-almost every orbit is δ-Følner
(where δ is the Radon-Nikodym derivative of ν). We will recall here an explicit
construction by V. A. Kaimanovich in [23].

For each x ∈ ∂Γ, let bx : Γ→ R be the Busemann function defined by

bx(γ) = lim
n→+∞

(
dΓ(γ, x[n])− dΓ(1, x[n])

)
where dΓ is the Cayley graph metric, x[n] is the word consisting of first n letters
of x and 1 is the identity element. The level sets Hk(x) = { γ ∈ Γ / bx(γ) = k }
are the horospheres centered at x. The Radon-Nikodym derivative of ν is given
by

δ(γ−1.x, x) =
dγ.ν

dν
(x) = 3−bx(γ)

where γ.ν is the translation of ν by γ. Since | · |x = δ(·, x) is a harmonic measure
on Γ.x, ν is also a harmonic measure. In fact, as stated in Theorem 17.4 of [22],
ν is the unique harmonic probability measure on ∂Γ.

Let Axn be the set of all points γ−1.x in Γ.x such that 0 ≤ bx(γ) = dΓ(1, γ) ≤
n. Since |Axn ∩ Hk(x)|x =

∑
bx(γ)=dΓ(1,γ)=k δ(γ

−1.x, x) = 3k 1
3k = 1 for all

0 ≤ k ≤ n, we have that |An|x = n+ 1. But ∂Axn = {1} ∪ (Axn ∩Hn(x)) and so
|∂Axn|x = 2. The δ-averaging sequence {Axn} defines a harmonic measure (which
is equal to ν up to multiplication by a constant).

5.2 Averaging sequences for hyperbolic surfaces.

The geodesic and horocycle flows are classical examples of flows on the unitary
tangent bundle of a compact hyperbolic surface. They are given by the right
actions of the diagonal subgroup

D =

{ (
et/2 0

0 e−t/2

) ∣∣∣ t ∈ R
}

and the unipotent subgroup

H+ =

{ (
1 s
0 1

) ∣∣∣ s ∈ R
}
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of G = PSL(2,R) on the quotient Γ\G by the left action of a uniform lattice
Γ. If H denotes the hyperbolic plane, we can identify Γ\G with the unitary
tangent bundle of the compact hyperbolic surface Γ\H. The right action of the
normalizer A of H+ in PSL(2,R) defines a foliation F by Riemann surfaces
on Γ\G. Since A is an amenable group, F is an amenable non Følner foliation.
Moreover, there is an A-invariant measure µ on Γ\G. In [11], L. Garnett proved
that µ is a harmonic measure by describing its density function on a foliated
chart.

We can identify G/A with the boundary ∂H by sending each coset of A in
G to the center of the horocycle defined by the corresponding coset of H+ in
G. For each point z ∈ H, there is a unique probability measure νz on ∂H which
is invariant by the action of all isometries of H fixing z. This measure is the
image of the normalized Lebesgue measure on the circle of the tangent plane at
z under the exponential map, and is called the visual measure at z. According
to Proposition 2 of [11], the normalized density function is given by dνz/dνz0(x)
where z, z0 ∈ H and x ∈ ∂H. In particular, for x =∞, we have that

dνz
dνz0

(∞) =
y

y0

where z = x + iy and z0 = x0 + iy0. In the leaf passing through x = ∞, the
sequence
V∞n = { z ∈ H | − 1 ≤ x ≤ 1 , e−n ≤ y ≤ 1 } becomes a η-averaging sequence
(where η is the modular form of µ). Indeed, on the one hand, we have that

areaη(V∞n ) =

∫
V∞n

dνz
dνi

(∞) dvol(z) =

∫
V∞n

y
dx ∧ dy
y2

=

∫ 1

1

dx

∫ 1

e−n

dy

y
= 2n.

On the other hand, the modified length of a smooth curve σ(t) = x(t) + iy(t)

(with 0 ≤ t ≤ l) is given by lengthη(σ) =
∫ l

0

√
x′(t)2 + y′(t)2dt, and so we have

that
lengthη(∂V∞n ) = 2(2 + (1− en)) ≤ 6.

As before, this η-averaging sequence defines a harmonic measure (which is equal
to µ up to multiplication by a constant). In fact, all leaves are η-Følner since
for each point x ∈ ∂H obtained as the image of ∞ under g ∈ G, the sets
V xn = g(V∞n ) form a η-averaging sequence in the leaf passing through x.

5.3 Averaging sequences for torus bundles over the circle.

To conclude, we will present other examples of foliations on homogeneous spaces
studied by É. Ghys and V. Sergiescu in [14]. Each matrix A ∈ SL(2,Z) with
|tr(A)| > 2 defines a natural representation ϕ : Z→ Aut(Z2) which extends to
a representation Φ : R → Aut(R2) given by Φ(t) = At. If λ > 1 and λ−1 < 1
are the eigenvalues of A, then Φ is conjugated to the representation Φ0 given by

Φ0(t) =

(
λt 0
0 λ−t

)
.
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Let T 3
A be the homogeneous space obtained as the quotient of the Lie group

G = R2oΦR with group law (x, y, t).(x′, y′, t′) = ((x, y)+At(x′, y′), t+t′) by the
uniform lattice Γ = Z2 oϕ Z with a similar law. Observe that G is isomorphic
to the solvable group Sol3 = R2 oΦ0

R with group law (x, y, t).(x′, y′, t′) =
(x + λtx′, y + λ−ty′, t + t′) (where x and y are the first and second coordinate
with respect to the eigenbasis) and T 3

A is diffeomorphic to the quotient of Sol3

by a uniform lattice Γ0. The right action of the image A of the monomorphism

(a, b) ∈ Ro R∗+ 7→
(
a, 0,

log b

log λ

)
∈ Sol3

defines a foliation F on T 3
A. The Lebesgue measure on T 3

A defined by the volume
form Ω = dx∧ dy ∧ dt is a tangentially smooth measure. Since the Riemannian
volume along the right orbits is given by

da ∧ db
b2

= (log λ)λ−tdx ∧ dt

the density function is equal to λt

log λ . In the orbit of the identity element, the

sequence Vn = { (a, b) ∈ A/ − 1 ≤ a ≤ 1 , e−n log λ ≤ b ≤ 1 } becomes a η-
averaging sequence (where η is the modular form of µ). Indeed, on one hand,
we have that

areaη(Vn) =

∫
Vn

1

log λ
λt(log λ)λ−tdx ∧ dt =

∫ 1

1

dx

∫ 0

−n
dt = 2n.

On the other hand, the modified length of a smooth curve σ(t) = (a(t), b(t)

(with 0 ≤ t ≤ L) is given by lengthη(σ) =
∫ L

0

√
a′(t)2 + b′(t)2dt, and so we have

that
lengthη(∂Vn) = 2(2 + (1− en log λ)) ≤ 6.

By replacing the orbit corresponding to y = 0 with another orbit, it is easy to
see that all leaves are η-Følner. As in the previous example, all η-averaging se-
quences define (up to multiplication by a constant) the same harmonic measure:
the Lebesgue measure.

6 Final comments

6.1 Discrete and continuous averaging sequences

Comparing the discrete and continuous settings, a natural question arises: what
is the relation between δ-averaging and η-averaging sequences? Let us first
notice that repeating the same argument as in the classical case (see Theorem
4.1 of [24]), the boundedness condition derived from Harnack’s inequalities in
Remark 4.9.(iii) implies that the leaf Ly is η-Følner if and only if the equivalence
class R[y] is δ-Følner. But then, what is the relation between the harmonic
measures defined by δ-averaging and η-averaging sequences? In this case, the
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answer is more subtle, and we have to use an important result of R. Lyons and
D. Sullivan [27], completed later by V. A. Kaimanovich [20] and independently
by W. Ballman and F. Ledrappier [4], about the discretization of harmonic
functions on Riemannian manifolds. First, according to Theorem 6 of [27], if
µ is a harmonic measure, then the transverse measure ν (well defined up to
equivalence) is π-harmonic where π is a transition kernel defining a random
walk on R different from the simple random walk considered in Definition 3.4.
Reciprocally, assuming that T admits a relatively compact neighborhood which
meets almost every leaf in a recurrent set, the Main Theorem of [4] implies that
µ is harmonic if ν is π-harmonic.

6.2 Amenability

It is not casual that all examples in Section 5 are amenable: according to a
resul by V. A. Kaimanovich [21], amenable foliations admit always averaging
sequences. In fact, if F is an amenable foliation with respect to a tangentially
smooth measure µ, then F is η- Følner, i.e. µ-almost every leaf is η-Følner,
see Proposition 4.3 of [2]. This paper can be viewed as a sequel of [2] where
we proved that minimal η-Følner foliations are µ-amenable (assuming that the
modified volume of the plaques is bounded). To complete the series, we have
to prove that any foliation is amenable with respect to a tangentially smooth
measure µ constructed from an averaging sequence using Theorem 4.10.
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Supérieure de Lyon, 2003.

[10] E. Følner. On groups with full Banach mean value. Math. Scand., 3 (1955),
243–254.

[11] L. Garnett. Foliations, the ergodic theorem and Brownian motion. J. Funct.
Anal., 51 (1983), 285–311.
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