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1 Introduction and Main Results

1.1 Quasimorphisms on Groups of Symplectic Maps

Let (Σ ,ω) be a compact connected symplectic manifold (possibly with nonempty
boundary ∂Σ ). Denote byD(Σ ,ω) the identity component of the group of symplec-
ticC∞-diffeomorphismsof Σ whose supports lie in the interior of Σ . Write1 H(Σ ,ω)
for the C0-closure of D(Σ ,ω) in the group of homeomorphisms of Σ supported in
the interior of Σ . We always equip Σ with a distance d induced by a Riemannian
metric on Σ , and view the C0-topology on the group of homeomorphisms of Σ as
the topology defined by the metric dist(φ ,ψ) =maxx∈Σ d(x,ψ−1φ(x)).

The study of the algebraic structure of the groups D(Σ ,ω) was pioneered by
Banyaga; see [2, 4]. For instance, when Σ is closed, he calculated the commu-
tator subgroup of D(Σ ,ω) and showed that it is simple. However, the algebraic
structure of the groups H(Σ ,ω) is much less understood. Even for the standard
two-dimensional diskD2, it is still unknownwhetherH(D2) coincides with its com-
mutator subgroup (see [10] for a comprehensive discussion). In the present paper,
we focus on a particular algebraic feature of the groups H(Σ ,ω): homogeneous
quasimorphisms.

Recall that a homogeneous quasimorphism on a groupΓ is a map μ :Γ →R that
satisfies the following two properties:

1. There exists a constantC(μ)≥ 0 such that |μ(xy)−μ(x)−μ(y)| ≤C(μ) for any
x, y in Γ .

2. μ(xn) = nμ(x) for all x ∈ Γ and n ∈ Z.

Let us recall two well-known properties of homogeneous quasimorphisms that
will be useful in the sequel: they are invariant under conjugation, and their
restrictions to abelian subgroups are homomorphisms.

The space of all homogeneous quasimorphisms is an important algebraic in-
variant of the group. Quasimorphisms naturally appear in the theory of bounded
cohomology and are crucial in the study of the commutator length [6]. We refer to
[6,14,23] or [28] for a more detailed introduction to the theory of quasimorphisms.

Recently, several authors discovered that certain groups of diffeomorphisms
preserving a volume or a symplectic form carry homogeneous quasimorphisms;
see [5, 7, 17–19, 22, 41, 44, 45]. However, in many cases explicit constructions of
nontrivial quasimorphisms on D(Σ ,ω) require a certain type of smoothness in
an essential manner. Nevertheless, as we shall show below, some homogeneous
quasimorphisms can be extended fromD(Σ ,ω) toH(Σ ,ω).

Our first result deals with the case of the Euclidean unit ball D2n in the standard
symplectic linear space.

1We abbreviate D(Σ ) and H(Σ ) whenever the symplectic form ω is clear from the context.
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Theorem 1. The space of homogeneous quasimorphisms on H(D2n) is infinite-
dimensional.

The proof is given in Sect. 2. Next, we focus on the case of a compact connected
surface Σ equipped with an area form. Note that in this case, H(Σ) coincides
with the identity component of the group of all area-preserving homeomorphisms
supported in the interior of Σ ; see [40] or [48].

Theorem 2. Let Σ be a compact connected oriented surface other than the sphere
S
2, equipped with an area form. The space of homogeneous quasimorphisms on

H(Σ) is infinite-dimensional.

The proof is given in Sect. 4. This result is new, for instance, in the case of the 2-
torus. The case of the sphere is still out of reach; see Sect. 5.2 for a discussion.
Interestingly enough, for balls of any dimension and for the two-dimensional
annulus, all our examples of homogeneous quasimorphisms on H are based on
Floer theory. When Σ is of genus greater than one, the group H(Σ) carries plenty
of homogeneous quasimorphisms, and the statement of Theorem 2 readily follows
from the work of Gambaudo and Ghys [22].

As an immediate application, Theorems 1 and 2 yield that if Σ is a ball or a
compact oriented surface other than the sphere, then the stable commutator length
is unbounded on the commutator subgroup ofH(Σ). This is a standard consequence
of Bavard’s theory [6].

1.2 Detecting Continuity

A key ingredient of our approach is the following proposition, due to Shtern [47].
It is a simple (nonlinear) analogue of the fact that linear forms on a topological
vector space are continuous if and only if they are bounded in a neighborhood of the
origin.

Proposition 1 ([47]). Let Γ be a topological group and μ :Γ →R a homogeneous
quasimorphism. Then μ is continuous if and only if it is bounded on a neighborhood
of the identity.

Proof. We only prove the “if” part. Assume that |μ | is bounded by K > 0 on an
open neighborhoodU of the identity. Let g ∈ Γ . For each p ∈ N, define

Vp(g) :=
{
h ∈ Γ | hp ∈ gpU

}
.

It is easy to see that Vp(g) is an open neighborhood of g. Pick any h ∈ Vp(g). Then
hp = gp f for some f ∈ U. Therefore

|μ(hp)− μ(gp)− μ( f )| ≤C(μ),
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and hence

|μ(h)− μ(g)| ≤ C(μ)+K
p

,

which immediately yields the continuity of μ at g. ��
Let us discuss in greater detail the extension problem for quasimorphisms. The

next proposition shows thatC0-continuous homogeneous quasimorphisms onD(Σ)
extend toH(Σ).

Proposition 2. Let Λ be a topological group and let Γ ⊂ Λ be a dense subgroup.
Any continuous homogeneous quasimorphism on Γ extends to a continuous homo-
geneous quasimorphism on Λ .

Proof. Since μ is continuous, it is bounded by a constant C > 0 on an open
neighborhood U of the identity in Γ . Since U is open in Γ , there exists U′, open
in Λ , such that U = U′ ∩ Γ . We fix an open neighborhood O of the identity
in Λ such that O2 ⊂ U′ and O = O−1. Given g ∈ Λ and p ∈ N, we define as
before

Vp(g) :=
{
h ∈ Λ | hp ∈ gpO

}
.

Pick a sequence {hk} in Γ such that each hk lies in V1(g)∩ . . .∩Vk(g). For k ≥ p,
we can write hpk = gpgk,p (gk,p ∈ O). If k1,k2 ≥ p, we can write

hpk1 = hpk2g
−1
k2,p

gk1,p, g−1
k2,p

gk1,p ∈U.

Hence, we have the inequality

∣
∣μ(hk1)− μ(hk2)

∣
∣≤ C+C(μ)

p
(k1,k2 ≥ p),

and {μ(hp)} is a Cauchy sequence in R. Denote its limit by μ ′(g). One can check
easily that the definition is correct and that for any sequence gi ∈ Γ converging
to g ∈ Λ , one has μ(gi) → μ ′(g). This readily yields that the resulting function
μ ′ : Λ → R is a homogeneous quasimorphism extending μ . Its continuity follows
from Proposition 1. ��
In view of this proposition, all we need for the proof of Theorems 1 and 2 is
to exhibit nontrivial homogeneous quasimorphisms on D(Σ) that are continuous
in the C0-topology. This leads us to the problem of continuity of homogeneous
quasimorphisms, which is highlighted in the title of the present paper.

Remark 1. Note that all the concrete quasimorphisms that we know on groups of
diffeomorphisms are continuous in the C1-topology.
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1.3 The Calabi Homomorphism and Continuity on Surfaces

It is a classical fact that the Calabi homomorphism is not continuous in the C0-
topology; see [21]. We will discuss the example of the unit ball in R2n and then
explain why the reason for the discontinuity of the Calabi homomorphism is, in a
sense, universal.

First, let us recall the definition of the group of Hamiltonian diffeomorphisms of
a symplectic manifold (Σ ,ω). Given a smooth function F : Σ × S1 → R supported
in Interior(Σ) × S1, consider the time-dependent vector field sgradFt given by
isgradFtω = −dFt , where Ft(x) stands for F(x, t). The flow ft of this vector field is
called the Hamiltonian flow generated by the Hamiltonian function F , and its time-
one map f1 is called the Hamiltonian diffeomorphism generated by F . Hamiltonian
diffeomorphisms form a normal subgroup of D(Σ ,ω), denoted by Ham(Σ ,ω) or
just by Ham(Σ). The quotient D(Σ)/Ham(Σ) is isomorphic to a quotient of the
group H1

comp(Σ ,R). In particular, D(Σ) = Ham(Σ) for Σ = D
2n or for Σ = S

2. We
refer to [38] for the details.

Example 1. Let Σ = D
2n be the closed unit ball in R2n equipped with the sym-

plectic form ω = dp∧ dq. Take any diffeomorphism f ∈ Ham(D2n) and choose a
Hamiltonian F generating f . The value

Cal( f ) :=
∫ 1

0

∫

D2n
F(p,q, t)dpdqdt

depends only on f and defines the Calabi homomorphism Cal :D(D2n)→ R [13].
Take a sequence of time-independent Hamiltonians Fi supported in balls of radii

1
i such that

∫
D2n Fi dpdq = 1. The corresponding Hamiltonian diffeomorphisms fi

C0-converge to the identity and satisfy Cal( fi) = 1. We conclude that the Calabi
homomorphism is discontinuous in theC0-topology.

In the remainder of this section, let us return to the case in which Σ is a compact
connected surface equipped with an area form. Our next result shows, roughly
speaking, that for a quasimorphism μ on Ham(Σ), its nonvanishing on a sequence
of Hamiltonian diffeomorphisms fi supported in a collection of shrinking balls is the
only possible reason for discontinuity. The next remark is crucial for understanding
this phenomenon. Observe that support( f N) ⊂ support( f ) for any diffeomorphism
f . Thus in the statement above, nonvanishing yields unboundedness: if μ( fi) �= 0
for all i, then the sequence μ( f Ni

i ) =Niμ( fi) is unbounded for an appropriate choice
of Ni.

Theorem 3. Let μ : Ham(Σ) → R be a homogeneous quasimorphism. Then μ is
continuous in theC0-topology if and only if there exists a> 0 such that the following
property holds: For any disk D ⊂ Σ of area less than a, the restriction of μ to the
group Ham(D) vanishes.
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Here, by a disk in Σ we mean the image of a smooth embedding D2 ↪→ Σ . We view
it as a surface with boundary equipped with the area form that is the restriction of
the area form on Σ . The “only if” part of the theorem is elementary. It extends to
certain four-dimensional symplectic manifolds (see Remark 2 below). The proof of
the “if” part is more involved, and no extension to higher dimensions is available to
us so far (see the discussion in Sect. 5.3 below).

Corollary 1. Let μ :D(Σ) → R be a homogeneous quasimorphism. Suppose that
the following hold:

(i) There exists a > 0 such that for any disk D ⊂ Σ of area less than a, the
restriction of μ to the group Ham(D) vanishes.

(ii) The restriction of μ to each one-parameter subgroup ofD(Σ) is linear.

Then μ is continuous in the C0-topology.

Note that assumption (ii) is indeed necessary, provided one believes in the axiom of
choice. Indeed, assuming that Σ is not D2, S2, or T2, the quotientD(Σ)/Ham(Σ) is
isomorphic to the additive group of the vector spaceV :=H1

comp(Σ ,R) �= {0}. Define
a quasimorphism μ : D(Σ) → R as the composition of the projection D(Σ) → V
with a discontinuous homomorphism V → R. The homomorphism μ satisfies (i),
since it vanishes on Ham(Σ), and it is obviously discontinuous.

The criteria of continuity stated in Theorem 3 and Corollary 1 are proved in
Sect. 3. They will be used in Sect. 4 in order to verify C0-continuity of a certain
family of quasimorphisms onD(T2) introduced in [22] and explored in [46], which
will enable us to complete the proof of Theorem 2.

1.4 An Application to Hofer’s Geometry

Here we concentrate on the case of the unit ball D2n ⊂ R2n. For a diffeomorphism
f ∈ Ham(D2n), define its Hofer norm [26] as

‖ f‖H := inf
∫ 1

0

(
max
z∈D2n

F(z, t)− min
z∈D2n

F(z, t)

)
dt,

where the infimum is taken over all Hamiltonian functions F generating f . Hofer’s
famous result states that dH( f ,g) := ‖ f g−1‖H is a nondegenerate bi-invariantmetric
on Ham(D2n). It is called Hofer’s metric (see also [31, 42] for Hofer’s metric
on general symplectic manifolds). It turns out that the quasimorphisms that we
construct in the proof of Theorem 1 are Lipschitz with respect to Hofer’s metric.
Hence, our proof of Theorem 1 yields the following result:

Proposition 3. The space of homogeneous quasimorphisms on the group
Ham(D2n) that are both continuous for the C0-topology and Lipschitz for Hofer’s
metric is infinite-dimensional.
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The relation between Hofer’s metric and the C0-metric on Ham(Σ) is subtle.
First of all, the C0-metric is never continuous with respect to Hofer’s metric.
Furthermore, arguing as in Example 1, one can show that Hofer’s metric on
Ham(D2n) is not continuous in the C0-topology. However, for R2n equipped with
the standard symplectic form dp∧dq (informally speaking, this corresponds to the
case of a ball of infinite radius), Hofer’s metric is continuous for the C0-Whitney
topology [27].

An attempt to understand the relationship between Hofer’s metric and the C0-
metric led Le Roux [34] to the following problem. Let EC ⊂ Ham(D2n) be the
complement of the closed ball (in Hofer’s metric) of radius C centered at the
identity:

EC :=
{
f ∈ Ham(D2n),dH( f ,1l) >C

}
.

Le Roux asked the following: Is it true that EC has nonempty interior in the C0-
topology for anyC > 0?

The energy-capacity inequality [26] states that if f ∈ Ham(D2n) displaces
φ(D2n(r)), where φ is any symplectic embedding of the Euclidean ball of radius
r, then Hofer’s norm of f is at least πr2. (We say that f displaces a set U if
f (U) ∩ Ū = /0.) By Gromov’s packing inequality [25], this could happen only
when r2 ≤ 1/2. Since any Hamiltonian diffeomorphism that is C0-close to f also
displaces a slightly smaller ball φ(D2n(r′)) (r′ < r), we get that EC indeed has
nonempty interior in the C0-sense for C < π/2. Using our quasimorphisms, we
get an affirmative answer to Le Roux’s question even for large values ofC.

Corollary 2. For any C > 0, the set EC has nonempty interior in the C0-topology.

Proof. The statement follows simply from the existence of a nontrivial homoge-
neous quasimorphism μ : Ham(D2n)→R that is both continuous in theC0-topology
and Lipschitz with respect to Hofer’s metric. Indeed, choose a diffeomorphism f
such that

|μ( f )|
Lip(μ)

≥C+ 1,

where Lip(μ) is the Lipschitz constant of μ with respect to Hofer’s metric. There
is a neighborhood O of f in Ham(D2n) in the C0-topology on which |μ | > C ·
Lip(μ). We get that ‖g‖H > C for g ∈ O, and hence O ⊂ EC. This proves the
corollary. ��

Note that Le Roux’s question makes sense on any symplectic manifold. For
certain closed symplectic manifolds with infinite fundamental group one can easily
get a positive answer using the energy-capacity inequality in the universal cover (as
in [32, 33]). However, for closed simply connected manifolds (and already for the
case of the 2-sphere), the question is wide open.
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2 Quasimorphisms for the Ball

In this section we prove Theorem 1. Denote by D
2n(r) the Euclidean ball

{|p|2+ |q|2 ≤ r2}, so that D2n = D
2n(1). We say that a set U in a symplectic

manifold (Σ ,ω) is displaceable if there exists φ ∈ Ham(Σ) that displaces it:
φ(U)∩Ū = /0. A quasimorphism μ : Ham(Σ)→ R will be called Calabi if for any
displaceable domainU ⊂M such that ω |U is exact, one has μ |Ham(U) = Cal|Ham(U).

We will use the following result, established in [18]: there exists a > 0 such
that the group Ham(D2n(1+ a)) admits an infinite-dimensional space of quasi-
morphisms that are Lipschitz in Hofer’s metric, vanish on Ham(U) for every
displaceable domain U ⊂ D

2n(1+ a), and do not vanish on Ham(D2n). These
quasimorphisms are obtained by subtracting the appropriate multiple of the Calabi
homomorphism from the Calabi quasimorphisms constructed in [9]. We claim that
the restriction of each such quasimorphism, say η , to Ham(D2n) is continuous in
the C0-topology. By Proposition 2, this yields the desired result. By Proposition 1,
it suffices to show that for some ε > 0 the quasimorphism η is bounded on all
f ∈ Ham(D2n) such that

| f (x)− x|< ε ∀x ∈D
2n. (1)

For c> 0 define the strip

Π(c) :=
{
(p,q) ∈ R2n : |qn|< c

}
.

Choose ε > 0 so small that Π(2ε) ∩ D
2n is displaceable in D

2n(1 + a). Put
D± := D

2n∩{±qn > 0}. Observe that D± are displaceable in D
2n(1+ a) by a

Hamiltonian diffeomorphism that can be represented outside a neighborhood of the
boundary as a small vertical shift along the qn-axis (in the case of D+, we take
the shift that moves it up, and in the case of D−, the shift that moves it down)
composed with a 180◦ rotation in the (pn,qn)-plane. The desired boundedness result
immediately follows from the following fragmentation-type lemma:

Lemma 1. Assume that f ∈ Ham(D2n) satisfies (1). Then f can be decomposed as
θφ+φ−, where θ ∈ Ham(Π(2ε)∩D

2n) and φ± ∈Ham(D±).

Indeed, η vanishes on Ham(U) for every displaceable domain U ⊂ D
2n(1+ a).

Since Π(2ε)∩D
2n and D± are displaceable, η(θ ) = η(φ±) = 0. Thus |η( f )| ≤

2C(η) for every f ∈ Ham(D2n) lying in the ε-neighborhood of the identity with
respect to theC0-distance, and the theorem follows. It remains to prove the lemma.

Proof of Lemma 1: Denote by S the hyperplane {qn = 0}. For c> 0 write Rc for the
dilation z→ cz of R2n. We assume that all compactly supported diffeomorphisms of
D
2n are extended to the whole R2n by the identity.
Take f ∈ Ham(D2n) satisfying (1). Let { ft}0≤t≤1 be a Hamiltonian isotopy

supported in D
2n such that ft = 1l for t ∈ [0,δ ) and ft = f for t ∈ (1− δ ,1] for
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some δ > 0. Take a smooth function c : [0,1] → [1,+∞) that equals 1 near 0
and 1 and satisfies c(t) > (2ε)−1 on [δ ,1− δ ]. Consider the Hamiltonian isotopy
ht = R1/c(t) ftRc(t) of R

2n. Note that h0 = 1l and h1 = f . Since c(t) ≥ 1, we have
htz= z for z /∈ D

2n, and ht is supported in D
2n.

We claim that ht(S)⊂ Π(2ε). Observe that Rc(t)S= S. Take any z ∈ S. If Rc(t)z /∈
D
2n, we have that htz = z. Assume now that Rc(t)z ∈ D

2n. Consider the following
cases:

• If t ∈ (1− δ ,1], then ftRc(t)(S) = f (S). Thus ftRc(t)z ∈ f (S ∩D
2n) ⊂ Π(2ε),

where the latter inclusion follows from (1). Therefore htz∈Π(2ε) since c(t)≥ 1.
• If t ∈ [δ ,1− δ ], then htz ∈ D

2n(2ε)⊂ Π(2ε) by our choice of the function c(t).
• If t ∈ [0,δ ), then htS = S⊂ Π(2ε).

This completes the proof of the claim.
By continuity of ht , there exists κ > 0 such that ht(Π(κ)) ⊂ Π(2ε) for all t.

Cutting off the Hamiltonian of ht near ht(Π(κ)), we get a Hamiltonian flow θt
supported in Π(2ε) that coincides with ht on Π(κ). Thus, θ−1

t ht is the identity on
Π(κ) for all t. It follows that θ−1

t ht decomposes into the product of two commuting
Hamiltonian flows φ t− and φ t

+ supported in D− and D+ respectively. Therefore
f = θ1φ1−φ1

+ is the desired decomposition. ��

3 Proof of the Criterion of Continuity on Surfaces

3.1 A C0-Small Fragmentation Theorem on Surfaces

Before stating our next result, we recall the notion of fragmentation of a diffeomor-
phism. This is a classical technique in the study of groups of diffeomorphisms; see,
e.g., [2, 4, 10]. Given a Hamiltonian diffeomorphism f of a connected symplectic
manifold Σ and an open cover {Uα} of Σ , one can always write f as a product of
Hamiltonian diffeomorphisms each of which is supported in one of the open sets
Uα . It is known that the number of factors in such a decomposition is uniform in a
C1-neighborhood of the identity; see [2, 4, 10]. To prove our continuity theorem,
we actually need to prove a similar result on surfaces in which one considers
diffeomorphisms endowed with the C0-topology. Such a result appears in [35] in
the case when the surface is the unit disk. Observe also that the corresponding
fragmentation result is known for volume-preserving homeomorphisms [20].

Theorem 4. Let Σ be a compact connected surface (possibly with boundary),
equipped with an area form. Then for every a > 0, there exist a neighborhood U

of the identity in the group Ham(Σ) endowed with the C0-topology and an integer
N > 0 such that every diffeomorphism g ∈ U can be written as a product of at most
N Hamiltonian diffeomorphisms supported in disks of area less than a.
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This result might be well known to experts and probably can be deduced from
the corresponding result for homeomorphisms. However, since the proof is more
difficult for homeomorphisms, and in order to keep this paper self-contained, we
are going to give a direct proof of Theorem 4 in Sect. 6. Note that this last section is
the most technical part of the text. Given the fragmentation result above, one obtains
easily a proof of Theorem 3, as we will show now.

3.2 Proof of Theorem 3 and Corollary 1

1. We begin by proving that the condition appearing in the statement of the theorem
is necessary for the quasimorphism μ to be continuous. Assume that μ is
continuous for the C0-topology. Then it is bounded on some C0-neighborhood
U of the identity in Ham(Σ). Choose now a disk D0 in Σ . If D0 has a sufficiently
small diameter, then Ham(D0) ⊂ U. But since Ham(D0) is a subgroup and μ is
homogeneous, μ must vanish on Ham(D0).

Now let a = area(D0). If D is any disk of area less than a, the group Ham(D)
is conjugate in Ham(Σ) to a subgroup of Ham(D0), because for any two disks of
the same area in Σ there exists a Hamiltonian diffeomorphism mapping one of
the disks onto another; see, e.g., [1, Proposition A.1] for a proof (which, in fact,
works for all Σ , though the claim there is stated only for closed surfaces). Hence,
μ vanishes on Ham(D) as required.

Remark 2. This proof extends verbatim to higher-dimensional symplectic mani-
folds (Σ ,ω) that admit a positive constant a0 with the following property: for every
a < a0, all symplectically embedded balls of volume a in the interior of Σ are
Hamiltonian isotopic. Here a symplectically embedded ball of volume a is the image
of the standard Euclidean ball of volume a in (R2n,dp∧ dq) under a symplectic
embedding. This property holds, for instance, for blowups of rational and ruled
symplectic four-manifolds; see [8, 30, 36, 37].

2. We now prove the reverse implication. Assume that a homogeneous quasimor-
phism μ vanishes on all Hamiltonian diffeomorphisms supported in disks of area
less than a. Take the C0-neighborhood U of the identity and the integer N from
Theorem 4. Then μ is bounded by (N− 1)C(μ) on U, and hence is continuous
by Proposition 1. ��

We now prove Corollary 1. Choose compactly supported symplectic vector
fields v1, . . . ,vk on Σ such that the cohomology classes of the 1-forms iv jω
generate H1

comp(Σ ,R). Denote by hti the flow of vi. Let V be the image of the
following map:

(−ε,ε)k → D

(t1, . . . , tk) �→
k

∏
i=1

htii .
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Using assumption (i) and applying Theorem 3, we get that the quasimorphism μ is
bounded on a C0-neighborhood, say U, of the identity in Ham(Σ). Thus by (ii) and
the definition of a quasimorphism, μ is bounded on U ·V. But the latter set is a C0-
neighborhood of the identity in D. Thus μ is continuous onD by Proposition 1. ��

4 Examples of Continuous Quasimorphisms

In this section we prove Theorem 2 case by case. The case of the disk has already
been explained in Sect. 2. This construction generalizes verbatim to all closed
surfaces of genus 0 with nonempty boundary, which proves Theorem 2 in this case.

When Σ is a closed surface of genus greater than one, Gambaudo and Ghys con-
structed in [22] an infinite-dimensional space of homogeneous quasimorphisms on
the groupD(Σ) satisfying the hypothesis of Theorem 3. These quasimorphisms are
defined using 1-forms on the surface and can be thought of as some “quasifluxes.”
We refer to [22, Sect. 6.1] or to [23, Sect. 2.5] for a detailed description. The fact that
these quasimorphisms extend continuously to the identity component of the group
of area-preserving homeomorphisms of Σ can be checked easily without appealing
to Theorem 3. This was already observed in [23].

In order to settle the case of surfaces of genus one, we shall apply the criterion
given by Theorem 3. The quasimorphisms that we will use were constructed by
Gambaudo and Ghys in [22]; see also [46]. We recall briefly this construction now.

The fundamental group π1(T
2 \ {0}) of the once-punctured torus is a free group

on two generators, a and b, represented by a parallel and a meridian in T
2 \ {0}.

Let μ : π1(T
2 \{0})→R be a homogeneous quasimorphism. It is known that there

are plenty of such quasimorphisms (see [11], for instance). We will associate to μ a
homogeneous quasimorphism μ̃ on the groupD(T2).

We fix a base point x∗ ∈ T
2 \ {0}. For all v ∈ T

2 \ {0} we choose a path αv(t),
t ∈ [0,1], in T

2 \ {0} from x∗ to v. We assume that the lengths of the paths αv are
uniformly bounded with respect to a Riemannian metric defined on the compact
surface obtained by blowing up the origin on T

2. Consider an element f ∈ D(T2)
and fix an isotopy ( ft ) from the identity to f . If x and y are distinct points in the
torus, we can consider the curve

ft (x)− ft(y)

in T2 \ {0}. Its homotopy class depends only on f . We close it to form a loop:

α( f ,x,y) := αx−y ∗ ( ft(x)− ft(y))∗α f (x)− f (y),

where α f (x)− f (y)(t) := α f (x)− f (y)(1− t). We have the cocycle relation

α( f g,x,y) = α(g,x,y)∗α( f ,g(x),g(y)).
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Define a function u f on T
2 × T

2 \ Δ (where Δ is the diagonal) by u f (x,y) =
μ(α( f ,x,y)). From the previous relation and the fact that μ is a quasimorphism,
we deduce the relation

∣
∣u fg(x,y)− ug(x,y)− u f (g(x),g(y))

∣
∣≤C(μ), ∀ f ,g ∈D(T2).

Moreover, it is not difficult to see that the function u f is measurable and bounded
on T2×T

2 \Δ . Hence, the map

f �→
∫

T2×T2
u f (x,y)dxdy

is a quasimorphism. We denote by μ̃ the associated homogeneous quasimorphism

μ̃( f ) = lim
p→∞

1
p

∫

T2×T2
u f p(x,y)dxdy.

One easily checks that μ̃ is linear on any 1-parameter subgroup. The following
proposition was established in [46]:

Proposition 4. Let f ∈Ham(T2) be a diffeomorphism supported in a disk D. Then
for any homogeneous quasimorphism μ : π1(T

2 \ {0})→ R, one has

μ̃( f ) = 2μ([a,b]) ·Cal( f ),

where Cal : Ham(D)→R is the Calabi homomorphism.

By Corollary 1, we get that the quasimorphisms μ̃ , where μ runs over the set of
homogeneous quasimorphisms on π1(T

2 \{0}) that take the value 0 on the element
[a,b], are all continuous in theC0-topology. According to [22], this family spans an
infinite-dimensional vector space. To complete the proof of Theorem 2 for surfaces
of genus 1, we have only to check that the diffeomorphisms that were constructed in
[22] in order to establish the existence of an arbitrary number of linearly independent
quasimorphisms μ̃ can be chosen to be supported in any given subsurface of genus
one. But this follows easily from the construction in [22, Sect. 6.2].

5 Discussion and Open Questions

5.1 Is H(D2) Simple? (Le Roux’s Work)

Although the algebraic structure of groups of volume-preserving homeomorphisms
in dimension greater than 2 is well understood [20], the case of area-preserving
homeomorphismsof surfaces is still mysterious. In particular, it is unknownwhether
the groupH(D2) is simple. Some normal subgroups ofH(D2) were constructed by



On Continuity of Quasimorphisms for Symplectic Maps 181

Ghys, Oh, and more recently by Le Roux; see [10] for a survey. However, it is
unknownwhether any of these normal subgroups is a proper subgroup ofH(D2). In
[35], Le Roux established that the simplicity of the groupH(D2) is equivalent to a
certain fragmentation property. Namely, he established the following result (in the
following, we assume that the total area of the disk is 1):

The groupH(D2) is simple if and only if there exist numbers ρ ′ < ρ in (0,1] and
an integer N such that any homeomorphism g ∈H(D2) whose support is contained
in a disk of area at most ρ can be written as a product of at most N homeomorphisms
whose supports are contained in disks of area at most ρ ′.

By a result of Fathi [20], see also [35], g can always be represented as such a
product with some, a priori unknown, number of factors.

Remark 3. One can show that the property above depends only on ρ and not of the
choice of ρ ′ smaller than ρ [35].

In the sequel we will denote by Gε the set of homeomorphisms inH(D2) whose
support is contained in an open disk of area at most ε . For an element g∈H(D2) we
define (following [12, 35]) |g|ε as the minimal integer n such that g can be written
as a product of n homeomorphisms of Gε . Any homogeneous quasimorphism φ on
H(D2) that vanishes on Gε gives the following lower bound on | · |ε :

|g|ε ≥ |φ(g)|
C(φ)

(g ∈H(D2)).

In particular, if φ vanishes on Gε but not on Gε ′ for some ε ′ > ε , then the norm | · |ε
is unbounded on Gε ′ .

If φ : H(D2) → R is a homogeneous quasimorphism that is continuous in the
C0-topology, we can define a(φ) to be the supremum of the positive numbers a
satisfying the following property: φ vanishes on Ham(D) for any disk D of area
less than or equal to a (for a homogeneous quasimorphism that is not continuous
in the C0-topology, one can define a(φ) = 0). One can think of a(φ) as the scale at
which one can detect the nontriviality of φ . According to the discussion above, the
existence of a nontrivial quasimorphism with a(φ)> 0 implies that the norm | · |a(φ)
is unbounded on the set Gρ (for any ρ > a(φ)).

According to Le Roux’s result, the existence of a sequence of continuous (for the
C0-topology) homogeneous quasimorphisms φn on H(D2) with a(φn) → 0 would
imply that the group H(D2) is not simple. However, for all the examples of quasi-
morphisms on H(D2) that we know (coming from the continuous quasimorphisms
described in Sect. 2), one has a(φ)≥ 1

2 .

5.2 Quasimorphisms on S
2

Consider the sphere S2 equipped with an area form of total area 1.
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Question 1. (i) Does there exist a nonvanishing C0-continuous homogeneous
quasimorphism on Ham(S2)?

(ii) If so, can it be made Lipschitz with respect to Hofer’s metric?

If the answer to the first question is negative, this would imply that the Calabi
quasimorphism constructed in [18] is unique. Indeed, the difference of two Calabi
quasimorphisms is continuous in the C0-topology according to Theorem 3. Note
that for surfaces of positive genus, the examples of C0-continuous quasimorphisms
that we gave are related to the existence of many Calabi quasimorphisms [45, 46].

In turn, an affirmative answer to Question 1(ii) would yield the solution of the
following problem posed by Misha Kapovich and the second author in 2006. It is
known [43] that Ham(S2) carries a one-parameter subgroup, say L := { ft}t∈R, that
is a quasigeodesic in the following sense: ‖ ft‖H ≥ c|t| for some c > 0 and all t.
Given such a subgroup, put

A(L) := sup
φ∈Ham(S2)

dH(φ ,L).

Question 2. Is A(L) finite or infinite?

The finiteness of A(L) does not depend on the specific quasigeodesic one-
parameter subgroup L. Intuitively, the finiteness of A(L) would yield that the whole
group Ham(S2) lies in a tube of finite radius around L.

We claim that if Ham(S2) admits a nonvanishing C0-continuous homogeneous
quasimorphism that is Lipschitz in Hofer’s metric, then A(L) = ∞. Indeed, such
a quasimorphism would be independent of the Calabi quasimorphism constructed
in [18]. But the existence of two independent homogeneous quasimorphisms on
Ham(S2) that are Lipschitz with respect to Hofer’s metric implies that A(L) = ∞:
otherwise, the finiteness of A(L) would imply that Lipschitz homogeneous quasi-
morphisms are determined by their restriction to L.

5.3 Quasimorphisms in Higher Dimensions

Consider the following general question: given a homogeneous quasimorphism on
Ham(Σ2n,ω), is it continuous in theC0-topology?

The answer is positive, for instance, for quasimorphisms coming from the
fundamental group π1(M) [22, 44]. It would be interesting to explore, for instance,
the C0-continuity of a quasimorphism μ given by the difference of a Calabi
quasimorphism and the Calabi homomorphism [9, 18] (or more generally, by the
difference of two distinct Calabi quasimorphisms). In order to prove the C0-
continuity of μ , one should establish a C0-small fragmentation lemma with a
controlled number of factors in the spirit of Lemma 1 for D2n or Theorem 4 for
surfaces. It is likely that the argument that we used for D

2n could go through
without great complications for certain Liouville symplectic manifolds, that is,
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compact exact symplectic manifolds that admit a conformally symplectic vector
field transversal to the boundary, such as the open unit cotangent bundle of the
sphere.

Our result for D2n should also allow the construction of continuous quasimor-
phisms for groups of Hamiltonian diffeomorphisms of certain symplectic manifolds
symplectomorphic to “sufficiently large” open subsets ofD2n (for instance, the open
unit cotangent bundle of a torus).

The C0-small fragmentation problem on general higher-dimensional manifolds
looks very difficult. Consider, for instance, the following toy case: find a fragmenta-
tion with a controlled number of factors for aC0-small Hamiltonian diffeomorphism
supported in a sufficiently small ball D⊂ Σ . A crucial difference from the situation
described in Sect. 2 is that we have no information about the Hamiltonian isotopy
{ ft} joining f with the identity: it can “travel” far away from D. In particular, when
dimΣ ≥ 6, we do not know whether f lies in Ham(D). When dimΣ = 4, the fact
that f ∈ Ham(D) (and hence the fragmentation in our toy example) follows from
a deep theorem by Gromov based on pseudoholomorphic curves techniques [25].
It would be interesting to apply powerful methods of four-dimensional symplectic
topology to theC0-small fragmentation problem.

6 Proof of the Fragmentation Theorem

In this section we prove Theorem 4. First, we need to recall a few classical results.

6.1 Preliminaries

In the course of the proof we will repeatedly use the following result:

Proposition 5. Let Σ be a compact connected oriented surface, possibly with
nonempty boundary ∂Σ , and let ω1, ω2 be two area forms on Σ . Assume that∫

Σ ω1 =
∫

Σ ω2. If ∂Σ �= /0, we also assume that the forms ω1 and ω2 coincide on ∂Σ .
Then there exists a diffeomorphism f : Σ → Σ , isotopic to the identity, such that

f ∗ω2 = ω1. Moreover, f can be chosen to satisfy the following properties:

(i) If ∂Σ �= /0, then f is the identity on ∂Σ , and if ω1 and ω2 coincide near ∂Σ ,
then f is the identity near ∂Σ .

(ii) If Σ is partitioned into polygons (with piecewise smooth boundaries) such that
ω2−ω1 is zero on the 1-skeleton Γ of the partition and the integrals of ω1 and
ω2 over each polygon are equal, then f can be chosen to be the identity on Γ .

(iii) The diffeomorphism f can be chosen arbitrarily C0-close to 1l, provided ω1

and ω2 are sufficiently C0-close to each other (i.e., ω2 = χω1 for a function χ
sufficiently C0-close to 1).
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The existence of f in the case of a closed surface follows from a well-known
theorem of Moser [39] (see also [24]). The method of the proof (“Moser’s method”)
can be outlined as follows. Set ωt :=ω1+ t(ω2−ω1) and note that the form ω2−ω1

is exact. Choose a 1-form σ such that dσ = ω2 −ω1 and define f as the time-1
flow of the vector field ωt -dual to σ . In order to prove (i) and (ii), one has to
choose a primitive σ for ω2−ω1 that vanishes near ∂Σ or, respectively, on Γ ; the
construction of such a σ can be easily extracted from [3]. Property (iii) is essentially
contained in [39]; it follows easily from the above construction of f , provided we
can construct a C0-small primitive σ for a C0-small exact 2-form ω2 −ω1, but
by [39, Lemma 1], it suffices to do so on a rectangle, and in this case σ can be
constructed explicitly.

In fact, a stronger result than (iii) is true. It is known, see [40, 48], that f can
be chosen C0-close to the identity as soon as the two area forms (considered as
measures) are close in the weak-∗ topology. Note that if one of the two forms is the
image of the other by a diffeomorphismC0-close to the identity, the two forms are
close in the weak-∗ topology. However, to keep this text self-contained, we are not
going to use this fact, but will prove again directly the particular cases we need.

We equip the surface Σ with a fixed Riemannian metric and denote by d the
corresponding distance. For any map f : X → Σ (where X is a closed subset of Σ )
we denote by ‖ f‖ := maxx d(x, f (x)) its C0-norm. Accordingly, the C0-norm of a
smooth function u defined on a closed subset of Σ will be denoted by ‖u‖.

The following lemmas are the main tools for the proof.

Lemma 2 (Area-preserving extension lemma for disks). Let D1 ⊂D2 ⊂D⊂R2

be closed disks such that D1 ⊂ Interior (D2) ⊂ D2 ⊂ Interior (D). Let φ : D2 → D
be a smooth area-preserving embedding (we assume that D is equipped with some
area form). Then there exists ψ ∈Ham(D) such that

ψ |D1
= φ and ‖ψ‖→ 0 as ‖φ‖→ 0.

Lemma 3 (Area-preserving extension lemma for rectangles). Let Π = [0,R]×
[−c,c] be a rectangle and let Π1 ⊂ Π2 ⊂ Π be two smaller rectangles of the form
Πi = [0,R]× [−ci,ci] (i = 1,2), 0 < c1 < c2 < c. Let φ : Π2 → Π be an area-
preserving embedding (we assume that Π is equipped with some area form) such
that:

• φ is the identity near 0× [−c2,c2] and R× [−c2,c2].
• The area in Π bounded by the curve [0,R]× y and its image under φ is zero for

some (and hence for all) y ∈ [−c2,c2].

Then there exists ψ ∈ Ham(Π) such that

ψ |Π1
= φ and ‖ψ‖→ 0 as ‖φ‖→ 0.
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The lemmas will be proved in Sect. 6.3. Let us mention that we implicitly assume
in these lemmas that φ is close to the inclusion, i.e., that ‖φ‖ is small enough. Note
that if one is interested only in the existence of ψ , without any control on its norm
‖ψ‖, these results are standard.

6.2 Construction of the Fragmentation

We are now ready to prove the fragmentation theorem. In the case that Σ is
the closed unit disk D

2 in R2, the theorem has been proved by Le Roux [35,
Proposition 4.2]. In general, our proof relies on the case of the disk.

For any b > 0 we fix a neighborhood U0(b) of the identity in Ham(D2) and
an integer N0(b) such that every element of U0(b) is a product of at most N0(b)
diffeomorphisms supported in disks of area at most b. We will prove the following
assertion.

For any surface Σ there exist an integer N1 and disks (Dj)1≤ j≤N1 in Σ such
that for any ε > 0 there exists a neighborhood V (ε) of the identity in Ham(Σ)
with the property that every diffeomorphism f ∈ V (ε) can be written as a product
f = g1 · · ·gN1 , where each gi belongs to Ham(Dj) for one of the disks Dj and is
ε-close to the identity. (∗)

Note that there is no restriction in (∗) on the areas of the disks Dj. Let us explain
how to conclude the proof of Theorem 4 from this assertion. Fix a > 0. We can
choose, for each i between 1 and N1, a conformally symplectic diffeomorphism ψi :
D
2 →Di such that the pullback of the area form on Σ by ψi equals the standard area

form on the disk D2 times some constant λi > 0. Here we are using Proposition 5. If
ε is sufficiently small, ψ−1

i giψi is in U0(
a
λi
) for each i, and we can apply the result

for the disk to it. This concludes the proof.

Remark 4. It is important that the disks Di as well as the maps ψi are chosen in
advance, since we need the neighborhoods ψiU0(

a
λi
)ψ−1

i to be known in advance.
They determine the neighborhood V (ε).

We now prove (∗). The arguments we use are inspired by the work of Fathi [20].
Fix ε > 0. We distinguish two cases: (1) Σ has a boundary, and (2) Σ is closed.

First case. Any compact connected surface with nonempty boundary can be
obtained by gluing finitely many 1-handles to a disk. We prove the statement (∗)
by induction on the number of 1-handles. We already know that (∗) is true for a disk
(just take N1 = 1 and let D1 be the whole disk). Assume now that (∗) holds for any
compact surface with boundary obtained by gluing l 1-handles to the disk. Let Σ be
a compact surface obtained by gluing a 1-handle to a compact surface Σ0, where Σ0

is obtained from the disk by gluing l 1-handles.
Choose a diffeomorphism (singular at the corners) ϕ : [−1,1]2 → Σ −Σ0 sending

[−1,1]×{−1,1} into the boundary of Σ0. Let Πr = ϕ([−1,1]× [−r,r]). Let V1(ε)
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be the neighborhood of the identity in Ham(Σ1) given by (∗) applied to the surface
Σ1 := Σ0∪ϕ([−1,1]×{s, |s| ≥ 1

4}), and let N1 be the corresponding integer.
Let f ∈ Ham(Σ) close to the identity. We apply Lemma 3 to the chain of

rectangles Π 1
2
⊂ Π 3

4
⊂ Π 7

8
and to the restriction of f to Π 3

4
(the hypothesis

on the curve [−1,1]×{y} is met because f is Hamiltonian). Here again we are
appealing to Proposition 5 to ensure that the pullback of the area form of Σ by
ϕ can be identified with a fixed area form on Π 7

8
. We obtain a diffeomorphism ψ

supported in Π 7
8
andC0-close to the identity that coincides with f on Π 1

2
. Hence, we

can write

f = ψh,

where h is supported in Σ1. Since f ∈ Ham(Σ) and ψ ∈ Ham(Π 7
8
), we get that h

is Hamiltonian in Σ . Since H1
comp(Σ1,R) embeds in H1

comp(Σ ,R), it means that h
actually belongs to Ham(Σ1).

Define a neighborhood V (ε) of the identity in Ham(Σ) by the following
condition: f ∈ V (ε) if first, ‖ψ‖ < ε (recall that when f converges to the identity,
so does ψ) and second, h ∈ V1(ε). Hence, if f ∈ V (ε), we can write it as a
product of N1+ 1 diffeomorphisms gi, where each gi is ε-close to the identity and
belongs to Ham(Dj) for some disk Dj ⊂ Σ . This proves the claim (∗) for Σ in the
first case.

Second case. The surface Σ is closed – we view it as a result of gluing a disk to
a surface Σ0 with one boundary component. Choose a diffeomorphism ϕ : D2 →
Σ −Σ0 sending the boundary of D

2 into the boundary of Σ0. Once again, by
appealing to Proposition 5, we can assume that the pullback by ϕ of the area form
of Σ is a given area form on D2. Denote by Dr the image by ϕ of the disk of radius
r ∈ [0,1] inD2. Let V1(ε) be the neighborhood of the identity given by (∗) applied to
the surface Σ1 := Σ0∪ϕ({z ∈ D

2, |z| ≥ 1
4}) and let N1 be the corresponding integer

– recall that in the first case above, we have already proved (∗) for Σ1, which is a
surface with boundary.

Let f ∈ Ham(Σ) close to the identity. We apply Lemma 2 to the chain of disks
D 1

2
⊂ D 3

4
⊂ D1 and to the restriction of f to D 3

4
. We obtain a diffeomorphism ψ

supported in D1 and close to the identity that coincides with f on D 1
2
. Hence, we

can write

f = ψh,

where h is supported in Σ1. Since f ∈ Ham(Σ) and ψ ∈ Ham(D1), we get that h is
Hamiltonian in Σ . Since Σ1 has one boundary component, H1

comp(Σ1,R) embeds in
H1
comp(Σ ,R), so h actually belongs to Ham(Σ1). One concludes the proof as in the

first case.
This finishes the proof of Theorem 4 (modulo the proofs of the extension

lemmas).
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6.3 Extension Lemmas

The area-preserving extension lemmas for disks and rectangles will be conse-
quences of the following lemma.

Lemma 4 (Area-preserving extension lemma for annuli). Let A = S1× [−3,3]
be a closed annulus and let A1 = S1× [−1,1],A2 = S1× [−2,2] be smaller annuli
inside A. Let φ be an area-preserving embedding of a fixed open neighborhood of
A1 into A2 (we assume that A is equipped with some area form ω) such that for
some y ∈ [−1,1] (and hence for all of them), the curves S1× y and φ(S1 × y) are
homotopic in A and

the area in A bounded by S1× y and φ(S1× y) is 0. (2)

Then there exists ψ ∈ Ham(A) such that ψ |
A1

= φ and ‖ψ‖→ 0 as ‖φ‖→ 0.
Moreover, if for some arc I ⊂ S1 we have that φ = 1l outside a quadrilateral

I× [−1,1] and φ(I× [−1,1])⊂ I× [−2,2], then ψ can be chosen to be the identity
outside I× [−3,3].

Once again, we assume in this lemma that ‖φ‖ is small enough. Let us show how
this lemma implies the area-preserving extension lemmas for disks and rectangles.

Proof of Lemma 2. Up to replacing D2 by a slightly smaller disk, we can assume
that φ is defined in a neighborhood of D2. Identify some small neighborhood of
∂D2 with A= S1× [−3,3] so that ∂D2 is identified with S1×0⊂A1 ⊂A2 ⊂A and
φ(A1)⊂ Interior (A2)⊂ A⊂ Interior (D)\φ(D1).

Apply Lemma 4 and find h ∈ Ham(A), ‖h‖→ 0 as ε → 0, so that h|
A1

= φ . Set
φ1 := h−1◦φ ∈Ham(D). Note that φ1|D1

= φ and φ1 is the identity onA1. Therefore
we can extend φ1|D2∪A1

to D by the identity and obtain the required ψ . ��
Proof of Lemma 3. Identify the rectanglesΠ1⊂Π2⊂Π , by a diffeomorphism,with
quadrilaterals I× [−1,1]⊂ I× [−2,2]⊂ I× [−3,3] in the annulus A= S1× [−3,3]
for some suitable arc I ⊂ S1 and apply Lemma 4. ��

In order to prove Lemma 4, we first need to prove a version of the lemma
concerning smooth (not necessarily area-preserving) embeddings.

Lemma 5 (Smooth extension lemma). Let A1 ⊂A2 ⊂A be as in Lemma 4. Let φ
be a smooth embedding of a fixed open neighborhood of A1 into A2, isotopic to the
identity, such that ‖φ‖ ≤ ε for some ε > 0. Then there exists ψ ∈ Diff0,c(A) such
that ψ is supported in A2, ψ |

A1
= φ , and ‖ψ‖ ≤Cε, for some C > 0, independent

of φ .
Moreover, if φ = 1l outside a quadrilateral I × [−1,1] and φ(I × [−1,1]) ⊂

I× [−2,2] for some arc I ⊂ S1, then ψ can be chosen to be the identity outside
I× [−3,3].

Lemma 5 will be proved in Sect. 6.4.
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Proof of Lemma 4. As one can easily check using Proposition 5, we can assume
without loss of generality that the area form on A = S1 × [−3,3] is ω = dx∧ dy,
where x is the angular coordinate along S1 and y is the coordinate along [−3,3]. All
norms and distances are measured with the Euclidean metric on A. Define A+ :=
S1× [1,2], A− := S1× [−2,−1].

Assume ‖φ‖< ε. By Lemma 5, there exists f ∈Diff0,c(A2) such that ‖ f‖ ≤Cε,
and f = φ on a neighborhood of A1. Define Ω := f ∗ω . By (2),

∫

A+

Ω =

∫

A+

ω ,

∫

A−
Ω =

∫

A−
ω . (3)

Note that Ω coincides with ω on a neighborhood of ∂A+ and ∂A−. Let us find
h ∈ Diff0,c(A2) such that

• h|
A1

= 1l,
• h∗Ω = ω ,
• ‖h‖→ 0 as ε → 0.

Given such an h, we extend f h by the identity to the whole of A. The
resulting diffeomorphism of A is C0-small (if ε is sufficiently small), preserves
ω , and belongs to Diff0,c(A), hence (see, e.g., [50]) also to D(A). It may not be
Hamiltonian, but one can easily make it Hamiltonian by a C0-small adjustment
on A \A2. The resulting diffeomorphism ψ ∈ Ham(A) will have all the required
properties.

Preparations for the construction of h. Since on A1 the map h is required to be
the identity, we need to construct it on A+ and A−. We will construct h+ := h|

A+
,

the case of A− being similar. By a rectangle or a square in A we mean the product
of a connected arc in S1 and an interval in [−3,3].

Let us divide A+ = S1× [1,2] into closed squares K1, . . . ,KN , with a side of size
r= ε1/4 > 3ε (we assume that ε is sufficiently small). Denote byV the set of vertices
that are not on the boundary and by E the set of edges that are not on the boundary.
Finally, denote by Γ the 1-skeleton of the partition (i.e., the union of all the edges).

For each v ∈V denote by Bv(δ ) the open ball in A+ of radius δ > 0 with center
at v. Fix a small positive δ0 < r such that for 0 < δ < δ0, the balls Bv(δ ), v ∈ V ,
are disjoint and each Bv(δ ) intersects only the edges adjacent to v. Given such a
δ , consider for each edge e ∈ E a small open rectangle Ue(δ ) covering e \ (e∩
∪v∈VBv(δ )

)
such that

• Ue(δ )∩Bv(δ ) �= /0 if and only if v is adjacent to e.
• Ue(δ ) does not intersect any other edge apart from e.
• All the rectanglesUe(δ ), e ∈ E , are mutually disjoint.

Define a neighborhoodU(δ ) of Γ by

U(δ ) = (∪v∈VBv(δ ))∪ (∪e∈EUe(δ )) .



On Continuity of Quasimorphisms for Symplectic Maps 189

For each ε1 > ε2 > 0 we pick a cut-off function χε1,ε2 :R→ [0,1] that is equal to 1
on a neighborhood of (−ε2,ε2) and vanishes outside (−ε1,ε1). Finally, byC1,C2, . . .
we will denote positive constants independent of ε. The construction of h+ will
proceed in several steps.

Adjusting Ω on Γ . We are going to adjust the form Ω by a diffeomorphism
supported inside U(δ ) to make it equal to ω on Γ . One can first construct h1 ∈
Diff0,c(A+) supported in ∪v∈VBv(2δ ) such that h∗1Ω = ω on ∪v∈VBv(δ ) for some
δ < δ0 (simply using Darboux charts for Ω and ω). Note that ‖h1‖ < 2δ . Write
Ω ′ := h∗1Ω . For each e ∈ E we will construct a diffeomorphism he supported in
Ue(δ ) so that h∗eΩ ′ =ω on l :=Ue(δ )∩e (and thus on the whole e, since Ω ′ already
equals ω on each Bv(δ )).

Without loss of generality, let us assume that e does not lie on ∂A+ (since Ω ′
already coincides with ω there) and thatUe(δ ) is of the form (a,b)×(−δ ,δ ). Write
the restriction of Ω ′ on l = (a,b)× 0 as β (x)dx∧dy, β (x)> 0.

Consider a cut-off function χ = χδ ,δ/2 : R → [0,1] and define a vector field
w(x,y) onUe(δ ) by

w(x,y) = χ(y) log(β (x))y
∂
∂y

.

Note that w is zero on l and has compact support inUe(δ ) (the endpoints of l lie in
the balls Bv(δ ) on which Ω = ω and thus β = 1 near these endpoints). Let ϕt be the
flow of w. A simple calculation shows that

d
dt

ϕ∗
t ω = ϕ∗

t Lwω = log(β (x))et log(β (x))dx∧dy

at the point ϕt((x,0)) = (x,0). Therefore ϕ∗
1ω = Ω ′ on l. Thus setting he := ϕ−1

1 ,
we get that h∗eΩ ′ = ω on l and that ‖he‖ ≤ 2δ , because he preserves the fibers
x× (−δ ,δ ). Set

h2 := ∏
e∈E

he.

Since the rectangles Ue(δ ) are disjoint, h2 is supported in U(δ ) and satisfies the
conditions

• h∗2Ω ′ = ω on Γ .
• ‖h2‖ ≤ 2δ .

The diffeomorphism h3 := h1h2 ∈ Diff0,c(A+) satisfies ‖h3‖ ≤ 4δ and

h∗3Ω = h∗2Ω ′ = ω on Γ .

Consider the area form Ω ′′ := h∗3Ω . It coincides with ω on the 1-skeleton Γ and
near ∂A+. Moreover,

∫
A+

Ω ′′ =
∫
A+

Ω ′, and hence by (3),

∫

A+

Ω ′′ =
∫

A+

ω . (4)
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Adjusting the areas of the squares. In this paragraph we construct a C0-
perturbation ρω of ω that has the same integral as Ω ′′ on each square Ki.

Making δ sufficiently small, we can assume that ‖h3‖ < ε. Recall that
r = ε1/4 > 3ε. Therefore the image of one of the squares Ki by h3 contains a
square of area (r− ε)2 and is contained in a square of area (r+ ε)2. Hence,

(r− 2ε)2

r2
≤

∫
Ki

Ω ′′
∫
Ki

ω
≤ (r+ 2ε)2

r2
.

Since ε/r = ε3/4 → 0 as ε → 0, we get that if ε is sufficiently small, there exists
C1 > 0 such that

1−C1
ε

r
≤

∫
Ki

Ω ′′
∫
Ki

ω
≤ 1+C1

ε

r
. (5)

Now set si :=
∫
Ki

Ω ′′ and ti = si/r2− 1. By (5),

|ti| ≤C1
ε

r
=C1.ε

3/4. (6)

For each i we can choose a nonnegative function ρ̄i supported in the interior of
Ki such that

∫
Ki

ρ̄iω = r2 and

‖ρ̄i‖C0 ≤C2ε
−1/2 (7)

for some constantC2 > 0 independent of i. Define a function � on A by

� := 1+
N

∑
i=1

tiρ̄i.

By (6) and (7), the function � is positive, and the form �ω converges to ω (in the
C0-sense) as ε goes to 0. Moreover, � is equal to 1 on Γ , and the two area forms �ω
and Ω ′′ have the same integral on each Ki. By (4), one has

∫

A+

�ω =

∫

A+

Ω ′′ =
∫

A+

ω . (8)

Finishing the construction of h+: Moser’s argument. Let us apply Proposition 5,
part (ii), to the forms Ω ′′ and �ω on A+. These forms have the same integral over
each Ki and coincide on Γ and near the boundary of A+; therefore, there exists a
diffeomorphism h4 ∈Diff0,c(A+) that is the identity on Γ and satisfies h∗4Ω ′′ = �ω .
Since h4 is the identity on Γ and maps each Ki into itself, its C0-norm is bounded
by the diameter of Ki, hence goes to 0 with ε.
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Finally, apply Proposition 5 to the forms ω and �ω on A+: By (8), their integrals
over A+ are the same; they coincide on ∂A+ and are C0-close. Therefore, there
exists h5 ∈ Diff0,c(A+) such that h∗5(�ω) = ω and

‖h5‖→ 0 as ε → 0. (9)

Then h+ := h3h4h5 is the required diffeomorphism. This finishes the construction
of h.

Final observation. Note that if φ = 1l outside a quadrilateral I× [−1,1] for some
arc I ⊂ S1, then f can be chosen to have the same property. In such a case we need
to construct h+ ∈ Diff0,c(A+) supported in I× [−3,3].

Let J be the complement of the interval I in the circle. The partition of A+ into
squares can be chosen so that it extends a partition of J× [1,2] ⊂ A+ into squares
of the same size. Going over each step of the construction of h+ above, we see that
since Ω = ω on J× [1,2], each of the maps h1,h2,h3,h4,h5 can be chosen to be the
identity on each of the squares in J× [1,2], hence on the whole J× [1,2]. Therefore,
h+, hence h, hence ψ = f h, is the identity on J× [1,2]. Moreover,ψ is automatically
Hamiltonian in this case. ��

6.4 Proof of the Smooth Extension Lemma

As in the proof of Lemma 4, we assume that the Riemannian metric on A =
S1 × [−3,3] used for the measurements is the Euclidean product metric. We can
also assume that the neighborhood of A1 on which φ is defined is, in fact, an open
neighborhood of A′ := S1× [−1.5,1.5] and that ε � 0.5.

Proof of Lemma 5. Applying Lemma 6 (see the appendix by M. Khanevsky
below) to the two curves S1 × {±1.5} and their images under φ , we can find
ψ1 ∈ Diff0,c(A), supported in S1× (−2,−1)∪ S1 × (1,2), such that ψ1 coincides
with φ−1 on the curves φ(S1×{±1.5}). Moreover, it satisfies ‖ψ1‖ <C′ε. Define
ψ2 := ψ1φ . This map is defined on an open neighborhood of A′ = S1× [−1.5,1.5]
and has the following properties:

• The restriction of ψ2 to A
′ is a diffeomorphism of A′. It is the identity on ∂A′

and coincides with φ on A1 = S1× [−1,1]⊂ A
′.

• ‖ψ2‖<C′′ε, whereC′′ :=C′+ 1.

We are going to modify ψ2 (by a C0-small perturbation) to make it the identity
not only on ∂A′ but on an open neighborhood of ∂A′. Then we will extend it by the
identity to a diffeomorphism of A with the required properties.

Since ψ2 is the identity on ∂A′, by perturbing it slightly near ∂A′ (in the C0-
norm) we can assume that in addition to the properties listed above, near ∂A′ the
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map ψ2 preserves the foliation of A by the circles S1× y. Let us explain briefly why
(we describe how to perturb ψ2 near the curve y = 1.5; the argument is the same
near the other boundary component of A′).

Fix α > 0. Since ψ2(x,1.5) = (x,1.5), there exists δ > 0 such that for
|y− 1.5|< δ , the curve ψ2(S1 × {y}) is the graph of a function Fy (depending
smoothly on y):

ψ2(S
1×{y}) = graph(Fy).

Note that ∂Fy
∂y > 0. Choosing δ sufficiently small, we can assume that

sup
x∈S1,|y−1.5|≤δ

|Fy(x)− 1.5| ≤ α and δ < α.

We can now extend the family of functions (Fy)|y−1.5|≤δ to a family of functions
(Fy)|y−1.5|≤α such that Fy(x) = y when |y− 1.5| is close to α and such that we still

have the conditions ∂Fy
∂y > 0 and |Fy(x)−1.5| ≤α . By the implicit function theorem,

we can now write

y= Fc(x,y)(x) (x ∈ S1, |y− 1.5| ≤ α),

with ∂c
∂y > 0. Note that c(x,y) = y when |y− 1.5| is close to α . By composing ψ2

with the C0-small diffeomorphism h defined by h(x,y) = (x,c(x,y)), we obtain the
desired perturbation.

The previous perturbation having been performed, we can now assume that for
some sufficiently small r > 0 the restriction of ψ2 to S1× [−1.5,−1.5+ r]∪ S1×
[1.5− r,1.5] has the form

ψ2 : (x,y) �→ (x+ u(x,y),y),

for some smooth function u such that ‖u‖ < C′′ε. Choose a cut-off function
χ = χ1.5,1.5−r : R→ [0,1] and define a map ψ3 on A′ as follows:

ψ3 := ψ2 on S
1× [−1.5+ r,1.5− r],

ψ3(x,y) := (x+ χ(y)u(x,y),y), when |y| ≥ 1.5− r.

We now consider the diffeomorphism ψ that equals ψ3 on A
′ and the identity

outside A
′. It coincides with φ on A1 and satisfies ‖ψ‖ < C′′ε. Note that if ε is

sufficiently small, ψ automatically belongs to the identity component Diff0,c(A)
(this can be easily deduced, for instance, from [15, 16] or [49]). This finishes the
construction of ψ in the general case.

Let us now consider the case that φ = 1l outside a quadrilateral I× [−1,1] and
φ(I× [−1,1])⊂ I× [−2,2] for some arc I ⊂ S1. Then, by Lemma 6, we can assume
that ψ1 is supported in I× [−3,3]. Then ψ2 is the identity outside I× [−1.5,1.5].
When we perturb ψ2 near ∂A′ to make it preserve the foliation by circles, we can
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choose the perturbation to be supported in I× [−1.5,1.5]. Thus u(x,y) would be
0 outside I× [−1.5,1.5]. This yields that ψ3, and consequently ψ , is the identity
outside I× [−3,3]. ��

7 Appendix by Michael Khanevsky: An Extension Lemma
for Curves

For a diffeomorphism φ of a compact surface with a Riemannian distance d we
write ‖φ‖=maxd(x,φ(x)). The purpose of this appendix is to prove the following
extension lemma, which was used in Sect. 6.4 above.

Lemma 6. Let A := S1 × [−1,1] be an annulus equipped with the Euclidean
product metric. Set L = S1× 0. Assume that φ is a smooth embedding of an open
neighborhood of L in A, so that L is homotopic to φ(L) and ‖φ‖≤ ε for some ε� 1.

Then there exists a diffeomorphism ψ ∈ Diff0,c(A) such that ψ = φ on L and
‖ψ‖<C′ε for some C′ > 0 independent of φ .

Moreover, if φ = 1l outside some arc I ⊂ L and φ(I)⊂ I× [−1,1], then ψ can be
made the identity outside I× [−1,1].

Proof. We view the coordinate x on A along S1 as a horizontal one, and the
coordinate y along [−1,1] as a vertical one. If a,b ∈ L are not antipodal, we denote
by [a,b] the shortest closed arc in L between a and b. The proof consists of a few
steps. By C1,C2, . . . we will denote some universal positive constants.

Step 1. Shift the curve φ(L) by 3ε upward by a diffeomorphism ψ1 ∈ Diff0,c(A)
with ‖ψ1‖ ≤C1ε, so that K := ψ1(φ(L)) lies strictly above L (see Fig. 1).

Step 2. Let x1, . . . ,xN be points on L chosen in a cyclic order so that the distance
between any two consecutive points xi and xi+1 is at most ε (here and below, i+1 is
taken to be 1, if i= N).

For each i= 1, . . . ,N, consider a vertical ray originating at xi and assume, without
loss of generality, that it is transversal to K and that K is parallel to L near its
intersection points with the ray. Among the intersection points of the ray with K
choose the closest one to L and denote it by yi. Denote by ri the closed vertical
interval between xi and yi. Choose small disjoint open rectangles Ui, of width at
most ε/3 and of height at most 4ε around each of the intervals ri.

For each i = 1, . . . ,N, it is easy to construct a diffeomorphism ψ2,i supported in
Ui that moves a connected arc of K ∩Ui containing yi by a parallel shift downward

Fig. 1 Shifting L

K

Á(L)
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Fig. 2 K̃ coincides with L
near xi

ri

xi xi

K̃

Fig. 3 The open set Bi

Bi

xi xi�1

into an arc of L containing xi so that ψ2,i(K) lies completely in {y≥ 0}. Set ψ2 :=
∏N

i=1 ψ2,i. Clearly, ‖ψ2,i‖ ≤ C2ε for each i, and therefore, since the supports of all
the diffeomorphisms ψ2,i are disjoint, ‖ψ2‖ ≤C2ε as well. Set (see Fig. 2)

ψ̃ := ψ2ψ1 ∈ Diff0,c(A), K̃ := ψ̃(φ(L)).

Note that ‖ψ̃‖ ≤C3ε.

Step 3. Note that the points xi, i= 1, . . . ,N, lie on K̃ and that

K̃ ⊂ {y≥ 0}.

An easy topological argument shows that in such a case, since the points xi lie on L
in cyclic order, they also lie in the same cyclic order on K̃.

For each i there are two arcs in K̃ connecting xi and xi+1. Denote by Ki the one
homotopic with fixed endpoints to the arc [xi,xi+1]⊂ L. Since the points xi lie on K̃
in the same cyclic order as on L, we see that K1, . . . ,KN are precisely the closures of
the N open arcs in K̃ obtained by removing the points x1, . . . ,xN from K̃.

Let Bi be the open set bounded by Ki and [xi,xi+1] (see Fig. 3). The Bi are disjoint
and have diameter at most C4ε. Let B′

i be disjoint open neighborhoods of the Bi of
diameter at most C5ε. Now for each i, the two arcs Ki and [xi,xi+1] are homotopic
in B′

i, hence isotopic. Thus, one can find a diffeomorphism ψ3,i ∈ Diff0,c(B′
i) such

that ψ3,i(Ki) = [xi,xi+1]. Since ψ3,i is supported in B′
i, we have ‖ψ3,i‖ ≤ C5ε. Set

ψ3 := ∏N
i=1 ψ3,i. Since the supports of all ψ3,i are disjoint, we get ‖ψ3‖ ≤C5ε.

Step 4. Define ψ4 := ψ3ψ̃ = ψ3ψ2ψ1. Clearly, ψ4 ∈ Diff0,c(A) and ‖ψ4‖ ≤ C6ε.
Recall that for each i we have ψ3(Ki) = [xi,xi+1] and that each Ki is the shortest arc
between xi and xi+1 in K̃ = ψ2ψ1(L). Thus ψ4 maps K into L. The diffeomorphism
ψ−1
4 satisfies ψ−1

4 (L) = φ(L). We now obtain easily the required ψ by a C0-small
perturbation of ψ−1

4 . ��
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10. A. Bounemoura, Simplicité des groupes de transformations de surfaces, Ensaios
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