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Abstract

In the spirit of Zimmer’s study of large groups actions on closed manifolds, we
discuss the existence of area-preserving actions of higher rank lattices on surfaces.
We explain why certain vanishing results in bounded cohomology, due to Burger and
Monod, combined with some constructions by Gambaudo and Ghys, give some con-
straints on the measure theoretical properties of such actions.

1 Introduction

The aim of this note is to discuss the existence of area-preserving actions of higher rank
lattices on surfaces. All the diffeomorphisms and vector fields we will consider in the
text will be of class C∞. Although much of our discussion would be valid with a lower
regularity, we will not be concerned with this issue here.

We consider a lattice Γ in a connected simple Lie group G, with finite center and of real
rank greater than 1. See [5] for some classical constructions of lattices. Let Σ be a closed
oriented surface endowed with an area form ω. According to a well-known conjecture of
Zimmer [48], any homomorphism ρ : Γ → Diff(Σ, ω) from Γ to the group of area-preserving
diffeomorphisms of Σ should have finite image. Note that this conjecture can be seen as
part of a more general program proposed by Zimmer [48] for the study of (not necessarily
volume preserving) actions of higher rank lattices on closed manifolds. For recent advances
on this program, the reader might consult [7, 10, 11, 16, 22, 23, 26, 27, 37, 38, 46, 47, 49].

From now on, we will assume that a homomorphism ρ : Γ → Diff(Σ, ω) is given. We
will say that the associated action of Γ on Σ is trivial if ρ(Γ) is a finite group. We will also
denote by µ the measure associated to the 2-form ω on Σ, and will suppose that

∫
Σ dµ = 1.

Although the conjecture is still open, a certain number of results already show that such
an action of Γ have poor dynamical properties. For instance, Zimmer [47, 49] showed that
in this situation Γ must preserve a measurable Riemannian metric on Σ. As a consequence,
all the elements in the group ρ(Γ) have zero metric entropy. Another consequence is that
the action has discrete spectrum [49]: the space L2(Σ, µ) breaks down as a direct sum
of finite-dimensional subrepresentations for the natural Γ-action. One approach to the
conjecture (explained in [18] for instance) would be to study the regularity of the invariant
Riemannian metric provided by Zimmer’s theorem. Here we will follow a different route
and give a few more evidences that such an action of Γ, if not trivial, has simple dynamical
properties (at least from the measure theoretical point of view).
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As we have just said, a consequence of Zimmer’s results is that the group ρ(Γ) does not
contain any area-preserving diffeomorphism with positive metric entropy for the measure
µ. On the other side of the spectrum of possible dynamical behaviours are area-preserving
diffeomorphisms which are contained in a Hamiltonian flow. A consequence of our discus-
sion will be that this kind of diffeomorphisms cannot appear in the group ρ(Γ) (see section
3).

Observe first that we can compose ρ with the projection π from Diff(Σ, ω) to the
mapping class group of Σ, denoted by Λ(Σ), to get a homomorphism π ◦ ρ : Γ → Λ(Σ).
According to a result of Farb and Masur [15], such a homomorphism has finite image.
Hence, up to replacing Γ by a subgroup of finite index, we can assume that the image of
ρ lies in the group Diff0(Σ, ω) of area-preserving diffeomorphisms of Σ which are isotopic
to the identity. In fact, we can do one more reduction and assume that the image of ρ lies
in the group of Hamiltonian diffeomorphisms of Σ. We recall its definition now.

Rotation vectors and Hamiltonian diffeomorphisms. There is a canonical homo-
morphism a from the group Diff0(Σ, ω) to an abelian group A (which depends on Σ).
Its kernel is the group Ham(Σ, ω) of Hamiltonian diffeomorphisms of Σ. When Σ is the
2-sphere, the group A is trivial and the groups Diff0(S

2, ω) and Ham(S2, ω) coincide (in
that case, these two groups also coincide with the whole group of area-preserving diffeo-
morphisms of the sphere, which is connected [43]). When Σ = T2 is the torus, the group
A equals R2/Z2 and the homomorphism a is defined as follows. For each diffeomorphism
f ∈ Diff0(T

2, ω), choose a lift F : R2 → R2 of f . Since f is isotopic to the identity,
the map F commutes with integral translations. Hence, the map x 7→ F (x) − x ∈ R2 is
invariant under integral translations and defines a map from T2 to R2. One defines:

a(f) =

∫

T2

(F (x) − x)dµ(x)mod Z2.

As suggested by the notation, a(f) ∈ T2 only depends on f : any lift of f differs from F
by a translation by an element of Z2, hence the integral above is well defined modulo Z2.
It is often called the rotation vector of the diffeomorphism f . The map

a : Diff0(T
2, ω) → R2/Z2

is a homomorphism. When Σ has genus greater than 1, the group A equals the first
homology group H1(Σ,R) of Σ and one can construct the homomorphism a in the same
spirit as above, see [20, 33]. Note that, as opposed to the case of the torus, we do not need
to divide by the group H1(Σ,Z) since the group Diff0(Σ, ω) is simply connected [12]. The
homomorphism a : Diff0(Σ, ω) → H1(Σ,R) is dual to the classical flux homomorphism
from Diff0(Σ, ω) to H1(Σ,R), see for instance [35] and section 2 of [21].

It can be shown that the group Ham(Σ, ω) is exactly the group of diffeomorphisms
which are time 1 maps of a Hamiltonian isotopy (ft)t∈[0,1]. Recall that this means that
the isotopy (ft)t∈[0,1] satisfies the following differential equation

{
f0(x) = x
d
dt

(ft(x)) = Xt(ft(x)),

for all x ∈ Σ, for a time-dependent vector field Xt which is the symplectic gradient of a
smooth time-dependent function Ht on Σ. This means by definition that Xt satisfies the
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relation:
dHt(u) = ω(Xt, u)

for any tangent vector u ∈ TΣ.

Coming back to our lattice, we see that the homomorphism a ◦ ρ has finite image, Γ
having Kazhdan’s property (T) (see [31]). Hence, up to considering once again a subgroup
of finite index, one can assume that the homomorphism ρ has its image contained in
the group of Hamiltonian diffeomorphisms of Σ. The study of area-preserving actions of
higher rank lattices on closed surfaces is thus reduced to the study of actions by Hamiltonian
diffeomorphisms.

Let us mention that when Γ is a non-uniform lattice, and Σ has positive genus, Zim-
mer’s conjecture has been proved by Polterovich [38], using methods from symplectic
topology. His results have been reproved by Franks and Handel [22, 23] (and extended to
the case where Σ = S2 for a particular class of non-uniform lattices) using methods from
2-dimensional dynamics. Note that one of the central theorems established by Polterovich
in [38] to study actions of lattices is the following (in the statement below, we assume that
Σ has genus at least 2).

If Λ is a finitely generated subgroup of Ham(Σ, ω) endowed with any word metric | · |, and
if γ ∈ Λ is different from the identity, there exists ε > 0 such that |γn| ≥ εn (n ∈ N).

This allows one to exclude the existence of non-trivial actions of non-uniform lattices
thanks to the presence of unipotent elements, see [34]. But it also has different applications:
for instance, any finitely generated nilpotent subgroup of Ham(Σ, ω) is in fact Abelian.

Quasi-morphisms and bounded cohomology. Recall that a quasi-morphism on a
group Λ is a map φ : Λ → R for which there exists a constant C > 0 such that:

|φ(xy) − φ(x) − φ(y)| ≤ C

for any x, y ∈ Λ. The quasi-morphism φ is called homogeneous if moreover it satisfies
φ(xn) = nφ(x) (n ∈ Z, x ∈ Λ) i.e. φ is a true homomorphism when restricted to cyclic
subgroups of Λ. For any quasi-morphism φ, the limit

φh(x) = lim
n→∞

φ(xn)

n

exists. The map φh is the unique homogeneous quasi-morphism such that φ − φh is
bounded. We will denote by QM(Λ,R) the vector space of all quasi-morphisms on Λ,
and by QMh(Λ,R) the subspace of homogeneous quasi-morphisms. For more details on
quasi-morphisms and bounded cohomology see [4, 6] as well as Gromov’s seminal paper
[30]. We will return to the link between quasi-morphisms and bounded cohomology in the
next section.

According to a result by Burger and Monod (see [7] or [8]), any homogeneous quasi-
morphism on a higher rank lattice Γ as above is a homomorphism, and hence is identically
zero since Γ is a Kazhdan group. On the other hand, the group of Hamiltonian diffeomor-
phisms of a closed surface (which is simple and hence admits no non-trivial homomorphism
to R [3]) admits many quasi-morphisms: Gambaudo and Ghys [25] proved that the vector
space QMh(Ham(Σ, ω),R) is infinite-dimensional. Their proof consists in constructing
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explicitly a family of linearly independent homogeneous quasi-morphisms. More construc-
tions of quasi-morphisms on groups of Hamiltonian diffeomorphisms can be found in the
work of Entov and Polterovich [13] and of the author [40]. It is now well-known (see [29])
that one could try to use this contrast between the lattice Γ and groups of Hamiltonian
diffeomorphisms of surfaces to attack the problem of the existence of non-trivial homo-
morphisms ρ : Γ → Ham(Σ, ω). According to the discussion above, for any homogeneous
quasi-morphism φ : Ham(Σ, ω) → R the invariant φ ◦ ρ : Γ → R vanishes identically.
This should give some constraints on the homomorphism ρ. This circle of ideas is nicely
discussed in Ghys’ survey [29].

Here, we will explain how one can use more subtly the vanishing results of Burger and
Monod in bounded cohomology to obtain much more precise constraints on the homomor-
phism ρ. Namely, we will use the vanishing of certain bounded cohomology groups with
unitary coefficients.

Note that the use of bounded cohomology for the study of group actions is not new.
Bounded cohomology already appears in the study of groups acting on the circle, see
[7, 28].

2 Vanishing results and consequences

We begin with a brief reminder on the second bounded cohomology group of a discrete
group Λ, with unitary coefficients (see for instance [36] for more details).

We consider a unitary representation π of Λ, i.e. a homomorphism from Λ to the group
of unitary operators of a Hilbert space H . We will write ||v|| for the norm of a vector
v ∈ H . All the unitary representations we will consider are obtained in the following way:
the group Λ is acting by measure preserving transformations on a probability space (X,µ)
and we consider the representation π of Λ on the Hilbert space H = L2(X,µ) of square
integrable functions on X, defined by π(γ)(f) = f ◦ γ−1 (f ∈ L2(X,µ)). We will say that
a map c : Λj → H is bounded if the quantity

|c|∞,Λj := sup
(γ1,...,γj)∈Λj

||c(γ1, . . . , γj)||

is finite. The space Z2(Λ, π) of 2-cocycles on Λ with values in H is the space of maps
c : Λ2 → H such that:

π(γ1)(c(γ2, γ3)) − c(γ1γ2, γ3) + c(γ1, γ2γ3) − c(γ1, γ2) = 0.

We will denote by Z2
b (Λ, π) ⊂ Z2(Λ, π) the subspace of bounded 2-cocycles. In the same

way, the spaceB1(Λ, π) ⊂ Z2(Λ, π) of coboundaries consists of the maps c : Λ2 → H which
satisfy the equation c(γ1, γ2) = π(γ1)(v(γ2)) + v(γ1) − v(γ1γ2) for some map v : Λ → H .
The subspace of coboundaries c for which the map v in the equation above can be chosen
bounded will be denoted by B1

b (Λ, π). The second bounded cohomology group of Λ with
coefficients in H is the quotient

H2
b (Λ, π) = Z2

b (Λ, π)/B1
b (Λ, π),

and the second usual cohomology group of Λ with coefficients in H is the quotient
H2(Λ, π) = Z2(Λ, π)/B1(Λ, π). Of course, there is a natural map from H2

b (Λ, π) to
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H2(Λ, π) which sends the class of a bounded cocycle to its usual cohomology class. We
will denote by EH2

b (Λ, π) the kernel of this map.

In the following proposition C (Λ,H ) is the space of all maps from Λ to H , Cb(Λ,H )
the subspace of those maps which are bounded and d

1u is the coboundary of a map
u ∈ C (Λ,H ):

d
1u(γ1, γ2) = π(γ1)(u(γ2)) + u(γ1) − u(γ1γ2).

Proposition 2.1 The space EH2
b (Λ, π) is isomorphic to :

{u ∈ C (Λ,H ), |d1u|∞,Λ2 <∞}/
(
Z1(Λ, π) + Cb(Λ,H )

)
.

Proof. If u ∈ C (Λ,H ) is such that |d1u|∞,Λ2 <∞, the coboundary d
1u of u is a bounded

2-cocycle, hence defines a class [d1u] ∈ H2
b (Λ, π) which is obviously trivial in usual coho-

mology. We have thus constructed a map u 7→ [d1u] from {u ∈ C (Λ,H ), |d1u|∞,Λ2 <∞}
to EH2

b (Λ, π), which is (by definition) surjective. Let us examine its kernel. The class
[d1u] vanishes in bounded cohomology precisely if there exists a bounded map v : Λ → H

such that d
1u = d

1v. In that case w = u − v is a 1-cocycle and we have u = w + v ∈
Z1(Λ, π) + Cb(Λ,H ). 2

When H = R, with the trivial representation π0 of Λ, the previous proposition simply
proves the following classical fact [4, 6]: the group EH2

b (Λ, π0) is isomorphic to the quotient

QM(Λ,R)/ (Hom(Λ,R) ⊕ Cb(Λ,R)) .

Note that this last quotient is also isomorphic to the space QMh(Λ,R)/Hom(Λ,R). Let
us come back to the case of a higher rank lattice Γ, as in the introduction. In that case,
we have already said that the group EH2

b (Γ, π0) is trivial, according to a result of Burger
and Monod [7, 8]. In fact, their result is much more general: they prove that the group
EH2

b (Γ, π) vanishes, for any unitary representation π of Γ on a Hilbert space H (the
result even holds for more general Banach spaces, but we will not really discuss this here).
This can be seen as a strengthening of property (T): the group Γ has the property that for
any unitary representation π, the group H1(Γ, π) as well as the group EH2

b (Γ, π) vanishes.
Following Monod [36], we will say that a discrete group with this property has property
(TT). We now discuss the dynamical consequences of property (TT).

Suppose that Λ y (X,µ) is a measure preserving action of Λ on a probability space.
We will say that a map u : Λ → L2(X,µ) is a quasi-cocycle if there exists a constant C > 0
such that

|u(γ1γ2) − π(γ1)(u(γ2)) − u(γ1)| ≤ C

almost everywhere, for all γ1, γ2 ∈ Λ. We will give some examples of quasi-cocycles defined
on groups of Hamiltonian diffeomorphisms of surfaces in the next section. According to
the subadditive ergodic theorem (see [32] for instance), if u is a quasi-cocycle and γ ∈ Λ,
the sequence of functions

u(γn)

n

converges almost everywhere to a function û(γ). The reader should observe that since the
action of Λ on X is measure-preserving, the map

γ 7→ φ(γ) =

∫

X

u(γ)dµ
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is a quasi-morphism on Λ. It is not difficult to check that the map γ 7→ φu(γ) =
∫
X
û(γ)dµ

is the unique homogeneous quasi-morphism at a bounded distance from φ. Note that all
the quasi-morphisms defined by Gambaudo and Ghys [25] and by the author [40] are
obtained in this way: by integration of a quasi-cocycle.

Remark 1 The quasi-morphisms constructed by Entov and Polterovich [13] are defined in
a completely different way, see [39] for a survey. It is not à priori clear how to relate them
(in a non-trivial way) to some bounded cohomology class with non-trivial coefficients.

Remark 2 A weaker definition of quasi-cocycle already appears in the litterature, see
[44]. There, a map u : Λ → L2(X,µ) is called a quasi-cocycle if

|d1u|∞,Λ2 = sup
(γ1,γ2)∈Λ2

|d1u(γ1, γ2)|L2

is finite. In our definition, we require the stronger condition that

sup
(γ1,γ2)∈Λ2

|d1u(γ1, γ2)|L∞

is finite, to ensure that (u(γn)
n

)n≥0 converges almost everywhere for all γ. The notion of
quasi-cocycle is also related to the notion of rough action (see [36], chapter V).

We now see the advantage of using the full result of Burger and Monod: if Λ is a group
with property (TT) acting on X and u is a quasi-cocycle, the vanishing result with trivial
coefficients tells us that for any γ ∈ Λ the integral

φu(γ) =

∫

X

û(γ)dµ

is zero, while the full vanishing result tells us that the function û(γ) is zero almost every-
where, as the following proposition shows.

Proposition 2.2 Suppose Λ has property (TT ). Then, for any measure preserving action
Λ y (X,µ) on a probability space and for any quasi-cocycle u : Λ → L2(X,µ) we have :

û(γ) = 0,

almost everywhere (for all γ ∈ Λ).

Proof. If u is a quasi-cocycle, the map d
1u is a bounded 2-cocycle. Since the group

EH2
b (Λ, π) is trivial, there exists, according to the previous proposition, a bounded map

v : Λ → L2(X,µ) and a 1-cocycle w : Λ → L2(X,µ) such that u = v + w. We write
D := supγ∈Λ ||v(γ)||. Since Λ has property (T), there exists a map ϕ ∈ L2(X,µ) such that
w(γ) = ϕ ◦ γ − ϕ. We obtain:

u(γn)

n
=
ϕ ◦ γn − ϕ

n
+
v(γn)

n
.

We already know that the sequence u(γn)
n

converges almost everywhere to û(γ). The
function

ϕ ◦ γn − ϕ

n
=

1

n

n−1∑

j=0

(ϕ ◦ γ − ϕ) ◦ γj
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converges almost everywhere by Birkhoff’s theorem; it is a classical lemma in ergodic
theory that its limit is 0 almost everywhere. Finally, v(γn)

n
converges almost everywhere

to û(γ). Since the norm of v(γn)
n

in L2(X,µ) is less than D
n

, there exists a subsequence
v(γnk )
nk

which converges almost everywhere to 0. Hence û(γ) = 0 almost everywhere. 2

3 Some examples

We now describe some examples of concrete quasi-cocycles on groups of Hamiltonian
diffeomorphisms of surfaces, taken from [17, 20, 24, 25, 33, 40]. These functions are
constructed in the spirit of Schwartzman’s classical asymptotic cycle [42] or of Arnold’s
asymptotic Hopf invariant, see [1]. The interested reader will find much more examples in
the work of Gambaudo and Ghys [25].

Since we are dealing with diffeomorphisms which are isotopic to the identity, we will
always make use of isotopies (ft)t∈[0,1] from the identity 1l = f0 to a given diffeomorphism
f = f1 and will consider various (kind of) rotation numbers associated to the orbit (ft(x))
of a point x or to a pair of orbits (ft(x)), (ft(y)) (x 6= y). To ensure that the number we
define does not depend on the choice of the isotopy (ft)t∈[0,1] but only on f we will often
appeal to some results on the topology of the groups Ham(Σ, ω) or Diff0(Σ, ω), see [12].

Example 1 [17, 24] We first give an example of a 1-cocycle defined on the group Diffc(D
2, ω)

of area-preserving diffeomorphisms of the disc D2 = {(x, y) ∈ R2, |x|2 + |y|2 ≤ 1}, which
coincide with the identity near the boundary. This group is torsion free (see [39]). Al-
though there is no non-trivial homomorphism from a Kazhdan group to Diffc(D

2, ω)
(thanks to Thurston’s stability theorem), it is worth studying this first example. Con-
sider a diffeomorphism f ∈ Diffc(D

2, ω) and choose an isotopy (ft) from f0 = 1l to
f1 = f . For any two distinct points x, y in the disc, consider the non-zero vector
ft(x) − ft(y) ∈ R2. When t goes from 0 to 1 the argument e2iπu(t) of this vector varies of
a quantity anglef (x, y) := u(1) − u(0). This defines a continuous function

anglef : D2 ×D2 − ∆ → R,

where ∆ = {(x, x), x ∈ D2} is the diagonal. One easily establishes that this function does
not depend on the choice of the isotopy (ft)t∈[0,1] but only on f , and that it is bounded,
see [24]. If f, g ∈ Diffc(D

2, ω) and (ft) and (gt) are two isotopies from the identity to f
and g respectively, we can consider the isotopy (ht) = (gt) ∗ (ftg) from the identity to fg.
It allows us to establish the relation:

anglefg(x, y) = angleg(x, y) + anglef (g(x), g(y)).

Hence the map f 7→ anglef−1 defines a 1-cocycle on the group Diffc(D
2, ω) with values in

the space L2(D2 × D2,R).

Problem. Suppose Λ ⊂ Diffc(D
2, ω) is a finitely generated group. Can we give a condition

on Λ which ensures that the class of the cocycle angle is non-zero in H1(Λ,L2(D2 ×
D2, µ2))?

The following proposition shows that the class of the cocycle f 7→ anglef−1 is always
non-zero in the space H1(Λ,C 0(D2×D2−∆)), unless Λ is trivial (here C 0(D2 × D2 − ∆)
is the space of continuous functions on D2 × D2 − ∆).
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Proposition 3.1 Fix a diffeomorphism f ∈ Diffc(D
2, ω). Assume that there exists a

continuous function ϕ : D2 × D2 − ∆ → R such that anglef = ϕ ◦ f − ϕ. Then f is the
identity.

Proof. We assume that f is not the identity. Then, it is enough to find an integer n and two
fixed points x, y of fn such that anglefn(x, y) 6= 0. Indeed the relation anglef = ϕ ◦ f −ϕ
implies anglefn = ϕ ◦ fn−ϕ. If ϕ is continuous this forces the equality anglefn(x, y) = 0,
for any pair (x, y) of distinct fixed points of fn.

We will see at the end of this section (see Lemma 3.2 and the paragraph following it)
that if f is distinct from the identity there exists a fixed point x0 and a point y0 6= x0

such that the number

ãnglef (x0, y0) := lim
n→∞

1

n
anglefn(x0, y0)

exists and is non-zero. Consider now the compact annulus A obtained from the disc by
blowing up the fixed point x0 thanks to the action of the differential dfx0

. The diffeo-
morphism f naturally extends to a homeomorphism of A, still denoted f . Let F be the
lift of f to the universal cover Ã of the annulus which pointwise fixes the component of
the boundary of Ã corresponding to the boundary of the disc. If z is in the interior of A

(identified with the interior of the disc, minus the point x0), the limit

lim
n→∞

1

n
anglefn(x0, z),

if it exists, is the rotation number ρF (z) (determined by the lift F ) of the point z in the
annulus. We know that:

• the point y0 has a non-zero rotation number,

• points close to the boundary have zero rotation number.

Now, let us recall a result of Franks (this is Corollary 2.4 of [19]). Let g : A → A be a
homeomorphism isotopic to the identity and G be a lift of g to Ã. If x is a point of A we
will denote by ρG(x) the rotation number of x determined by G, if it exists. Let K ⊂ A be
a chain transitive compact invariant set for g. See [19] for the notion of chain transitivity;
this is a very weak form of recurrence. Assume that there exist two points x1 and x2 in K
whose rotation numbers ρG(x1) and ρG(x2) exist and satisfy ρG(x1) < ρG(x2). Then, for
any rational number p

q
∈]ρG(x1), ρG(x2)[, g has a periodic point with rotation number p

q
.

Let us apply the above result to f . Since f is area-preserving, the chain transitivity
hypothesis will be easily satisfied. Almost every point of the interior of A is recurrent,
hence every point of A is non-wandering. In particular every point of A is chain recurrent.
The compact set K = A is connected, f -invariant, and all its points are chain recurrent,
hence it is chain transitive (this is Proposition 1.2 in [19]). Franks’ result applies with
K = A. The existence of the point y0 and of points with zero rotation number implies
that there exists a periodic point y1 with non-zero rotation number. If the period of y1 is
n, this exactly means that the quantity anglefn(x0, y1) is non-zero. 2

Example 2 [20, 33] If f is a Hamiltonian diffeomorphism of the torus, we have seen in the
introduction that for any lift F : R2 → R2 of f , one has

∫
T2(F (x)−x)dµ(x) ∈ Z2. We can
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therefore choose a particular lift f∗ for f : the unique one for which
∫
T2(f∗(x)−x)dµ(x) = 0.

Since the map
R2 → R2

x 7→ f∗(x) − x

is invariant under integral translations, there exists a map vf : T2 → R2 such that
vf (p(x)) = f∗(x) − x (where p : R2 → T2 is the natural projection). From the relation
(f ◦ g)∗ = f∗ ◦ g∗, one deduce the cocycle relation vf◦g = vg + vf ◦ g. The map f 7→ vf−1 ∈
L2(T2,R2) is therefore a 1-cocycle.

Supppose now that Λ ⊂ Ham(T2, ω) is a finitely generated subgroup on which the
previous cocycle is cohomologically trivial: there exists a measurable map ϕ : T2 → R2

such that vf = ϕ ◦ f − ϕ (f ∈ Λ). Recall first that for almost every point x in the torus,
we have:

lim inf
n

|ϕ(fn(x)) − ϕ(x)| = 0.

This is an easy consequence of Poincaré’s recurrence theorem and Lusin’s theorem. But we
also have the following relation: fn∗ (x) − x = ϕ(fn(p(x))) − ϕ(p(x)) (x ∈ R2). Hence, we
get that almost every point of the plane is recurrent for the dynamics of the diffeomorphism
f∗ (for all f ∈ Λ). In fact the function

ψ : R2 → R2

x 7→ x− ϕ(p(x))

is invariant under the lifted action of Λ on the plane (through the diffeomorphisms f∗).
The domain ψ−1([0, 1[2) ⊂ R2, as well as its translates by integral vectors, has finite
measure and is invariant under Λ. Therefore the vanishing of the cohomology class of the
cocycle f 7→ vf−1 give some constraints on the (measurable) dynamics of Λ.

Example 3 [25] We assume here that the genus of Σ is greater than 1. Endow Σ with
a hyperbolic metric and identify its universal cover with the Poincaré disc ∆. For each
1-form η on Σ, we will define a quasi-cocycle uη with values in the space of continuous
functions on Σ. This quasi-cocycle is a true cocycle if η is closed, and a coboundary if η
is exact.

If f : Σ → Σ is a Hamiltonian diffeomorphism, we will name f∗ : ∆ → ∆ the unique
lift of f which commutes with the action of the fundamental group of Σ on ∆. If x̃ ∈ ∆,
one can consider the unique geodesic arc α(x̃) between x̃ and f∗(x̃). Let η̃ denote the lift
of the 1-form η to ∆. The map

∆ → R

x̃ 7→
∫
α(ex) η̃

descends to a function uη(f, ·) on Σ. If x ∈ Σ and x̃ ∈ ∆ is any lift of x, the quantity

uη(fg, x) − uη(g, x) − uη(f, g(x))

equals the integral of the 2-form dη̃ on the geodesic triangle of ∆ with vertices x̃, g∗(x̃),
f∗ ◦g∗(x̃). Since the 2-form dη̃ is bounded (it is invariant by the action of the fundamental
group of Σ) this quantity is bounded by the norm of dη̃ times the area of a hyperbolic
triangle. We obtain:

|uη(fg, x) − uη(g, x) − uη(f, g(x))| ≤ π · |dη|∞.
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Hence the map f 7→ uη(f
−1, ·) is a quasi-cocycle. The reader will find an alternative

description of this quasi-cocycle in [39].

Example 4 [25] We now give an example of a quasi-cocycle defined on the group Diff0(T
2, ω).

We will make use of the group structure of the torus.

We fix a point x∗ in T2 − {0} and choose a homogeneous quasi-morphism

φ : π1(T
2 − {0}, x∗) → R

(there are many since π1(T
2 − {0}, x∗) is a free group, see [6] as well as [14] for gene-

ralizations). For each point v ∈ T2 − {0} we fix a path (αv(t))t∈[0,1] from x∗ to v in
T2−{0} whose length is bounded for a Riemannian metric defined on the compact surface
with boundary T2 − {0} obtained by blowing-up the origin on the torus. If (ft)t∈[0,1] is
an area-preserving isotopy on T2 and x and y two distinct points on T2, we can consider
the curve

ft(x) − ft(y) ∈ T2 − {0}.

We close it to form a loop α(f, x, y) = αx−y ∗ (ft(x)−ft(y))∗αf1(x)−f1(y). Then, we define
a function u(φ, f, ·, ·) on T2 × T2 − ∆ by: u(φ, f, x, y) = φ(α(f, x, y)). One can easily
check that this function does not depend on the choice of the isotopy (ft)t∈[0,1] but only
on f , is measurable, and bounded, see [25]. From the relation

α(fg, x, y) = α(g, x, y) ∗ α(f, g(x), g(y))

and the fact that φ is a quasi-morphism, we deduce:

|u(φ, fg, x, y) − u(φ, g, x, y) − u(φ, f, g(x), g(y))| ≤ C.

This means precisely that the map f 7→ u(φ, f−1, ·, ·) ∈ L2(T2 × T2, µ ⊗ µ) is a quasi-
cocycle.

Example 5 [40] Consider the 2-sphere, with an area form ω of total area 2. Let Λ(S2)
be the space of oriented tangent lines to S2 and p : Λ(S2) → S2 the canonical projection.
There is a natural action of the circle R/Z on Λ(S2): if ` ∈ Λ(S2) is a tangent line at
x ∈ S2, e2iπs · ` is the tangent line at x whose angle with ` is 2πs. Let X be the (periodic)
vector field which generates this action of R/Z on Λ(S2). We can find a 1-form α on
Λ(S2), invariant by rotations, such that

α(X) = 1 and dα = p∗ω.

This implies that α is a contact form whose Reeb vector field is X. Let f be an area-
preserving diffeomorphism of S2 and (ft) a Hamiltonian isotopy from the identity to f ,
generated by the Hamiltonian (Ht). Let Xt be the symplectic gradient of Ht. The isotopy
(ft) induces an isotopy on Λ(S2) through the action of the differential dft : Λ(S2) → Λ(S2)
of ft. The key point of our last example is that there exists a second isotopy on Λ(S2)
which lifts (ft). It is constructed as follows. Let X̂t be the horizontal lift of Xt to Λ(S2),
i.e. the vector field on Λ(S2) defined by the equations:

α(X̂t) = 0 and p∗(X̂t) = Xt.

The time-dependent vector field X̂t−(Ht◦p)X generates an isotopy θ(ft) : Λ(S2) → Λ(S2)
which preserves α and whose isotopy class only depends on the isotopy class of (ft), see [2].

10



We can now measure a kind of rotation number associated to any tangent line ` ∈ Λ(S2).
Indeed for all t, θ(ft)(`) and dft(`) are tangent lines at the point ft(p(`)) ∈ S2. Hence, we
can write dft(`) = e2iπu(t) · θ(ft)(`) where e2iπu(t) is the angle between θ(ft)(`) and dft(`).
The quantity w(f, `) = u(1)− u(0) only depends on f and `. Then w(f, ·) : Λ(S2) → R is
a continuous map which satisfies:

w(fg, `) = w(g, `) + w(f, dg(`)).

This is not yet exactly what we need: since the action (f, `) 7→ df(`) of the group
Ham(S2, ω) on Λ(S2) does not have an invariant measure we can not consider the function
w(f, ·) as a vector in some unitary representation of Ham(Σ, ω). Nevertheless, we can
prove the following inequality, see [40]: if `1 and `2 are two tangent lines at the same point
x = p(`1) = p(`2) ∈ S2 then:

|w(f, `1) − w(f, `2)| ≤ 10.

Thus, if we define w(f, x) = maxp(`)=xw(f, `), w(f, ·) is a bounded measurable function
on S2 and we have:

|w(fg, x) − w(g, x) − w(f, g(x))| ≤ 30

The map f 7→ w(f−1, ·) is therefore a quasi-cocycle.

EEE

Motivated by these examples and by the vanishing results of the previous section, we
can raise the following question.

Question 1 If f : Σ → Σ is a Hamiltonian diffeomorphism of a closed surface, distinct
from the identity, can we find a quasi-cocycle u, defined on the group Ham(Σ, ω), with
values in the space L2(Σ, µ), or L2(Σ × Σ, µ⊗ µ), or even L2(Σn, µn) for some integer n,
such that the function û(f) is not zero almost everywhere? In other words, can we find
a set of positive measure (in Σ or Σ × Σ...) of points for which some kind of rotation
number or asymptotic linking number is non-zero?

A positive answer to this question would yield a positive answer to Zimmer’s conjecture.
Note however that we should certainly add some hypothesis on f to get a positive answer.
For instance, if f is a rotation of the sphere, û(f) vanishes for all known quasi-cocycles.
It is probably possible to construct more subtle counter-examples. Assume for instance
that we can construct a Hamiltonian diffeomorphism f with the following two properties:
f is weakly mixing, and, for some algebraic reason, φ(f) = 0 for any homogeneous quasi-
morphism defined on the group of Hamiltonian diffeomorphisms. In that case, for any
quasi-cocycle u with values in L2(Σn, µn) one has û(f) = 0 almost everywhere. Indeed,
since the diagonal action of f on Σn is ergodic for any n, one has û(f) = φu(f) = 0 almost
everywhere on Σn. Note however that this kind of counter-example cannot appear inside
the image ρ(Γ) of a higher rank lattice, since all the diffeomorphisms in the group ρ(Γ)
have discrete spectrum.

We now give two small hints that tend to show that a non-trivial Hamiltonian diffeo-
morphism of a compact surface contains somewhere a set of positive measure of points
which “rotate around each other”.
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Consider first a diffeomorphism f ∈ Diffc(D
2, ω), distinct from the identity. We will

write

ãnglef (x, y) = lim
n→∞

1

n
anglefn(x, y)

when this limit exists. Note that, according to Birkhoff’s theorem, ãnglef (x, y) exists for

µ ⊗ µ-almost every point (x, y) ∈ D2 × D2, and if x0 is a fixed point of f , ãnglef (y, x0)
exists for µ-almost every point y ∈ D2. A result of Viterbo [45] implies that there exists
a fixed point x0 ∈ D2 for f and a Borel set B ⊂ D2 of positive measure such that:

ãnglef (y, x0) 6= 0,

for all y ∈ B. We now explain this fact. Recall first that one can define the symplectic
action A(x0) of a fixed point x0 of f in the following way. If (ft)t∈[0,1] is a Hamiltonian
isotopy from the identity to f , generated by a Hamiltonian (Ht) one defines:

A(x0) =

∫

γ

λ+

∫ 1

0
Ht(ft(x))dt,

where γ is the loop (ft(x0))t∈[0,1] and λ is a primitive of the area form ω on D2. This
number does not depend on the choice of the isotopy (ft) from the identity to f . The
next lemma, which I learnt from Patrice Le Calvez, relates the symplectic action of a fixed
point to the cocycle anglef .

Lemma 3.2 For any fixed point x0 of f one has:

A(x0) =

∫

D2

anglef (y, x0)dµ(y) =

∫

D2

ãnglef (y, x0)dµ(y).

Proof. To compute the action A(x0), we can choose an isotopy (ft)t∈[0,1] such that ft(x0) =
x0 for all t. We denote by Xt the vector field which generates the isotopy and Ht the
corresponding compactly supported Hamiltonian. Let dθ be a closed 1-form on the annulus
D2 − {x0} whose integral over a generator of the first homology of the annulus equals 1.
The integral of the function anglef (·, x0) over D2 equals

∫
D2

∫ 1
0 dθ(Xt)dt ω. Using the fact

that the 3-form dθ ∧ ω is 0 we get:

dθ(Xt)ω = dθ ∧ ω(Xt, ·)
= −d(Htdθ).

Choose now a small disc Dε around x0. We have:

∫
D2 anglef (y, x0)dµ(y) = lim

ε→0

∫
D2−Dε

∫ 1
0 dθ(Xt)dt ω

= lim
ε→0

∫
∂Dε

∫ 1
0 Htdt dθ.

Here we have used Stokes’ theorem and the fact that Ht vanishes near the boundary of
D2. The last limit in the equality above coincides with the action A(x0) =

∫ 1
0 Ht(x0)dt.

We have therefore proved the first equality of the lemma. The second equality follows
from Birkhoff’s theorem. 2

Now, using symplectic methods, Viterbo shows that if f is distinct from the identity,
there exists a fixed point x0 with non-zero action. Thanks to the interpretation of the
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Figure 1: Linking of points in an inessential annulus on the torus

action of x0 as the average linking number around x0, we deduce the existence of the set

B. We get that the map ãnglef is non-zero on the set B × {x0} ⊂ D2 × D2. However,
from our point of view, it would be more natural to obtain a set of positive measure in
D2 × D2 for the product measure.

Second, we will consider the simplest examples of Hamiltonian diffeomorphisms: inte-
grable ones. For instance, let us take a smooth function H : T2 → R and consider the
associated Hamiltonian flow ϕtH : T2 → T2. Assume that H is non-constant. Then, we
will show that there is a quasi-cocycle u on Ham(T2, ω) with values in L2(T2,R2) or in
L2(T2 ×T2,R) such that û(ϕ1

H) is not zero almost everywhere (for the measure µ on T2

in the first case, for the measure µ⊗ µ in the second one). As H is non-constant there is
an embedding of the annulus

i : A = S1 × [0, 1] → T2

on which the flow ϕtH reads: ϕtH(i(θ, s)) = i(θ + tϑ(s), s) for a non-vanishing function
ϑ : [0, 1] → R∗. To prove this fact, one just consider a connected component C of a regular
level of H. In a neighborhood of C all orbits of ϕtH are periodic hence C is contained in an
annulus which is invariant under the flow ϕtH and in which each orbit is periodic. From
this one easily deduces the existence of the embedding i.

We will write î : R × [0, 1] → R2 for a lift of the map i. Assume first that the
annulus A is essential in T2. In that case there exists a non zero vector w ∈ Z2 such that
î(θ + k, s) = î(θ, s) + kw. Consequently, if vϕ1

H
is the cocycle from Example 2 we have:

vϕn
H

(i(θ, s))

n
→
n→∞

ϑ(s)w 6= 0.

Assume now that the annulus A is inessential. We will make use of the quasi-cocycle
from Example 4. We can assume that the curve i(S1 × {0}) bounds an embedded disc D
which is disjoint from i(S1×]0, 1]) (up to changing the parameter s by 1−s). Assume that
s2 > s1 and consider the trajectories of the two points i(θ1, s1) and i(θ2, s2). The family
of curves (ϕtH(i(θ2, s2))−ϕtH(i(θ1, s1)))t∈[0,n] winds around 0 in the disc D∪ i(A) (see the
figure). The loops α(ϕnH , i(θ2, s2), i(θ1, s1)) are therefore almost equal to a power of the
commutator [a, b], where a and b are the standard generators of the group π1(T

2−{0}, x∗).
More precisely, we can write:

α(ϕnH , i(θ2, s2), i(θ1, s1)) = αn ∗ [a, b][nϑ(s2)] ∗ βn

where αn and βn stay in a fixed finite subset of π1(T
2−{0}, x∗) and [nϑ(s2)] is the integer

part of nϑ(s2). From this we deduce that u(φ,ϕnH , i(θ2, s2), i(θ1, s1)) − φ([a, b][nϑ(s2)])
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is bounded independently of n. Therefore, for any homogeneous quasi-morphism φ on
π1(T

2 − {0}, x∗) we have:

u(φ,ϕnH , i(θ2, s2), i(θ1, s1))

n
→ ϑ(s2)φ([a, b]).

To conclude we now choose a quasi-morphism φ such that φ([a, b]) is non-zero and observe
that the set {(i(θ1, s1), i(θ2, s2)), s2 > s1} ⊂ T2 × T2 has positive µ ⊗ µ-measure. Hence
we have proved:

Theorem Let ρ : Γ → Ham(T2, ω) be a homomorphism, where Γ is a higher rank
lattice, as above. If a diffeomorphism f ∈ ρ(Γ) is contained in a Hamiltonian flow, then
f is the identity.

In fact, this result could have been deduced directly from the existence of Zimmer’s
invariant Riemannian metric. Indeed, in the situation above, one can always find an
embedding i such that the function ϑ is not constant. This implies that for an open set of
points x the sequence of differentials (dϕnH (x))n≥0 tends to infinity. This contradicts the
existence of Zimmer’s metric. Yet, the above proof was presented in order to illustrate the
possible use of the quasi-cocycles that we described.

Also, it is not difficult to establish a similar result on a surface of genus greater than
1, or on the sphere if we assume that the flow is not conjugated to a 1-parameter group
of rotations, see [41].

4 Final remarks

We have already mentioned that, according to a result of Zimmer, the group ρ(Γ) preserves
(almost everywhere) a measurable Riemannian metric. In the case where the surface is
the torus T2, we can slightly improve this fact: the group ρ(Γ) preserves a pair (X1,X2)
of linearly independent measurable vector fields. If g is a Hamiltonian diffeomorphism
of T2 let us consider a Hamiltonian isotopy (gt) from the identity to g. We identify the
differential dgt(x) of the diffeomorphism gt at a point x with a 2 × 2 matrix. Hence,

the path of matrices dgt(x) defines an element d̃g(x) ∈ S̃L2(R) in the universal cover of
SL2(R), which depends only on g and x. The map

Ham(T2) × T2 → S̃L2(R)

(g, x) 7→ d̃g(x)

is a cocycle. If p denotes the projection from S̃L2(R) to SL2(R), the map (g, x) 7→ dg(x) =

p(d̃g(x)) is the usual derivative cocycle. Suppose Γ ↪→ Ham(T2, ω) is a Kazhdan group
and consider the restriction of the previous cocycle to Γ. According to Zimmer [47, 49],
there exists a measurable map ϕ : T2 → SL2(R) such that

ϕ(γ · x)−1 ◦ dγ(x) ◦ ϕ(x) ∈ SO(2),

almost everywhere (for γ ∈ Γ). We denote by τ : S̃L2(R) → R the translation number

associated to the action of S̃L2(R) on the line (see [28]) and by T the generator of the

center of S̃L2(R). Let ϕ̃ : T2 → S̃L2(R) be a measurable lift of ϕ chosen in such a way that
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the map x 7→ τ(ϕ̃(x)) is bounded. This is always possible since one has τ(a ·T k) = τ(a)+k

(a ∈ S̃L2(R), k ∈ Z). The map (γ, x) 7→ ϕ̃(γ ·x)−1 ◦ d̃γ(x) ◦ ϕ̃(x) is a cocycle whose image

is contained in the inverse image of SO(2) in S̃L2(R), which is canonically isomorphic to
R.

Lemma 4.1 For each γ ∈ Γ the map x 7→ sγ(x) := ϕ̃(γ · x)−1 ◦ d̃γ(x) ◦ ϕ̃(x) ∈ R is
bounded. Hence the cocycle γ 7→ sγ determines a class in H1(Γ,L2(T2,R)).

Proof. Since the restriction of τ to the inverse image of SO(2) in S̃L2(R) is the identity, it is
enough to show that the map x 7→ τ(sγ(x)) is bounded. Since the two maps x 7→ τ(ϕ̃(x))
and x 7→ τ(ϕ̃(γ · x)−1) are bounded thanks to the choice of the lift ϕ̃ and since τ is a

quasi-morphism, it is enough to check that the map x 7→ τ(d̃γ(x)) is bounded. But this is
obvious since this is a continuous map from T2 to R. 2

From the lemma, we deduce that there exists a measurable (in fact L2) map ψ : T2 → R

such that: sγ(x) = ψ(γ · x) − ψ(x). Coming back to SL2(R), we obtain:

ϕ(γ · x)−1 ◦ dγ(x) ◦ ϕ(x) = e2iπ(ψ(γ(x))−ψ(x)) ,

almost everywhere, where e2iπu stands for the rotation of angle 2πu in SL2(R). This
tells us that the derivative cocycle is cohomologous to the constant cocycle (equal to the
identity) which is equivalent to the existence of the vector fields X1 and X2.

Although the results we have discussed here give more evidence toward Zimmer’s con-
jecture, it seems difficult to exploit them. In particular, the quest for a set of positive
measure of points that “rotates” under the action of a diffeomorphism seems delicate.
Note also that we have simply used global cohomological properties of the lattice Γ to give
some constraints on the dynamics of each single diffeomorphism in the group ρ(Γ) but we
were not able to investigate the dynamics of the whole group Γ. Rather than studying
measure theoretical properties, it might be useful to study the topological dynamics of the
action. In this direction, the work of Calegari [9] contains many promising ideas.
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1179-1186.

[21] J. Franks and M. Handel, Periodic points of Hamiltonian surface diffeomorphisms,
Geom. Topol. 7, (2003), 713–756.

[22] J. Franks and M. Handel, Area preserving group actions on surfaces, Geom. Topol. 7,
(2003), 757–771.

[23] J. Franks and M. Handel, Distortion elements in group actions on surfaces, Duke
Math. J. 131, No. 3 (2006), 441-468.
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