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ON THE REPRESENTATION THEORY OF THE SYMMETRIC GROUPS

P. Py UDC 512.547.2

We present here a new approach to the description of finite-dimensional complex irreducible representations of the
symmetric groups due to A. Okounkov and A. Vershik. It gives an alternative construction to the combinatorial
one, which uses tabloids, polytabloids, and Specht modules. Its aim is to show how the combinatorial objects of the
theory (Young diagrams and tableaux) arise from the internal structure of the symmetric group. Bibliography: 9
titles.

1. Introduction

The purpose of this note is to present a new approach, due to Andrei Okounkov and Anatoly Vershik [2],
to the description of finite-dimensional complex irreducible representations of the symmetric groups. Its aim
is to give an alternative construction to the combinatorial one, which uses tabloids, polytabloids, and Specht
modules, and to show how the combinatorial objects we introduce (Young diagrams and tableaux) arise from
the internal structure of the symmetric groups. For this reason, this method is more abstract than the classical
one. We use a few results about representations of finite groups in general, as they are set out in [9]. The main
result we obtain is the branching rule for the representations of Sn. (Which irreducible representations of Sn−1

are contained in a given irreducible representation of Sn?) Moreover, using the results presented, it is easy to
show that the representations of the symmetric groups are defined over Q and to describe the characters of Sn.

2. Multiplicities of representations of the symmetric groups
In this paper, we denote by Sn the group of permutations of the set {1, · · · , n}. For i ≤ n, unless otherwise

stated, we consider Si as the subgroup of Sn acting on the set {1, · · · , i}. From this we deduce an injection of the
group algebra C[Si] into C[Sn]. We denote by S∧

n the set of finite-dimensional irreducible complex representations
of Sn, and, by definition, S∧

1 = {λ1}. If λ is in S∧
n , we denote by V λ the space of the representation λ. The

main object we are going to deal with is an infinite graph, called the Bratteli diagram, whose vertices are
∐

n≥1

S∧
n .

We put k directed edges between a representation λ ∈ S∧
n and a representation µ ∈ S∧

n−1 if µ is contained k

times in λ, regarding λ as a representation of Sn−1 (k equals the dimension of the space HomSn−1(V µ, V λ)). We
write

µ ↗ λ

in this case. We will see that the symmetric groups are multiplicity-free, that is, if µ ∈ S∧
n−1 and λ ∈ S∧

n , then

dimHomSn−1(V
µ, V λ) ∈ {0, 1}.

Our aim is to describe this graph, that is, to answer the following question:
Given an irreducible representation of Sn, which irreducible representations of Sn−1 does it contain?

Answering this question leads to combinatorial objects such as Young diagrams and tableaux. In the classical
approach of the representation theory of the symmetric groups, we construct some Sn-modules using these
combinatorial objects and observe a posteriori that they contain all the irreducible Sn-modules. In the present
approach, we start from the branching of the irreducible representations and try to understand it.

We denote by Zn the center of the algebra C[Sn], and by Xn the element

(1, n) + · · ·+ (n − 1, n)

(with X1 = 0). We then define An as the algebra generated by Z1, · · · , Zn in C[Sn]. This algebra is commutative
and contains the elements Xi, because

Xi =
∑

Si

transpositions −
∑

Si−1

transpositions.

We are going to prove the following theorem.
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Theorem 2.1. Let V λ be an irreducible representation of Sl+k , and let V µ be an irreducible representation of
Sl. Then the multiplicity of V µ in V λ is at most k!.

In particular, any irreducible representation of Sn−1 is contained at most once in an irreducible representation
of Sn. If k = 2, there are three possible situations:

• The representation µ is not contained in λ.
• The multiplicity of µ in λ is equal to 1. Then the part of the Bratteli diagram between λ and µ is of the

form (with ν ∈ Sl+1)
µ → ν → λ.

• The multiplicity of µ in λ is equal to 2. Since µ is contained only once in each irreducible representation
of Sl+1, we have (with η, ν ∈ Sl+1):

Assume that G is a finite group, H is a subgroup of G, and ρ1 : G → GL(V ) and ρ2 : H → GL(U) are some
irreducible representations. Then the centralizer

C[G]H = {x ∈ C[Sn], hxh−1 = x, ∀h ∈ H}

acts on HomH(U, V ) by fg = ρ1(g)◦f (f ∈ HomH(U, V ), g ∈ C[G]H), with ρ1 extended linearly to C[G]. We can
easily check that HomH(U, V ) is an irreducible C[G]H-module. We can apply this observation with G = Sl+k

and H = Sl and write Zk,l = C[Sl+k]Sl . We use the following theorem proved in [6] and [2].

Theorem 2.2. The algebra Zk,l is generated by

(1) the elements Xl+1, · · · , Xl+k;
(2) the group Sk regarded as the group of permutations of the set {l + 1, · · · , l + k};
(3) the algebra Zl.

Let us now prove Theorem 2.1. Since the Xi’s commute, they have a common eigenvector v in HomSl(V µ, V λ).
We consider the space V spanned by the vectors

s(v) with s ∈ Sk.

Since Zl is in the center of Zk,l, it acts linearly on the irreducible Zk,l-module. Then Zl stabilizes V . Moreover,
the elements of Sk stabilize V , and the relations

siXj = Xjsi, j /∈ {i, i + 1},
Xi+1 = siXisi + si

combined with the choice of v show that the Xi’s also stabilize V . Hence we have

V = HomSl (V
µ, V λ)

and the inequality on the dimension stated in Theorem 2.1.

3. Canonical basis of V λ

Here we will see how to construct a particular basis of the spaces V λ. Since the irreducible representations of
Sn−1 are multiplicity-free in V λ, the decomposition

V λ =
⊕

µ∈S∧
n−1 ,µ↗λ

V µ

3807



is canonical. Decomposing each space V µ into irreducible representations of Sn−2 and iterating this process, we
obtain a decomposition of V λ into lines

V λ =
⊕

T

VT ,

where T = λ1 ↗ · · · ↗ λn = λ runs over the set of paths from λ1 to λ in the Bratteli diagram. A Young basis of
V λ is any basis corresponding to this decomposition into one-dimensional subspaces. Applying this procedure
to each irreducible representation of Sn, we obtain a particular basis (defined up to scalars) of the space

⊕

λ∈S∧
n

V λ.

We still call it the Young basis and denote it by {vT }T . Here T runs over the set of all paths of length n starting
from λ1 in the Bratteli diagram. Using the isomorphism

C[Sn] �
⊕

λ∈S(n)∧

End (V λ),

we can identify C[Sn] with a subalgebra of the algebra of endomorphisms of the space
⊕

λ∈S(n)∧ V λ. Then we
have the following proposition.

Proposition 3.1. The algebra An is the algebra of diagonal operators in the Young basis.

Proof. Let A be the algebra of diagonal operators in the Young basis. Clearly, it is a maximal commutative
subalgebra of End (⊕λV λ). Since An is commutative, it suffices to prove that A ⊂ An. We choose a path
T = λ1 ↗ · · · ↗ λn of length n in the Bratteli diagram. Let

pλi =
dim(V λi)

i!

∑

g∈S(i)

χλi(g)g

(χi being the character of the representation λi). The endomorphism pλn is the projection from
⊕

λ∈S(n)∧ V λ

onto V λn , and for each i, the restriction of pλi to V λi+1 is the projection onto V λi . Hence the product

p = pλ1 · · ·pλn

is the projection onto VT . Moreover, pλi ∈ Zi, and thus p is in An. Since the projections onto the lines VT span
A, this finishes the proof. �

Another important consequence of Theorem 2.2 is the following result.

Proposition 3.2. The elements X1, · · · , Xn generate An.

Proof. We prove this result by induction. It is obvious if n = 2. Then X1, · · · , Xn−1 generate An−1, and in
particular Zn−1. By Theorem 2.2, Xn and Zn−1 generate Z1,n, which contains Zn. �

Now we can consider the following map on the set of all paths in the Bratteli diagram leading from λ1 to an
element of S∧

n (equivalently, on the one-dimensional subspaces corresponding to the Young basis of
⊕

λ∈S(n)∧ V λ):

T �→ φ(T ) = (a1, · · · , an) ∈ Cn,

where Xi(vT ) = aivT . This map is injective. Indeed, if two paths T and T ′ have the same image under φ, then
for every f in A we have

f(vT ) = cvT ,

f(vT ′ ) = cvT ′ .

Taking f equal to the projection onto VT , we see that the lines VT and VT ′ coincide, and thus the paths T and
T ′ are the same. We denote by Spec(n) the image of φ. If α ∈ Spec(n), we denote by vα a vector (which is
defined only up to scalar factor) whose image under φ is α. Finally, we define an equivalence relation on the set
Spec(n) as follows: α ∼ β if and only if the vectors vα and vβ are in the same irreducible representation of Sn,
or, in other words, if the corresponding paths in the Bratteli diagram have the same end. In what follows, we
describe the form of the set Spec(n).

We now denote by si = (i, i+1) the Coxeter generators of the symmetric group Sn. Let vT be a vector of the
Young basis, and let si be one of these generators. If i ≤ k − 1, then si is in Sk, and the vectors vT and si(vT )
are in the same isotypical component for Sk. If i ≥ k + 1, then si commutes with the elements of Sk, so si(vT )
and vT are still in the same isotypical component. Since a vector vT ′ (T ′ = λ′

1 ↗ · · · ↗ λ′
n) lies in the isotypical

component λ′
i of Si, this establishes the following result.

3808



Proposition 3.3. The vector si(vT ) is a linear combination of vectors vT ′ such that

λ′
j = λj if j �= k.

By Theorem 2.1, there are only two possibilities: there are at most two paths that satisfy the condition of the
previous proposition, because the multiplicity of λk−1 in λk+1 is at most two. Hence if vT is not an eigenvector
for the action of si, then it is a linear combination of two vectors of the Young basis.

In C[Sn], the elements si, Xi, Xi+1 generate an algebra denoted by A. The representation of A in a subspace
of V λ is always totally reducible. Indeed, in C[Sn], the transpositions act by left translations as symmetric
operators (for the inner product 〈g1, g2〉 = δg1g2 ; g1, g2 ∈ Sn). The generators of A are sums of transpositions;
hence they are symmetric with respect to this inner product, which implies that the representation of A in C[Sn]
is totally reducible. Since C[Sn] contains each V λ, its representations in each V λ are totally reducible.

Proposition 3.4. Let α = (a1, · · · , an) be an element of Spec(n). It satisfies the following conditions:

(1) ai �= ai+1;

(2) ai+1 = ai ± 1 ⇔ si(vα) = ±vα;

(3) If ai+1 �= ai ± 1, then β = si(α) = (a1, · · · , ai+1, ai, · · · , an) is still an element of Spec(n) and β ∼ α.
Moreover,

vβ =
(

si −
1

ai+1 − ai

)
vα.

In the basis (vα, vβ), the elements si, Xi, Xi+1 act as follows:

( 1
ai+1−ai

1 − 1
(ai+1−ai)2

1 1
ai−ai+1

)
,

(
ai 0
0 ai+1

)
,

(
ai+1 0

0 ai

)
.

Proof.
• First assume that vα and si(vα) are linearly independent. The relations that define the algebra A show

that the plane they span is stable under the actions of si, Xi, and Xi+1. In this basis, these elements act
as follows: (

0 1
1 0

)
,

(
ai −1
0 ai+1

)
,

(
ai+1 1

0 ai

)
.

If ai = ai+1, then Xi is not diagonalizable in the subspace under consideration, which is impossible (this
element lies in V λ and hence in each stable subspace). Thus ai �= ai+1.

• If vα and si(vα) are not linearly independent, then si(vα) = ±vα, and the relation Xi+1 = siXisi + si

shows that ai+1 = ai ± 1.

This proves the first claim.

Assume that si(vα) and vα are linearly independent and ai+1 = ai + ε with ε = ±1. In this case, a simple
computation shows that there is only one line stable under the action of A in the plane spanned by these two
vectors (it is generated by si(vα)−εvα). This is impossible because of the total reducibility of the representation
of A. Hence if ai+1 = ai + ε, then si(vα) and vα are proportional, and we can check that si(vα) = εvα. This
proves the second claim.

Conversely, if ai+1 − ai �= ±1, then the vectors si(vα) and vα are linearly independent in view of the above

argument. Then vβ =
(

si − 1
ai+1−ai

)
vα satisfies

Xk(vβ) = bkvβ

with bi = ai+1, bi+1 = ai, and bk = ak otherwise. This implies that vβ is a vector of the Young basis lying in
the same irreducible representation as vα (since i ≤ n − 1). Hence β = (a1, · · · , ai+1, ai, · · · , an) is an element
of Spec(n) and α ∼ β.

In the latter case, the transposition si is called admissible for α.
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4. Young diagrams

A partition of n is a decreasing sequence of integers whose sum equals n. We can represent it by a Young
diagram. For instance, the following diagram stands for the partition (l1, l2, l3) = (3, 2, 2) of 7:

A box in a Young diagram is described by its coordinates (x, y); by definition, the content of a box (x, y) is the
integer c((x, y)) = y − x. We can now introduce a second graph, called the Young graph. Its vertices are all the
Young diagrams (of any size). A diagram α with n− 1 boxes is connected to a diagram β with n boxes if α ⊂ β.
We denote by λ1 the unique diagram with one box. We will see that the Bratteli diagram and the Young graph
are isomorphic.

If λ is a Young diagram with n boxes, a Young tableau (associated to λ) is a path from λ1 to λ in the Young
graph. Equivalently, to obtain a tableau, we have to enumerate the boxes of λ in such a way that for every k, the
k first boxes form a Young diagram associated to some partition of k. Here we refer to the terminology of [2],
different from the classical one used in other books on the symmetric groups. For instance, in [7], a tableau is
just an enumeration of the boxes of a diagram, whereas a tableau with the previous property is called a standard
tableau.

Thus a Young tableau of length n can be denoted by (ν1, · · · , νn), νi being a Young diagram with i boxes,
νi−1 ⊂ νi. In this case νi \ νi−1 is just one box. Thus we can consider the element

(c(ν1), c(ν2 \ ν1), · · · , c(νn \ νn−1))
of Zn. The first box of any diagram always has coordinates (1, 1), so we always have c(ν1) = 0. Moreover,
when we place the ith box, the space above and to the left of this box is already occupied by the previous
boxes. In particular, there is a box immediately above or immediately to the left of the ith box. This implies
{c(νi/νi−1) − 1, c(νi/νi−1) + 1} ∩ {c(ν1), · · · , c(νi−1/νi−2)} �= ∅. Finally, if a box has coordinates (b, b + a) and
thus lies on the line y − x = a, and if we want to put a second box on the same line, we must first fill one of the
following two boxes: (b + 1, b + a) or (b, b + a + 1). This leads us to the following definition.

Definition 4.1. We define Cont(n) as the set of elements α = (a1, · · · , an) ∈ Cn such that the following
conditions hold:

(1) a1 = 0;

(2) {ai + 1, ai − 1} ∩ {a1, · · · , ai−1} �= ∅ if i ≥ 2;

(3) If ap = aq = a with p < q, then
{a + 1, a− 1} ⊂ {ap+1, · · · , aq−1}.

We denote by Tab(n) the set of all Young tableaux of length n, that is, the set of all paths of length n (from
λ1) in the Young graph. With the previous observations, we have a map

Tab(n) → Cont(n) ⊂ Zn,

(ν1, · · · , νn) �→ (c(ν1), c(ν2/ν1), · · · , c(νn/νn−1)).
We can easily check that this map is a bijection. For instance, to the tableau

we associate the element (0,−1, 1,−2, 2, 0,−1) of Z7.

Now we are able to prove the following theorem.
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Theorem 4.2. Spec(n) ⊂ Cont(n).

Lemma 4.3. Let α = (a1, · · · , an) ∈ Cn be such that for some i,

ai = ai+1 + 1 = ai+2 or ai = ai+1 − 1 = ai+2.

Then α is not in the set Spec(n).

Proof of the lemma. Assume that α is in Spec(n). We can use Proposition 3.4 and the Coxeter relation

sisi+1si = si+1sisi+1.

If ai = ai+1 +1 = ai+2, then the left-hand side of the equation above multiplies vα by −1, whereas the right-hand
side multiplies it by 1. The argument is the same if ai = ai+1 − 1 = ai+2. �
Proof of the theorem. Let us consider an element α = (a1, · · · , an) in Spec(n). It is obvious that a1 = 0, since
X1 is zero. We check the two other properties by induction on n.

• The value a2 is in {±1}, because it is an eigenvalue of an element of order two. Assume now that the
property is true for i ≤ n − 1, and assume that {an + 1, an − 1} ∩ {a1, · · · , an−1} = ∅. Then (n − 1, n) is
admissible, so that (a1, · · · , an−2, an) is in Spec(n− 1). But the hypothesis we have made implies, in particular,
{an+1, an−1}∩{a1, · · · , an−2} = ∅, which contradicts the induction hypothesis on Spec(n−1). This establishes
the second claim.

• First we observe that a3 cannot be zero, since otherwise α contains the sequence (0,±1, 0). Assume now
that ap = an = a with p < n. We may choose p to be the maximum integer such that a /∈ {ap+1, · · · , an−1};
this does not change the result we have to prove. First assume that a + 1 /∈ {ap+1, · · · , an−1}. The integer a− 1
is contained at most once in {ap+1, · · · , an−1}, since otherwise, by the induction hypothesis, a would appear
between two occurrences of a − 1, which contradicts our choice of p.

Now, applying admissible transpositions, we obtain an element of Spec(n) that contains one of the following
sequences:

(· · ·a, a · · ·), (· · · , a, a− 1, a, · · ·).
This is impossible by Proposition 3.4 and Lemma 4.3. In the same way we prove that a− 1 ∈ {ap+1, · · · , an−1}.
�
Remark. We know by the previous theorem that Spec(n) ⊂ Zn. Earlier we have proved that we always have
si(vα) = ±vα or si(vα) = vβ + 1

ai+1−ai
vα. The coefficient 1 in front of vβ is in fact arbitrary, because vectors

of the Young basis are defined only up to scalar. But these formulas allow us to think that we can define the
representation over the field of rational numbers, provided that the generator of each line VT of the Young basis
is chosen appropriately. It is shown in [2] how we can arbitrarily choose a vector vT for a certain path T and
then deduce a particular choice for all the other vectors so that the representation will be well-defined over Q.

The notion of admissible transposition for an element α of Spec(n) can be extended to an element α of
Cont(n): a transposition si is admissible for α if it exchanges two consecutive coordinates whose difference is
not ±1. In terms of paths in the Young graph, an admissible transposition exchanges two consecutive boxes in
a path that are neither in the same column nor in the same row.

We now reach our first aim and prove that the Young graph and the Bratteli diagram are isomorphic. To do
this, let us introduce an equivalence relation on Cont(n) as follows:

(a1, · · · , an) ≈ (b1, · · · , bn) ⇔ ∃σ ∈ Sn such that ai = bσ(i).

We can interpret this relation in terms of tableaux: two tableaux are equivalent if and only if they lie on the
same diagram. In terms of paths in the Young graph, we have exactly the same interpretation as for the Bratteli
diagram and the relation ∼ (two paths of length n are equivalent if they have the same end).

Lemma 4.4. Let T1 and T2 be two paths from λ1 to λ in the Young graph. Then we can obtain T2 from T1 by
admissible transpositions.

Proof. It suffices to prove that any path from λ1 to λ = (l1, l2, · · · ) can be transformed by admissible transposi-
tions into the path associated to the following tableau:

1 2 · · · · · · l1

l1 + 1 · · · l1 + l2

· · ·
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It is sufficient to prove that we can put the number n in the last box of the last row of the diagram (and
then use induction). We denote by i the number that is initially in the last box of the last row of the tableau
under consideration. The numbers ≥ i + 1 cannot be in the same column as the number i: it is at the end of
the column, and the other boxes of the column contain numbers ≤ i − 1. For the same reason, the numbers
i+1, · · · , n cannot be in the same row as i. Hence the transpositions (i, i+1), · · · , (n− 1, n) are admissible. �

Assume now that α ∈ Spec(n) and β ∈ Cont(n) with α ≈ β. To say that α ≈ β means that the tableaux
associated to α and β are on the same diagram. By the previous lemma, we can pass from one tableau to the
other one by admissible transpositions. Since these transpositions preserve the set Spec(n) (by Proposition 3.4)
and also preserve the equivalence classes for ∼, we have β ∈ Spec(n) and α ∼ β.

Now we can observe that Spec(n)/ ∼ and Cont(n)/ ≈ have the same cardinality, which is the number of
partitions of n. The above argument shows that an equivalence class for ≈ either contains no element of
Spec(n), or is contained in an equivalence class for ∼. This implies that the classes for ≈ and ∼ coincide and,
moreover, that

Spec(n) = Cont(n) and the relations ∼ and ≈ coincide.

Put differently, this means that for each integer n, the set of paths from the unique vertex of the first level to
the vertices of level n in the Young graph and in the Bratteli diagram are in a bijection. Hence we have proved
the following theorem.

Theorem 4.5. The sets Spec(n) and Cont(n) coincide. The Young graph and the Bratteli diagram are isomor-
phic, and the relations ∼ and ≈ are the same.

Remark. This theorem contains the branching rule for the restriction of representations:
An irreducible representation of Sn contains an irreducible representation of Sn−1 if and only if the corre-

sponding diagrams are contained one in the other.
Combining this with the Frobenius reciprocity formula, we can obtain the same result for the induction of

representations.
Let V µ (respectively, V λ) be an irreducible representation of Sn−1 (respectively, Sn). Then V λ is contained

in Ind Sn

Sn−1
V µ if and only if the diagram associated to µ is contained in the diagram associated to λ.

The approach to the representation theory of Sn developed in [2] presents many advantages. First, the results
we have presented here allow us to establish the branching rule for representations simultaneously with the
description of representations themselves. Another point is that the description of representations is recursive:
to describe representations of Sn, we use the descriptions of representations of Sn−1, Sn−2 . . . .

5. An application

As an application, we can now see how this method allow us to describe the spectrum of the element Xn =
(1, n) + · · ·+ (n − 1, n), which acts on C[Sn] by left translations.

If λ is a partition of n, we now describe the spectrum of Xn in the isotypical component (dimV λ)V λ of C[Sn].
We denote by λ− any partition of n−1 obtained by deleting a box of λ (the box λ/λ− is called an “inner corner”
in [7]). Then λ/λ− is the last box of dimV λ−

paths from λ1 to λ in the Bratteli diagram. Hence the integer
c(λ/λ−) is an eigenvalue for Xn with multiplicity dimV λ−

in V λ. All the eigenvalues of Xn are integers, and
since they have the form

y − x, x, y ∈ {1, · · · , n},

they are integers from {1− n, · · · , n− 1}. Using the partitions

(n − k, 1, · · · , 1︸ ︷︷ ︸
k times

),

it is easy to see that all the integers from {1 − n, · · · , n − 1} are eigenvalues of Xn.
But computing the multiplicity in C[Sn] of a given integer is rather difficult: first, because we have to

determine all the partitions λ of n for which the integer occurs in V λ, and, second, because explicitly computing
the multiplicity inside V λ requires knowing the dimensions of irreducible representations of Sn (for which there
is no simple formula). For instance, we can compute the multiplicities of the two highest eigenvalues: the only
representation in which the value n−1 can occur is the one-dimensional representation associated to the partition
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(n) (the corresponding representation is the trivial one: Sn → {1}); hence n − 1 has multiplicity one in C[Sn].
To compute the multiplicity of n − 2, we have to see for which integers from {1, · · · , n} we can have

y − x = n − 2.

The case (x, y) = (2, n) is impossible (the corresponding Young diagram would have more than 2n boxes); the
case (x, y) = (1, n − 1) can occur only in the representation associated to the partition (n − 1, 1), which is of
dimension n − 1. The representation of Sn−1 that we obtain by deleting the box with coordinates (n − 1, 1) is
(n − 2)-dimensional. Finally, the multiplicity of n − 2 in C[Sn] is (n − 1)(n − 2).

Remark. If we consider the Laplacian ∆ = n − 1 − Xn, which acts on C[Sn], then the above argument shows
that its first positive eigenvalue is one with multiplicity (n− 1)(n− 2). This result was already proved in [3] and
[4] without using representation theory. Moreover, these computations were already carried out with the help of
classical methods of representation theory in [1, 8, 5].
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